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ABSTRACT
We investigate a new query reverse-engineering problem of un-
masking SQL queries hidden within database applications. The
diverse use-cases for this problem range from resurrecting legacy
code to query rewriting. As a first step in addressing the unmasking
challenge, we present UNMASQUE, an active-learning extraction
algorithm that can expose a basal class of hidden warehouse queries.
A special feature of our design is that the extraction is non-invasive
wrt the application, examining only the results obtained from re-
peated executions on databases derived with a combination of data
mutation and data generation techniques. Further, potent optimiza-
tions are incorporated to minimize the extraction overheads. A
detailed evaluation over applications hosting hidden SQL queries,
or their imperative versions, demonstrates that UNMASQUE cor-
rectly and efficiently extracts these queries.
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1 INTRODUCTION
Over the past decade, query reverse-engineering (QRE) has evinced
considerable interest from both the database and programming lan-
guage communities (e.g. [12, 14–16, 21, 24–26, 28, 30]). The generic
problem tackled in this stream of work is the following: Given a
database instance D𝐼 and a populated result R𝐼 , identify a candi-
date SQL query Q𝑐 such that Q𝑐 (D𝐼 )= R𝐼 . The motivation for QRE
stems from a variety of use-cases, including: (i) reconstruction of
lost queries; (ii) query formulation assistance for naive SQL users;
(iii) enhancement of database usability through a slate of instance-
equivalent candidate queries; and (iv) explanations for unexpectedly
missing tuples in the result.
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Impressive progress has been made on addressing the QRE prob-
lem, with the development of elegant tools such as TALOS [26],
REGAL [25] and SCYTHE [28]. Notwithstanding, there are intrinsic
challenges underlying the problem framework: First, the output
query Q𝑐 is organically dependent on the specific (D𝐼 ,R𝐼 ) instance
provided by the user, and can vary significantly based on this initial
sample. Second, given the inherently exponential search space of
alternatives, identifying and selecting among the candidates is not
easily amenable to efficient processing.

HQE Problem
In this paper, we consider a new variant of the QRE problem,
wherein a ground-truth query is additionally available, but in a
hidden form that is not easily accessible. For example, the orig-
inal query may be explicitly hidden in a black-box application
executable. Moreover, encryption or obfuscation may have been
incorporated to further protect the application logic. Such “hidden-
executable” situations could also arise in the context of legacy code,
where the original source has been lost or misplaced over time, or
when third-party proprietary tools are part of the workflow.

An alternative and more subtle scenario is that the application
is visible but remains opaque because it is comprised of either (a)
hard-to-comprehend SQL – such as those arising from machine-
generated object-relational mappings, or (b) poorly documented
imperative code that is not easily decipherable – which could occur
when software is inherited from external developers.

Formally, we introduce the hidden-query extraction (HQE) vari-
ant of QRE as follows: Given a black-box applicationA containing a
hidden query Q𝐻 (in either SQL format or its imperative equivalent),
and a database instance D𝐼 on which A produces a populated result
R𝐼 , unmask Q𝐻 to reveal the original query (in SQL format). That is,
in contrast to the speculative nature of standard QRE, we intend to
find the precise Q𝐻 such that ∀𝒊, Q𝐻 (D𝑖 ) = R𝑖 .

The presence of the hidden ground-truth delivers a variety of
benefits: (i) The output query now becomes independent of the
initial (D𝐼 ,R𝐼 ) instance; (ii) Since the application can be invoked
repeatedly on different databases, efficient and focused mechanisms
can be designed to precisely identify Q𝐻 ; (iii) Even advanced SQL
constructs – for instance, pattern-based (e.g. like), group-based
(e.g. having), or result-based (e.g. limit) – which fall outside the
ambit of the traditional QRE framework, become amenable to cap-
ture; (iv) As a collateral utility, the revealed query can serve as a
definitive starting input to database usability tools (e.g. TALOS [26]);
(v) New use-cases related to database security and query rewriting
become feasible, as highlighted in Section 2.

At first glance, it may appear that the existing QRE techniques
could provide a seed query for HQE, followed by refinements to
precisely identify the hidden query. However, as explained later in
the paper, this is not practical for both conceptual and performance
reasons. Therefore, we have approached the HQE problem from first
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principles. Our experience is that the extraction is challenging due to
factors such as: (a) acute dependencies between the various clauses
of the hidden query, (b) possibility of schematic renaming, (c) result
consolidation due to aggregration functions, and (d) presence of
computed column functions.

(a) Hidden Query (Q𝐻 ) (b) UNMASQUE Output Query (Q𝐸 )

Figure 1: Hidden Query Extraction Example (TPC-H Q3)

UNMASQUE Extractor
We take a first step towards addressing the HQE problem here by
presenting UNMASQUE1, an algorithm that exposes the hidden
query Q𝐻 through “active learning” – that is, by using the outputs
of application executions on carefully crafted database instances.
Specifically, UNMASQUE employs a judicious combination of data-
base mutation and synthetic database generation to methodically
expose the various query elements. The extraction is completely
non-invasive wrt both the application software and the underlying
database engine, facilitating portability.

At this time, UNMASQUE is capable of extracting a basal set of
warehouse queries that feature the core SPJGHAOL2 clauses – es-
sentially, single-block equi-join queries with conjunctive predicates
(the precise coverage is enumerated in Section 3). As an exemplar
of a non-trivial query that falls in the ambit of its extraction scope,
consider Q𝐻 in Figure 1(a) – this hidden query encrypts query Q3
of the TPC-H benchmark in a stored procedure, outputting the
top-ten unshipped orders with respect to revenue. Our extracted
equivalent, Q𝐸 , is shown in Figure 1(b) – we see that it clearly
captures all semantic aspects of the original query, including the
revenue column function. Only syntactic differences, such as a
different order of the grouping columns, remain in the extraction.

A natural question here is what would a QRE tool, such as RE-
GAL, output in this situation? Firstly, REGAL is intrinsically unable
to handle the revenue function, apart from the order by and limit
constructs. Secondly, even after grossly simplifying the query by
removing these constructs, as shown in Figure 2(a), REGAL pro-
duces the semantically dissonant output displayed in Figure 2(b)
– while the tables and joins are detected correctly, significant dis-
crepancies exist in the filters, grouping columns and aggregation
functions. Moreover, as explained in [19], differences could arise in
the tables and the joins as well, depending on the specific (D𝐼 ,R𝐼 )
instance that is supplied to the tool. Finally, even producing this
limited outcome required considerable time and resources on a
well-provisioned platform.
1Unified Non-invasive MAchine for Sql QUery Extraction
2Select, Project, Join, GroupBy, Having, Agg, Order, Limit

(a) Simplified Query Input (b) REGAL Output Query

Figure 2: REGAL-compliant QRE Example

Extraction Workflow
UNMASQUE operates according to the pipeline shown in Figure 3,
where it methodically extracts the hidden query elements in a se-
quential manner. It starts with the from clause, continues on to the
join and filter predicates, follows up with the projection, group
by and aggregation columns, and concludes with the order by
and limit functions. (As explained in Section 7, a different pipeline
structure is required to extract the having predicate).

The initial elements (SPJ) are extracted using database mutation
strategies, whereas the subsequent ones (GAOL) leverage database
generation techniques. The final assembler module combines and
canonifies the elements of Q𝐸 into a standard output format, and
performs a suite of correctness checks to verify the extraction.

Extraction Efficiency
To ensure extraction efficiency, UNMASQUE incorporates a variety
of optimizations. In particular, it addresses a conceptual problem of
independent interest: Given a database instance D𝐼 on which Q𝐻
produces a populated result R𝐼 , identify the smallest subset D𝑚𝑖𝑛 of
D𝐼 such that the result continues to be populated.

Due to the hidden nature of Q𝐻 ,D𝑚𝑖𝑛 cannot be obtained using
standard provenance techniques (e.g. [17]). Therefore, we design
alternative strategies based on a combination of sampling and re-
cursive database partitioning to achieve the minimization objective.

The database minimization is applied immediately after the from
clause is identified (Figure 3), ensuring that the subsequent SPJ
extraction is carried out on miniscule databases containing just a
handful of rows. Similarly, the synthetic databases created for GAOL
extraction are also carefully designed to be very thinly populated.
The net outcome is that the post-minimization processing becomes
essentially independent of the original database size.

Performance Evaluation
We have evaluated UNMASQUE’s behavior on (a) complex SQL
queries arising in synthetic (TPC-H, TPC-DS) and real (JOB-IMDB)
environments, as well as (b) imperative code sourced from popular
applications (Enki, Wilos, RUBiS). Our experiments, conducted on
a vanilla PostgreSQL platform, indicate that the hidden queries are
precisely identified in a timely manner. As a case in point, Q3 was
extracted on a 100 GB TPC-H instance within 10 minutes (native
execution of this query took 5 minutes on the same platform).

A demo version of UNMASQUE was presented recently in [18],
and a video of UNMASQUE in operation is available at [10].



