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ABSTRACT 
As Internet traffic continues to grow and web sites become 
increasingly complex, performance and scalability are ma- 
jor issues for web sites. Web sites are increasingly relying 
on dynamic content generation applications to provide web 
site visitors with dynamic, interactive, and personalized ex- 
periences. However, dynamic content generation comes at a 
cost - each request requires computation as well as commu- 
nication across multiple components. 

To address these issues, vaxious dynamic content caching 
approaches have been proposed. Proxy-based caching ap- 
proaches store content at vaxious locations outside the site 
infrastructure and can improve Web site performance by 
reducing content generation delays, firewall processing de- 
lays, and bandwidth requirements. However, existing proxy- 
based caching approaches either (a) cache at the page level, 
which does not guarantee that correct pages axe served and 
provides very limited reusability, or (b) cache at the frag- 
ment level, which requires the use of pre-defined page lay- 
outs. To address these issues, several back end caching ap- 
proaches have been proposed, including query result caching 
and fragment level caching. While back end approaches 
guaxantee the correctness of results and offer the advantages 
of fine-grained caching, they neither address firewall delays 
nor reduce bandwidth requirements. 

In this paper, we present an approach and an implementa- 
tion of a dynamic proxy caching technique which combines 
the benefits of both proxy-based and back end caching ap- 
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proaches, yet does not suffer from their above-mentioned 
limitations. Our dynamic proxy caching technique allows 
granular, proxy-based caching where both the content and 
layout can be dynamic. Our analysis of the performance of 
our approach indicates that it is capable of providing sig- 
nificant reductions in bandwidth. We have also deployed 
our proposed dynamic proxy caching technique at a ma- 
jor financial institution. The results of this implementation 
indicate that our technique is capable of providing order-of- 
magnitude reductions in bandwidth and response times in 
real-world dynamic Web applications. 

Categories and Subject Descriptors 
H.3.4 [ I n f o r m a t i o n  Systems]:  Systems and Softwaxe-- 
Distributed systems, Performance evaluation (e~ciency and 
effectiveness; H.3.5 [ I n f o r m a t i o n  Systems]:  Online Infor- 
mation Services--Web-based services 

General Terms 
Design, Performance 

Keywords 
Edge Caching, Dynamic Content, Proxy-based Caching 

1. INTRODUCTION 
To provide visitors with dynamic, interactive, and per- 

sonalized experiences, web sites axe increasingly relying on 
dynamic content generation applications, which build Web 
pages on the fly based on the run-time state of the Web site 
and the user session on the site. But, these benefits come at 
a cost - each request for a dynamic page requires computa- 
tion as well as communication across multiple components 
inside the server-side infrastructure. 

Caching is a widely-used approach to mitigate the perfor- 
mance degradations due to W WW content distribution and 
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delivery. Here, content generated for one user is saved, and 
used to serve subsequent requests for the same content. 

Ingeneral,  there are two basic approaches: back-end caching 
and proxy-based caching, which we discuss in detail in Sec- 
tion 3. Back-end caches typically reside within a site, and 
cache at the granularity of a fragment, i.e., a portion of a 
Web page. This type of cache works with a dynamic con- 
tent application to reduce the computational and communi- 
cation resources required to build the page on the site, thus 
reducing server-side delays. As we will describe in detail in 
Section 3, back-end caching solutions do not rely on URLs 
to identify cached content (as is the case with proxy-based 
solutions), and thus guarantee correctness of the contents in 
a generated page. However, this type of solution does not 
reduce the bandwidth needed to connect to the server to ob- 
tain content. In contrast, proxy-based caches typically store 
content at the granularity of full web pages 1, and reside out- 
side the site's infrastructure. As we will explain in detail in 
Section 3, this type of caching can provide significant band- 
width savings, both in the site's infrastructure as well as on 
the W W W  infrastructure; however, it suffers from two ma- 
jor drawbacks: (1) full-page dynamically generated HMTL 
files generally have little reusability, leading to low hit ra- 
tios; and (2) cache hits are determined based on a request's 
URL, which does not necessarily uniquely identify the page 
content, leading to the possibility of serving incorrect pages 
from cache. 

In this paper, we explore whether it is possible to achieve 
the benefits of both approaches, without the limitations. The 
holy grail of dynamic content caching is the ability to cache 
dynamic content at finer granularities outside the site's in- 
frastructure. Such an approach would provide the bene- 
fits of caching finer granularities of content (e.g., greater 
reusability), while simultaneously achieving the benefits as- 
sociated with proxy-based caching (e.g., reduced bandwidth, 
reduced firewall processing). In this paper, we propose an 
approach for caching granular proxy-based dynamic content 
that combines the benefits of both approaches, while suffer- 
ing the drawbacks of neither. We describe our approach for 
caching granular proxy-based dynamic content in Section 4. 
Specifically, we describe an architecture for such a system, as 
well as the data structures and algorithms needed to make it 
work. Based on this approach, we describe the implementa- 
tion of a dynamic content caching system, which is currently 
in commercial deployment at a major financial institution. 

We show the effectiveness of our system by studying its 
performance analytically and experimentally. Section 5 de- 
scribes our analysis, and the corresponding results, which in- 
dicate that our approach is capable of providing significant 
reductions in bandwidth on the site infrastructure: more 
than 70% savings in bytes transmitted through the network. 
In Section 6, we present experimental results which validate 
our analytical findings. 

This paper outlines the science behind, as well as an imple- 
mentation of, a true proxy-based dynamic content caching 

system. Specifically, our architecture and implementation 
describe a dynamic content caching system operating in re- 
verse proxy mode, providing significant bandwidth savings 
within the site infrastructure. The next step, moving the 
proxy out to the edge of the network in forward proxy mode 

1One class of proxy-based solutions which cache content at 
finer granularities is dynamic page assembly solutions. We 
discuss dynamic page assembly in detail in Section 3. 

would provide bandwidth savings beyond the site infrastruc- 
ture, between the Web site and the edge of the network. By 
placing content on forward proxies, end users would also 
see.substantial response time improvements, since content 
would be delivered from points close to them on the net- 
work. However, there are significant technical challenges 
associated with moving dynamic content to forward prox- 
ies. Section 7 outlines the issues that remain open in order 
to take dynamically generated content to the edge. 

2. DYNAMIC CONTENT GENERATION: 
BACKGROUND AND PRELIMINARIES 

Over the past few years, Web sites have transitioned from 
a static content model, where content is served from ready- 
made files, to a dynamic content model, where content is 
generated on demand. Dynamic content generation allows 
sites to offer a wider variety of services and content. For 
instance, a Web page can be customized according to an 
individual's preferences, perhaps displaying the user's pre- 
ferred stock quotes and a personal greeting. 

