
CODD: COnstructing Dataless Databases

Rakshit S. Trivedi I. Nilavalagan Jayant R. Haritsa
∗

Database Systems Lab, SERC/CSA
Indian Institute of Science, Bangalore 560012, INDIA

ABSTRACT
Effective design and testing of database engines and applications
is predicated on the ability to easily construct alternative scenarios
with regard to the database contents. A limiting factor, however,
is that the time and/or space overheads incurred in creating and
maintaining these databases may render it infeasible to model the
desired scenarios. In this paper, we present CODD, a lucid graphi-
cal tool that attempts to alleviate these difficulties through the con-
struction of “dataless databases”. Specifically, CODD implements
a unified visual interface through which databases with the desired
meta-data characteristics can be efficiently simulated without per-
sistently generating and/or storing their contents. Metadata valida-
tion is incorporated to ensure that the simulated database is both
legal and consistent. CODD is currently operational on a rich suite
of popular database engines, and introduces two additional facets
of relevance to test teams: First, it supports a cost-based database
scaling model, in addition to the size-based scaling models that
have long been in vogue. Second, it provides for largely automated
meta-data transfer across different engines, facilitating the compar-
ative study of systems. We showcase here the ability of CODD
to elegantly simulate a variety of testing scenarios ranging from
legacy applications to Big Data environments.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administration—Data
dictionary/directory

General Terms
Experimentation, Reliability

Keywords
Relational Databases, Metadata Construction, Metadata Scaling

∗Contact Author: haritsa@dsl.serc.iisc.ernet.in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DBTest’12, May 21, 2012 Scottsdale, AZ, U.S.A.
Copyright 2012 ACM 978-1-4503-1429-9/12/05 ...$10.00.

1. INTRODUCTION
The effective design and testing of database engines and appli-

cations is predicated on the ability to easily evaluate a variety of
alternative scenarios that exercise different segments of the code-
base or profile module behavior over a range of parameters [7, 11,
12]. A limiting factor is that the time and space overheads incurred
in creating or maintaining these databases may render it infeasible
to model the desired scenarios. In this paper, we present a graphical
tool, called CODD 1, that supports both (a) the ab initio creation
of metadata, and (b) the reclamation of the space occupied by an
existing database without impacting its meta-data, inclusive of in-
dexes. These functionalities are useful for testing modules such
as query plan generators, system monitors, and schema advisors,
whose inputs are comprised solely of meta-data.

To make the above concrete, consider the situation where a query
optimizer developer wishes to evaluate a futuristic Big Data setup
featuring yottabyte (1024) sized relational tables. Obviously, just
generating this data, let alone storing it, is practically infeasible
even on high-end systems. However, with CODD, the associated
metadata can be easily constructed within a few minutes, including
defining the desired attribute-value distributions through visual his-
togram constructions. Further, CODD incorporates a graph-based
model of the structures and dependencies of metadata values, im-
plementing a topological-sort based checking algorithm to ensure
that the metadata values are both legal (valid range, correct type)
and consistent (compatible with the other meta-data values).

CODD’s ability to model essentially arbitrary database scenarios
also comes in handy for debugging legacy applications, or iden-
tifying hidden constraints in database engine code. As a case in
point, by iteratively executing CODD on a popular commercial
query optimizer, with the database size increasing in each iteration,
we quickly discovered that the cardinality estimation module “satu-
rated” when the input data size exceeded 10 exabytes – no mention
of this threshold was found in the publicly available documentation
of the system.

Even for environments in which meta-data information is re-
quired to be sourced only from the original data itself, CODD
makes it feasible to subsequently drop the raw data in a manner that
is totally opaque to the meta-data, including information related to
physical schema constructs such as indexes. This facilitates testers
to temporarily load real-world database scenarios without having to
incur the storage and maintenance overheads of retaining the data
during the ensuing testing process. The ability to retain the physical
schema as-is, in spite of the data removal, is an important seman-
tic difference as compared to the data truncation facilities natively
provided by current database engines.

1In archaic English, cod means “empty shell”, symbolising our
dataless context.