Figure 3: UNMASQUE Architecture

Organization
In Section 2, a variety of extraction use-cases are outlined. A precise
description of the HQE problem framework is provided in Section 3.
The various components of the UNMASQUE pipeline are presented
in Sections 4 and 5. The experimental framework and performance
results are reported in Section 6. Extraction of the having clause
is discussed in Section 7, and a comparison to QRE approaches is
reviewed in Section 8. Finally, our conclusions and future research
avenues are summarized in Section 9.

2 HQE DEPLOYMENT SCENARIOS
We now discuss HQE deployment scenarios in the explicit and
implicit opacity contexts. Our expectation is that the extraction
process is invoked by the owner, or a privileged user, of the database,
who possesses full access rights on the contents, including creation
of a test silo for query extraction purposes.

2.1 Explicit Opacity
Here, only the executable object code of the application is available,
and the goal is to determine the embedded data processing logic.

Recovering Lost SQL. It often happens, especially with legacy
industrial applications, that with the passage of time, the original
source code may be lost [4]. However, to understand the output,
we may need to establish the logic connecting the database input
to the observed result. Moreover, we may wish to extend or modify
the existing application query, and create a new version.

If the SQL query is present as-is in the executable, it can be triv-
ially extracted using standard string extraction tools (e.g. Strings [6]).
However, if there has been post-processing, such as encryption or
obfuscation, which are commonly resorted to for protecting appli-
cation logic, this option is not feasible. For instance, the popular
SQL Shield tool [5] offers encryption of stored SQL procedures on
Microsoft SQL Server platforms.

Even with encrypted code, the query can be easily re-engineered
from either the execution plan or the query log constructed by the
database engine. However, this knowledge may also be inaccessible
– as a case in point, SQL Shield blocks out both plan and log visibility
for the encrypted query. Therefore, without direct access to the
database internals, which is typically the situation with commercial
database platforms or remotely-resident infrastructure (e.g. on the
Cloud), the hidden query may not be easily extractable.

Enhancing Database Security. As highlighted in [20], SQL injec-
tion attacks often leverage query encoding techniques. For instance,
an intruder can submit “select * from passwords” via embedded HEX-
encoded strings. Further, encoded queries are also used to modify
database security configurations to facilitate injection success.

Given such attack scenarios, UNMASQUE establishes a new ap-
proach to determining application objectives through query extrac-
tion, rather than directly resorting to heavy-weight and platform-
specific techniques based on system audits and code forensics.

2.2 Implicit Opacity
Here, in addition to the executable, the application source is also
available – however, the complex internal representation makes it
effectively incomprehensible.

Learning-based Query Rewriting. The use of automated ORM
tools is common today, often resulting in unintelligible SQL formu-
lations [29]. Two problems arise from this artificial SQL complexity:
(a) From a software engineering perspective, the code becomes hard
to understand and maintain; (b) From a performance perspective,
although query optimizers are supposed to convert these ORM
queries to efficient equivalents, the plans generated are usually
significantly slower. Modeling the rewriting as a HQE problem,
however, makes it easy to construct a “lean” counterpart – this
is because only databases and results are involved, and not the
query itself. In this sense, HQE represents a viable active-learning
technique for query rewriting, especially wrt “canned” workloads.

Lightweight Code Conversion. Due to either programming conve-
nience or the lack of SQL expertise, software developers may choose
to write imperative code. This may lead to serious execution ineffi-
ciencies since the database system’s potent optimization abilities
(e.g. indexes) are not utilized. The benefits of automated imperative-
to-SQL conversion tools have been well recognized in recent times,
resulting in their incorporation in mainstream database products
(e.g. Froid [22] in SQL Server). However, these tools are typically
host-language-specific (e.g. TSQL in Froid), and require support for
special operators (e.g. Apply or Lateral) which may not be present
on all engines, especially legacy ones. In contrast, UNMASQUE of-
fers, over a restricted space of queries, a comparatively robust and
generic approach to generating SQL from imperative code. This
is because it is completely result-driven, making its usage both
application and platform-independent.



3 PROBLEM FRAMEWORK
We assume an application executable object file is provided, contain-
ing either a single SQL query or imperative logic that is expressible
in a single query. If there are multiple queries in the application, we
require that each of them is invoked with a separate function call,
and not batched together, reducing to the single query scenario.

Turning out attention to the database platform, we assume that
it is freely accessible via its API, supporting all standard DML and
DDL operations. There are no inherent restrictions on column data
types, but for simplicity, we only consider here the common numeric
(int, bigint, fixed-precision float), character (char, varchar, text) and
date types. We assume the application owner provides a database
instance that delivers a populated result – otherwise, we would
have to resort to trial-and-error database generation to produce
any result, an uncertain process with no convergence guarantees.

3.1 Extractable Query Class (EQC)
The QRE literature has primarily focused on constructing generic
SPJGA queries featuring key-based equi-joins and conjunctive filter
predicates. We share these basic structural restrictions, but our
extraction scope is significantly enlarged to include HOL constructs,
like comparators, and multi-linear scalar functions. To achieve this
extended coverage, we require additional mild assumptions: (i)
Filter predicates feature only non-key columns and are of the type
column op value. Further, for numeric columns, 𝑜𝑝 ∈ {=, ≤, ≥, <, >
, 𝑏𝑒𝑡𝑤𝑒𝑒𝑛}, whereas for textual columns, 𝑜𝑝 ∈ {=, like}; (ii) The join
graph is a subgraph of the schema graph (comprised of all valid
PK-FK and FK-FK edges); (iii) All ordering columns appear in the
projections; and (iv) The limit value is at least 3. We hereafter refer
to this class of supported queries as Extractable Query Class (EQC).

Due to the difference in extraction frameworks, we initially
present UNMASQUE for SPJGAOL queries, deferring the Having
clause to Section 7. Accordingly, we qualify EQC as 𝐸𝑄𝐶−𝐻 (EQC
without having) in Sections 4 through 6. Further, for ease of exposi-
tion, we assume a slightly simplified framework in the subsequent
description – for instance, that all keys are positive integer values –
the extensions to the generic cases are provided in [19].

The notations used in our description of the extraction pipeline
are summarized in Table 1, with the opaque application executable
denoted by E to highlight its black-box nature.

3.2 Overview of Extraction Approach
To set up the extraction process, we first create a silo in the database
with the same table schema as the original database. Subsequently,
all referential integrity constraints are dropped from the silo tables,
since the extraction process constructs alternative database scenar-
ios that may be incompatible with the existing schema. We then
create the following template representation for the to-be extracted
query Q𝐸 , as per the notation in Table 1 and assuming 𝐸𝑄𝐶−𝐻 :

Select ( 𝑃𝐸 , 𝐴𝐸 ) From 𝑇𝐸 Where 𝐽𝐸 ∧ 𝐹𝐸

Group By 𝐺𝐸 Order By
−→
O𝐸 Limit 𝑙𝐸 ;

The constituent elements of the template are sequentially identified,
according to the extraction process shown in Figure 3.

The common theme across the SPJ extraction algorithms is that
atomic changes are made to individual database columns and the

Table 1: Notations

Symbol Meaning Symbol Meaning (wrt query Q𝐸 )
A Application 𝑇𝐸 Set of tables in the query
E Application Executable 𝐶𝐸 Set of columns in𝑇𝐸
D𝐼 Initial Database Instance 𝐽𝐺𝐸 Join graph
R𝐼 Result of E on D𝐼 𝐽𝐸 Set of Join predicates
SG Schema Graph of D𝐼 𝐹𝐸 Set of Filter predicates
Q𝐻 Hidden Query 𝐺𝐸 Set of Group By columns
Q𝐸 Extracted Query 𝐻𝐸 Set of Having predicates
𝐷𝑚𝑖𝑛 Reduced Database 𝑙𝐸 Limit value

𝐷𝑡 Database with at most 𝑡 rows in
each table of𝑇𝐸

𝑃𝐸
Set of native Projections with
mapped result columns

𝐷𝑚𝑢𝑡 Mutated database 𝐴𝐸
Set of Aggregations with mapped
result columns

𝐷𝑔𝑒𝑛 Generated database −−→
O𝐸

Sequence of Ordered result
columns

effects on the result are observed – with regard to change in car-
dinality (Select, Join), or change in column value (Projection) – to
establish presence in the respective clauses. On the other hand,
for GAOL extraction, the common theme is that databases are cre-
ated so as to assure pre-determined (albeit invisible) intermediate
outcomes of the SPJ core of the query. Overall, this calibrated con-
struction process supports precise establishment of associations
between the input database columns and the output result columns.

The extraction details are explained in the following sections,
using the introductory query, TPC-H Q3, as the running exam-
ple. Due to space limitations, the proofs of correctness and the
algorithmic complexity analysis are assigned to [19].

