Efficiently Approximating Query Optimizer Plan Diagrams

P
Atreyee Dey Sourjya Bhaumik Harish D. Jayant R. Haritsa
Database Systems Lab, SERC/CSA
Indian Institute of Science, Bangalore 560012, INDIA

ABSTRACT

Given a parametrized n-dimensional SQL query template and a
choice of query optimizer, a plan diagram is a color-coded pictorial
enumeration of the execution plan choices of the optimizer over the
query parameter space. These diagrams have proved to be a pow-
erful metaphor for the analysis and redesign of modern optimizers,
and are gaining currency in diverse industrial and academic institu-
tions. However, their utility is adversely impacted by the impracti-
cally large computational overheads incurred when standard brute-
force exhaustive approaches are used for producing fine-grained
diagrams on high-dimensional query templates.

In this paper, we investigate strategies for efficiently producing
close approximations to complex plan diagrams. Our techniques
are customized to the features available in the optimizer’s API,
ranging from the generic optimizers that provide only the optimal
plan for a query, to those that also support costing of sub-optimal
plans and enumerating rank-ordered lists of plans. The techniques
collectively feature both random and grid sampling, as well as in-
ference techniques based on nearest-neighbor classifiers, paramet-
ric query optimization and plan cost monotonicity.

Extensive experimentation with a representative set of TPC-H
and TPC-DS-based query templates on industrial-strength optimiz-
ers indicates that our techniques are capable of delivering 90% ac-
curate diagrams while incurring less than 15% of the computational
overheads of the exhaustive approach. In fact, for full-featured
optimizers, we can guarantee zero error with less than 10% over-
heads. These approximation techniques have been implemented in
the publicly available Picasso optimizer visualization tool.

1. INTRODUCTION

For a given database and system configuration, a query opti-
mizer’s execution plan choices are primarily a function of the se-
lectivities of the base relations in the query. In a recent paper [20],
we introduced the concept of a “plan diagram” to denote a color-
coded pictorial enumeration of the plan choices of the optimizer for
a parameterized query template over the relational selectivity space.

*Contact Author: haritsa@dsl.serc.iisc.ernet.in

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.

VLDB ‘08, August 24-30, 2008, Auckland, New Zealand

Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

For example, consider QT8, the parameterized 2D query template
shown in Figure 1, based on Query 8 of the TPC-H benchmark [28].
Here, selectivity variations on the SUPPLIER and LINEITEM rela-
tions are specified through the s_acctbal :varies and I_ extend-
edprice :varies predicates, respectively. The associated plan dia-
gram for QT8 is shown in Figure 2(a), produced with the Picasso
optimizer visualization tool [23] on a popular commercial database
engine.

select o_year, sum(case when nation = ’BRAZIL’ then volume
else 0 end) / sum(volume)

from (select YEAR(o_orderdate) as o_year, 1_extendedprice *
(1 - 1_discount) as volume, n2.n_name as nation

from part, supplier, lineitem, orders, customer,
nation nl, nation n2, region

where p_partkey = l_partkey and s_suppkey = 1_suppkey
and l.orderkey = o_orderkey and o_custkey =
c_custkey and c_nationkey = nl.n_nationkey and
nl.n_regionkey = r_regionkey and s_nationkey =
n2.n_nationkey and r-name = 'AMERICA’ and
p-type = " ECONOMY ANODIZED STEEL’ and
s_acctbal :varies and 1_extendedprice :varies

) as all_nations

group by o_year

order by o_year

Figure 1: Example Query Template QT8

In this picture', each colored region represents a specific plan,
and a set of 89 different optimal plans, P1 through P89, cover the
selectivity space. The value associated with each plan in the legend
indicates the percentage area covered by that plan in the diagram
— the biggest, P1, for example, covers about 22% of the space,
whereas the smallest, P89, is chosen in only 0.001% of the space.

Applications of Plan Diagrams

Since their introduction in [20] a few years ago, plan diagrams have
proved to be a powerful metaphor for the analysis and redesign of
industrial-strength database query optimizers. For example, as evi-
dent from Figure 2(a), they can be surprisingly complex and dense,
with a large number of plans covering the space — several such
instances spanning a representative set of benchmark-based query
templates on current optimizers are available at [23]. Our interac-
tions with industrial development teams have indicated that these

'The figures in this paper should ideally be viewed from a color
copy, as the gray-scale version may not clearly register the features.

B 2
B o

B 7z
g P4 T7S19%
"
& B s
E " ps es08%
£ | LT
- P8 e18B2%
"
: P8 5200%
o P10 3889 %
&
3

Br 2268
ez 20814

0 20 a0 60 #0
SUPPLIER.S_ACCTEAL

100 Ml pes 0.001%

(a) Plan Diagram

E

ENDEDPRIC

ITEM.L EXT

LINE

SUPFLIER.S_ACCTBAL

(b) Approximate Diagram (10% Error Bound)

Figure 2: Sample Plan Diagram and Approximate Plan Diagram (QTS)

diagrams have often proved to be contrary to the prevailing con-
ventional wisdom. The reason is that while optimizer behavior on
individual queries has certainly been analyzed extensively by de-
velopers, plan diagrams provide a completely different perspective
of behavior over an entire space, vividly capturing plan transition
boundaries and optimality geometries. So, in a literal sense, they
deliver the “big picture”.

Plan diagrams are currently in use at various industrial and aca-
demic sites for a diverse set of applications including analysis of
existing optimizer designs; visually carrying out optimizer regres-
sion testing; debugging new query processing features; comparing
the behavior between successive optimizer versions; investigating
the structural differences between neighboring plans in the space;
evaluating the variations in the plan choices made by competing op-
timizers; etc. As a case in point, visual examples of non-monotonic
cost behavior in commercial optimizers, indicative of modeling er-
rors, were highlighted in [20].

Apart from optimizer design support, plan diagrams can also be
used in operational settings. Specifically, since they identify the
optimal set of plans for the entire relational selectivity space at
compile-time, they can be used at run-time to immediately identify
the best plan for the current query without going through the time-
consuming optimization exercise. Further, they can prove useful to
adaptive plan selection techniques (e.g. [5, 6, 17]) which, based on
the differences between the actual selectivities encountered during
execution and the associated compile-time estimates, may dynam-
ically choose to reoptimize the query and switch plans mid-way
through the processing. In this context, plan diagrams can help
to eliminate the reoptimization overheads incurred in determining
the substitute plan choices for estimation errors that occur on the
selectivity dimensions.

Plan Diagram Reduction. A particularly compelling utility of
plan diagrams is that they provide the input to “plan diagram re-
duction” algorithms. Specifically, given a plan diagram and a cost-
increase-threshold () specified by the user, these reduction algo-
rithms recolor the dense diagram to a simpler picture that features
only a subset of the original plans while ensuring that the cost of no
individual query point goes up by more than X percent, relative to
its original cost. That is, some of the original plans are “completely
swallowed” by their siblings, leading to a reduced plan cardinality
in the diagram. It has been shown last year [12] that if users were
willing to tolerate a minor cost increase of A =20%, the absolute

number of plans in the final reduced picture could be brought down
to within or around ten. In short, that complex plan diagrams can
be made “anorexic” while retaining acceptable query processing
performance. For example, the reduced version of the QT8 plan
diagram (Figure 2(a)) retains only 5 of the original 89 plans with A
=20%.

Anorexic plan diagram reduction has significant practical ben-
efits [12], including quantifying the redundancy in the plan search
space, enhancing the applicability of parametric query optimization
(PQO) techniques [14, 15], identifying error-resistant and least-
expected-cost plans [3, 4], and minimizing the overhead of multi-
plan approaches [1, 16]. A detailed study of its application to iden-
tifying robust plans that are resistant to errors in relational selectiv-
ity estimates is available in [13].

Generation of Plan Diagrams

The generation and analysis of plan diagrams has been facilitated
by our development of the Picasso optimizer visualization tool [23].
Given a multi-dimensional SQL query template like QT8 and a
choice of database engine, the Picasso tool automatically produces
the associated plan diagram. It is operational on several major plat-
forms including IBM DB2, Oracle, Microsoft SQL Server, Sybase
ASE and PostgreSQL. The tool, which is freely downloadable, is
now in use by the development groups of several major database
vendors, as also by leading industrial and academic research labs
worldwide.