Another special feature of CODD is its support for automated
scaling of meta-data instances, obviating the need for loading fresh
data or meta-data to test variants of datasets. For example, assume
that the meta-data for the baseline 100 GB TPC-DS benchmark is
available, and we now wish to boost it to the benchmark’s max-
imum size, namely 100 TB. This objective is easily achieved in
CODD through the incorporation of space-based scaling models
that mimic the TPC-H and TPC-DS data generators [15].

As a novel addition to the above, CODD provides time-based
scaling models – here, the objective is to scale the meta-data such
that the overall estimated execution time of a test query workload
is scaled by a user-specified factor. We begin by modeling the opti-
mizer’s plan costs for the query workload as algebraic functions of
the scaling factors of the relations featuring in the queries. Then, an
inverse minimization function is computed to determine the factor
values that are expected to produce the desired time scaling. We
expect that this feature could serve as a potent complement to the
prevalent space-based scaling techniques since it ensures compli-
ance of testing overheads with time budget constraints.

Finally, to facilitate comparative studies of different systems,
CODD supports, to the extent possible, the automated porting of
meta-data across database engines. Specifically, a tester can export
most of the meta-data of a given database engine in a format that is
compatible with the import interface of an alternative engine, and
explicitly input only the engine-specific idiosyncratic information.
Another useful application of this feature is that it can be employed
to assess, in advance, the potential impact of a data migration ex-
ercise without having to load the data on the target engine.

In a nutshell, CODD is an easy-to-use graphical tool for the
automated creation, verification, retention, scaling and porting of
relational meta-data configurations. It is completely written in
Java, running to over 10K lines of code, and is operational on a
rich suite of industrial-strength database systems including DB2,
Oracle, SQLServer, Sybase and PostgreSQL. For the commercial
engines, it functions solely through the database APIs in a non-
invasive manner, while for PostgreSQL, a few extra functions have
been incorporated in the engine. Further, a conscious attempt has
been made to design the interface such that the user can focus only
on the logical meta-data semantics, and not have to contend with
understanding the implementation specifics of individual engines.
The tool is freely downloadable at [13], and its complete technical
details are described in [10].

2. METADATA GENERATION
Meta-data information in modern database engines covers a va-

riety of aspects, including schema organization, query processing,
workload management and performance tuning. Our focus here
is on the statistical metadata related to query processing – the ex-
tensions to the other aspects is straightforward. In particular, our
meta-data is comprised of statistics on the following entities: (a) re-
lational tables (row cardinality, row length, number of disk blocks,
etc.); (b) attribute columns (column width, number of distinct val-
ues, value distribution histograms, etc.); (c) attribute indexes (num-
ber of leaf blocks, clustering factor, etc.); and (d) system parame-
ters (sort memory size, CPU utilization, etc).

Given this framework, CODD supports two dataless modes
called ConstructMode and RetainMode, described below.

2.1 Metadata Construction (ConstructMode)
Here, the objective is to allow users to directly create or edit the

statistical meta-data without requiring presence of any prior data in-
stance. All the commercial database engines do provide techniques
to manually update the statistics – some of them support direct up-

date statements on the catalog tables, while others permit creation
of update procedures to achieve the same end. CODD leverages
these existing techniques to create the initial metadata shell, but
adds value in (a) packaging them in a largely vendor-neutral inter-
face, and (b) camouflaging the details through dynamically created
SQL procedures.

As a case in point, the following scheme is implemented for the
Oracle engine: We use the statistics setting features provided by
the dbms_stats package [16], which can be operated at table, col-
umn and index levels. The setting of table and index statistics is
straightforward, only requiring a set of SQL commands to exe-
cute on the server after obtaining the inputs from the user interface.
However, setting column and distribution statistics is more involved
since this information, in particular the histograms, is stored in a
special internal representation. CODD converts the user input to
this internal representation using the prepare_column_stats util-
ity, which is customized for each data type. After obtaining the in-
ternal representation, it is passed to the set_column_stats utility
which stores these values in the catalogs. To combine this sequence
of tasks, we define SQL procedures which carry them out in the re-
quired order. These procedures are created and executed on the fly
and are not persistently stored in the database.