A broad range of technologies are available to support 
such dynamic content generation. For instance, applica- 
tion servers (e.g., BEA's WebLogic [30] and IBM's Web- 
Sphere [17]) are commonly used to handle page generation 
tasks and manage connections to back-end services, such as 
DBMSs and content management systems (CMSs). Appli- 
cation servers run dynamic scripts or programs to generate 
Web pages. These scripts can be written in a number of lan- 
guages including Sun's Java Servlets and Java Server Pages 
(JSP) [22], the Active Server Pages (ASP) family from Mi- 
crosoft [21], and Perl [24]. 

At a high level, dynamic scripting works as follows. A 
user request maps to an invocation of a script. This script 
executes the necessary logic to generate the requested page, 
which involves contacting various resources (e.g., database 
systems) to retrieve, process, and format the requested con- 
tent into a user deliverable HTML page. 

2.1 Dynamic Layouts 
Consider a Web site that caters to both registered users 

(i.e., users who have set up an account with the site) and 
non-registered users (i.e., occasional visitors). Suppose the 
site allows registered users to create a user profile, which 
specifies the user's content preferences and allows him to 
control the layout of the page. Here, pages contain a num- 
ber of elements or fragments. For each request, the Web 
site lays out the fragments on a page in a specific default 
configuration for non-registered, and based on a user profile 
for registered users. 

In general, an HTML page consists of two distinct com- 
ponents: content and layout. Content refers to the actual 
information displayed and layout refers to a set of markup 
tags that define the presentation (e.g., where the content 
appears on the page). Loosely speaking, the different frag- 
ments on a page represent content, whereas the layout deter- 
mines how the fragments are presented on the user viewable 
page. Here, the final presentation of the page is partially 
determined by the order in which the markup tags appear 
in the page, as well as the actual markup tags themselves 
(e.g., (HR), which adds a horizontal rule). 

The foregoing discussion highlights two important char- 
acteristics of dynamically generated content. First, not only 
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is the content of many sites dynamic, but also the page lay- 
out. In other words, the precise organization of a page is 
often determined at run-time. Second, and most important ,  
the same request URL can produce different content and/or 
different layouts. The registered and non-registered users 
submit the exact same URL to the site, yet they may re- 
ceive very different pages. This fact is very important ,  and 
as we will show, one of the major impediments to caching 
dynamic pages in a proxy cache. 

2.2 Performance Bottlenecks in Serving Dy- 
namic Web Pages 

Having described how a dynamic Web page request is 
served, we now discuss the potential  bottlenecks in this pro- 
cess. These bottlenecks can be classified into two broad 
areas: (a) network latency, i.e., delays on the network be- 
tween the user and the Web site, and (b) server latency, i.e., 
delays at the Web site itself. 

2.2.1 Network Latency 
Typically, long distances separate users and Web sites. 

Furthermore, content that  is delivered over the Internet must 
go through an extensive network of transmission and switch- 
ing devices (e.g., routers, switches). Each such device is a 
potential  source of delay. The larger the size of the content, 
the greater the network delay. Various caching solutions 
have beech proposed to mitigate network delays, which will 
be discussed in Section 3. 

2.2.2 Server Latency 
After a user's request traverses the Internet  and arrives 

at the Web site, a number of Web site infrastructure delays 
can occur, and these delays can be significant. Delays at 
the Web server can be broadly classified into two categories: 
(1) session processing delays, and (2) dynamic content gen- 
eration delays. Web server session processing delays occur 
because once a request arrives at the Web site, it must tra- 
verse several hardware and software layers, a router, a fire- 
wall and a switch, before reaching the Web server. Forcing 
a user's request through these devices, each of which has a 
finite throughput,  can expose network performance bottle- 
necks. Wi th  today 's  Web pages containing an average of 
10-20 objects, the sheer number of tr ips through the Web 
site's infrastructure creates significant latency [26]. Further- 
more, as more and more users t ry  to access the same con- 
tent, the redundant  load on the firewalls and switches for 
the same objects increases dramatically. Caching solutions 
have also been proposed to address server delays, which will 
be discussed in Section 3. 

Content generation delays occur as a result of the work 
required to generate a Web page. In the case of static Web 
sites, content generation involved accessing the appropriate 
response file from a file system. Thus, generation delays 
are negligible in this case. However, in the case of dynamic 
sites, the story is completely different. As mentioned previ- 
ously, dynamic site requests are processed by an application 
layer consisting of application servers and other back end 
system components such as DBMSs. Due to the complex- 
ity of modern Web site application layers, sites are increas- 
ingly employing a layered or n-tier application architecture, 
which part i t ions the application into multiple layers. For 
instance, the presentation layer is responsible for the dis- 
play of information to users and includes formatting and 

I I. JSP invokes Servlet 

AdcUeon~Se~ees ] '  "/ BusinessLogi~l 
- Content Management ~ .......... "l .... ~ ' [ 
- Personalization ~-. • - - - ' - . ~ . c ~ s  ~u~ d,~ ] 

I ~ ~'~'~'~l Data Access- JDBC 

Legacy Databases - ODBC 

i... S ~  .......................... ~ 4. DBMS invokes storage application 
Back End Systems 

Figure 1: Example of Workflow Required to Gener- 
ate Dynamic Page 

transformation tasks. Presentation layer tasks are typically 
handled by dynamic scripts (e.g., ASP, JSP). The business 
logic layer is responsible for executing the business logic, 
and is typically implemented using component technologies 
such as Enterprise Java Beans (EJB). The data access layer 
is responsible for enabling connectivity to back-end system 
resources (e.g., DBMSs), and is typically provided by stan- 
dard interfaces such as JDBC or ODBC. Such multi-layered 
architectures have become widely accepted. For instance, 
most Java-based Web applications follow the Model View 
Controller (MVC) [16] design paradigm. In this paradigm, 
presentation logic is handled by JSPs, and business logic is 
controlled by Servlets, which in turn invoke the appropriate 
business components (EJBs). 

To bet ter  illustrate how multi-layered architectures serve 
requests, consider Figure 1, which illustrates how part  of this 
request may be served. As this figure shows, the following 
steps are required to serve a request: 

1. The application server executes the J S P  script. The 
J S P ,  running in the presentation layer, invokes a Java 
S e r v l e t  in the business logic layer. 

2. The S e r v l e t  contacts a c o n t e n t  m a n a g e m e n t  sys-  
t e m  ( C M S )  (e.g., Vignette [10]) to run personaliza- 
tion logic. 

3. The C M S  requests da ta  from the D B M S .  This da ta  
may include, for example, the names, descriptions, and 
images associated with the Fiction category, as well as 
user profile information (assuming that  the user has 
registered with the site). This request invokes con-  
n e c t i v i t y  software (e.g., JDBC), in the da ta  access 
layer, which waits for a connection to the D B M S .  

4. The D B M S  invokes storage applications. These 
storage applications may, in turn, make calls to a 
file system (not shown). 