4 MUTATION PIPELINE
4.1 From Clause
To identify whether a base table 𝑡 is present in Q𝐻 , the following
elementary procedure is applied: First, 𝑡 is temporarily renamed to
𝑡𝑒𝑚𝑝 . Next, E is executed on this mutated schema and if an error
is immediately thrown by the database engine, then 𝑡 is part of the
query; otherwise, the ongoing execution is terminated after a short
timeout period. Finally, 𝑡𝑒𝑚𝑝 is reverted to its original name 𝑡 .

By iteratively checking all the database tables present in D𝐼 , 𝑇𝐸
is identified. For Q3, the outcome is 𝑇𝐸 = {customer, lineitem,
orders}. We hereafter use D𝐼 to refer specifically to the part of the
database relevant to Q𝐸 – i.e. the contents of 𝑇𝐸 .

(Note: This approach works only for SQL applications – an al-
ternative technique is presented for imperative code in [19].)

4.2 Database Minimization
For enterprise applications, it is likely thatD𝐼 is huge, and therefore
repeatedly executing E during the extraction process may take an
impractically long time. To tackle this issue, we initially invoke
the minimizer module to minimize the database as far as possible
while maintaining a populated result. Specifically, we address the
following row-minimality problem: Given a database instanceD𝐼

and an executable E producing a populated result R𝐼 on D𝐼 , derive a
reduced database instance𝐷𝑚𝑖𝑛 fromD𝐼 such that removing any row
from any table leads to an empty or null result. With this definition
of 𝐷𝑚𝑖𝑛 , the following strong observation can be made:

Lemma 1: For 𝐸𝑄𝐶−𝐻 , there always exists a𝐷𝑚𝑖𝑛 wherein each
table in 𝑇𝐸 contains only a single row.



We hereafter refer to the single-row 𝐷𝑚𝑖𝑛 as 𝐷1– an iterative re-
duction process to identify this database from D𝐼 is explained next.

Reducing D𝐼 to 𝐷1. Pick a table 𝑡 from 𝑇𝐸 that contains more
than one row, and divide it roughly into two halves. Run E on the
first half, and if the result is populated, retain only this partition.
Otherwise, retain only the second half, which must, by definition,
have at least one result-generating row (due to Lemma 1). When
eventually all the tables in𝑇𝐸 have been reduced to a single row by
this process, we have achieved 𝐷1.

In principle, the tables in 𝑇𝐸 can be progressively halved in any
order. However, after each halving, E is executed once to determine
which half to retain, and we would like to minimize the time taken
by these executions. Accordingly, we empirically evaluated various
policies for which table to halve next (smallest table, largest table,
random, etc.), and found that a policy of halving the currently largest
table was usually the fastest way to reach the 𝐷1 target.

Sampling-based Preprocessing. The efficiency of the above re-
duction strategy could be further improved by leveraging the sam-
pling methods that are natively available in most database systems.
Specifically, instead of executing minimizer directly onD𝐼 , we first
quickly reduce the initial database size by iteratively sampling from
the large-sized tables, one-by-one in decreasing size order, until a
populated result is obtained.

4.3 Equi-Join Predicates
To extract the key-based equi-join predicates 𝐽𝐸 of Q𝐻 , we start
with 𝑆𝐺 , the original schema graph of the database comprised of
all semantically valid key-connecting edges. However, unlike the
usual representation where the tables are the vertices, we use a
finer granularity wherein the vertices are the columns in the tables.
So, each edge (𝑢, 𝑣) denotes a join linkage between a pair of key
attributes in the schema. (For composite keys, an edge is drawn
from each key element to the corresponding destination column).

From 𝑆𝐺 , we create an (undirected) induced subgraph whose
vertices are the key columns in 𝑇𝐸 , and edges are the potential join
linkages between these columns. Then, using the transitive property
of inner equi-joins, this subgraph is converted through transitive
closure into a collection of cliques. Finally, each clique is converted
to a cycle graph, hereafter referred to as a cycle, by retaining any one
of elementary 𝑛-length cycles (𝑛 = number of nodes in the clique).
Note that in our context, even the trivial elementary graph with
𝑛 = 2 (a pair of nodes and an edge between them) is also considered
to be a cycle. The complete collection of cycles is referred to as the
candidate join-graph, or 𝐶𝐽𝐺𝐸 .

Our motivation for the graph conversion step is that: (a) Check-
ing presence of a connected component in the query is equivalent to
verifying presence of the corresponding cycle, and (b) If a connected
component is only partially present in the query, the simple cutting
procedure outlined below can downsize it to smaller components.

We individually check the presence of each cycle from 𝐶𝐽𝐺𝐸 in
the query, using the iterative procedure shown in Algorithm 1. Only
those cycles which pass the test are retained in 𝐽𝐺𝐸 . The check is
done with the following three steps:

(1) Using the Cut subroutine, a pair of edges, 𝑒1 and 𝑒2, is re-
moved from a randomly chosen cycle𝐶𝑌𝐶 ; this removal par-
titions 𝐶𝑌𝐶 into two connected components, and the new
components are converted back into smaller cycles (𝐶𝑌𝐶1
and 𝐶𝑌𝐶2) by reintroducing the relevant missing edge;

(2) Using the Negate procedure, negate (i.e. change the sign) all
column values in 𝐷1 corresponding to the vertices in 𝐶𝑌𝐶1,

(3) Run E on this mutated database – if the result is empty, we
conclude that at least one of the edges 𝑒1 and 𝑒2 is present
in 𝐽𝐺𝐸 , and both 𝑒1 and 𝑒2 are returned to the parent cycle
𝐶𝑌𝐶 ; otherwise, 𝐶𝑌𝐶 is removed from 𝐶𝐽𝐺𝐸 and 𝐶𝑌𝐶1 and
𝐶𝑌𝐶2 are included as fresh candidates in 𝐶𝐽𝐺𝐸 .

As a limiting case, if a cycle is reduced to a single edge, then the
check is carried out by dropping the Cut step and using only
Negate with one vertex of the edge.

In the above procedure, the motivation for removing a pair of
edges is the following: For 𝐽𝐺𝐸 to not contain a candidate cycle
𝐶𝑌𝐶 , at least two edges of 𝐶𝑌𝐶 should be absent from the query
– if only a single edge were to be removed, the cycle would still
effectively remain by the transitive property of equi-joins. Note that
the algorithm is guaranteed to terminate because, in each iteration,
a cycle is either fully removed or partitioned into smaller cycles.

With regard to Q3, 𝐶𝐽𝐺𝐸 contains only two connected com-
ponents – (𝑙_𝑜𝑟𝑑𝑒𝑟𝑘𝑒𝑦, 𝑜_𝑜𝑟𝑑𝑒𝑟𝑘𝑒𝑦) and (𝑜_𝑐𝑢𝑠𝑡𝑘𝑒𝑦, 𝑐_𝑐𝑢𝑠𝑡𝑘𝑒𝑦).
Each component has a single edge that returns true when checked
for presence by Algorithm 1. So, in this case, 𝐽𝐺𝐸 ≡ 𝐶𝐽𝐺𝐸 . In the
final step, each edge in 𝐽𝐺𝐸 is converted into a predicate in 𝐽𝐸 .
Therefore, the equi-join predicates turn out to be:

𝐽𝐸 = {l_orderkey=o_orderkey, o_custkey=c_custkey}.

Algorithm 1: Extracting Equi-Join Graph 𝐽𝐺𝐸

𝐶𝐽𝐺𝐸 ← Candidate Cycles, 𝐽𝐺𝐸 ← 𝜙

while There is at least one cycle in𝐶𝐽𝐺𝐸 do
𝐶𝑌𝐶 ← Any candidate cycle from𝐶𝐽𝐺𝐸

if 𝐶𝑌𝐶 contains a single edge (𝑣1, 𝑣2) then
𝐷1
𝑚𝑢𝑡 ← Negate(𝐷1, {𝑣1 })

If E (𝐷1
𝑚𝑢𝑡 ) = 𝜙 then 𝐽𝐺𝐸 ← 𝐽𝐺𝐸 ∪𝐶𝑌𝐶

𝐶𝐽𝐺𝐸 ←𝐶𝐽𝐺𝐸 /𝐶𝑌𝐶
else

foreach pair of edges (𝑒1, 𝑒2) ∈ 𝐶𝑌𝐶 do
𝐶𝑌𝐶1,𝐶𝑌𝐶2 =𝐶𝑢𝑡 (𝐶𝑌𝐶, 𝑒1, 𝑒2)
𝐷1
𝑚𝑢𝑡 ← Negate(𝐷1,𝐶𝑌𝐶1)

if E (𝐷1
𝑚𝑢𝑡 ) = 𝜙 then

Add 𝑒1 and 𝑒2 back to𝐶𝑌𝐶
else

𝐶𝐽𝐺𝐸 ← (𝐶𝐽𝐺𝐸 −𝐶𝑌𝐶) ∪𝐶𝑌𝐶1 ∪𝐶𝑌𝐶2
break //Go to the start of while loop

end
end
𝐽𝐺𝐸 ← 𝐽𝐺𝐸 ∪𝐶𝑌𝐶 ; 𝐶𝐽𝐺𝐸 ←𝐶𝐽𝐺𝐸 /𝐶𝑌𝐶

end
end

4.4 Filter Predicates (non-key)
We iteratively check each (non-key) column in𝐶𝐸 , the set of columns
in 𝑇𝐸 , for its presence in a filter predicate (note that as per 𝐸𝑄𝐶−𝐻 ,