While existing facilities were leveraged for meta-data construc-
tion in the commercial engines, PostgreSQL posed idiosyncratic
difficulties in this regard. Specifically, one of the metadata tables,
PG_STATISTIC, includes two columns – MOST_COMMON_VALS
and HISTOGRAM_BOUNDS – with type anyarray, a pseudo-type.
PostgreSQL does not allow external updation of pseudo-type at-
tributes. Therefore, we had to perforce create a clone of the in-
built analyze command intended for statistics updates, such that
the statistics collector now reads the inputs from an input file rather
than directly computing from the database. Finally, for SQLServer,
we were unable to support ConstructMode since it stores distribu-
tion statistics in a proprietary internal format.

A task in ConstructMode that may turn out to be laborious is to
enter or update the detailed distribution statistics of relational at-
tributes. To mitigate this overhead, the CODD interface allows the
histogram values to be uploaded from a file, and this histogram can
then be viewed graphically. Alternatively, users can create a new
histogram by selecting from a pre-defined menu of classical dis-
tributions, and providing summary information about its distribu-
tional properties such as the mean, value range, skew, etc. Further,
a graphical histogram editing interface, shown in Figure 1, is in-
cluded in CODD, whereby the current histogram’s layout can be
visually altered to the desired geometry by simply reshaping the
bucket boundaries with the mouse.

Figure 1: Graphical Histogram Interface

2.2 Metadata Retention (RetainMode)
In environments where the meta-data is required to be explicitly

created from a database instance, CODD supports the subsequent
dropping of some or all of the raw data, permitting reclamation of
the storage space occupied by these contents. The challenge, of
course, is to do so without this removal being reflected in the meta-
data, since data updates automatically activate engine triggers that
refresh the catalogs.

The triggers associated with data deletion/truncation are han-
dled directly by the background processes and their maintenance
varies across engines. Our first task was to bypass these triggers,
and while this goal can be relatively easily met in some engines
(e.g. SQLServer), the procedure is more convoluted with others
(e.g. Sybase). The next, and more difficult task, is maintaining the
physical schema (e.g. indexes) of the database. To accomplish this,
a careful handling of the key constraints and the order of truncating
relations is required. Physical schema retention is what separates
CODD’s functionality from the conventional meta-data scripting
features available in most engines (e.g. optdiag [6] in Sybase).

The dataless modes available with CODD on different engines
are summarized in Table 1. In the RetainMode column of this table,
the annotation “fresh schema” indicates that the metadata update
cannot be directly done in-place but indirectly through recreation
of the schema, while “entire database” signifies that data dropping
cannot be implemented at the level of individual relations, but for
the entire schema as a whole. Finally, with regard to computational
effort, setting up the dataless modes takes almost no time, complet-
ing in less than a second on all the engines.

Table 1: Dataless Modes on DB Engines
Engine ConstructMode RetainMode
DB2 Y Y

Oracle Y Y
SQLServer N Y

(internal format) (fresh schema)
Sybase Y Y

(entire database)
PostgreSQL Y Y

(code addition)

2.3 Inter-Engine Metadata Portability
An attractive feature of CODD is that it supports automatic

porting, to the extent possible, of the statistical metadata across
database engines, thereby facilitating comparative studies of sys-
tems as well as early assessments of the impact of data migration.
While most database engines do provide the facility to transfer the
metadata from one database to another on their own platform, none
of them support (to our knowledge) porting metadata across differ-
ent engines. To achieve this goal in CODD, a semantic mapping
has been carefully worked out between the statistical information
appearing in the various engines.

Although each engine has its own idiosyncratic metadata, we
have found that most of the table level, column level and index
level statistics are fully portable across all the engines. However,
the transfer of distribution statistics is only partially feasible across
some pairs of engines. To achieve the maximum possible fidelity,
we first convert the source distribution statistics to a canonical form
(which resembles the style of DB2), and then convert this informa-
tion to a format compatible with the target engine.

The overall feasibility of the metadata transfer across different
pairs of engines is summarized in Table 2. In this table, a Y en-
try signifies that more than 95% of the metadata can be translated,

whereas a Partial entry means that about two-thirds of the data can
be populated, while the N entry indicates that the transfer is infeasi-
ble. As can be seen, it is only with SQLServer that conversion is not
possible due to its proprietary format for communicating statistics.