As the above example illustrates, serving a request for a 
dynamically generated page typically involves nested task 
invocations across multiple application layers. This process 
can incur several types of delays, including: 

• C o m p u t a t i o n a l  De lays .  This type of delay is the 
result of executing various types of logic (e.g., query 
processing). Note that  this delay can occur at multiple 
layers. 
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I n t e r a c t i o n  B o t t l e n e c k s .  This type of delay occurs 
when a request must wait for a resource, such as a 
connection to a DBMS. 

* C r o s s - t i e r  C o m m u n i c a t i o n .  This type of delay oc- 
curs as a result of the network communication required 
between application components. For each invocation, 
communication between the two components requires 
network protocol support  in the connectivity software 
(e.g., JDBC), which traverses a network protocol stack 
(e.g., TCP/ IP ) .  

• O b j e c t  C r e a t i o n  a n d  D e s t r u c t i o n .  This type of 
delay is common in object-oriented applications, which 
must repeatedly create and destroy objects. 

• C o n t e n t  C o n v e r s i o n .  This type of delay is a result 
of da ta  transformations (e.g., XML-to-HTML) and/or  
formatting tasks. 

Each of these content generation delays contributes to the 
end-to-end latency in delivering a Web page. As user load 
on a site increases, the site infrastructure is often unable 
to serve requests fast enough. The end result is increased 
response times for end users. 

In summary, the performance bottlenecks in serving dy- 
namic content axe of two main types: network latency and 
server latency. Server latency is further composed of session 
processing delays and dynamic content generation delays. In 
the next section, we will discuss existing caching approaches 
that  a t tempt  to mitigate all of these types of delays. 

3. EXISTING APPROACHES AND THEIR 
LIMITATIONS 

A widely used existing approach to address W W W  perfor- 
mance problems is based on the notion of content caching. 
A variety of such methods exist. For a t reatment  of Web 
caching techniques, refer to [23] - this work includes many 
references, which we do not repeat  in this paper. These 
caching approaches can be classified as back end and proxy- 
based caching solutions. We discuss each in turn. 

3.1 Back-end Caching Approaches 
Back end caching approaches have been proposed to ac- 

celerate dynamically generated content. These approaches 
are based on the idea of caching content at the various lay- 
ers within the site architecture. For instance, various types 
of database caching have been suggested, including caching 
the results of database queries [20] and caching database ta- 
bles in main memory [28, 9]. Database caching approaches 
can reduce some of the delays associated with query process- 
ing operations. Another back end approach is presentation 
layer caching, which caches HTML fragments. Many appli- 
cation servers provide this type of caching capability (e.g., 
WebLogic from BEA Systems [30]), which can mitigate de- 
lays due to presentation layer tasks. Solutions from ven- 
dors such as SpiderCache [29] take the approach of caching 
dynamically generated pages within the site infrastructure. 
These solutions axe similar to reverse proxy caches, except 
that  they operate within the site infrastructure, and are typ- 
ically implemented as plug-ins to the Web server. A re- 
cent work proposes a back end caching system that  caches 
content at various levels, such as database queries, HTML 
fragments, and pages [34]. Another more general back-end 

caching approach is component level caching [14, 13], which 
caches arbi t rary objects, including HTML fragments and 
programmatic  objects. This approach addresses delays due 
to computat ion as well as delays due to communication be- 
tween different modules, and is available commercially as a 
software solution from Chutney Technologies [32]. 

All of the above-mentioned back end caching approaches 
can help reduce the delays associated with generating con- 
tent. Also, since they reside at the back-end, these solutions 
do guarantee the correctness of the output ,  unlike proxy- 
based caches. Finally, by caching at finer granularities, 
these solutions achieve greater reuse of content and allow 
fine-grained invalidation. A limitation of back-end caching 
solutions, however, is that  they deliver all content from the 
dynamic content application itself, and thus do not address 
network-related delays, i.e., delays resulting from the need 
to t ransmit  high-bandwidth content through the site and 
W W W  infrastructures (e.g., firewall processing delays, rout- 
ing delays). 

3.2 Proxy-based Caching Approaches 
Proxy-based caching approaches are based on caching con- 

tent outside the site's infrastructure. Such content can in- 
clude static content such as media files (pictures, audio, 
video) or dynamically generated HTML pages. The utility 
of using proxies to cache static content is well-known and is 
not the focus of this paper. Rather, we wish to s tudy the 
usefulness of using proxies to cache the output  of dynamic 
Web sites. Two broad approaches exist in using proxies to 
cache dynamic pages: page-level caching and dynamic page 
assembly. 

3.2.1 Page-level Caching 
In this approach, the proxy caches full page outputs  of 

dynamic sites. This approach has been considered in the 
literature, e.g., [6, 5] propose page-level caching techniques. 
A number of commercially available solutions axe based on 
this approach. Some operate in reverse proxy mode, sit- 
ting between the site and the Internet cloud (usually just  
outside the site firewall - a reverse proxy resides between 
the site firewall and the Internet cloud.), and relieving the 
site infrastructure from the work required to push responses 
through the site. Software solutions include Inktomi 's  Traf- 
fic Server [8] and Internet Security and Acceleration (ISA) 
Server from Microsoft [27], while hardware solutions axe 
available from vendors such as CacheFlow [4] and Network 
Appliance [3]. Other solutions are deployed in forward proxy 
mode, i.e., in dis tr ibuted caching architectures located at 
numerous points around the Internet. These solutions axe 
based largely on the fundamental  body of work that  ad- 
dresses distr ibuted proxy caching, e.g., [15, 25]. These so- 
lutions, also known as Content Delivery Networking (CDN) 
solutions, are primari ly service-based solutions offered by 
vendors such as Akamai [31] and Digital Island [1]. 

In general, page-level caches can improve web site per- 
formance by reducing (a) delays associated with generating 
the content, (b) delays associated with packet filtering and 
other firewall-related delays, and (c) the bandwidth required 
to t ransmit  the content from the back end application to the 
proxy-based cache. 

There are, however, three major limitations associated 
with using page-level caching solutions to cache dynamic 
pages. First  and foremost, page level caching solutions must 
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rely on the request URL to identify pages in cache. When 
pages are dynamically generated, different invocations of a 
given script, even with the same input parameters, are not 
guaranteed to produce the same page. Consider a Web site 
that  greets registered users on each page. Suppose a reg- 
istered user, whom we will call Bob, requests a page. The 
page displayed to Bob will include a "Hello, Bob" greeting. 
Suppose a subsequent user, whom we will call Alice, requests 
the same page (using the same request URL). Alice is not 
a registered user on the site, so she should receive the page 
without a greeting. However, if the site is using a proxy 
cache, Alice will be served the page that was just served to 
Bob, since this page matches the request URL. Thus, as this 
example illustrates, proxy-based caches may serve incorrect 
pages. This problem, traditionally, has prevented the use of 
proxies in caching dynamic pages. 