Table 2: Filter Predicate Cases

Case | 𝑅1 |= 𝜙 | 𝑅2 |= 𝜙 Predicate Type Action Required

1 No No 𝑖𝑚𝑖𝑛 ≤ 𝐴 ≤ 𝑖𝑚𝑎𝑥 No Predicate
2 Yes No 𝑙 ≤ 𝐴 ≤ 𝑖𝑚𝑎𝑥 Find 𝑙
3 No Yes 𝑖𝑚𝑖𝑛 ≤ 𝐴 ≤ 𝑟 Find 𝑟
4 Yes Yes 𝑙 ≤ 𝐴 ≤ 𝑟 Find 𝑙 and 𝑟

each such attribute can appear in at most one filter predicate). The
procedure for general numeric and textual predicates of the form
column op value is explained below, with special cases such as NULL
and boolean predicates discussed in [19].

4.4.1 Numeric Predicates. For ease of presentation, we start by
explaining the process for integer columns. Let [𝑖𝑚𝑖𝑛, 𝑖𝑚𝑎𝑥 ] be the
value spread of column 𝐴’s integer domain, and assume a range
predicate 𝑙 ≤ 𝐴 ≤ 𝑟 , where 𝑙 and 𝑟 need to be identified. Note
that all the comparison operators (=, <, >, ≤, ≥, 𝑏𝑒𝑡𝑤𝑒𝑒𝑛) can be
represented in this format (e.g. 𝐴 < 5 ≡ 𝑖𝑚𝑖𝑛 ≤ 𝐴 ≤ 4).

To check for presence of a filter predicate on column 𝐴, we first
create a mutated 𝐷1

𝑚𝑢𝑡 instance by replacing the value of 𝐴 with
𝑖𝑚𝑖𝑛 in 𝐷1, then run E and get the result – call it 𝑅1. By applying
the same process with 𝑖𝑚𝑎𝑥 , we get a second result – call it 𝑅2. Now,
the existence of a filter predicate is determined based on matching,
using the cardinalities of 𝑅1 and 𝑅2, one of the four disjoint cases
shown in Table 2.

If the match is with Case 2, a binary-search is conducted over
(𝑖𝑚𝑖𝑛, 𝑎] to identify the specific value of 𝑙 , where 𝑎 is the value of
column 𝐴 present in 𝐷1. After this search completes, the associ-
ated predicate is added to 𝐹𝐸 . Similarly, for Case 3, the search is
over [𝑎, 𝑖𝑚𝑎𝑥 ) to identify the value of 𝑟 . Finally, Case 4 is a trivial
combination of Cases 2 and 3, and handled in a similar manner.

Using a similar strategy, we can also extract float data types with
fixed precision. Specifically, we first identify the integral bounds
with the above procedure and then execute a second binary-search
to identify the fractional bounds.

Finally, extraction of date predicates is identical to integers, the
only change being the value limits and the difference unit (i.e. days).

4.4.2 Textual Predicates. The extraction procedure for charac-
ter columns is significantly more complex because: (a) strings can
be of variable length, and (b) the filters may containwildcard charac-
ters (‘_’ and ‘%’). To first check for the existence of a filter predicate
on textual attribute 𝐴, we create two different 𝐷1

𝑚𝑢𝑡 instances by
replacing the value of 𝐴 with (a) an empty string, and (b) a single
character string (say “a"), respectively. E is invoked on both these
instances, and we conclude that a filter predicate is in operation
iff the result is empty in at least one of the cases. To prove the if
part, it is easy to see that if the result is empty in either of the cases,
there must be some filter criteria on 𝐴. With regard to the only if
part, the result will be populated for both cases in only one extreme
scenario – A like ‘%’, which is equivalent to no filter on 𝐴.

After confirming existence of a filter predicate on 𝐴, the specific
predicate is extracted in two steps. Before getting into the details,
we define a term called Minimal Qualifying String (MQS) – given
a character/string expression str, its MQS is the string obtained
by removing all occurrences of ‘%’ from str. For example, “UP_”
is the MQS for "%UP_%". With this notation, the first step is to

identify MQS using the actual value of 𝐴 in 𝐷1, denoted as the
representative string, or rep_str. The idea here is to loop through
all the characters of rep_str and determine whether it is present
as an intrinsic character of MQS or invoked through wildcards
(‘_’ or ‘%’). This distinction is achieved by replacing, in turn, each
character of rep_str in 𝐷1 with a different character, executing E
on this mutated database, and checking if the result is empty – if
yes, the replaced character is part of MQS; if no, this character was
invoked through wildcards. The detailed algorithm is given in [19].

After obtaining the MQS, we need to find the locations (if any) in
the string where ‘%’ is to be placed to obtain the actual filter value.
This is achieved with the following simple linear procedure: For
each pair of consecutive characters inMQS, a random character that
is different from both these characters is inserted between them.
Then, we replace the current value in attribute 𝐴 with this new
string. A populated result for E on this mutated database instance
indicates the existence of ‘%’ between the pair of characters. The
inserted character is removed after each iteration and the initial
MQS is used afresh for each successive pair of consecutive char-
acters – this is done to ensure that the character length limit for
𝐴 is not exceeded. In the specific case of Q3, the rep_str value for
c_mktsegment turns out to be the MQS itself, namely ‘BUILDING’.

Overall, the following numeric and textual filter predicates are
extracted by the above procedures for query Q3:

𝐹𝐸 = { o_orderdate ≤ date ‘1995-03-14’ ,
l_shipdate ≥ date ‘1995-03-16’ ,
c_mktsegment = ‘BUILDING’ }

From hereon, we will refer to attribute values that satisfy the
corresponding filter and join predicates in the query as s-values.
For attributes without filters, including key attributes on which
filters are not permitted in 𝐸𝑄𝐶−𝐻 , the s-values can be sourced
from their entire domains. Our subsequent extractions are carried
out only on databases populated with s-values.

4.5 Projection Columns
Identification of projections is tricky since they appear in a variety
of different forms – native database columns, renamed columns,
aggregated columns, and computed columns. To have a unified
extraction procedure, we begin by treating each result column as
an (unknown) constrained scalar function of one or more database
columns. We explain here the procedure for identifying this func-
tion, assuming linear dependence on the column variables and at
most two columns featuring in the function – the extension to an
arbitrary number of columns is discussed in [19].

Let 𝑂 denote the visible output column, and 𝐴, 𝐵 the (unknown)
database columns that may affect 𝑂 . Given our assumption of lin-
earity, the function connecting 𝐴 and 𝐵 to𝑂 can be expressed with
the following equation structure:

𝑎𝐴 + 𝑏𝐵 + 𝑐𝐴𝐵 + 𝑑 = 𝑂 (1)

where 𝑎, 𝑏, 𝑐, 𝑑 are constant coefficients. Note that there may be
an additional aggregation on the function (as in the revenue func-
tion of Q3), but its effect is nullified due to 𝐷1 being a single-row
database. With this framework, the extraction process proceeds, as
explained below, in two steps: (i) Dependency List Identification,
which establishes the identities of𝐴 and 𝐵, followed by (ii) Function
Identification, which computes the values of 𝑎, 𝑏, 𝑐, 𝑑 .



4.5.1 Dependency List Identification. In this step, for each out-
put column 𝑂 , the set of database columns which affect its value is
discovered via iterative column exploration and database mutation.
Specifically, the s-value of each database column in 𝐷1 is mutated
in turn to evaluate its impact on the value of𝑂 – if there is a change,
then 𝑂 is dependent on this column. If not, the exercise is repeated
a second time with new s-values to ensure that the lack of change
is not due to a coincidental original value of one column preventing
impact of the other – for example, if 𝐴 = −𝑏𝑐 in 𝐷1, then 𝐵 has no
impact on 𝑂 , irrespective of its value.

Using the above procedure onQ3, the following dependency lists
are obtained for the various output columns: l_orderkey: [l_orderkey],
o_orderdate: [l_orderkey], o_shippriority: [o_shippriority], and rev-
enue: [l_extendedprice, l_discount].

4.5.2 Function Identification. With reference to Equation 1, at
this stage we are aware of the identities of 𝐴 and/or 𝐵 for each of
the output columns, and what remains is to obtain the coefficient
values 𝑎, 𝑏, 𝑐, 𝑑 . This can be easily solved by creating 4 different mu-
tated 𝐷1

𝑚𝑢𝑡 instances such that the resultant equations are linearly
independent. To do so, we randomly mutate the s-values of𝐴 and 𝐵,
each time checking whether the new vector [𝐴, 𝐵,𝐴𝐵, 1] is linearly
independent from the vectors generated so far, and stop when four
such vectors have been found.