Table 2: Inter-Engine Metadata Transfer
Source DB2 Oracle SQLServer Sybase PostgreSQL

———–
Target
DB2 - Y N Partial Y

Oracle Partial - N Partial Partial
SQLServer Y Y - Y Y

Sybase Y Y N - Partial
PostgreSQL Y Y N Partial -

3. METADATA VALIDATION
In RetainMode, the meta-data is guaranteed to be valid since it is

sourced from a real database instance. However, in ConstructMode,
since users are directly allowed to enter the meta-data, we need to
ensure that the inputted information is both legal (valid type and
range) and consistent (compatible with other metadata values). We
now discuss how these issues are tackled in CODD. For ease of
exposition, we will restrict our attention to the DB2 engine here –
the handling of the other engines is similar in flavor.

Our validation approach is to first construct a directed acyclic
constraint graph that concisely represents all the applicable con-
straints. Specifically, each node in the graph represents a sin-
gle metadata entity that is annotated with associated legality con-
straints, and the currently assigned value which must adhere to
these constraints. The directed edges, on the other hand, are used to
represent statistical value dependencies between the metadata enti-
ties. Since the dependencies are typically bi-directional, to prevent
duplication of edges, we adopt the convention that the edge will
be directed from the node at the higher level of abstraction to the
lower level node (e.g. from relation to attribute), while for nodes
at the same level, the edge goes from the aggregate to the specific
(e.g. from cardinality to distributions), and for the remainder, a lex-
icographic ordering is used. Our choice of convention attempts to
reflect the natural manner in which schemas are usually developed
by human users.

Figure 2: Metadata Constraint Graph (DB2)

As a concrete example, a partial fragment of the constraint graph
for DB2 is shown in Figure 2, covering relation, attribute and index-
related metadata. Consider the node CARD, representing the num-
ber of rows in the relation – here the structural constraint is that
the value should be a whole number (or -1 to signify that statistics
have not been collected). A similar structural constraint applies
to COLCARD, representing the number of distinct values in a re-
lational column, while the edge connecting CARD and COLCARD
indicates the statistical constraint that COLCARD ≤CARD.

The constraint graph for DB2 was initially populated by creating
nodes for the set of fields in the engine’s system tables, and then
inserting the edges based on the constraints listed in [14]. How-
ever, not all applicable constraints are listed and/or enforced in the
engine. For example, the following:

• The sum of NUMNULLS and COLCARD must be less than
or equal to CARD of the relation.

• The VALCOUNT of a Quantile Histogram bin b must be
greater than the sum of all VALCOUNTs in the Frequency
Histogram whose COLVALUE is less than b’s COLVALUE.

In CODD, these missing constraints are enumerated and added to
the constraint graph (shown as dashed edges in Figure 2).

Modeling data distributions usually results in a long chain of
nodes that are constrained by a sequential domain ordering, and for
compactness, we collapse such nodes into a single “super-node”.
For example, in Figure 2, the double-bordered nodes QUANTILE
VALUE DISTRIBUTION and FREQUENCY VALUE DISTRIBUTION
[3] represent super-nodes, and the expansion of these super-nodes
is shown in Figure 3. In QUANTILE VALUE DISTRIBUTION, the
columns represent the array of buckets used to store distribution
statistics, and include information about the bucket boundaries, the
(cumulative) bucket frequencies, and the (cumulative) number of
distinct values in the buckets. Also, each column is constrained by
the values of external nodes as shown by the incoming edges at the
bottom of Figure 3. For example, the value of VALCOUNT in the
last bucket must be equal to the total CARD of the relation. The
dotted edge between the two distributions signifies that the bucket
frequencies in the Quantile Distribution are constrained by those
appearing in the Frequency Distribution.

Figure 3: Constraint Graph for Distributions

Finally, after the constraint graph, denoted CG(V,E) has been
fully constructed and populated, we run a topological sort on CG.
The sort provides a linear ordering CGlinear of the nodes, and
can be accomplished in time complexity O(|V | + |E|) [2]. Then,

CODD guides the user through this linear ordering, requesting in-
puts at each new node, and ensuring that all applicable constraints
are met by the freshly added entries. A sample linear ordering is
shown through the numbers associated with the nodes in Figure 2,
beginning with CARD (1) and ending with DENSITY (19).