Another limitation of page level solutions is that there is 
often very little reusability of full HTML pages. Sites that 
serve highly personalized pages, for instance, may include a 
customer greeting on every page, thus making every page in- 
stance unique, and reusable only if the same user makes the 
same request. This can lead to low hit ratios, in which case 
few, if any, of the benefits of caching are actually realized. 

Furthermore, caching at the page level causes unnecessary 
invalidation. If only one or a few elements on a page become 
invalid, then the entire page becomes invalid. Consider, for 
example, a stock quote page on an online brokerage site. 
Suppose that, given a ticker symbol as input, the output 
page consists of three basic content elements: a current price 
quote, a set of recent headlines for the company, and histori- 
cal research data (e.g., price to earnings ratio). Clearly, price 
quotes become invalid relatively quickly (perhaps within sec- 
onds), while news headlines might be updated every thirty 
minutes and historical data on a monthly basis. In this sce- 
nario, the page cache would invalidate cached pages as the 
price quotes become invalid, thus leading to the regenera- 
tion of the news headlines and historical content elements at 
a much greater frequency than the frequency at which they 
change. 

3.2.2 Dynamic Page Assembly 
Dynamic page assembly is an approach popularized by 

Akamai [31] as part of the Edge Side Includes (ESI) initia- 
tive [7], and found in other products, such as IBM's trig- 
ger monitor feature (available as part of WebSphere Edge 
Server version 2.0 [11]). This approach entails establish- 
ing a template for each dynamically generated page. The 
template specifies the content and layout of the page us- 
ing a set of markup tags. Essentially, each page is factored 
into a number of fragments (specifically, separate dynamic 
scripts) that are used to assemble the page at a network 
cache when the page is requested. Content generated from 
templates and factored fragments are cacheable as separate 
HTML files on distributed caching architectures; here, re- 
sponses are actually assembled at these distributed caching 
locations around the Internet, rather than hitting the origin 
server. By moving the dynamic content closer to the user, 
many of the same benefits of page-level caching accrue, with 
the additional benefit of further reduced response times and 
network bandwidth requirements (since content need not be 
delivered from the origin Web site). 

There are two major limitations associated with the dy- 
namic page assembly approach. A key drawback is the re- 

quirement that a site follow a specified page design paradigm, 
specifically, the use of templates which in turn call sepa- 
rate dynamic scripts for each dynamically generated frag- 
ment. This requires that page layout be known in advance. 
The problem with this scenario is that these caches base re- 
sponse decisions on the requested URL; once the template 
and fragments for one of the two results in this example 
are present in the cache, every request for a particular URL 
will be served from cache, regardless of whether the tem- 
plate in cache would produce the same output page as the 
dynamic scripts on the Web site. Thus, sites supporting 
dynamic layouts (most sites) will not be able to take ad- 
vantage of dynamic page assembly. In addition, the use of 
templates and fragments is a major departure from the stan- 
dard Model-View-Controller design paradigm used in many 
Web sites; thus, utilizing this new design paradigm may re- 
quire redesigning and rebuilding a Web site from the ground 
up. 

Another, equally significant drawback of the dynamic page 
assembly approach is that it cannot be used in the context of 
pages with semantically interdependent fragments. Indeed, 
it turns out that if there exist dependencies among the frag- 
ments of a page, it may be difficult, if not impossible, to fac- 
tor the page into fragments. For example, a dynamic script 
may contain the following execution sequence: (1) query the 
user profile repository based on the visitor's userId obtained 
at login and generate a user profile object; (2) based on the 
user profile object, generate a P e r s o n a l  G r e e t i n g  frag- 
ment; and (3) based on the user profile object, generate a 
R e c o m m e n d e d  P r o d u c t s  fragment for the user. Here,two 
of these fragments, the Personal Greeting and the Recom- 
mended Products fragments, are dependent on the same user 
profile object. If these two fragments were processed in se- 
quence in the script, it might be possible to combine them 
into a single fragment (i.e., generated by a single script in 
dynamic page assembly). However, other processing may 
occur between the generation of these two fragments, pro- 
cessing which may or may not result in another cacheable 
fragment. In either case, factoring this script into fragments 
would require the same call to the user profile repository to 
be repeated for both the P e r s o n a l  G r e e t i n g  and R e c o m -  
m e n d e d  P r o d u c t s  fragments. Clearly, the repetition of 
the same call in generating a single page is redundant. As 
a result, using a dynamic page assembly approach to cache 
this page would result in significant repetition of work on the 
site. The corollary is that these approaches are optimal only 
for pages that can be easily decomposed into a small num- 
ber of static, independent fragments, and where the overall 
layout of the page does not change. 

A recent work that can be considered a dynamic assembly 
approach is [19]. This work proposes a proxy cache that 
stores query templates, along with query results, which are 
used to manage the cache. While this approach can mitigate 
some delays associated with query processing, it does not 
address the numerous other delays associated with dynamic 
content generation. 

3.2.3 Summary of  Proxy-based Caching Approaches 
In summary, proxy caching approaches, whether based 

on full-page caching or dynamic page assembly, when they 
work, are able to generate significant bandwidth savings by 
serving the request from the proxy rather than having to 
route it through the origin Web site infrastructure. How- 
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ever, due to the many limitations discussed above, their ap- 
plicabilty in caching dynamic pages is rather limited and 
their primary use is in caching static content or fixed layout 
content that can be factored into some combination of static 
fragments. 

3.3 Summary of Existing Approaches 
In summary, we note a strong dichotomy between the 

two above-mentioned approaches. Proxy-based approaches, 
when effective, can provide tremendous bandwidth savings 
by serving content from points outside the site's infrastruc- 
ture. However, these approaches suffer from several severe 
limitations in the context of dynamic sites which limit their 
effectiveness in practice, leading to the loss of the benefits 
of caching. Back end approaches mitigate these issues, yet 
cannot provide any bandwidth benefits. The "Holy Grail" 
of content caching has been a solution that can provide both 
bandwidth savings, like proxy-based approaches, as well as 
server-side acceleration, like the back-end approaches dis- 
cussed above. 

In this paper, we propose an approach for granular proxy- 
based caching of dynamic content that combines the bene- 
fits of proxy-based caching with those of back-end caching 
techniques, while at tempting to minimize their limitations. 
Unlike existing dynamic page assembly techniques, our ap- 
proach supports dynamic page layouts and thus does not 
require that a particular site design be enforced. 

4. DYNAMIC PROXY-BASED CACHING AP- 
PROACH 

In this section, we describe our proposed approach for 
granular proxy-based caching of dynamic content. We first 
discuss the intuition behind our approach, followed by the 
architecture and technical details. 