The diagram production strategy used in Picasso is the follow-
ing: Given a d-dimensional query template and a plot resolution of
7, the Picasso tool generates ¢ queries that are either uniformly or
exponentially (user’s choice) distributed over the selectivity space.
Then, for each of these query points, based on the associated se-
lectivity values, a query with the appropriate constants instantiated
is submitted to the query optimizer to be “explained” — that is, to
have its optimal plan computed. After the plans corresponding to
all the points are obtained, a different color is associated with each
unique plan, and all query points are colored with their associated
plan colors. Then, the rest of the diagram is colored by painting the
region around each point with the color corresponding to its plan.
For example, in a 2D plan diagram with a uniform grid resolution
of 10, there are 100 real query points, and around each such point
a square of dimension 10x10 is painted with the point’s associated
plan color.

The above exhaustive approach is eminently acceptable for dia-
grams on low-dimension (1D and 2D) query templates with coarse
resolutions (upto 100 points per dimension). However, it becomes
impractically expensive for higher dimensions and fine-grained res-
olutions due to the exponential growth in overheads. For example,
a 2D plan diagram with a resolution of 1000 on each selectivity di-
mension, or a 3D plan diagram with a resolution of 100 on each di-
mension, both require invoking the optimizer a million times. Even
with a conservative estimate of about half-second per optimization,
the total time required to produce the picture is close to a week!
Therefore, although plan diagrams have proved to be extremely
useful, their high-dimension and/or fine-resolution versions pose
serious computational challenges.

Two obvious mechanisms to lower the computational time over-
heads are: (a) Customize the resolution on each dimension to be
domain-specific — for example, coarse resolutions may prove suffi-
cient for categorical data; and (b) Use computational units in par-
allel to leverage the independence between the optimizations of the
individual query points, resulting in concurrent issue of multiple
optimization requests.

In this paper, we consider how we can supplement the above
remedies, which may not always be applicable or feasible, through
the use of generic algorithmic techniques, as described next.

Approximate Plan Diagrams

Specifically, we investigate whether it is possible to efficiently pro-
duce accurate approximations to plan diagrams. Denoting the true
plan diagram as P and the approximation as A, there are two cate-
gories of errors that arise in this process:

Plan Identity Error (e;): This error metric refers to the possibil-
ity of the approximation missing out on a subset of the plans
present in the true plan diagram. It is computed as the per-
centage of plans lost in A relative to P.

The € error is challenging to control since a majority of the
plans appearing in plan diagrams, as seen in Figure 2(a), are
very small in area, and therefore hard to find.

Plan Location Error (e): This error metric refers to the possi-
bility of incorrectly assigning plans to query points in the
approximate plan diagram. It is computed as the percentage
of incorrectly (relative to P) assigned points in A.

The €, error is also challenging to control since the plan
boundaries, as seen in Figure 2(a), can be highly non-linear,
and are sometimes even irregular in shape [23].

Optimizer Classes

Our study shows that the ability to reduce overheads is a function
of the plan-related functionalities offered by the optimizer’s API,
based on which we define the following three categories of opti-
mizers:

Class I: OP Optimizers This class refers to the generic cost-
based optimizers that are routinely found in virtually every
enterprise database product, where the API only provides the
optimal plan (OP), as determined by the optimizer, for a user

query.

Class II: OP + FPC Optimizers This class of optimizers addi-
tionally provide a “foreign plan costing” (FPC) feature in
their API, that is, of costing plans outside their native op-
timality regions. Specifically, the feature supports the fol-
lowing “what-if”” question: “What is the estimated cost of

sub-optimal plan p if utilized at query location ¢?”. FPC has
become available in the current versions of several industrial-
strength optimizers, including DB2 [24] (Optimization Pro-
file), SQL Server [25] (XML Plan), and Sybase [26] (Ab-
stract Plan).

Class III: OP + FPC + PRL Optimizers This class of optimizers
support, in addition to FPC, an API that provides not just the
best plan but a “plan-rank-list” (PRL), enumerating the top
k plans for the query. For example, with & = 2, both the
best plan and the second-best plan are obtained when the op-
timizer is invoked on a query. Note that the PRL feature
can be easily implemented in current optimizers through mi-
nor changes in the Dynamic Programming-based query opti-
mization process — the details are given in [7]. However, to
our knowledge, it is not yet available in any of the current
systems. Therefore, we showcase its utility through our own
implementation in a public-domain optimizer.

Approximation Techniques and Results

For Class I (OP) and Class II (OP+FPC) optimizers, the techniques
that we propose are based on a combination of sampling and infer-
ence, while for Class III optimizers (OP+FPC+PRL), it is purely
based on inference. The sampling techniques include both classi-
cal random sampling and grid sampling, while the inference ap-
proaches rely on nearest-neighbor (NN) classifiers [22], paramet-
ric query optimization (PQO) [14, 15] and plan cost monotonic-
ity (PCM) [12]. For some of the techniques, theoretical results
that help to provide guaranteed bounds on the errors are available,
whereas for the others, empirical evaluation is the only recourse.
We have quantitatively assessed the efficacy of the various strate-
gies, with regard to plan identity and location errors, through
extensive experimentation with a representative suite of multi-
dimensional TPC-H and TPC-DS-based query templates on lead-
ing commercial and public-domain optimizers. Our results are very
promising since they indicate that accurate approximations can in-
deed be obtained cheaply and consistently, as described below.

10 percent Error Bound. Consider the case where the user desires
that the approximation error is of the order of 10 percent or less on
both plan identities and plan locations. For Class I (OP) optimiz-
ers, it is possible to regularly achieve this target with only around
15% overheads of the brute-force exhaustive method. To put this
in perspective, the earlier-mentioned one-week plan diagram can be
produced in less than a day. A sample approximate diagram (hav-
ing 10% identity and 10% location error) is shown in Figure 2(b),
with all the erroneous locations marked in black — as can be seen,
the approximation is materially faithful to the features of the true
plan diagram, with the errors thinly spread across the picture and
largely confined to the plan transition boundaries.

For Class II (OP+FPC) systems, a similar error performance is
achieved with only around 10% overheads. An important point to
note here is that plan costing is considerably cheaper than search-
ing for the optimal plan. Finally, for Class III (OP+FPC+PRL)
systems, the overheads come down to less than 5%.

1 percent Error Bound. We have also investigated the scenario
where the user has the extremely stringent expectation of around /
percent plan identity and location errors. For this situation, Class I
and II both take upto 40% overheads, while Class III usually incurs
less than /0% overheads.

Contributions

In a nutshell, we present in this paper a range of techniques, cus-
tomized to the optimizer’s API richness, for efficiently generating

accurate approximate plan diagrams. These results are summarized
in Table 1, where the typical range of overheads (relative to the ex-
haustive approach) is shown as a function of the user’s error bound
for each optimizer class.

Optimizer Overheads Range || Overheads Range
Class (Bound = 10%) (Bound = 1%)
Class I (OP) 1% — 15% 15% — 40%
Class I (OP+FPC) 1% — 10% 15% — 40%
Class III (OP+FPC+PRL) 1% —5% 1% — 10%

Table 1: Summary Results

Cost Diagrams. While not mentioned earlier, our techniques can
be extended to produce the “cost diagram” [20] associated with
each plan diagram. The cost diagram is a visualization of the es-
timated plan execution costs over the relational selectivity space.
For Class I optimizers, an approximate cost diagram is generated
through interpolation, while for Class II and Class III optimizers
the exact cost diagram corresponding to the approximate plan dia-
gram is obtained through the FPC feature. The complete details are
givenin [7].

Organization

The remainder of this paper is organized as follows: The approx-
imation algorithms are presented in Section 2. Our experimental
framework and performance results are highlighted in Section 3.
Finally, in Section 4, we summarize our conclusions and outline
future research avenues.

2. APPROXIMATION ALGORITHMS

In this section, we describe our suite of strategies for the effi-
cient generation of approximate plan diagrams. We begin with al-
gorithms for Class I optimizers, and then describe how these tech-
niques can be improved for Class II optimizers leveraging their
foreign-plan-costing (FPC) feature. We conclude with two variants
of an algorithm for Class III optimizers with FPC and plan-rank-
list (PRL) functionalities — the first version guarantees zero error,
while the second trades error for further reduction in computational
overheads.