4. METADATA SCALING
A common activity in database engine testing exercises is to

assess the behavior of the system on scaled versions of the orig-
inal database. Current benchmarks typically implement a space-
scaling approach – for example, in TPC-H, the generator can pro-
vide databases ranging from 1 GB to 100 TB. It does so by lin-
early scaling the cardinalities of the large relations, accompanied
by domain-cardinality scaling for the primary keys and foreign keys
featuring in the scaled tables. In TPC-DS too, the fact table is
scaled linearly, but the dimensions undergo sub-linear expansions
according to a hard-wired scaling assignment.

CODD natively supports space-scaling models along the lines
of TPC-H and TPC-DS. In addition, it also provides a novel time-
based scaling model. Here, the aim is to scale the baseline metadata
M such that the optimizer’s estimated cost (representing response
time) of executing a given query workloadQ on the scaled version,
Mα, is a specified multiple, α, of the cost of executing it on the
original database. Initially, we attempt to produce a metadata in-
stance such that the cost of each individual query inQ is scaled by
α. However, this may often be fundamentally infeasible, in which
case we settle for solving the following optimization problem:

Produce an Mα such that the sum over Q of the individual
squared deviations from α in cost scaling is minimized, subject to
the constraint that the overall cost overQ is scaled by α.

That is, given relationsR1, R2, . . . , Rh appearing inQ, identify
a relation cardinality-scaling vector [α1, α2, . . . , αh] such that

∑
qi∈Q

[cSqi/c
O
qi − α]

2

is minimized subject to∑
qi∈Q

cSqi = α ∗
∑
qi∈Q

cOqi

where cOqi and cSqi represent the costs of qi in the original and scaled
databases, respectively.

Achieving the above objective function appears to be a hard
problem since we are faced with the complex proposition of math-
ematically relating the overall costs of query plans to scaling fac-
tors on their base relations. However, if we assumed that (a) the
scaling is implemented such that the relative frequency distribu-
tions of all non-key columns is identical between the original and
scaled databases; (b) the choice of query plans is retained between
the original and scaled databases; and (c) simple polynomial ex-
pressions are sufficient to model the relationships between opera-
tor costs and their input sizes, then generating a satisfying scaling
vector is readily feasible. This is because of Lemma 1 in Figure 4,
which allows for constructing each plan operator’s output cardi-
nality in the scaled database solely in terms of the corresponding
cardinality in the original database and the relation scaling vector –
the proof is available in [10],

Figure 5 delineates the summary procedure to compute the total
cost of a query on the scaled database, expressed in terms of the
scaling factors of the relations appearing in the query. For example,
with TPC-H query Q14, which features the PARTS and LINEITEM

Lemma 1. Let R1, R2, . . . , Rh be the input relations to operator
op and α1, . . . , αh be their scaling factors respectively. Then, if the
relative frequency distributions of the scaled database (SD) and the
original database are identical for non-key columns and if the domain
is scaled for the key columns of the SD, then the output cardinality of
each operator op in the plan tree for the SD is expressible as

f(αm, . . . , αn)× Original output cardinality
where αm, . . . , αn are the subset of scaling factors such that ∀αi ∈
(αm, . . . , αn), the relationRi is not referenced by any other relation
Rj ∈ {R1, R2, . . . , Rh} \Ri; and f is a function on this subset
of scaling factors. Further, the relative frequency distribution of the
scaled output is identical to that of the original output.

Figure 4: Scaled output size and distribution

Input: Query qi Result: Cost function cSqi
1. Obtain the query execution plan for the given query.

2. Determine the cost function for each operator in the execution plan
with respect to the sizes of the inputs.

3. Using Lemma 1, determine the scaled output size in terms of scal-
ing factors for each operator in the execution plan.

4. Calculate the cost of each operator for scaled inputs using the cost
functions obtained in Step 2.

5. Compute the total cost of the query as the aggregate of the costs of
the operators present in the execution plan.

Figure 5: Query Costs in Scaled Database

relations, the following expression was obtained on DB2:

cSQ14
= 435 αP + 17865 αL

where αP and αL are the scaling factors for the PARTS and
LINEITEM relations, respectively.