4.1 Intuition 
Our objective is to deliver dynamic pages from proxy 

caches. Recall that dynamic pages are "dynamic" across 
two dimensions: they posess dynamic content and dynamic 
layout. Any dynamic content caching system must account 
for both - in fact, the primary weakness of existing proxy 
caching schemes arises from their inability to map a URL 
to the appropriate content and layout. To mitigate this 
weakness, our essential intuition may be summarized as fol- 
lows: we will cache dynamic content fragments in the proxy 
caches, but the layout information would be determined, on 
demand, from the source site infrastructure. In other words, 
we propose to respond to a dynamic page request, Ri, as fol- 
lows. We will route Ri through a dynamic proxy, D~, to the 
site infrastructure. Upon reaching the site infrastructure, 
Ri will cause the appropriate dynamic script to run. A back 
end module will observe the running of this script and de- 
termine the layout of the page to be generated (the actual 
process is much more complicated, and will be described 
in greater detail subsequently in this section). This layout, 
which will be much smaller than the actual page output, will 
be routed to the proxy Di. The proxy will fill in the content 
from its cache and route it to the requestor. 

For example, consider a request for a Category page on an 
e-commerce site. The request passes through the dynamic 
proxy cache, which routes it to the origin site. At the origin 
site, the application server executes the category,  j sp script 

to serve this request. A monitor at the back end observes 
the application processing and generates the page layout 
accordingly. This layout will contain "holes" to indicate 
where the cached fragments should be inserted. This layout 
is sent to the dynamic proxy cache, which fills in the "holes" 
with the appropriate fragments from its cache. The resulting 
page is then delivered to the user. 

This high-level example raises many questions about the 
details of our dynamic proxy caching system. For instance, 
how does the monitor at the back end determine the page 
layout? How does the monitor know which fragments are in 
the dynamic proxy cache? How is the dynamic proxy cache 
managed? In the remainder of this section, we answer these 
types of questions by explaining the details of this system. 

4.2 System Architecture 
The Dynamic Proxy Cache (DPC) stores dynamic frag- 

ments outside the site infrastructure and assembles these 
fragments in response to user requests. Note that the DPC 
can also cache other types of content as well (e.g., rich con- 
tent, static fragments). However, in this paper, we focus on 
the novel aspects of our approach - the ability to handle 
dynamic content and dynamic layouts. The ability to sup- 
port dynamic layouts is enabled by the Back End Monitor 
(BEM). The BEM resides at the back end and generates the 
layout for each request. This layout is passed back to the 
DPC, which assembles the page that is returned to the re- 
questing user. As we will soon show, this approach enables 
significant reductions in bandwidth requirements, since only 
the page layouts and perhaps some content, are transmitted 
from the back end to the DPC. 

The DPC can reside either (a) at the origin site (in a re- 
verse proxy configuration), or (b) at the network edge (in a 
forward proxy configuration). In the former case, the pri- 
mary benefit is the reduction in the number of bytes trans- 
ferred through the site infrastructure for each request. 

In the latter case, the forward proxy configuration (similar 
to that of present-day CDNs), the benefits are even greater 
- the reduction in bytes transferred for each request is real- 
ized not only within the site infrastructure, but also across 
the Internet. The basic underlying technical issues are the 
same for both the reverse proxy as well as the forward proxy 
configurations. The main difference between the two is that 
a forward proxy configuration typically would mandate a 
distributed cache architecture, whereas a reverse proxy con- 
figuration is a logically single unit. Thus, two issues arise in 
the forward proxy case that are not present in the reverse 
proxy case: (1) request routing, and (2) cache coherency. 

Request routing refers to the problem of determining which 
dynamic proxy should service an incoming request. This 
problem has been studied extensively in the context of CDNs, 
which focus primarily on routing requests for static files 
(e.g., image files), where a file is uniquely identified by its 
URL. A key difference between request routing for CDNs 
and for our system is the nature of the content. Our system 
must address the issue of routing requests for dynamic frag- 
ments. Clearly, routing that is based on URL is not applica- 
ble in our case since page fragments cannot be determined 
from the URL. Given that multiple copies of fragments may 
exist in the dynamic proxies, the issue of cache coherency 
arises. When changes to source data cause a fragment to 
become invalid, some mechanism must be in place to ensure 
that all dynamic proxies are aware of this change so that all 

102 



serve the correct version of the fragment. 
Our commercially implemented solution incorporates tech- 

niques which address the above-mentioned issues and thus 
can be configured either as a forward proxy or as a reverse 
proxy. Due to the conciseness and space requirements of 
this paper, our subsequent treatment will assume a reverse 
proxy configuration. Note however, that all the technical is- 
sues would apply, virtually unchanged, to the forward proxy 
c a s e .  

Having described the system architecture, we now delve 
into the technical details. 

4.3 Technical Details 
Our dynamic proxy caching system consists of two main 

phases: (a) system initialization, and (b) run-time opera- 
tion. In this section, we discuss these two phases, followed 
by an in depth discussion of the system components. 

4.3.1 System Initialization Phase 
A prerequisite of our dynamic proxy caching system is 

that  the cacheable fragments be identified and marked. This 
is an initialization activity which we refer to as tagging. The 
tagging process enables page layouts to be determined dy- 
namically at run-time. 

Once the cacheable fragments are identified, each of the 
corresponding code blocks in the script is tagged. Tagging 
essentially means marking a code block as cacheable. This 
is done by inserting APIs around the code block, enabling 
the output of the code block to be cached at run-time. The 
tagging process assigns a unique identifier to each cacheable 
fragment, along with the appropriate metadata (e.g., time- 
to-live). 

4.3.2 Run-Time Operation 
At run-time, a user submits a request to the site. This 

request, e.g., http://www, books0nline, corn/catalog, j sp? 
categoryID=Fiction is passed through to the application 
server. This causes the catalog.jsp script to be invoked 
with the parameter name-value pair categoryID-Fiction. 
The application logic in the script runs as usual, until a 
tagged code block is encountered. When such a code block 
is encountered, a check is made to see whether the fragment 
produced by that code block exists in the DPC. This is done 
by looking up the fragmentID in the BEM's cache directory. 
The cache directory will be described in detail in the next 
section. For now, it is sufficient to know that the cache 
directory contains the fragmentIDs and additional metadata 
for each fragment in the DPC. 

When a request is made, there are two general cases pos- 
sible: 

1. T h e  f r a g m e n t I D  is no t  in  cache or is in  cache 
b u t  inval id.  In this case, an entry is inserted into 
the cache directory for this fragment, the content is 
generated, and a SET instruction is written to the page 
template. This instruction will insert the fragment 
into the DPC. 

2. T h e  f r a g m e n t I D  is in  cache a n d  is val id.  In this 
case, a GET instruction is written to the page template. 
This instruction will retrieve the fragment from the 
DPC. 

At run time, a cache directory lookup is done for the nbKey 
fragmentID. If the fragmentID is not found or is invalid, an 

entry is inserted into the cache directory. Details of this 
process will be described in the next section. For now, it 
is sufficient to know that  the BEM assigns a key that is 
used by the DPC. The corresponding code block executes to 
generate the content, which is then written to the template, 
along with a SET instruction. If the fragmentID is found 
in cache, only the key and a GET instruction are written 
to the template. Similar processing would be done for the 
remaining cacheable code blocks. 