For ease of presentation, we will assume in the following discus-
sion that the query template is 2D — the extension to n-dimensions
is straightforward and given in [7]. The true plan diagram is de-
noted by P and the approximation as A, with the total number of
query points in the diagrams denoted by m. Each query point is
denoted by ¢(x, y), corresponding to a unique query with selectivi-
ties x, y in the X and Y dimensions, respectively. The terms pp(q)
and pa (q) are used to refer to the plans assigned to query point g in
the P and A plan diagrams, respectively (when the context is clear,
we drop the diagram subscript).

Finally, the plan identity and plan location errors of an approxi-

mate diagram are defined as
Pl—|A
€7 = % *100 and €
respectively. The approximation techniques should ideally ensure
that €; and €, are within the user-specified bounds 7 and 61, or
are at least in their close proximity. For simplicity of exposition,
we will assume in the sequel that users specify the same bound

0; = 61, = 6 on both metrics.

_ Ipal@ Zpr(@l 0.
m

2.1 Class I Optimizers

The approximation procedures for this class of optimizers oper-
ate in two steps:

Optimization Step: In this step, a set of query points in the plan
diagram are explicitly optimized to obtain the optimal plan
choices at those points.

Inference Step: In this step, the plan choices for a set of unop-
timized points are inferred using the results from the Opti-
mization step.

For the random sampling-based algorithms, the above two steps
are sequential, whereas for the grid-sampling-based algorithms, the
steps are interleaved.

2.1.1 Random Sampling with NN Inference (RS_NN)

In the RS_NN algorithm, we first use the classical random sam-
pling (without replacement) technique to sample query points from
the plan diagram that are to be optimized during the optimization
step. Since we have empirically found that with this technique,
the plan-identity error €; is almost always greater than the plan-
location error €y, the stopping criterion for the sampling is based
on the former metric. The problem of finding the distinct plans
in the plan diagram can be related to the classical statistical prob-
lem of finding distinct classes in a population [10]. Applying the
recent results of [2], we obtain the following: Let s samples be
taken on the plan diagram, let ds be the number of distinct plans
in these samples, and let f; denote the number of plans occurring
only once in the samples. Then, it is highly likely that the number
of distinct plans, d, in the entire plan diagram is in the cardinality
range [ds, dmax|, Where

dmam = (% - 1)fl +ds (1)

If we ensure that the sampling is iteratively continued until ds
is within €7 of dmaqz, then it is highly likely that the number of
plans found thus far in the sample is within e of d. Therefore, the
RS_NN algorithm continuously evaluates Equation 1 to determine
when the optimization step can be terminated.

Our experience, as borne out by the experimental results given in
[7], has been that the above stopping condition may be too conser-
vative in that it takes many more samples than is strictly necessary.
Therefore to refine the stopping condition, we use dnr 1, the most-
likely-value estimator for d, defined in [2] as

dur = (\/g_l)fl'f'ds 2)

which has an expected ratio error bound of O(E).
s

We now terminate the optimization phase in two steps as follows:
After ds increases to a value within a (1 — ¢) factor of dmaz, We
continue the sampling until ds reaches to within a (1 —) factor
of das .. The value of § conducive to good performance results has
been empirically determined to be 0.3. The intuition behind this
method is that once the gap between ds and dy,q. has narrowed to
a sufficiently small range, then the most-likely-value estimator can
be used as a reliable indicator of the plan cardinality in the diagram.

Inference. After the completion of the sampling phase, the plan
choices at the unoptimized points of the plan diagram need to
be inferred from the plan choices made at the sampled points.
This is done using a Nearest Neighbor (NN) style classification
scheme [22]. Specifically, for each unoptimized point ¢,, we
search for the nearest optimized point g,, and assign the plan of
Qo t0 qy. If there are multiple nearest optimized points, then the
plan that occurs most often in this set is chosen, and in case of a tie
on this metric, a random selection is made from the contenders.

(a) Optimize (b) Infer (c) Filter

Figure 3: Execution Stages of the RS_NN Algorithm

The distance between two query points gi(x1,y1) and
g2(x2,y2) can be calculated using various distance metrics. We
have evaluated the following three popular metrics: (1) Manhat-
tan (L1 norm); (2) Euclidean (L2 norm); and (3) Chessboard (L
norm). Our experience has been that the Chessboard Distance is
most suitable, since the transition boundaries between plans often
tend to be aligned along the (horizontal and vertical) axes. The
same metric is also used for establishing the geometries of plan
clusters in PLASTIC [8, 21], a tool designed to amortize query op-
timizer overheads.

Low Pass Filter (LPF). Inference using the NN scheme is well-
known to result in boundary errors [22] — in our case, along the
plan optimality boundaries. To reduce the impact of this problem,
we apply a low-pass filter [9] after the initial inference has assigned
plans to all the points in the diagram. The filter operates as follows:
For each unoptimized point g, all its neighbors (both optimized
and unoptimized) at a distance of one, are examined to find the
plan that is assigned to more than half of the neighbors. If such a
plan exists, it is assigned to g, otherwise the original assignment
is retained.

Note that each unoptimized point is processed once during the
filter phase, and that the resultant diagram is dependent on the or-
der in which the points are taken up for processing. Further, the
filter could, in principle, be applied multiple times. However, our
empirical results indicate that the choice of processing order has
only minuscule impact on overall diagram accuracy — in our im-
plementation, the points are processed starting from the top right
corner and moving towards the origin in reverse row-major order.
Also, applying the filter multiple times does not provide any per-
ceptible improvement — therefore, we apply it only once.

The functioning of the RS_NN algorithm is illustrated in Fig-
ure 3 — in this set of pictures, each large dot indicates an optimized
query point, whereas each small dot indicates an inferred query
point. The initial set of optimized sample query points is shown in
Figure 3(a), and the NN-based inference for the remaining points is
shown in Figure 3(b). Applying the LPF filter results in Figure 3(c)
— note that the center query point, which has an (inferred) red plan
in Figure 3(b), is re-assigned to the blue plan in Figure 3(c).

The complete RS_NN algorithm is shown in Figure 4. In our
implementation, the initial number of samples so is set to 1% of
the space, and the increment in the number of samples after each
iteration is also set to this value.

2.1.2 Grid Sampling with PQO Inference (GS_PQO)

We now turn our attention to an alternative approach based on
grid sampling. Here, a low resolution grid of the plan diagram
is first formed, which partitions the selectivity space into a set of
smaller rectangles. The query points corresponding to the cor-
ners of all these rectangles are optimized first. Subsequently, these
points are used as the seeds to determine which of the other points

RS_NN (QueryTemplate Q7’, ErrorBound 6, InitSamples sg)
. stage=1;s = sp;

. Optimize s samples chosen uniformly at random.

. Compute the values of dy,q, and JML

. if (stage = 1) then

ifds > ((1 — 6)dmax) then stage = 2;

. if (stage = 2) then

ifds > ((1 — 0)dpsz) then Go to Step 9.

. Go to Step 2.

PN AU AW N —

9. for each unoptimized point g,
10. Determine the set /N of nearest optimized neighbors.
11. Determine plan p which occurs most often in V.
12. Incase of a tie set p by
picking any plan at random from the contenders.
13. Assign the plan p to qy,.

14. for each unoptimized point gy,

15. Determine the set N’ of neighbors at distance 1
16. ifaplan p’ occupies majority of N’
17. Overwrite the plan at g,, with p’.

18. End Algorithm RS_NN

Figure 4: The RS_NN Algorithm

in the diagram are to be optimized.

Specifically, if the plans assigned to the two corners of an edge
of a rectangle are the same, then the mid-point along that edge is
also assigned the same plan. This is essentially a specific infer-
ence based on the guiding principle of the Parametric Query Op-
timization (PQO) literature (e.g. [14]): “If a pair of points in the
selectivity space have the same optimal plan p;, then all locations
along the straight line joining these two points will also have p; as
their optimal plan.” At first glance, our usage of the PQO princi-
ple here may seem at odds with our earlier observation in [20] that,
for industrial-strength optimizers, this principle is observed more in
the breach than in the observance. However, the difference is that
we are applying PQO at a “micro-level”, that is, within the con-
fines of a small rectangle in the selectivity space, whereas earlier
work has effectively considered PQO as a universal truth that holds
across the entire space. Our experimental experience has been that
micro-PQO generally holds in all the plan diagrams that we have
analyzed.