Armed with these individual query cost functions, we now com-
pute the scaling vector that would provide the best scaling config-
uration, using the optimization procedure enumerated in Figure 6,
which typically converges in less than a minute. When multiple so-
lutions are available for the scaling vectors, the final choice made
is to pick the solution that is closest to a traditional space-based
scaling approach (Step 4 in Figure 6), since it is our expectation
that this would result in more robustness with regard to (a) addition
of new queries to the workload, and (b) retention of the same plans
across the scaled databases.

As an example result, given a TPC-H workload consisting of
queries Q1, Q14 and Q17, with appearance frequencies of 0.5, 0.48
and 0.02, respectively, and desired cost-scaling factor α = 2, our
algorithm recommended doubling the size of the LINEITEM rela-
tion while keeping the PART relation constant. This resulted in an
overall cost increase of 1.98, with the individual query cost-scaling
ratios being Q1: 1.99, Q14: 1.96 and Q17: 1.99.

5. CODD IN ACTION
In this section, a sample scenario that highlights CODD’s util-

ity is presented. For this purpose, we will use the notion of “plan
diagrams” from [9]. Specifically, given a parametrized SQL query
template that defines a relational selectivity space, and a choice of
database engine, a plan diagram is a visual representation of the
plan choices made by the optimizer over this parameter space. In
a nutshell, plan diagrams visually capture the optimality regions of
the parametric optimal set of plans (POSP) [5].

To make this notion concrete, consider QT9, the parametrized
SQL query template shown in Figure 7, which is based on Query 9

Lemma 2. If the key columns of relations are domain scaled and
the primary key columns (Ca, . . . , Cn) of relation Ri are a com-
bination of foreign key columns, which are referencing the relations
(Ra, . . . , Rn), respectively, then the scaling factor αk of relation
Rk is bounded by the product of αa, . . . , αn, where αa, . . . , αn
are the scaling factors of relations (Ra, . . . , Rn), respectively.

Algorithm
Input: Metadata InstanceM, Query workloadQ, Scaling factor α

Result: Scaled Metadata InstanceMα

1. Determine cost of executing each query in the original database,
cOqi , from the optimizer’s execution plan.

2. Determine the cost of each query in the scaled database,cSqi , as
an algebraic function of the scaling factors [α1, . . . , αh], using the
procedure of Figure 5.

3. Solve the optimization problem

Minimize
∑
qi∈Q

[cSqi/c
O
qi
− α]2

subject to∑
qi∈Q cSqi = α ∗

∑
qi∈Q cOqi and

for k between 1 and h
0 < αk <= Lemma 2 Bound, if applicable
0 < αk <∞, otherwise

4. If a set of solutions T is obtained in Step 3, pick a solution t ∈ T
that minimizes

∑
αk∈t (α− αk)

2.

5. Scale the input relations with the scaling factors obtained in Step 4
to get the required cost scaled metadataMα.

Figure 6: Cost-scaling of Metadata

select n_name, o_year, sum(amount)
from (select n_name, o_orderdate, l_extendedprice

from part, supplier, lineitem, partsupp, orders, nation
where s_suppkey = l_suppkey and ps_suppkey = l_suppkey and
ps_partkey = l_partkey and p_partkey = l_partkey and o_orderkey
= l_orderkey and s_nationkey = n_nationkey and p_name like
%green% and s_acctbal :varies and ps_supplycost :varies
) as all_nations

group by n_name, o_year
order by n_name, o_year desc

Figure 7: Example Query Template QT9

of the TPC-H benchmark. Here, selectivity variations on the SUP-
PLIER and PARTSUPP relations are specified through the s_acctbal
:varies and ps_supplycost :varies predicates, respectively.

The associated plan diagram produced by Oracle on the baseline
TPC-H database of size 1 GB, using a lightweight laptop with a
64GB solid-state hard disk, is shown in Figure 8(a). In this picture,
each colored region represents a specific plan, and a set of 32 dif-
ferent optimal plans, P1 through P32, cover the selectivity space.

Now consider the situation where the Oracle optimizer developer
wishes to assess its behavior on the highest 100 TB scale of the
TPC-H benchmark, five orders of magnitude larger than the base-
line. Clearly, generation and loading this scenario on the 64GB
laptop is completely out of the question. However, using Con-
structMode, we can easily create a meta-data shell that represents
the 100 TB environment. Further, we can also update provisioning
parameters (e.g. max_parallel_servers) and hardware character-
istics (e.g. ioseektim) to simulate the enhanced system configura-
tions that may be deployed to cater to the expanded database.