For the first request for a given page, none of the frag- 
ments will be in cache, so the layout will consist of SET 
instructions, along with the generated content. For subse- 
quent requests, the cacheable fragments will likely be cached, 
assuming that they have not been invalidated. In this case, 
the layout will consist mostly of GET instructions and hence 
will be much smaller. Having described the run-time opera- 
tion of our system, we are now ready to discuss the system 
components in greater detail. 

4.3.3 System Components 
In this section, we provide a detailed explanation of the 

two main components of our dynamic proxy caching sys- 
tem, the Dynamic Proxy Cache (DPC) and the Back End 
Monitor (BEM). 

The DPC is a proxy cache that stores dynamic fragments 
and assembles these fragments on demand using run-time 
page layout instructions. The DPC assembles pages by fol- 
lowing the instructions provided by the BEM (to be de- 
scribed in more detail later in this section). All cache man- 
agement functionality for the DPC is handled by the BEM as 
well. The structure of the DPC cache is straightforward: it 
is implemented as an in-memory array of pointers to cached 
fragments, where the DpcKey serves as the array index. 

The BEM resides at the back end and has two primary 
functions: (1) managing the cache for the DPC, and (2) 
caching intermediate objects. We proceed to describe each 
of these functions. 

Managing the DPC cache is a critical function of the 
BEM. This function is enabled by the cache directory, a 
critical data structure contained in the BEM. The cache di- 
rectory keeps track of the fragments in the DPC and their 
respective metadata. The cache directory has the following 
basic structure: 

fragmentID unique fragment identifier (name+parameterList) 
dpcgey unique fragment identifer within the DPC 
isValid flag to indicate validity of fragment 
t t l  time-to-live value for fragment 

The dpcKey is a unique integer identifier associated with 
each fragment that serves as a common key for both the 
BEM and the DPC. There are two reasons why we use this 
dpcKey. First, it reduces the tag size. The fragmentIDs 
described in the previous section are typically quite long, 
especially those that include a list of parameters. By as- 
signing an integer, we are able to reduce the size of the page 
templates that are sent to the DPC. Second, as we will soon 
show, assigning a common key eliminates the need for ex- 
plicit communication between the BEM and the DPC. 

There are two basic ways in which fragments can become 
invalid: (a) an invalidation policy determines that a frag- 
ment is invalid, or (b) a replacement policy determines that 
a fragment should be evicted from cache. A cache invalida- 
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tion manager monitors fragments to determine when they 
become invalid. Fragments may become invalid due to, for 
instance, expiration of the t t l  or updates to the underly- 
ing data sources. A cache replacement manager monitors 
the size of the cache directory and selects fragments for re- 
placement when the directory size exceeds some specified 
threshold. 

In any case, the fragment's ±sValid flag will be set to 
FhLSE to indicate that it is no longer valid. When this oc- 
curs, the dpcKey for the fragment is inserted at the end of 
a list of available dpcKeys. This technique ensures that a 
subsequent request for the fragment will be generated and 
served fresh. 

Note that the size of the list of available keys should be at 
least as large as the maximum cache size. This is due to the 
fact that invalid fragments are not explicitly removed from 
the DPC. Rather, the slots corresponding to these fragments 
simply remain unused until they are subsequently assigned 
to a new fragment by the BEM. For example, suppose a frag- 
ment Fi, having dpcKey 2, becomes invalid. It is marked as 
such by the BEM and "2" is inserted back into the freeList. 
No action is taken by the DPC. Eventually, dpcKey 2 will be 
assigned to a fragment (either Fi or a new fragment) by the 
BEM, at which time the appropriate content will be inserted 
into the corresponding slot in the DPC. 

Having described the technical details of our proposed ap- 
proach, we now examine the benefits of this approach. In 
the next section, we present an analysis that attempts to 
quantify these benefits. 

5. ANALYTICAL RESULTS 
There are two types of benefits that accrue in our model: 

(a) performance and scalability of the server side, and (b) 
bandwidth savings. In this section, we analyze these bene- 
fits. Due to space limitations, we only present the results of 
our bandwidth savings analysis. Table 1 contains the nota- 
tion to be used throughout this section. 

Symbol  [ Descript ion 
E = {el,e2,. . .  ,era} ~ set of fragments 
C : {cl,c2,...,c,~} 
El---- {ej : ej E ci} 

sej 

R 

set of pages 
set of fragments corresponding 
to page ci 
average size of fragment ej (bytes) 
average size of tag (bytes) 
average size of header (bytes) 
hit ratio, i.e., fraction of fragments 
found in cache 
total number of requests during 
observation period 

T a b l e  1: N o t a t i o n  

In our analysis, we wish to compare the bandwidth savings 
for two cases: (a) with the dynamic proxy cache and (b) 
without. We next describe our assumptions and derive a 
generic expression for the number of outbound bytes served 
by a given Web site infrastructure, i.e., the number of bytes 
transmitted between the back end and the DPC during a 
given time period. We then derive specific expressions for 
each of the two cases. 

Recall from our discussion in Section 2 that a dynamic 
script generates pages. For the purposes of this analysis, we 

model a given Web application as a set of such pages C = 
{ c t , c 2 , . . . , c , } .  Each page is created by running a script 
(as described in Section 2), and the resulting page consists 
of a set of fragments, drawn from the set of all possible 
fragments, E = {e l ,e2 , . . .  ,era}. We let El, Ei C £ , b e  the 
set of fragments corresponding to page ci. There exists a 
many-to-many mapping between C and £, i.e., a page can 
have many fragments and a fragment can be associated with 
many pages. We are interested in the size of a page, which 
depends on the size of its constituent fragments. The exact 
size of a fragment cannot be determined a priori, since it 
will depend upon a variety of run-time factors (e.g., query 
selectivity). Thus, we use the average size of a fragment 
e j ,  which we denote by set. Each page also has f bytes of 
header information associated with it. Header information 
includes HTTP headers, such as Server ,  Content- type.  

We define expected bytes served, B ,  as the average number 
of bytes served by the Web site that is hosting the applica- 
tion during some time interval. In other words, B is the 
number of bytes transferred between the back end and the 
DPC during some period of interest. To compute B, we 
need to know the size of each response and the number of 
times the page is accessed during the time interval. A re- 
sponse refers to the content that is generated by the applica- 
tion server to represent the requested page. In our analysis, 
we are interested in capturing the impact of our system on 
the bandwidth requirements for the dynamic content that is 
served. 