When the plans assigned to the end points of an edge are differ-
ent, then the midpoint of this edge is optimized. After all sides of a
given rectangle are processed, its center-point is then processed by
considering the plans lying along the “cross-hair” lines connecting
the center-point to the mid-points of the four sides of the rectan-
gle. If the two end-points on one of the cross-hairs match, then
the center-point is assigned the same plan (if both cross-hairs have
matching end-points, then one of the plans is chosen randomly). If
none of the cross-hairs has matching endpoints, the center-point is
optimized. Now, using the cross-hairs, the rectangle is divided into
four smaller rectangles, and the process recursively continues, until
all points in the plan diagram have been assigned plans.

The progress of the GS_PQO algorithm is illustrated in Figure 5
(again, each large dot indicates an optimized point, whereas each
small dot indicates an inferred point). Figure 5(a) shows the state
after the initial grid sampling is completed. Then, the ‘?” symbols
in Figure 5(b) denote the set of points that are to be optimized in
the following iteration as we process the sides of the rectangles.
Finally, Figure 5(c) enumerates the set of points that are to be opti-
mized while processing the cross-hairs.

A limitation of the GS_PQO algorithm is that it may perform a
substantial number of unnecessary optimizations, especially when

N S s

— D A)

|
|

—7 .

|

| L |

!—? !—o—*—o—+—‘—+

z z ? 3 s ? @ . @ 7

I i g V .
|

(a) Initial Grid (b) Mid Points (c) Cross Hairs

Figure 5: Execution Loop in GS_PQO Algorithm

a rectangle with different plans at its endpoints features only a
small number of new plans within its enclosed region. This is be-
cause GS_PQO does not distinguish between sparse and dense low-
resolution rectangles. For example, if two similar-sized rectangles
each have two plans featured at their four corner points, then they
are divided similarly irrespective of the expected number of new
plans present in the interior. We attempt to address this issue by re-
fining the algorithm in the following manner: Assign each rectangle
R with a “plan-richness” indicator p(R) that serves to characterize
the expected plan density in R, and then preferentially assign opti-
mizations to the rectangles with higher p.

Our strategy to assign p values is as follows: Instead of merely
making a boolean comparison at the corners of the rectangle as to
whether the plans at these points are identical or not, we now dig
deeper and compare the plan operator trees associated with these
plans in order to estimate interior plan density. As an extreme ex-
ample, consider the case where there is a left-deep tree at one corner
of the rectangle, and a right-deep tree at another corner. In this sit-
uation, it seems reasonable to expect that there will be a significant
number of plans in the interior of the rectangle since the process
of shifting from a left-deep to a right-deep tree usually occurs in
incremental intermediate steps, each corresponding to a new plan,
rather than all at once — we have confirmed this observation through
detailed analysis of the plan diagrams of industrial optimizers.

Plan Tree Differencing. Let the operator trees corresponding to a
pair of plans p; and p; be denoted by T; and T}, respectively. Our
comparison strategy is based on identifying and mapping similar
operator nodes in the two trees. Figure 6 shows an example pair of
plan trees 71 and Tho corresponding to the plans p; and pio that
feature in the plan diagram of Figure 2(a) — the white nodes de-
pict matching nodes, whereas the colored nodes represent distinct
nodes.

In the following description, the term branch is used to refer to
any directed chain of unary-input nodes between a pair of binary-
input nodes, or between a binary node and a leaf, in these trees.
Branches are directed from the lower node to the higher node, mod-
eling the direction of data propagation.

The matching proceeds as follows:

1. First, all the leaf nodes (relations) and all the binary-input
nodes (typically join nodes) are identified for 7T and 7.

2. A leaf of T; is matched with a leaf of 7} if and only if they
both have the same relation name. In the situation that there
are multiple matches available (that is, if the same relation
name appears in multiple leaves), an edit-distance computa-
tion is made between the branches of all pairs of matching
leaves between T; and 7). The assignments are then made
in increasing order of edit-distances. For example, the NA-
TION node appears twice in 71 and 17 of Figure 6, and the
specific pairing is made based on the closeness of matching

in the branches arising out of these nodes.

3. A binary node of T} is matched with a binary node of T} if
the set of base relations that are processed is the same. If the
node operator names and the left and right inputs are iden-
tical (in terms of base relations), the nodes are made white.
However, if the node operator names are different, or if the
left and right input relation subsets are different, then the
nodes are colored.

4. A minimal edit-distance computation is made between the
branches arising out of each pair of matched nodes, and the
nodes that have to be added or deleted, if any, in order to
make the branches identical, are colored. Unmodified nodes,
on the other hand, are matched with their counterparts in the
sibling tree and made white.

5. Finally, each pair of matched nodes is assigned the same
unique number in both trees. For example, the number 9
is assigned to the final join node, representing the composite
relation formed by the join of all the base relations, in each
tree.

Plan Richness Metric. We now describe the procedure to quantify
plan richness in terms of plan-tree differences. Our formulation
uses |7T;| and | T to represent the number of nodes in plan-trees 7
and T, respectively, and | 73177 | to denote the number of matching
nodes between the trees.

Now, p is measured as the classical Jaccard Distance [22] be-
tween the trees of the two plans, and is computed as

‘TiﬂTﬂ

T, Ty) =1— 9
p(J) ‘T;UT]|

3)

For example, the p for the plan tree pair (11, T10) in Figure 6 is
26

1——=0.32.
38

While Equation 3 works for a pair of plans, we need to be able
to extend the metric to handle an arbitrary set of plans, correspond-
ing to the corners of the hyper-rectangle in the selectivity space.
Given a set of n trees {11, 7%, ..., T}, this is achieved through
the following computation:

p(Tl7‘ . 7Tn) = =]:(3:31 p(T“TJ) (4)
2

Note that the p values are normalized between 0 and 1, with
values close to 0 indicating that all the plans are structurally very
similar to each other, and values close to 1 indicating that the plans
are extremely dissimilar. Figure 7 depicts the p values calculated
for a sample plan diagram (produced from a query template based
on TPC-H Query 9) after partitioning into 20x20 squares. We see
here that p reaches high values close to the origin and along the
selectivity axes. This is in accordance with earlier observations in
[14,15, 18, 19, 20] that plans tend to be densely packed in precisely
these regions of the selectivity space.

We now describe how GS_PQO utilizes the above characteriza-
tion of plan-tree-differences. First, the grid sampling procedure
is executed as mentioned earlier. Then, for each resulting rectan-
gle, the p value is computed based on the plan-trees at the four
corners, using Equation 4. The rectangles are organized in a max-
Heap structure based on the p values, and the optimizations are
directed towards the rectangle ;. at the top of the heap, i.e. with
the current highest value of p. Specifically, the PQO principle is
applied to the mid-points of all qualifying edges (those with com-
mon plans at both ends of the edge) in R;,p, and all the remaining

BELECT STATEMENT <2
Compute Sealar< 16>
Btraam Aggragate < 17>
Stream Aggregaic

Hash Maich < 14>

Hash Match <&

naTioN| | Glusterad Indax Sean < | Hashll.m:hcﬂb|

REGION Clustered Indax Sean <21> Hash Maich <15

HATION ’
Compute Baalar <23 CUSTOMER

Hested Loops< 11>

Hash Maich <12 | Clustered Indax Back <31
Bitmap <3 Harch Match =13 | ORDERE |
Clusterad Index Scan <2 | Bitmap <36 | Compute Bealar <27 |

4

BUPPLIER Clusterad Index Scan <34+ || Cluzterad Indax Soan <25

BART | LINETEM

(a) Plan Tree T3

BELECT BTATEMENT <2

0

Compute Saalar < 16

S

Etroam Aggregate < 17

Hash Maich <o HATHOH |

A w

Clusierad Index Scan <1 Hash Match <1~

REGION Clusterad Index Scan <21 Hested Loops <12
R

CUSTOMER

Hash Match < 12= | Clustarad Inday Sock <ix

FARN t

Bitmap <3 Hash Match <13 onnsns|

Clusterad Index Sean <2 | Bitmap <36 Compute Scalar <27

Clusterad Index Scan <25 |
EUPPLIER Clusterad Index Bean <3 *
LIMEITEM

PART.

Hested Loops < 11>

(b) Plan Tree T1o

Figure 6: Example of Plan Tree Difference

Figure 7: p values in Plan Diagram

edge mid-points are explicitly optimized. The rectangle is then split
into four smaller rectangles, for whom the p values are recomputed,
and these new rectangles are then inserted into the heap.This pro-
cess continues until all the rectangles in the heap have a p value that
is below a threshold p;. The threshold is a function of the § bound
given by the user, with lower thresholds corresponding to tighter
bounds.