(a) Baseline (1 GB) (b) Scaled (100 TB)

Figure 8: QT9 Plan Diagrams (Baseline and Scaled)

The plan diagram produced by the Oracle optimizer on the
scaled database is shown in Figure 8(b). Comparing the two pic-
tures, we observe first that the number of plans has now increased
from the 32 of the baseline to 77 in the scaled version! Secondly,
the geometries of the optimal plan regions have undergone a signif-
icant change. This experiment highlights how we can easily assess,
using CODD, the optimizer’s altered behavior in response to futur-
istic scenarios.

6. SUMMARY
In this paper, we presented the CODD tool, which permits users

to construct dataless environments and simulate various alternative
scenarios that may prove helpful in testing and debugging exer-
cises. While allowing the user to play with arbitrary metadata val-
ues, CODD ensures that these values are legal and consistent with
the engine requirements. In addition, CODD provides two key
features – Cost based Scaling and Inter-Engine Portability – that
could be of considerable benefit to testers. Finally, the tool is im-
plemented with a convenient graphical interface that helps users to
employ the features while remaining agnostic to the specifics of the
underlying database engine. While CODD currently only supports
testing of meta-data based modules, we are actively investigating
its integration with data generation frameworks (e.g. [8, 1]) to fa-
cilitate execution module testing as well.

The ability to evaluate “what-if” situations continues to be a po-
tent tool for system designers and has attracted considerable lit-
erature – a recent example is the Starfish system [4] which sup-
ports evaluating alternative scenarios on the Hadoop framework.
While sharing similar objectives, there are key differences between
CODD and such systems – they typically focus on the performance
and provisioning aspects, use their own optimization models, and
do not have to negotiate with internal system constraints. In con-
trast, ours is a black-box data and system modeling exercise on
commercial engines, we are restricted to using the API facilities to
achieve the goals, and we have to ensure that stringent systemic and
configuration constraints are continuously maintained.

7. REFERENCES
[1] C. Binnig, D. Kossmann, E. Lo and M. Tamer Ozsu, “QAGen:

Generating Query-Aware Test Databases”, SIGMOD 2007.
[2] T. Cormen, C. Leiserson, R. Rivest and C. Stein “Introduction to

Algorithms”, MIT Press, 3rd ed, 2009.
[3] D. Fechner, “Distribution statistics uses with the DB2 optimizer”,

www.ibm.com/developerworks/data/library/
techarticle/dm-0606fechner/index.html, June 2006.

[4] H. Herodotou et al, “Starfish: A Self-tuning System for Big Data
Analytics”, CIDR 2011.

[5] A. Hulgeri and S. Sudarshan, “Parametric Query Optimization for
Linear and Piecewise Linear Cost Functions”, VLDB 2002.

[6] E. Miner, “Using Optdiag Simulate Statistics Mode”,
m.sybase.com/detail?id=20472.

[7] M. Muralikrishna, “Using the Optimizer to Generate an Effective
Regression Suite: A First Step ”, DBTest 2010.

[8] T. Rabl and M. Poess, “Parallel Data Generation for Performance
Analysis of Large, Complex RDBMS”, DBTest 2011.

[9] N. Reddy and J. Haritsa, “Analyzing Plan Diagrams of Database
Query Optimizers”, VLDB 2005.

[10] R. Trivedi, I. Nilavalagan and J. Haritsa, “Engineering Dataless
Databases”, dsl.serc.iisc.ernet.in/publications/
report/TR/TR-2012-02.pdf

[11] F. Waas, L. Giakoumakis and S. Zhang, “Plan Space Analysis: An
Early Warning System to Detect Plan Regressions in Costbased
Optimizers”, DBTest 2011.

[12] “Testing and Tuning of Database Systems”, IEEE Data Engineering
Bulletin, 31(1), March 2008.

[13] dsl.serc.iisc.ernet.in/projects/CODD

[14] publib.boulder.ibm.com/infocenter/db2luw/
v9r7/topic/com.ibm.db2.luw.admin.perf.doc/
doc/c0005121.html

[15] www.tpc.org

[16] docs.oracle.com/cd/B28359_01/appdev.111/
b28419/d_stats.htm