For Q3, applying the above random procedure on the revenue
output column, which depends on 𝐴 = 𝑙_𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑𝑝𝑟𝑖𝑐𝑒 and 𝐵 =

𝑙_𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 , we happen to obtain the following system of equations:

1.𝑎 + 2.𝑏 + 2.𝑐 + 𝑑 = −1 2.𝑎 + 1.𝑏 + 2.𝑐 + 𝑑 = 0
2.𝑎 + 3.𝑏 + 6.𝑐 + 𝑑 = −4 1.𝑎 + 4.𝑏 + 4.𝑐 + 𝑑 = −3

Solving this system results in the coefficient values: 𝑎 = 1, 𝑏 =

0, 𝑐 = −1, 𝑑 = 0, producing the function seen in the query. For
the remaining output columns, which are all dependent on only a
single database column, we get a function of the form 𝑎𝐴 + 𝑑 with
𝑎 = 1, 𝑑 = 0 – i.e. a native database column.

Thus, we obtain for query Q3, the following projection columns:
𝑃𝐸 = {l_orderkey: l_orderkey, o_orderdate: o_orderdate,

o_shippriority: _shippriority,
revenue: l_extendedprice * (1 - l_discount) }.

The reason the above set is shown as 𝑃𝐸 , and not 𝑃𝐸 , is that some of
these projections are subsequently refined as aggregations (𝐴𝐸 ) in
the Generation Pipeline – for instance, revenue becomes a sum. We
reiterate that aggregations could be ignored thus far because our
extraction techniques operated on single-row databases, making all
aggregation functions identical with regard to their values.

5 GENERATION PIPELINE
5.1 Group By Columns
Our generic approach is that for each attribute 𝑡 .𝐴 in 𝐶𝐸 (the set
of columns in 𝑇𝐸 ), we create a tiny synthetic database instance
𝐷𝑔𝑒𝑛 and analyze E (𝐷𝑔𝑒𝑛) for the existence of 𝑡 .𝐴 in 𝐺𝐸 , the
columns in the group by clause. However, this check is skipped
for columns with equality filter predicates (as determined in the
Mutation Pipeline) since their presence in 𝐺𝐸 is superfluous. As-
sume for the moment that we have constructed a 𝐷𝑔𝑒𝑛 such that
the (invisible) intermediate result produced by the SPJ core of Q𝐻

Figure 4: 𝐷𝑔𝑒𝑛 for Grouping on o_orderdate (Q3)

contains 3 rows satisfying the following condition: Column 𝑡 .𝐴

has a common value in exactly two rows, while all other columns
have the same value in all three rows. Now, if the final query result
contains 2 rows, it means that this grouping is only due to the
two different values in 𝑡 .𝐴, making it part of 𝐺𝐸 . This approach to
intermediate result generation is similar to techniques in [23, 27]
for identifying query mutants.

Creating𝐷𝑔𝑒𝑛 . We now explain how to create the desired𝐷𝑔𝑒𝑛 for
checking𝐺𝐸 membership. The procedure is specific to the presence
or absence of 𝑡 .𝐴 in 𝐽𝐺𝐸 , the query join graph identified in the
Mutation Pipeline, leading to the two cases described below. In the
following description, assigning (𝑝, 𝑞, 𝑟, ...) to 𝑡 .𝐴 means assigning
s-value 𝑝 in the first row, 𝑞 in the second, 𝑟 in the third and so on.

Case 1: 𝑡 .𝐴 ∉ 𝐽𝐺𝐸 . Here, we generate 3 rows for table 𝑡 and
only 1 row in each of the other tables in 𝑇𝐸 . For column 𝑡 .𝐴, any
two distinct s-values 𝑝 and 𝑞 are first chosen, and then (𝑝, 𝑝, 𝑞) is
assigned to 𝑡 .𝐴. Next, for all columns 𝑡 .𝐵 ∈ 𝐽𝐺𝐸 , a fixed s-value of
𝑟 = 1 (since keys do not feature in filter predicates) is assigned in
all 3 rows. Finally, in all remaining columns of 𝑡 , a random s-value
𝑟 is selected and assigned to all 3 rows.

Then, for the remaining 1-row tables 𝑡 ′ in 𝑇𝐸 , a fixed s-value of
𝑟 = 1 is assigned to all columns 𝑡 .𝐵 ∈ 𝐽𝐺𝐸 , while random s-values
are assigned to the remaining columns.

An example 𝐷𝑔𝑒𝑛 for checking presence of o_orderdate in the
𝐺𝐸 of Q3 is shown in Figure 4. Here, the orders table features 3
rows with 𝑝 = ‘1995-03-13’ and 𝑞 = ‘1995-03-14’, while the lineitem
and customer tables have a single row apiece.

Case 2: 𝑡 .𝐴 ∈ 𝐽𝐺𝐸 . Here, we generate 3 rows for table 𝑡 , 2 rows
for all tables 𝑡 ′ having a column 𝑡 ′.𝐵 with a path between 𝑡 .𝐴 and
𝑡 ′.𝐵 in 𝐽𝐺𝐸 , and only 1 row for the remaining tables in 𝑇𝐸 . The
assignment of values in the tables is similar to Case 1 with the
following modifications: (i) In 𝑡 .𝐴, 𝑝 and 𝑞 are assigned fixed s-
values of 1 and 2, respectively, in the 3 rows; (ii) Each column 𝑡 ′.𝐵
is assigned fixed s-values (1, 2) in its two rows, and the remaining
columns in its table are assigned duplicated random s-values.

An example 𝐷𝑔𝑒𝑛 for checking the presence of l_orderkey in 𝐺𝐸

is shown in Figure 5. Here, there are 3 rows for lineitem, 2 rows
for orders and 1 row for customer.

It is straightforward to see by inspection that, with a restriction to
key-based equi-joins, the above data generation procedure ensures
the desired intermediate SPJ result. Namely, it contains exactly 3
rows with all columns having identical values in these rows, except
the attribute under test which has two values in them.



Figure 5: 𝐷𝑔𝑒𝑛 for Grouping on l_orderkey (Q3)

It is possible that after all attributes have been processed in the
above manner, 𝐺𝐸 remains empty. In this case, we create another
𝐷𝑔𝑒𝑛 with each table having two rows, assigning fixed s-values (1, 2)
to each column in 𝐽𝐺𝐸 , a matching s-value to each column with an
equality filter predicate, and any two different s-values to all other
columns. Then, E is run on this 𝐷𝑔𝑒𝑛 , and if the result contains just
1 row, we conclude the query features an ungrouped aggregation.

Overall, for Q3, the above procedure results in:
𝐺𝐸 = {l_orderkey, o_shippriority, o_orderdate}.

5.2 Aggregation Functions
We now explain the procedure for identifying the basic SQL aggre-
gations –min(), max(), count(), sum(), avg(). Due to space limitations,
only numeric attributes are discussed here, but similar methods can
be used for textual and other attributes as well. Further, for ease
of presentation, we assume that there is no distinct aggregation,
deferring this case to [19].

The aggregation identification proceeds as follows: Let 𝑂 =

𝑎𝑔𝑔(𝑓𝑜 (𝐴1, ..., 𝐴𝑛)), where 𝑎𝑔𝑔 corresponds to the aggregation, and
𝑓𝑜 (𝐴1, ..., 𝐴𝑛) to the projection function identified in Section 4.5 on
database columns 𝐴1, ..., 𝐴𝑛 . Our goal now is to create a database
𝐷𝑔𝑒𝑛 such that the final result row-cardinality is 1, and each of the
five possible aggregation functions on 𝑓𝑜 results in a unique value,
thereby facilitating correct identification of the specific aggregation.
We call this the desired “target result”.

To distinguish between min() and max(), at least two differ-
ent values are required in the input database columns. Further,
to ensure unique values for the various output aggregations, we
do as follows: Consider a pair of input s-value vector arguments
(𝑠1, .., 𝑠𝑖 , .., 𝑠𝑛) and (𝑠1, .., 𝑠 ′𝑖 , .., 𝑠𝑛) such that 𝑓𝑜 (𝑠1, .., 𝑠𝑖 , .., 𝑠𝑛) = 𝑜1
and 𝑓𝑜 (𝑠1, .., 𝑠 ′𝑖 , .., 𝑠𝑛) = 𝑜2, with 𝑜1 ≠ 0, 𝑜1 ≠ 𝑜2. Now assume we
have generated a database𝐷𝑔𝑒𝑛 such that there are 𝑘 +1 rows in the
(invisible) intermediate result produced by the SPJ core of the query,
with value 𝑓𝑜 = 𝑜1 in 𝑘 rows and 𝑓𝑜 = 𝑜2 in the remaining row. We
ensure that each aggregation is guaranteed to produce a different
value, by assigning 𝑘 to be the smallest positive integer that does
not coincide with any of the following “forbidden” values (derived
by computing pairwise equivalences among the five aggregation
functions, as detailed in [19]):{

0, 𝑜1 − 1, 𝑜2 − 1, 1 −
𝑜2
𝑜1

,
1 − 𝑜2
𝑜1 − 1

,
(𝑜1 − 2) ±

√
(𝑜1 − 2)2 + 4(𝑜2 − 1)

2

}
(2)

Finally, all𝐺𝐸 grouping attributes are assigned common values in
all the rows.