A representative behavior of the error metrics, €; and €., as a
function of the p; threshold, is shown in Figure 8, obtained with
query template QT8. Note that unlike in the random sampling ap-
proach, we find here that €;, does not always lag e;. The reason is

(2]
=
]

—=— |dentity (£}

[o]
(8]
Il

—a— Location (€1)
20 4

Error Percentage (%)
o=

D T T T T T T 1
0 005 04 045 02 0325 03
Threshold ()

Figure 8: Effect of p; on ¢; and ¢;, Errors

that samples cease to be assigned to rectangles with p < p; even
when they contain more than one plan. In this situation, inference
may increase €z, due to erroneous boundary detection between the
plans present inside the rectangle. Therefore, even when €; is low,
€z, may have a comparatively larger value.

However, we also see in Figure 8 that setting the threshold equal
to the error bound, i.e. pr = 0 (e.g. for § = 10%, p = 0.1), is
an adequate heuristic that is sufficient to meet user expectations on
both error metrics — we observed similar behavior for other query
templates as well, and therefore incorporate this heuristic in our
implementation.

GS_PQO (QueryTemplate Q7', ErrorBound 0)
1. pt = 0 (Class I optimizers) | ps = 2 * 6 (Class II optimizers)
2. Optimize the points in the initial low-resolution grid.
3. Calculate p for each rectangle using Equation 4.
4. Organize the rectangles in a max-Heap based on their p values.
5. for the rectangle Riop at the top of the heap
6. if p(Ritop) < pt, Go to Step 14
7. else
8. Extract R¢op from the heap.
9. Apply PQO inference to mid-points of
qualifying edges of Riop.
Optimize all the remaining mid-points.
10. Split R¢op into four equal rectangles.
11. Compute p values for the smaller rectangles.
12. Insert the new rectangles into the heap.
13. Return to Step 5.
14. while the heap is not empty,
15. Extract R¢op from the heap.
16. Select a plan at random from the edge end points
and assign it to the mid point.
17. Recursively split the rectangles
until all points inside R¢op are processed.
18. End Algorithm GS_PQO

Figure 9: The GS_PQO Algorithm

Final Inference. As mentioned earlier, GS_PQO uses the PQO-
based inference technique within each rectangle until its plan rich-
ness metric goes below the p; threshold. After the threshold is
crossed, there may still be unassigned points within the rectangle.
These are handled as follows in the final inference phase: The same
PQO-based inference scheme is used with the only difference be-
ing that whenever an edge has different end-points, then the plan
assignment of the mid-point is done by randomly choosing one of
the end-point plans, rather than resorting to explicit optimization.
The complete GS_PQO algorithm is shown in Figure 9.

2.2 Class II Optimizers

In the algorithms described above for the Class I optimizers, we
run into situations wherein we are forced to pick from a set of
equivalent candidate plans in order to make an assignment for an
unoptimized query point. For example, in the RS_NN approach, if
there are multiple nearest neighbors at the same distance. Similarly,
in the GS_PQO approach, when the p value of a rectangle goes
below the threshold and there remain unassigned internal points.
The strategy followed is to make a random choice from the closest
neighboring plans.

For Class II optimizers, however, which offer a “foreign plan
costing” (FPC) feature, we can make a more informed selection:
Specifically, cost all the candidate plans at the query point in ques-
tion, and assign it the lowest cost plan. This method significantly
helps in reducing the plan-location error, since it enables precise
demarcation of the boundaries between plan optimality regions. A
direct fallout obtained through our empirical investigation is that
the value of p;, which was set equal to 6 for Class I optimizers,
can be relaxed to 2 x 6 while still maintaining the same accuracy
characteristics, in the process noticeably lowering overheads.

Another point to be noted here is that plan-costing is much
cheaper than the optimizer’s standard optimal-plan-searching pro-
cess [15], and hence the overheads incurred through costing are
negligible compared to those incurred through optimization. In our
experience, the overhead ratio of plan-costing to plan-searching is
around 1:10 in the commercial optimizers, while in our implemen-

DiffGen (QueryTemplate Q7")

1. Let A be an empty plan diagram.
2. Set q= (xmin’ ymln)
3. while (¢ # null)

(a) Optimize query template Q7" at point q.

(b) Let p1 and p2 be the optimal and second-best plan at g,
respectively.

(c) for all unassigned points ¢’ in the first quadrant of ¢

if (c1(q’) < c2(q)), assign plan py to ¢’
(d) Set g = next unassigned query point in A

4. Return A
5. End Algorithm DiffGen

Figure 10: The DiffGen Algorithm

tation of this feature in PostgreSQL, it is close to 1:100.

2.3 Class III Optimizers

The algorithms discussed thus far minimize the number of ex-
plicit optimizations performed by assuming certain properties of
the plan diagram and using these properties to infer plan assign-
ments from the optimized query points. We now move on to pre-
senting for the Class III optimizers, the DiffGen algorithm, which
can be used to efficiently generate completely accurate plan dia-
grams. Subsequently, we provide a variant, the ApproxDiffGen
algorithm, which trades error, based on the user’s bound, for re-
duction in optimization effort. Both algorithms utilize the foreign-
plan-costing (FPC) and plan-rank-list (PRL) features offered by
the Class III optimizer API. Specifically, it is assumed that for
each query point, the optimizer provides both the best plan and
the second-best plan. As mentioned in the Introduction, this is a
feature that can be easily incorporated in today’s systems with only
marginal changes to the codebase — the details are available in [7].

2.3.1 The DiffGen Algorithm

The DiffGen algorithm for a 2D query template is shown in
Figure 10. The algorithm starts with optimizing the query point
q(Tmin, Ymin) corresponding to the bottom-left query point in the
plan diagram. Let p; be the optimizer-estimated optimal plan at
g, with cost c¢1(q), and let p2 be the second best plan, with cost
c2(q). We then assign the plan p; to all points ¢’ in the first
quadrant relative to g as the origin, which obey the constraint that
c1(q¢') < ca(q). After this step is complete, we then move to the
next unassigned point in row-major order relative to g, and repeat
the process, which continues until no unassigned points remain.

This algorithm is predicated on the Plan Cost Motonicity (PCM)
assumption that the cost of a plan is monotonically non-decreasing
throughout the selectivity space, which is true in practice for most
query templates [12]. (The handling of cases where the PCM as-
sumption does not hold is discussed in [7].)

The following theorem proves that the DiffGen algorithm will
exactly produce the true plan diagram P without any approximation
whatsoever. That is, by definition, there is zero plan-identity and
plan-location errors.

THEOREM 1. The plan assigned by DiffGen to any point in the
approximate plan diagram A is exactly the same as that assigned

inP.

PROOF. Let P, C P be the set of points which were optimized.
Consider a point ¢ € P\ P, with a plan p;. Let ¢ € P, be the
point that was optimized when ¢’ was assigned the plan p;. Let p2
be the second best plan at q.

For the sake of contradiction, let p (k # 1), be the optimal
plan at ¢’. We know that for a cost-based optimizer, cx(q') <
c1(q"). This implies that cx(g") < c2(q) (due to the algorithm).
Using the PCM property, we have cx(q) < cx(q’) = ci(q) <
ck(q) < c2(q). This means that p2 is not the second best plan at g,
a contradiction. []

2.3.2 The ApproxDiffGen Algorithm

While DiffGen always ensures zero error, we now investigate
the possibility of whether it is possible to utilize the permissible
error bound of 6 to further reduce the computational overheads of
DiffGen. To this end, we propose the following ApproxDiffGen
algorithm: The plan assignment constraint c1(q") < c2(q) is re-
laxed to be c1(q") < (1 +7)c2(q) with (y > 0), resulting in fewer
optimizations being required to fully assign plans in the diagram.
The choice of 7 is a function of 6 and w1, the slope of the cost
function c; at g. Our empirical assessment indicates that setting
v =0.1%p *0 (e.g. withf = 10% and p = 1,y = 0.01) is
usually sufficient to both meet the error requirements and simulta-
neously significantly reduce the overheads. For example, 0 = 10%
can be achieved with only around 1% overheads, as seen in the
following section.