When the dynamic proxy cache is not used, the response 
size is simply the page size. However, when the dynamic 
proxy cache is used, the size of the response will be different 
from the page size due to the inclusion of the tags and the 
exclusion of the cacheable content. Let Sc~ be the size of the 
response corresponding to page cl as delivered by the hosting 
site, and ni (t) be the number of times the page ci is accessed 
during the specified time interval. Then the general form of 
B over a given time interval is given by: E~=iSc~ x ni( t) .  
Note that S~ will be different for the no cache and dynamic 
proxy cache cases, while ni( t )  will be the same. We now 
proceed to derive expressions for hi(t) and S~. 

In deriving an expression for ni( t ) ,  we need to charac- 
terize the access rate for a given page, e.g., the probability 
that the Fict ion category page is requested, and the arrival 
rate of requests to the www.books, corn site. Let 7a(i) be the 
probability that page ci is accessed for a given request and 
f ( t )  be the probability density function (pdf) that describes 
the arrival rate of requests. Then the number of times page 
ci is accessed during the interval (tt, t2) is 7a(i) ftt~ f ( t )d t .  

We assume that P( i )  is governed by the Zipfian distribu- 
tion, which has been shown to describe Web page requests 
with reasonable accuracy [2, 12]. 

We now derive expressions for response size Sc~ for the 
two cases. For the no cache case, the size of the response for 

S g c  is given by + f ,  which page ci, denoted as cl , Eve seclse t 
is the sum of the sizes of all the fragments on the page and 
the header information. 

For the dynamic proxy cache case, we must consider first 
whether a given fragment is considered to be cacheable. Let 
X j  be an indicator variable defined as follows: 

1 if fragment ej is cacheable 
Vej E E, Xj = 0 otherwise 
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We assume that  the cacheability of each fragment is de- 
termined at design time. At run-time, we are interested 
in the fraction of fragments found in cache, which we de- 
note as h. Then, the size of the response S C is given by 
Evejcc,[Xj[(h x g) + (1 - h)(se~ + 2g)] + (1 - Xj ) ( se j )  + fl" 

We have compared the expected bytes served for the two 
cases using the baseline parameter values shown in Table 2. 
Our choice of 0.8 as the baseline hit ratio is driven largely 
by the numerous studies that have shown that Web requests 
often exhibit locality [2, 12]. Furthermore, our experience 
with several large enterprise Web applications indicates that 
such hit ratios are easily achievable in practice. 

P a r a m e t e r  Value 
hit ratio (h) 
fragment size (se) 

0.8 

number of pages 

1K bytes 
number of fragments per page 4 

10 
average size of header information (f) 
tag size (g) 
cacheability factor 
number of requests during interval (R) 

500 bytes 
10 bytes 
0.6 
1 million 

Tab le  2: Base l ine  P a r a m e t e r  Se t t i ngs  for Ana lys i s  

In this comparison, we plot the ratio ~wv-. Figure 2(a) 

shows the results of this comparison as fragment size (s~) 
is varied. As this figure shows, this ratio decreases as frag- 
ment size increases. For small fragments sizes (e.g., less than 
1 KB), the ratio exhibits a steep drop. This drop can be ex- 
plained as follows: For small fragment sizes, the size of the 
tags is large with respect to the fragment size, decreasing 
the savings in bytes served for the dynamic proxy cache. 
This is why the ratio is greater than 1 as the fragment size 
approaches 0. As these results indicate, our dynamic proxy 
caching technique has a greater impact for larger fragment 
sizes (e.g., greater than 1 KB). 

We now examine the sensitivity of expected bytes served 
to changes in key parameter values. We begin by varying hit 
ratio (h), while holding all other parameter values constant. 
Figure 2(b) shows the percentage savings in expected bytes 
served as the hit ratio is varied from 0 to 1. In the case where 
no fragments are served from cache (i.e., h = 0), we see that 
the savings is negative. In other words, there is a cost to use 
the dynamic proxy cache in this case because it adds tags 
to the responses, thereby increasing the response sizes. This 
effect holds up to the point where h = 0.01. Thus, as long 
as 1% or more fragments are served from cache, using the 
dynamic proxy cache will reduce the expected bytes served. 
Clearly, the greatest savings occurs when all fragments are 
served from cache (i.e., h = 1). 

The foregoing results indicate that the dynamic proxy 
cache is indeed beneficial in terms of reducing the expected 
number of bytes transferred. The dynamic proxy cache, 
however, incurs a cost. In particular, assembly of the page 
at the dynamic proxy cache requires that each response be 
scanned for the tags. A logical question that arises is: does 
the savings in bytes transferred offset the cost to scan? We 
now provide a comparative analysis in an attempt to answer 
this question. More specifically, we compare the savings in 
expected bytes served to the scan cost. Note that regardless 
of whether the dynamic proxy cache is used, each packet is 
scanned by the firewall. Let y be the cost for the firewall 

to scan a byte. Then the cost to scan in the case where no 
cache is used is given by: 

scanCostNC _-- ~ N c  x y (1) 

Let z be the scan cost per byte for the dynamic proxy 
cache. Then the cost to scan in the case where the dynamic 

proxy cache is used is scanCost  c = ~ V ( y  + z). Both the 
firewall and the dynamic proxy cache scan a given string of 
bytes. Since string matching algorithms (e.g., KMP [18]) are 
linear-time algorithms, we can consider the scanning costs 
for the firewall and the dynamic proxy cache to be of the 
same order. Thus, we assume that z ~ y. Making this 
substitution, our expression for the scan cost per byte for 
the dynamic proxy cache becomes: 

scanCost  c = ~ c  x 2y (2) 

In comparing our expressions for the cost to scan in both 
cases, (1) and (2), we expect the dynamic proxy cache to 
provide better performance when the following condition 
holds: ~ g c  > 2~c .  Thus, we can conclude the following 
result: 

RESULT 1. It is preferable to use the dynamic proxy cache 
when the expected bytes served with no cache are more than 
twice the expected bytes served with cache. 

Figure 3(a) shows a comparison of (1) and (2) as the 
cacheability factor is varied (using again the parameter set- 
tings in Table 2). The cacheability factor is the percentage 
of all fragments that are cacheable for a given application. 
This figure shows two plots: (a) the savings in expected 
bytes served, and (b) the savings in bytes scanned (both 
expressed as percentages). The upper curve shows the sav- 
ings in bytes served. As expected, this savings increases as 
the cacheability ratio increases. Note that this savings is 
positive over the entire range, indicating that employing the 
dynamic proxy cache will always decrease the bytes served. 
The lower curve shows the savings in the scan cost. The 
savings in this case also increases as the cacheability ratio 
increases. An important difference in this curve is that the 
savings in bytes does not always offset the scan cost, as in- 
dicated by the negative range. More specifically, using the 
parameters we have selected, if the cacheability ratio is less 
than about 50%, then it is not worth caching since the scan 
cost is greater than the savings in bytes served. 

6. E X P E R I M E N T A L  RESULTS 
In this section, we at tempt to validate our analytical re- 

sults obtained in Section 5 with a set of experimental results. 
We have implemented our dynamic proxy caching system. 