The above procedure ensures that the outcome of E on 𝐷𝑔𝑒𝑛 is
the target result because: (i) The result row-cardinality is 1 since
there is a common set of values for the𝐺𝐸 attributes, and (ii) The
constraints on 𝑘 ensure unique aggregated outputs for all possible
aggregations in 𝑂 .

Note that as a special case, if 𝑓𝑜 is a constant function, then by
definition 𝑜1 = 𝑜2 = 𝑐 . More subtly, this is also the case when
𝑓𝑜 is a function of only the columns in 𝐺𝐸 , because each unique
combination of 𝐺𝐸 values forms a different group. In this scenario,
the forbidden-value constraint reduces to 𝑘 ∉ {0, 𝑐 − 1}. Further,
themin(), max(), avg() functions are all equivalent due to the group-
wise computation of the aggregation, and therefore any of these
functions can be taken as the final choice – in our canonical format,
we have chosen to use min().

Generating 𝐷𝑔𝑒𝑛 . First, we choose the 𝑖𝑡ℎ function argument 𝐴𝑖

to be a column that is not in 𝐺𝐸 . If such an 𝐴𝑖 is not available,
then as mentioned above, 𝑠𝑖 = 𝑠 ′

𝑖
and any argument column can be

chosen as 𝐴𝑖 . Next, we pick any two of the arguments that were
used to identify dependency lists for 𝑓𝑜 (Section 4.5) if they satisfy
the above-mentioned output condition, or generate a new set of
compliant arguments. Subsequently, 𝑘 is chosen as the least positive
integer satisfying Equation 2. Finally, the data generation process
to obtain the desired intermediate result is similar to the 𝐷𝑔𝑒𝑛

generation of group by (Section 5.1), with the following changes:
• 𝑘 + 1 rows are generated for table 𝑡 where 𝐴𝑖 ∈ 𝑡 , with 𝑡 .𝐴𝑖

assigned value 𝑠𝑖 in 𝑘 rows and 𝑠 ′
𝑖
in the remaining row.

• The other argument database columns, 𝐴 𝑗 s.t. 𝑗 ≠ 𝑖 , are
assigned corresponding 𝑠 𝑗 values in all the rows.
• With respect to Case 2 (𝑡 .𝐴𝑖 ∈ 𝐽𝐺𝐸 ), all assignments of fixed
values 1, 2 are replaced with values 𝑠𝑖 , 𝑠 ′𝑖 .

A sample 𝐷𝑔𝑒𝑛 to check for aggregation on l_extendedprice * (1 -
l_discount) is shown in Figure 6. Here, 𝑘 = 1 and (l_extendedprice,
l_discount) is set to < (3, 0), (4, 0) >. We run E on this 𝐷𝑔𝑒𝑛 and
the aggregation is identified by matching 𝑂 ’s value with the corre-
sponding unique values for the five aggregations – in this case, it
turns out to be sum().

Figure 6: 𝐷𝑔𝑒𝑛 for Aggregation on revenue UDF (Q3)

In the last step, the entries corresponding to the aggregated
columns are removed from 𝑃𝐸 and inserted in 𝐴𝐸 , along with their
associated functions. Further, if an unmapped output column is
present in 𝑃𝐸 , it is removed and 𝑐𝑜𝑢𝑛𝑡 (∗) is added to 𝐴𝐸 . Whatever
remains in 𝑃𝐸 constitutes the native (i.e. unaggregated) 𝑃𝐸 .

With the above procedure, we finally obtain for Q3:
𝐴𝐸 = {revenue: sum(l_extendedprice * (1 − l_discount))}
𝑃𝐸 = {l_orderkey:l_orderkey, o_orderdate:o_orderdate,

o_shippriority:o_shippriority}



5.3 Order By
We now move on to identifying the sequence of columns present in
−→
O𝐸 . A basic difficulty here is that the result of a query can be in a
particular order either due to: (i) an explicit order by clause in the
query or (ii) a particular plan choice (e.g. Index-based access or Sort-
Merge join). Given our black-box environment, it is fundamentally
infeasible to differentiate the two cases. However, even if extraneous
orderings appear in Q𝐸 due to the plan, the query semantics will
not be altered, and so we allow them to remain as such.

In the following presentation, we expect that each database col-
umn occurs in the dependency list of at most one output column.
Further, for simplicity, we assume that 𝑐𝑜𝑢𝑛𝑡 () ∉ 𝐴𝐸 – the proce-
dure to handle this special case is given in [19].

5.3.1 Order Extraction. We start with a candidate list comprised of
the output columns in 𝑃𝐸 ∪𝐴𝐸 . From this list, the columns in

−→
O𝐸 are

extracted sequentially, starting from the leftmost index. The process
stops when either (i) all candidates or functionally-independent
attributes of 𝐺𝐸 have been included in

−→
O𝐸 , or (ii) no sort order can

be identified for the current index position.
To check for the existence of an output column 𝑂 in

−→
O𝐸 , we

create a pair of 2-row database instances – 𝐷2
𝑠𝑎𝑚𝑒 and 𝐷2

𝑟𝑒𝑣 . In the
former, the sort-order of𝑂 is the same as that of all the other output
columns, whereas in the latter, the sort-order of 𝑂 alone is reversed
with respect to the other output columns. An example instance of
this database pair is shown for the revenue function in Figure 7.

Figure 7: 𝐷2
𝑠𝑎𝑚𝑒 and 𝐷2

𝑟𝑒𝑣 for Ordering on revenue (Q3)

Creating 𝐷2
𝑠𝑎𝑚𝑒 . We use the following procedure to create 𝐷2

𝑠𝑎𝑚𝑒 :
First, the output columns are partitioned into three sets: (i) 𝑆1, the
set of output columns already present in

−→
O𝐸 (initially, 𝑆1 = 𝜙); (ii)

𝑆2, a singleton set containing the output column currently under
analysis; and (iii) 𝑆3, the set of all remaining output columns. Let 𝑓𝑜
denote the function for output column 𝑂 (as per Section 4.5). For
each𝑂 ∈ 𝑆1, we select a common s-value vector

−→
𝑉0 = 𝑠1, 𝑠2, ..., 𝑠𝑛 to

populate the argument columns present in 𝑓𝑜 . Whereas, for each
𝑂 ∈ 𝑆2 ∪ 𝑆3, we select a pair of s-value vectors

−→
𝑉1 and

−→
𝑉2 such that

each vector returns a different value in the output column.

The data generation for the tables is as follows:

• The argument columns for output column 𝑂 ∈ 𝑆1 are as-
signed

−→
𝑉0 in both the rows.

• The argument columns for output column 𝑂 ∈ 𝑆2 ∪ 𝑆3 are
assigned

−→
𝑉1 and

−→
𝑉2 in the two rows such that the output

columns in 𝑆2 ∪ 𝑆3 are all sorted in the same order.
• For the remaining columns with equality filter predicates,
the single qualifying s-value is assigned in both the rows.
• For all other columns, a pair of random s-values 𝑝 and 𝑞 is
assigned to the two rows with 𝑝 < 𝑞. As always, consistency
across connected key attributes is maintained by assigning
the same 𝑝, 𝑞 pair to the matching attributes.

The procedure for creating 𝐷2
𝑟𝑒𝑣 is the same as that for 𝐷2

𝑠𝑎𝑚𝑒

except that the argument attributes corresponding to the output
column in 𝑆2 are assigned values in the reverse order (i.e.

−→
𝑉2,
−→
𝑉1).

This database construction mechanism ensures that the two
input rows eventually form individual output groups. Therefore, all
aggregated columns can be effectively treated as projections (except
𝑐𝑜𝑢𝑛𝑡 (), which requires a different mechanism, explained in [19]).
After generating 𝐷2

𝑠𝑎𝑚𝑒 and 𝐷2
𝑟𝑒𝑣 , we run E on both instances and

analyze the results, 𝑅𝑠𝑎𝑚𝑒 and 𝑅𝑟𝑒𝑣 . If the values in 𝑂 are sorted in
the same order in both 𝑅𝑠𝑎𝑚𝑒 and 𝑅𝑟𝑒𝑣 , 𝑂 along with its associated
direction (asc or desc) is added to

−→
O𝐸 at position 𝑖 . The sets 𝑆1, 𝑆2

and 𝑆3 are then recalculated for the next iteration.
With the above procedure, we finally obtain for Q3:

−→
O𝐸 = {revenue desc, o_orderdate asc}

5.4 Limit
For an SPJGAOL query, extracting 𝑙𝐸 requires generating a database
instance such that E produces more than 𝑙𝐸 rows in the result,
subject to an upper bound imposed by the group by clause.