3. EXPERIMENTAL RESULTS

The testbed used in our experiments is the Picasso optimizer
visualization tool [23], executing on a Sun Ultra 20 workstation
equipped with an Opteron Dual Core 2.5GHz processor, 4 GB of
main memory and 720 GB of hard disk, running the Windows
XP Pro operating system. The experiments were conducted over
plan diagrams produced from a variety of two, three, and four-
dimensional TPC-H [28] and TPC-DS [29] based query templates.
In our discussion, we use QTx to refer to a query template based
on Query x of the TPC-H benchmark, and DSQTx to refer to a
query template based on Query x of the TPC-DS benchmark. The
TPC-H database was of size 1GB, while the TPC-DS database oc-
cupies 100GB. The plan diagrams were generated with a variety
of industrial-strength database query optimizers — we present rep-
resentative results here for a commercial optimizer anonymously
referred to as OptCom, and a public-domain optimizer, referred to
as OptPub. Query points were uniformly distributed over the selec-
tivity space.

In the remainder of this section, we evaluate the various approx-
imation strategies with regard to their computational efficiency,
given user-specified bounds for plan-identity and plan-location er-
ror. The bounds we consider here are § = 10% and 6 = 1%.

Our analysis was carried out over an extensive suite of query
templates. However, we selectively present results here for “chal-
lenging” plan diagrams that feature a sufficiently rich set of plans
(> 20 plans) and involve a large computational overhead (> 3 hrs).
The full set of results is available in [7].

3.1 Class I Optimizers

We start with evaluating the performance of the two algorithms
applicable to Class I optimizers, namely, RS_NN and GS_PQO. In
the RS_NN algorithm, as mentioned earlier, the parameter §, which
specifies the transition of the algorithm from Stage 1 to Stage 2, is
set to 0.3, while the sample size increments are 1% of the space.
For the GS_PQO algorithm, the resolution of the initial grid along
each dimension is set to 10% of the resolution at which the plan
diagram is to be generated. As an example, to approximate a 2D
plan diagram with 300 x 300 resolution, we set the initial sample
size of RS_NN to 900 and the initial grid of GS_PQO to 30 x 30.

Error Bound = 10%. For the above framework, Table 2 shows the
algorithmic efficiency of the RS_ZNN and GS_PQO algorithms rel-
ative to the brute-force exhaustive approach for a variety of multi-
dimensional query templates, under a & = 10% constraint. The
efficiency is presented both in terms of actual time, as well as in
terms of the number of optimizations that were carried out. The
bracketed numbers in the TimeTaken columns indicate the percent-
age time taken relative to the exhaustive approach.

We see in Table 2 that the RS_NN algorithm requires a substan-
tial amount of time, or equivalently, number of optimizations, to
generate the approximate plan diagram. For example, with the 3D
QT9 template at a resolution of 100 per dimension, RS_NN takes
about 27% of the exhaustive time. On the other hand, GS_PQO
exhibits a much better performance, requiring only 10% overheads
— in fact, our experience has been that it needs less than 15% of
the exhaustive time across all templates. Moreover, as can be seen
from Table 2, we have also produced an approximate plan diagram
for the 3D QT8 template at a resolution of 300 per dimension, cor-
responding to 27 million query points in only 2 days with GS_PQO
— the estimated generation time with the brute-force approach is 4
months!

We see that the estimators designed for RS_NN and GS_PQO al-
most always result in meeting the user’s error bounds or being in
their close proximity. However, for the 3D query template QT9, the
er, value reaches 16% with the default p; setting of 0.1. Bringing
it down to 10% requires lowering the p; to 0.08, with the over-
head going up by 3%. In our future work, we plan to investigate
automated schemes for setting the appropriate value of p;.

Turning our attention to Table 3, which repeats the above exper-
iment on the TPC-DS database, we see that the results are even
more striking. RS_NN incurs large overheads in general, typically
around 40%, whereas GS_PQO again does not exceed 15%.

An interesting point to note in both these tables is that the opti-
mization percentages are virtually identical to the time percentages.
This means that the inference mechanisms of NN and PQO take in-
significant time as compared to making optimizer calls.

Error Bound = 1%. When the user’s error constraint is tightened
from 10 percent to 1 percent, the resulting algorithmic performance
is shown in Table 4. Only GS_PQO is shown since for this stringent
constraint, the RS_NN algorithm tends to optimize almost the entire
space. Further to make the 1% error bound meaningful, we have
considered only plan diagrams having around or over 100 plans.
It can be seen from the table that by optimizing around 40% of
the points, GS_PQO is able to generate extremely accurate approx-
imate plan diagrams.

Cost Increase induced by Approximation. A legitimate concern
in generating and using approximate plan diagrams is the follow-
ing: In the erroneous locations, where a different plan has been
assigned as compared to the original diagram, is it possible that
the substitute plan’s (estimated) cost performance is significantly
worse than that of the original choice? Our experience is that the
cost increase is only a few percent — this is quantified below in Ta-
ble 5, which shows the maximum cost increase incurred in the er-
roneous locations, for a representative set of query templates. The
complete set of experiments is available in [7].

3.2 Class II Optimizers

We now move on to demonstrate how the FPC feature, provided
by Class II optimizers, can be used to improve the performance of
GS_PQO. Tables 6 and 7 show the effort required by GS_PQO for
obtaining approximate plan diagrams with 6 = 10% on the TPC-H
and TPC-DS benchmarks, respectively. We see here that GS_PQO

Query No. Exhaustive Approximation Optimizations RS_NN GS_PQO
Dimension / Temp- of Generation Time Taken Required (%) Error (%) Error (%)
Resolution -late Plans Time RS_NN GS_PQO RS_NN GS_PQO €r €r €r €r,
QT2 76 9.6 hrs 2 hrs (23%) 20 mins (4%) 23 % 4 % 11% | 8% 4 % 11 %
QTS5 31 8.3 hrs 0.6 hrs (7%) 15 mins (3%) 7 % 3 % 10% | 3% 4 % 10 %
QT8 92 10.5 hrs 3.7 hrs (35%) 44 mins (7%) 35% 7% 0% | T% 3% 10 %
2D: 300X300 QT9 91 1 day 3 hrs 9 hrs (33%) 1.4 hrs (5%) 33 % 5% 0% [2% 5% 9 %
QTI10 31 5 hrs 0.4 hrs (8%) 9 mins (3%) 8 % 3% 0% | 2% 3% 10 %
QT20 46 1 day 7 hrs 7.5 hrs (25%) 1.3 hrs (4%) 25 % 4 % 4 % 9 % 4 % 10 %
QT21 48 S hrs 0.7 hrs (14%) 8 mins (3%) 14 % 3 % 4 % 4 % 4 % 10 %
QT8 132 6 days 29 hrs (21%) 4.2 hrs (3%) 21 % 3 % 10% | 6% 2 % 8 %
2D: 1000X 1000 QT16 25 16 hrs 2 hrs (10%) 9 mins (1%) 10 % 1 % 8 % 6 % 8 % 10 %
QT21 58 2 days 6 hrs 2.7 hrs (5%) 32 mins (1%) 5% 1% 2% [9% 2% 6 %
QT8 190 6 days 10 hrs 1.6 days (26%) 16 hrs (10%) 26 % 10 % 1% | 2% 8 % 10 %
3D: 100X100X100 QT9 404 10 days 64 hrs (27%) 24 hrs (10%) 27 % 10 % 0% | 6% 8 % 16 %
QT21 130 3 days 15 hrs 21%) 5.8 hrs (8%) 21 % 8 % 2 % 4% 0% | 13%
3D: 300X300X300 QT8 314 4 months (est) - 2 days (2%) - 2 % - - - -
4D: 30X30X30X30 QT8 243 5 days 23 hrs (19%) 15 hrs (12%) 19 % 12 % 12% | 9% 4 % 9 %

Table 2: Approximation Efficiency for Class I optimizers with TPC-H database (§ = 10%) [OptCom]

Query No. Exhaustive Approximation Optimizations RS_NN GS_PQO

Dimension / Temp- of Generation Time Taken Required (%) Error (%) Error (%)

Resolution -late Plans Time RS_NN GS_PQO RS NN GS_PQO €r €r €r €r
DSQT 17 39 6.7 hrs 2.6 hrs (39%) | 40 mins (10%) 39 % 10 % 8 % 8 % 5% 5%
2D: 100X100 DSQT 25 33 7 hrs 4.6 hrs (65%) | 46 mins (11%) 65 % 11 % 10 % 9 % 4% 4%
’ DSQT 25a 51 6.5 hrs 1.5 hrs (24%) | 42 mins (11%) 24 % 1% 2% | 11% 2% | 3%
DSQT 25b 45 7.3 hrs 2.6 hrs (36%) | 48 mins (11%) 36 % 1% 9 % 9 % 5% 4%
2D: 300X300 DSQT 18 81 22.5 hrs 8.7 hrs (38%) 3 hrs (13%) 38 % 13 % 12 % 8 % 2 % 3%
T DSQT 19 42 16.2 hrs 1 hr (7%) 58 mins (6%) 7 % 6 % 7 % 7 % 5 % 6 %