Both the DPC and the BEM are written in C++ .  The DPC 
is built on top of Microsoft's ISA Server [27] so that we can 
take advantage of ISA Server's proxy caching features. The 
page assembly code is implemented as an ISAPI filter that 
runs within ISA Server. 

Our experiments were run in a test environment that at- 
tempts to simulate the conditions described in Section 5. 
Thus, we have incorporated the parameter settings in Ta- 
ble 2. The test site is an ASP-based site which retrieves 
content from a site content repository. 
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The basic test configuration consists of a Web server (Mi- 
crosoft IIS), a site content repository (Oracle 8.1.6), a fire- 
wall/proxy cache (ISA Server), and a cluster of clients. The 
client machines run WebLoad, which sends requests to the 
Web server. For the dynamic proxy cache case, the DPC 
runs on the ISA Server machine, and the BEM runs on the 
IIS machine. Communication between all software modules 
is via sockets over a local area network. Figure 4 shows the 
test configuration. This figure attempts to show both the 
logical and physical test configurations. The origin site com- 
ponents (Web server, DBMS, and BEM) run on one machine 
(labeled Origin Site), while the components that reside out- 
side the site infrastructure (firewall, proxy cache, and DPC) 
run on another machine (labeled External). 

The number of bytes served is obtained by measuring 
bandwidth using the Sniffer network monitoring tool [33]. 
More precisely, the bandwidth measurement is taken be- 
tween the Origin Site machine and the External machine in 
Figure 4. In these experiments, we are interested in captur- 
ing the impact of our system on the bandwidth requirements 
for the dynamic content that is served. Based on our ear- 
lier discussion regarding static content, the static content 
in these experiments is cacheable in the ISA Server proxy 
cache. Thus, in steady-state, static content will be served 

Clients ~ , ~ 

• I DPCl I Origin Site • E x t e r n a l  

F i g u r e  4: Tes t  C o n f i g u r a t i o n  

from the ISA Server proxy cache and therefore will not im- 
pact bandwidth requirements between the Web server and 
the DPC. yc  

Figure 3(b) shows the ratio ~ as fragment size is varied. 

Our results from Section 5 are repeated here (the curve la- 
beled "Analytical") for comparison purposes. As this figure 
shows, our experimental results follow our analytical results 
closely. Interestingly, the analytical curve falls below the 
experimental curve. This difference can be explained by the 
network protocol headers (e.g., T C P / I P  headers) that are 
included in the responses, which the Sniffer tool captures in 
its bandwidth measurements. However, we do not account 
for these headers in our analytical expressions. Thus, for 
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every response, there is some network protocol messaging 
overhead. The smaller the response, the greater this over- 
head is. This is why the difference between the analytical 
and experimental curves is higher for smaller fragment sizes 
than it is for larger fragment sizes. 

As in Section 5, we now examine the sensitivity of ex- 
pected bytes served to changes in hit ratio. Figure 5 shows 
a comparison of this sensitivity for the analytical (curve 
repeated from Figure 2(b)) and experimental cases. Here 
again, our experimental results closely follow our experi- 
mental results. In this case, the analytical curve is slightly 
higher .than the experimental curve, and the difference in- 
creases as the hit ratio increases. This is again a result 
of the network protocol headers that are included in the 
bandwidth measurements. Specifically, as more content is 
served from cache, response size decreases, yet the network 
protocol message size remains constant. Thus, the message 
overhead increases with respect to the response size as hit 
ratio increases, causing the savings to be smaller in the ex- 
perimental case. 

Figure 6 shows a comparison of the sensitivity of expected 
bytes served to changes in cacheability. The analytical curve 
is repeated from Figure 3(a) (the upper curve). Once again, 
the experimental results follow our analytical results closely. 
We also observe again the effects of the network protocol 
headers that are included in the experimental results, which 

cause the analytical curve to be higher than the experimen- 
tal curve. 

7. LIMITATIONS OF THIS WORK 
The approach considered in this paper assumes a reverse 

proxy configuration, in which a single instance of the cache 
sits between a Web site's firewall and the Internet, serving 
cached dynamic content from outside the site's infrastruc- 
ture. This provides significant bandwidth savings within the 
site's infrastructure, but  does not impact bandwidth usage 
between the site and the end user. 

An ideal approach would place the dynamic proxy cache 
on the edge, serving dynamic content from a point close 
to the end user and providing bandwidth savings not only 
within the site infrastructure, but also between the site and 
the forward proxy cache. In this approach, a number of for- 
ward proxies would be placed at strategic points around the 
network to provide optimal coverage. Since content would 
be served from the edge of the network, end users would see 
dramatic improvements in response time. 

There are, however, a number of technical challenges as- 
sociated with approach. 

• Request Routing: With multiple dynamic proxy caches 
out on the network, how can we route requests for dy- 
namic content optimally across the cache set? Most 
work in this area addresses the problem of routing 
static content identified by a URL. However, we are in- 
terested in routing fragments of dynamic content rather 
than full pages, which cannot be identified with a URL. 
Another complication within this area is the issue of 
handling proxy failure. Here, requests routed to a 
given dynamic proxy cache must failover seamlessly 
and transparently (from the user's point of view) to 
another proxy cache. 

• Cache Coherency: How do we handle issues of cache 
coherency across multiple distributed caches? Here, 
multiple copies of a particular fragment may reside on 
different dynamic proxy caches distributed across the 
network. Some mechanism must be in place to ensure 
that correct responses are served to end users from the 
caching system. 

• Cache Management: How do we manage the content 
of multiple caches? Changes to the data source on a 
site cause fragments to become invalid. The dynamic 
proxy caches distributed across the network need some 
means of obtaining notice of such changes. 

• Scalability: Clearly, a system comprised of muliple 
caches distributed across the network and addressing 
the issues noted above must contain some complexity 
within its protocols. However, this system must be 
capable of serving heavy traffic loads in real time. In 
other words, the data structures and algorithms under- 
lying the system must scale, both in time and space 
requirements. 

8. CONCLUSION 
In this paper, we have proposed an approach for granular, 

proxy-based caching of dynamic content. The novelty in our 
approach is that it allows both the content and layout of Web 
pages to be dynamic, a critical requirement for modern Web 
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applications. Our approach combines the benefits of exist- 
ing proxy-based and back end caching techniques, without 
their respective limitations. We have presented the results 
of an analytical evaluation of our proposed system, which 
indicates that it is capable of providing significant reduc- 
tions in bandwidth on the site infrastructure. Furthermore, 
we have described an implementation of our system and pre- 
sented a case study which details the performance results of 
this system on a major real-world dynamic Web application. 
Our implementation results demonstrate that our system is 
not only capable of providing order-of-magnitude reductions 
in bandwidth requirements, but also order-of-magnitude re- 
ductions in end-to-end response times. 
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