The maximum number of different values a column can legiti-
mately take is a function of multiple parameters – data type, filter
predicates, database engine, hardware platform, etc. Let 𝑛1, 𝑛2, 𝑛3, ..
be the number of different values, after applying domain and filter
restrictions, that the functionally-independent attributes𝐴1, 𝐴2, 𝐴3, ..
in 𝐺𝐸 can respectively take. This means that there can be a maxi-
mum of 𝑛1 ∗𝑛2 ∗𝑛3 ∗ ... = 𝑙𝑚𝑎𝑥 groups in the result. Thus, 𝑙𝐸 values
up to 𝑙𝑚𝑎𝑥 can be extracted with this approach.

To extract 𝑙𝐸 , UNMASQUE iteratively generates database in-
stances such that the result-cardinality follows a geometric pro-
gression starting with 𝑎 rows and having common ratio 𝑟 . We set
𝑎 =𝑚𝑎𝑥 (4, | 𝑅𝐼 |) to accommodate 𝐺𝐸 ’s extraction requirement of
3 row results. And 𝑟 is set to balance the number of iterations with
the setup cost for each iteration (in our experiments, 𝑟 = 10).

Generating 𝐷𝑔𝑒𝑛 for desired 𝑅 cardinality. To get 𝑛 result rows
prior to the limit kicking in, we generate a database instance with
each table having 𝑛 rows such that the functionally-independent
attributes in𝐺𝐸 have a unique permutation of values in each row.
Specifically, all attributes appearing in 𝐽𝐺𝐸 are assigned values
(1, 2, 3, ..., 𝑛), while other attributes are assigned random s-values.
After applying E on this database, if the result contains 𝑚 rows
with𝑚 < 𝑛, we conclude that a limit of𝑚 is operational.

Applying this procedure for Q3, we obtain 𝑙𝐸 = 10.



5.5 Query Extraction Checker
In the final module, we conduct a suite of automated tests to verify
the extraction correctness. First, several randomized large databases
are created on which both the application and the extracted query
are run. The results are compared, and a non-zero difference indi-
cates an error. Further, physical ordering equivalence is verified by
computing position-dependent checksums on the results.

Second, we leverage the XData grading tool [23], which verifies
equivalence of student queries wrt to a model solution by construct-
ing a suite of small test databases that are capable of detecting even
subtle semantic differences in the respective query constructions.
In our context, the extracted query is mapped to the model solution,
and the hidden application to the student version.

6 EXPERIMENTS
We now move on to empirically evaluating UNMASQUE’s efficacy
and efficiency – our experiments are carried out on a vanilla Post-
greSQL 11 database platform (Intel Xeon 2.3 GHz CPU, 32GB RAM,
3TB Disk, Ubuntu Linux) with default primary-key indices.

6.1 Comparison with QRE techniques
To begin with, we compare UNMASQUE against QRE techniques
– specifically, the state-of-the-art REGAL tool [24, 25, 30]. Firstly,
as already mentioned in the Introduction, there are considerable
semantic differences between the query outputs of these two tech-
niques. Secondly, we found that on large databases, REGAL ei-
ther took several hours to complete or in some cases prematurely
stopped due to running out of memory. Moreover, even on a small
5 GB database size, our extraction was significantly faster, often by
an order of magnitude. This is quantified in Figure 8, which shows
the performance of UNMASQUE and REGAL on 11 queries – RQ1
through RQ11 – that are compliant with the query templates used
in [24]. As a case in point, REGAL took close to 800 seconds for
RQ1, whereas UNMASQUE completed the extraction in only 25
seconds. Moreover, despite the reduced database size, REGAL did
not complete a few queries, denoted by DNC in the figure.

Figure 8: Comparison with QRE (5 GB)

We have also conducted a similar comparison with the TALOS
tool on datasets from the UCI archive [9]. The performance results,
which are detailed in [19], are consistent with those obtained for
REGAL. Due to these large qualitative and quantitative differences
wrt QRE systems, we present only the UNMASQUE profile in the
remaining experiments of this section.

6.2 Hidden SQL Queries
Our primary extraction experiments were conducted on a basal
suite of complex SPJGAOL queries, which are all 𝐸𝑄𝐶−𝐻 -compliant
and derived from the following popular benchmarks: (a) TPC-H [8]
(12 queries), (b) TPC-DS [7] (7 queries), and (c) JOB [2] (11 queries),
constructed on the real-world IMDB movie dataset. Each query
was passed through a Cpp program that embedded the query in a
separate executable, which formed the input to UNMASQUE. We
then compared, both manually and through the automated tests
discussed in 5.5, the extracted output with the original query and
verified semantic equivalence.

The extraction times are analyzed below – only TPC-H and JOB
are presented here, while TPC-DS results are reported in [19].

TPC-H. These hidden queries are similar in complexity to the
Q3 running example, and are listed in [19]. For convenience, we
hereafter refer to them as Qx, where 𝑥 is their associated TPC-H
query identifier. The total end-to-end time taken to extract each
of the 12 queries on a 100 GB initial instance (with a populated
result) is shown in Figure 9. In addition, the breakup of the primary
pipeline contributors to the total time is also shown in the figure.

Figure 9: Hidden Query Extraction Time (TPC-H 100GB)

We first observe that the extraction times are practical for offline
analysis environments, with all extractions being completed within
10 minutes. Secondly, there is a wide variation in the extraction
times, with some being completed in under 1 minute (e.g. Q16). The
reason is the presence or absence of the lineitem table in the query
– this table is enormous in size (around 0.6 billion rows), occupy-
ing about 80% of the database footprint, and therefore inherently
incurring heavy processing costs.

Drilling down into the performance profile, we find that the
minimizer module of the pipeline takes up the lion’s share of the
extraction time, spread roughly evenly across the sampling (maroon
color) and iterative partitioning (pink color) efforts. The remain-
ing modules (green color) collectively complete within just a few
seconds. For instance, with Q5 which consumed the maximum of
10 minutes, the minimizer expended 98 % of this time, and only a
paltry 2% was taken by all other modules combined.

The extreme skew across the modules is because the minimizer
operates on the original large database, whereas the other modules
work with miniscule mutations or synthetic constructions. We also
counted the number of times E was invoked to completion during
the extraction – it was typically a few hundred times – but in spite
of these numerous invocations, the overheads turned out to be
negligible due to the tiny database sizes involved in the executions.



An alternative testimonial to UNMASQUE’s efficiency is ob-
tained by comparing the total extraction times with their corre-
sponding query response times. For all the queries in our workload,
this ratio was less than 1.5. As a case in point, executing Q5 on the
100GB database took 6.5 minutes, shown by the red dashed line in
Figure 9, in the same ballpark as the 10 minute extraction time.

Join Order Benchmark (JOB). The 11 queries we evaluated on
the JOB benchmark, which is based on the IMDB database (5 GB),
are characterized by extremely rich join-graphs, with ≥ 7 joins in
each query – in fact, query Q24b has as many as 12 joins! Despite
this complexity, they were all correctly extracted in less than 3
minutes apiece, as shown in Figure 10. Again, the initial database
size reduction takes the lion’s share of the extraction, with the
remaining modules collectively completing in less than a minute.

Figure 10: Hidden Query Extraction Time (JOB)

Database Scaling. To assess UNMASQUE’s scaling ability, we
also conducted the same set of extraction experiments on a suite of
different-sized TPC-H instances, starting from 200 GB and going up
to 1 TB in increments of 200 GB. A sample result corresponding to
Q5, the most difficult extraction, is shown in Figure 11. We observe
here that UNMASQUE delivers a quasi-linear behavior with a gentle
slope, completing 1 TB in less than 25 minutes. In contrast, the
native execution of Q5 has a much sharper slope, taking around 72
minutes on 1 TB, almost 3 times the query extraction time.

Figure 11: Extraction Scaling Profile Q5 (TPC-H)

Schema Scaling. Enterprise warehouses often contain hun-
dreds of tables in their schema. Therefore, a legitimate concern
is that the From clause extraction may be impractically slow in
such environments. To assess this issue, we added 1000 tables to
the TPC-H schema, and evaluated the 𝑇𝐸 identification overheads
for a query having 12 tables – with an execution timeout setting of
100 milliseconds, the process completed in less than 10 seconds.

6.3 Hidden Imperative Code
Our second set of experiments evaluated the following large-scale
applications hosting imperative code: (a) Enki [1], a blogging appli-
cation built with Ruby on Rails, (b)Wilos [11], a process orchestra-
tion software based on the Hibernate ORM, and (c) RUBiS [3], an
auction site benchmark – due to space limitations, we only cover
Enki and Wilos here, with RUBiS available in [19].