Table 3: Approximation Efficiency for Class I optimizers with TPC-DS database (9 = 10%) [OptCom]

Dimension/ Query No. of Exhaustive Time taken by Optimizations performed | GS_PQO Error (%)
Resolution Template Plans Generation time GS_PQO by GS_PQO (%) €r €r
. QT 8 92 10.5 hrs 3.6 hrs (35%) 35 % 0% 0.25 %
2D: 300X300 QT9 91 Tday 3brs 73 hrs 30%) 0% 0% 7%
2D: 1000X1000 QT 8 132 6 days 1 day 18 hrs (30%) 30 % 2 % 1%
QT 8 190 6 days 10 hrs 1 day 14 hrs (25%) 25 % 0.5 % 1.5%
3D: 100X100X100 QT 9 404 10 days 4 days (40%) 40 % 1% 1%
QT 21 130 3 days TT hrs (16%) 6% 0.77 % 5%

Table 4: Approximation Efficiency for Class I optimizers with TPC-H database (6 = 1%) [OptCom]

often reduces the approximation overheads by a significant fraction
as compared to the corresponding numbers in Tables 2 and 3, tes-
tifying to the utility of FPC. As a case in point, the 10% overhead
incurred by the 3D:100x100x100 flavor of QT8 with the Class I
optimizer is reduced to 4% with the Class II optimizer.

With an error bound of 1%, however, the role of FPC becomes
limited since inference is rare, and therefore the diagram approxi-
mation time is similar to that seen for Class I optimizers (Table 4).

Dimension/ Query Maximum
Resolution Template % error
2D: 300X300 QT8 8
2D: 300X300 QT9 10
3D: 100X100X100 QT8 14

Table 5: Maximum Cost Increase due to Approximation

3.3 Class III Optimizers

Turning our attention to Class III optimizers, we now evaluate
the two algorithms, DiffGen and ApproxDiffGen for TPC-H bench-
mark queries. Due to space limitations, the complete set of results,
including those on the TPC-DS benchmark, is deferred to [7]. For
this experiment, the OptPub engine was modified to (a) implement
the FPC feature internally, and (b) to return the second best plan
along with the optimal plan when the “explain”command is exe-
cuted.

DiffGen. The performance results for DiffGen are shown in Ta-
ble 8 — due to the change in database engine from OptCom to
OptPub, the set of query templates with “challenging” plan dia-
grams differs as compared to our earlier results. We observe that
DiffGen usually requires at most 10% optimizations to generate a
completely accurate plan diagram for all query templates, except
those based on Query 8, the reason for which is discussed below.
The good performance of DiffGen can be attributed to the follow-
ing: Along with the optimizations being performed at select points,
all points are costed exactly once. Further, since the FPC feature
is internalized in the optimizer, the ratio of plan-costing to plan-
searching is approximately 1:100, making the overheads incurred
very small.

Though an investment of 10% optimizations is usually the or-
der of the day, there are occasional scenarios when the DiffGen
algorithm requires a substantially larger number of optimizations
to generate the plan diagram. Such a situation is seen for QT8 —
the reason is that the cost of the second best plan is extremely close
to that of the optimal plan over an extended region. Even though
the actual plan switch occurs much later, this close-to-optimal cost
causes the algorithm to optimize at frequent intervals as the con-
straint ¢1(q¢') < c2(q) is easily violated leading to the algorithm
“panicking too quickly” and choosing to optimize a large number
of unnecessary points.

ApproxDiffGen. Turning our attention to the ApproxDiffGen al-
gorithm, whose performance is presented in Table 9 for a 10% error

Dimension/ Query No. of Exhaustive Time taken by | Optimizations performed | GS_PQO Error (%)
Resolution plat Plans | Generation time GS_PQO by GS_PQO (%) €r €r,
QT2 76 9.6 hrs 11 mins (2%) 2 % 8 % 8 %
QTS5 31 8.3 hrs 10 mins (2%) 2 % 3% 4 %
QT8 92 10.5 hrs 12 mins (2%) 2% 1 % 4 %
2D: 300X300 QT9 91 1 day 3 hrs 32 mins (2%) 2 % 2 % 4%
QTI0 31 5 hrs 5 mins (2%) 2 % 10 % 5%
QT20 46 1 day 7 hrs 28 mins (2%) 2 % 6 % 10 %
QT21 48 5 hrs 4 mins (1%) 1% 6 % 8 %
QT8 132 6 days 3.8 hrs (3%) 3% 6 % 4 %
2D: 1000X1000 QT16 25 16 hrs 9 mins (1%) 1 % 8 % 5%
QT21 58 2 days 6 hrs 32 mins (1%) 1 % 9 % 10 %
QT8 190 6 days 10 hrs 6.1 hrs (4%) 4 % 11 % 8 %
3D: 100X100X100 QT9 404 10 days 21.6 hrs (9%) 9 % 6 % 4%
QT21 130 3 days 3.5 hrs (5%) 5 % 4% 4%
3D: 300X300X300 QT8 314 4 months (est) 2 days (2%) 2% - -
4D: 30X30X30X30 QT8 243 5 days 15 hrs (12%) 12 % 4 % 4%

Table 6: Approximation Efficiency for Class II optimizers with TPC-H database (0 = 10%) [OptCom]

Dimension/ Query No. of Exhaustive Time taken by | Optimizations performed | GS_PQO Error (%)
Resolution Template Plans | Generation time GS_PQO by GS_PQO (%) €r €L
DSQT 17 39 6.7 hrs 20 mins (5%) 5% 10% 0%
. DSQT 25 33 7 hrs 45 mins (10%) 10 % 6 % 8 %
2D:100X100 5o o531 6.5hrs Z2 mins (10%) 0% 0% 2%
DSQT 25b 45 7.3 hrs 30 mins (7%) 7 % 10 % 6 %
. DSQT 18 81 22.5 hrs 1.2 hrs (5%) 5% 9 % 8 %
2D:300X300 —5esT 9T 22 T6.2 hrs 24 mins 3%) 3% % 5%

Table 7: Approximation Efficiency for Class II optimizers with TPC-DS database (6 = 10%) [OptCom]

Dimension/ Query No. of Exhaustive Time taken by Optimizations performed
Resolution Template | Plans | Generation time DiffGen by DiffGen (%)
QT5 22 5 hrs 20 mins 4 mins (1%) 0.17 %
2D: 1000 x 1000 QT8 20 6 hrs 10 mins 2 hrs 47 mins (45%) 44 %
QT5 23 5 hrs 48 mins 13mins (3%) 2.4 %
3D: 100 x 100 x 100 QT8 49 5 hrs 58 mins 2 hrs 2 mins (34%) 32 %
QT9 22 6 hrs 45 mins 5 mins (1%) 0.24 %
QT5 37 4 hrs 50 mins 25 mins (8%) 5.8 %
4D: 30 x 30 x 30x 30 QT9 28 6 hrs 10 mins 7 mins (2%) 0.7 %

Table 8: Zero-error Efficiency for Class III Optimizers with TPC-H database [OptPub]

Query | No. Exhaustive | Approximation Optimizations ApproxDiffGen
Dimension/ Temp- of Generation Time Required by Error (%)
Resolution -late | Plans Time Taken ApproxDiffGen (%) €r €1,
QT5 22 5 hrs 20 mins 3 mins (1%) 0.1 % 13 % 11 %
2D: 1000 x 1000 QT8 20 6 hrs 10 mins 6 mins (2%) 0.5% 10 % 1T %
QTS5 23 5 hrs 48 mins 7 mins (2%) 0.95 % 9 % 4.6 %
3D: 100 x 100 x 100 QT8 49 5 hrs 58 mins 12 mins (4%) 1.8 % 6% | 02%
QT9 22 6 hrs 45 mins 5 mins (2%) 0.4 % 0% 4.9 %
QT5 37 4 hrs 50 mins 15 mins (5%) 3% 8 % 1%
4D: 30 x 30 x 30x 30 [QT9 28 6 hrs 10 mins 7 mins (2%) 0.4 % 3 % 4.5 %

Table 9: Approximation Efficiency for Class III Optimizers with TPC-H database (9 = 10%) [OptPub]

bound, we find that it consistently generates approximate plan di-
agrams while performing less than 5% optimizations. Further and
very importantly, even for the problematic QT8, due to the relax-
ation of the effect of the proximity of the second best plan, the plan
diagram is now obtained incurring only a small overhead. Finally,
note that the identity errors greater than 10% are usually an artifact
of the low number of plans in the original plan diagram.