Enki. This application has commands to navigate pages, posts
and comments. Since native data is not publicly available, we cre-
ated a synthetic 10 MB database that provided populated results for
all these commands. We found 14 out of 17 Enki commands to be
compatible with our extraction scope, and verified that the correct
SQL query was output for each of these imperative commands. As
a sample instance, a snippet of “find_recent” function, invoked by
“get latest posts by tag” command, is outlined in Figure 12(a). The
corresponding UNMASQUE output is shown in Figure 12(b), and
was produced in just 3 seconds. The remaining commands were all
also extracted in just a few seconds, and their timings are listed in
[19] along with the complexity of the extracted queries.

(a) Imperative Code (snippet) (b) Extracted Equivalent SQL

Figure 12: Imperative to SQL Conversion – Enki

Wilos. This Java-based application has been previously used to
showcase the potential of imperative-to-SQL conversion tools such
as DBridge [13] and QBS [14]. There are 33 code snippets listed in
[14], with each snippet consisting of a function call internalizing a
single query – of these, 22 were found to be compatible with our ex-
traction scope. A synthetic database of size 10 MB was created, and
the results of the in-scope functions on this database were serialized
into database tables. Further, the table and the row corresponding
to the function’s input object were taken as constant since Wilos
uses only this specific row as input from the source table.

We verified that UNMASQUE was able to correctly identify the
equivalent queries for all 22 functions, accomplishing these extrac-
tions within a few seconds. As quantitative evidence, Table 3 shows
the SQL clauses appearing in the 9 most complex functions, along
with the associated extraction timings.

Table 3: Imperative to SQL Conversion – Wilos

File (Function Line No.) Extracted SQL Complexity Time (sec)
ActivityService (347) Project, Join, Group By, Order By 1.7
Guidance Service (168) Project, Join, Group By 2.1
ProjectService (297) Filter, Project, Join, Group By 2.4
ConcreteActivityService (133) Project, Join, Group By 2.3
ConcreteRoleDescriptorService (181) Project, Join, Group By 2.1
IterationService (103) Project, Join, Group By 2.0
ParticipantService (266) Project, Filter, Join, Group By 1.6
PhaseService (98) Project, Join, Group By 1.3
RoleDao (15) Project, Filter, Aggregation 1.3



7 HAVING CLAUSE EXTRACTION
Thus far, we had deliberately set aside discussion of the having
clause. The reasons are that (a) 𝐻𝐸 predicates are difficult to extract
due to close similarity to the filter predicates, 𝐹𝐸 , and (b) Lemma 1,
which guarantees a single-row input, is no longer valid. Neverthe-
less, we have been able to devise an efficient extraction technique
modulo a few restrictions, the primary one being that the attribute
sets in 𝐹𝐸 and𝐻𝐸 are disjoint. However, incorporating this approach
entails a significant reworking of the UNMASQUE pipeline, as well
as modified algorithms for some of the extraction modules. Due to
space limitations, we only summarize the 𝐻𝐸 extraction procedure
here – the complete description is available in [19].

To accommodate having,𝐺𝐸 is identified immediately after 𝐽𝐸 ,
and 𝐹𝐸 and 𝐻𝐸 are extracted subsequently. Leveraging the observa-
tion that 𝐹𝐸 constraints of the form 𝑎 ≤ 𝐴 ≤ 𝑏 can be equivalently
re-written as 𝐻𝐸 predicates: 𝑎 ≤ 𝑚𝑖𝑛(𝐴) and 𝑚𝑎𝑥 (𝐴) ≤ 𝑏, we
initially extract both of them in a unified manner, followed by
separation into the respective categories, as explained below.

Predicate Extraction. Each 𝐻𝐸 predicate is generically repre-
sented as 𝑎 ≤ 𝑎𝑔𝑔(𝐴) ≤ 𝑏, which is separable into two components
– 𝑎𝑔𝑔(𝐴) ≥ 𝑎 and 𝑎𝑔𝑔(𝐴) ≤ 𝑏 – that are individually identifiable.
For the lower bound, we begin by sorting the table 𝑡 in ascending
order on attribute 𝐴. Then, we progressively decrease the values in
the column towards 𝑖𝑚𝑖𝑛 , using a common logarithmic reduction
function. Let 𝑟 be the first row in 𝑡 .𝐴 in which this reduction pro-
cess results in an empty output before or upon reaching 𝑖𝑚𝑖𝑛 . Now,
based on the location of 𝑟 , the possible aggregation functions can
be refined. For instance, if 𝑟 is located in the interior of the table –
i.e. not the first or last row – the aggregation is either 𝑠𝑢𝑚() ≥ 𝑠𝐴 or
𝑎𝑣𝑔() ≥ 𝑎𝐴 , where 𝑠𝐴 (resp. 𝑎𝐴) is the current 𝑠𝑢𝑚 (resp. 𝑎𝑣𝑔) of the
values in column 𝐴. We differentiate these two cases by inserting a
row with 𝑡 .𝐴 = 0 since this keeps 𝑠𝑢𝑚() the same, but changes the
𝑎𝑣𝑔(), and then recompute the output.

An analogous approach to the above can be applied to extract the
upper bound (i.e. 𝑎𝑔𝑔(𝐴) ≤ 𝑏). Finally, all𝐻𝐸 predicates of the form
𝑚𝑖𝑛(𝐴) ≥ 𝑎 and𝑚𝑎𝑥 (𝐴) ≤ 𝑎 are converted to the corresponding
filter predicates. This is to aid efficient query execution, since it is
usually recommended to apply filters as early as possible.

8 COMPARISONWITH QRE
Although HQE is a conceptual variant of the long-standing QRE
problem, UNMASQUE has been constructed from first principles.
The reasons for doing so are explained here, using REGAL [25] as
an exemplar for comparison.

The extraction pipeline sequence in REGAL identifies candidates
for projections and joins prior to the other clauses. Whereas, UN-
MASQUEhas to first identify the joins and filters so that themutated
databases in projection extraction, and the synthetic databases
in the generation pipeline, are populated with s-values– that is,
values compatible with the where clause predicates. Moreover, the
generated databases have to be carefully constructed to produce
known, albeit invisible, intermediate behavior.

Substantive differences also arise when we drill down to the in-
dividual operators. For instance, to construct the projection-join
component of the query, REGAL first generates candidate tables
and projections using value-based comparisons between database

columns and result columns. Next, it enumerates all feasible join
graphs on the tables associated with a candidate. It then runs the set
of queries corresponding to these derived candidates on D𝐼 , prun-
ing those whose result does not match R𝐼 . This speculative process
may lead to missing tables or spurious tables, depending on theD𝐼

contents, as highlighted in [19]. In contrast, UNMASQUE uses a
precise error-based identification of the query tables (Section 4.1)
that has no dependence onD𝐼 beyond requiring a populated result.

After identifying projection-join candidates, REGAL creates a
materialized view corresponding to each surviving candidate. On
this view, a lattice of all possible grouping candidates is constructed,
and a second round of candidate generation is done by incorpo-
rating aggregations. However, presence of unique values in any
of the grouping columns may lead to incorrect selection of group
by-aggregation candidates, as seen in the example of Figure 2.

Turning to the filter clause, REGAL takes a backward data-based
approach to its identification. Specifically, each aggregate value in
the result is traced to its relevant view partition by constructing the
contained tuples into amatrix whose dimensions are view attributes.
An iterative process is used to select the matrix with the lowest
dimensionality, and the minimum range limits on these dimensions,
such that it is sufficient to produce the result. However, this could
lead to missing dimensions and imprecise ranges, as highlighted
in Figure 2(b). In contrast, UNMASQUE takes a forward domain-
based constructive approach of using result cardinalities on extreme
domain values to determine the presence of filters, followed by a
binary search to obtain the precise constants.

Finally, since UNMASQUE can create any desired suite of input
instances, it acquires the power to extract even complex clauses.

9 CONCLUSIONS AND FUTUREWORK
We introduced and investigated the problem of Hidden Query Ex-
traction as a novel variant of QRE. Diverse HQE use-cases were
outlined, ranging from database security to query rewriting, cover-
ing both explicit and implicit application opacity. Addressing the
HQE problem proved to be challenging due to the inherent com-
plexities of the query clauses, and the acute dependencies between
them. As a first-cut solution, we presented UNMASQUE, which non-
invasively and efficiently extracts a basal class of hidden SPJGHAOL
queries through a pipeline that leverages database mutation and
generation techniques to extract the clauses in a systematic manner.

A natural followup question is whether the extraction scope
could be extended to a broader range of common SQL constructs.
Based on our preliminary investigations, it appears that outer-
joins, disjunctions and set operators could eventually be extracted
under some restrictions. Nested queries, however, pose a formidable
challenge that may require novel technology. More fundamentally,
formally characterizing the extractive power of active learning
techniques in the HQE context is an open theoretical problem.
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