In Table 9, the maximum number of plans produced by a query
template is only 49 which is much below 100 — therefore, the per-
formance of ApproxDiffGen for 6 = 1% is equivalent to that of
DiffGen, which can be viewed as ApproxDiffGen with 6 = 0%.

A related point to note is that unlike the Optimizer I and II classes
where the time and optimization overheads are virtually identical,
here the time overheads are a little more than that of optimization.
The reason is that although FPC is very cheap, since it has to be

invoked for a very large number of points, a small but perceptible

time overhead results.

4. CONCLUSIONS

We have investigated in this paper the efficient generation of ap-
proximate plan diagrams, a key resource in the analysis and re-
design of modern database query optimizers. Based on the opti-
mizer’s API capabilities, we made a partitioning into three differ-
ent classes of optimizers, and developed appropriate approximation
techniques for each class. For Class I, which only provides the op-
timal plan, our experimental results showed that the GS_PQO al-
gorithm, which combines grid sampling with PQO inference at the
micro level, performed very adequately requiring less than 15%
overheads as compared to the exhaustive approach, for an error

bound of 10%. These overheads came down to 10% when the same
algorithm was used in Class II optimizers, due to their additional
FPC feature. Finally, for Class III systems, we proved that the Diff-
Gen algorithm produced zero errors and was generally able to do so
incurring overheads of less than 10%. However, it performs poorly
for query templates that have the second-best plan being very close
to the optimal choice over an extended region. Finally, the Approx-
DiffGen algorithm traded error for performance, and was able to
satisfy the 10% error bound with less than 5% optimizations. It
was also able to adequately handle the problem query templates of
DiffGen.

In summary, our work has shown that it is indeed possible to
efficiently generate close approximations to high-dimension and
high-resolution plan diagrams, with typical overheads being an or-
der of magnitude lower than the brute-force approach. We hope
that our results will encourage all database vendors to incorporate
the foreign-plan-costing and/or plan-rank-list features in their opti-
mizer APIs.

All the plan diagrams featured in this paper were produced using
a uniform distribution of the locations of query points. We are cur-
rently investigating the extension of our approximation techniques
to plan diagrams generated with exponential distributions of query
points. Further, our algorithms feature tuning parameters that have
been set after considerable empirical testing. These settings may be
a function of the specific optimizer engines and database environ-
ments assessed in our experiments — in our future work, we plan to
investigate the portability of these settings over a broader spectrum
of engines and environments.

Acknowledgements. This work was supported in part by research
grants from IBM, Microsoft and Google.

5. REFERENCES

[1] G. Antonshenkov, “Dynamic Query Optimization in
Rdb/VMS?”, Proc. of 9th IEEE Intl. Conf. on Data
Engineering (ICDE), April 1993.

[2] M. Charikar, S. Chaudhuri, R. Motwani and V.
Narasayya, “Towards Estimation Error Guarantees for
Distinct Values”, Proc. of ACM Symp. on Principles of
Database Systems (PODS), 2000.

[3] F. Chu, J. Halpern and P. Seshadri, “Least Expected Cost
Query Optimization: An Exercise in Utility”, Proc. of ACM
Symp. on Principles of Database Systems (PODS), May
1999.

[4] F. Chu, J. Halpern and J. Gehrke, “Least Expected Cost
Query Optimization: What Can We Expect”, Proc. of ACM
Symp. on Principles of Database Systems (PODS), May
2002.

[5] R. Cole and G. Graefe, “Optimization of Dynamic Query
Evaluation Plans”, Proc. of ACM SIGMOD Intl. Conf. on
Management of Data, May 1994.

[6] A.Deshpande, Z. Ives and V. Raman, ”Adaptive Query
Processing”, Foundations and Trends in Databases, 2007.

[7] A. Dey, S. Bhaumik, Harish D. and J. Haritsa “Efficient
Generation of Approximate Plan Diagrams”, Tech. Rep.
TR-2008-01, DSL/SERC, Indian Inst. of Science, 2008.
http://dsl.serc.iisc.ernet.in/
publications/report/TR/TR-2008-01.pdf

[8] A. Ghosh, J. Parikh, V. Sengar and J. Haritsa, “Plan
Selection based on Query Clustering”, Proc. of 28th Intl.
Conf. on Very Large Data Bases (VLDB), August 2002.

[9] R. Gonzalez and R. Woods, Digital Image Processing,
Pearson Prentice Hall, 2007.

[10] P. Haas and L. Stokes. “Estimating the number of classes in a
finite population”. In Journal of the American Statistical
Association, 93,1998.

[11] P. Haas, J. Naughton, S. Seshadri and L.
Stokes,“Sampling-Based Estimation of the Number of
Distinct Values of an Attribute”, Proc. of 21st Intl. Conf. on
Very Large Databases (VLDB), 1995.

[12] Harish D., P. Darera and J. Haritsa, “On the Production of
Anorexic Plan Diagrams”, Proc. of 33rd Intl. Conf. on Very
Large Data Bases (VLDB), September 2007.

[13] Harish D., P. Darera and J. Haritsa, “Identifying Robust
Plans through Plan Diagram Reduction”, Proc. of 34th Intl.
Conf. on Very Large Data Bases (VLDB), August 2008.

[14] A. Hulgeri and S. Sudarshan, ‘“Parametric Query
Optimization for Linear and Piecewise Linear Cost
Functions”, Proc. of 28th Intl. Conf. on Very Large Data
Bases (VLDB), August 2002.

[15] A. Hulgeri and S. Sudarshan, “AniPQO: Almost
Non-intrusive Parametric Query Optimization for Nonlinear
Cost Functions”, Proc. of 29th Intl. Conf. on Very Large
Data Bases (VLDB), September 2003.

[16] N. Kabra and D. DeWitt, “Efficient Mid-Query
Re-Optimization of Sub-Optimal Query Execution Plans”,
Proc. of ACM SIGMOD Intl. Conf. on Management of Data,
May 1998.

[17] V. Markl, V. Raman, D. Simmen, G. Lohman, H. Pirahesh
and M. Cilimdzic, “Robust Query Processing through
Progressive Optimization”, Proc. of ACM SIGMOD Intl.
Conf. on Management of Data, June 2004.

[18] V. Prasad, “Parametric Query Optimization: A Geometric
Approach”, Master’s Thesis, Dept. of Computer Science &
Engineering, IIT Kanpur, April 1999.

[19] S. Rao, “Parametric Query Optimization: A Non-Geometric
Approach”, Master’s Thesis, Dept. of Computer Science &
Engineering, IIT Kanpur, March 1999.

[20] N. Reddy and J. Haritsa, “Analyzing Plan Diagrams of
Database Query Optimizers”, Proc. of 31st Intl. Conf. on
Very Large Data Bases (VLDB), August 2005.

[21] N. Reddy, “Next-Generation Relational Query Optimizers”,
Master’s Thesis, Dept. of CSA, Indian Institute of Science,
June 2005, http://dsl.serc.iisc.ernet.in/
publications/thesis/naveen.pdf.

[22] P. Tan, M. Steinbach and V. Kumar, Introduction to Data
Mining, Addison-Wesley, 2005.

[23] Picasso Database Query Optimizer Visualizer,
http://dsl.serc.iisc.ernet.in/projects/
PICASSO/picasso.html

[24] http:
//publib.boulder.ibm.com/infocenter/
db2luw/v9/index. jsp?topic=/com.ibm.db2.
udb.admin.doc/doc/t0024533.htm

[25] http://msdn2.microsoft.com/en—us/
library/ms189298.aspx

[26] http://infocenter.sybase.com/help/index.
jsp?topic=/com.sybase.dc34982_1500/
html/mig_gde/BABIFCAF.htm

[27] http://postgresqgl.org

[28] http://www.tpc.org/tpch

[29] http://www.tpc.org/tpcds

