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Abstract

Many web-sites incorporate dynamic web-pages in order
to deliver customized contents to their users. However,
these dynamic pages, due to their construction overheads,
result in substantially increased user response times and
server load. In this paper, we consider mechanisms for
reducing these overheads by integrating two caching tech-
niques — fragment-caching and code-caching. The exper-
imental results from a detailed simulation study of our
techniques indicate that, given a fixed cache budget, the
proposed integrated caching performs significantly better
than the caching techniques in isolation. We also consider
augmenting integrated caching with anticipatory page pre-
generation in order to deliver dynamic web-pages faster
during normal operating situations, by utilizing the excess
capacity with which web-servers are typically provisioned.

1 Introduction

To deliver customized contents to their users, web-sites are
increasingly shifting from a static web-page service model
to a dynamic model [6]. Dynamic web-pages enable much
richer interactions than static pages, but these benefits are
obtained at the cost of significantly increased user response
times, due to the on-demand page construction. Dynamic
web-pages also adversely impact the web-server perfor-
mance due to the extra load incurred by the page generation
process. In fact, it has been recently estimated that server-
side latency accounts for as much as 40 percent of the total
page delivery time experienced by end-users [12]. Hence,
performance and scalability are becoming major issues for
dynamic web-sites.
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Fragment and Code Caching. To address these issues,
a variety of optimization techniques have been developed
in the recent literature. These include client-side prefetch-
ing, dynamic content-aware full-page caching, database
caching, content acceleration, fragment-caching, and code
caching [5, 6, 9, 13, 16, 17, 25]. Among these techniques,
fragment-caching, and the more recent code-caching, are
particularly attractive. Specifically, fragment-caching re-
duces dynamic page construction time by caching dynamic
fragments, with the following desirable guarantees [5, 6]:
Firstly, it ensures the freshness of the page contents by
maintaining an association between the cached dynamic
fragments and the underlying data sources. Secondly, it
ensures the correctness of the page contents by newly gen-
erating the page skeleton each time the dynamic page is
requested.

In contrast to fragment-caching, code-caching does not
cache results, but caches the compiled code that leads to re-
sults. The benefit of code caching is that whenever there is
a request for a script execution, the time-consuming script
parsing and compilation is bypassed since the compiled
code for the script is already available. Moreover, code-
caching can work independent of other middle-ware solu-
tions such as fragment-caching.

Page Pre-generation. While caching can certainly ad-
dress part of the server latency problem, yet it is only half-
the-story, because of the following reasons: The utility of
fragment-caching is predicated on having a significant por-
tion of dynamic fragments to be cacheable — however, such
cacheability may not always be found in practice. Further,
even when most fragments are cacheable, dynamic page
construction is begun only after receiving the request for
the page. Similarly, code-caching focuses on reducing ex-
ecution time after a request is received, but does not avoid
the execution itself.

Therefore, it is attractive to consider the additional possi-
bility of resorting to dynamic page pre-generation, in con-
junction with the caching techniques. Pre-generation is
based on having a statistical prediction mechanism for es-



timating the next page that would be accessed by a user
during a session. The page pre-generation is executed dur-
ing the time period between sending out the response to the
user’s current request and the receipt of her subsequent re-
quest. Note that in the case where the page prediction turns
out to be right, the pre-generation effectively reduces the
server latency to zero, which is the best that could be hoped
for from the user perspective.

An unsuccessful pre-generation on the other hand repre-
sents wasted effort on the part of the server. This may not
be an issue for web-servers that are under normal operation
since these systems are usually over-provisioned in order to
handle peak loads [10, 19, 21], and therefore some wastage
of the excess capacity is not of consequence. But, during
peak loads, the additional effort may further exacerbate the
system performance.

Cache Partitioning. A related design issue is that space
has to be allocated in the server cache to store fragments,
compiled code, and pre-generated pages. That is, the cache
has to be partitioned into these three sub-caches, and the
relative sizings of these partitions has to be determined.

1.1 Contributions

We investigate in this paper the possibility of achieving sig-
nificant reductions in server latencies, and thereby user re-
sponse times, by a combination of fragment-caching and
code-caching, optionally augmented with anticipatory page
pre-generation. It represents the next logical step from our
previous work [23], which considered the combination of
fragment-caching and page-pregeneration.

Our approach ensures the freshness of content through
either fresh fragment computation or by accessing frag-
ments from the fragment-cache, and the correctness of the
page contents by newly generating the page skeleton each
time the dynamic web-page is requested. Overall, our goal
is to achieve long-term benefits through integrated frag-
ment and code-caching, and immediate benefits through
anticipatory page pre-generation.

Using a detailed simulation model of a dynamic web-
server, we study the performance of our integrated-caching
approach in terms of reducing dynamic web-page construc-
tion times, as compared to pure fragment-caching and pure
code-caching approaches. Our evaluation is conducted
over a range of fragment-caching levels for a given cache
budget. The results show that the integrated-caching ap-
proach is able to achieve significantly better reductions in
server latency as compared to the pure fragment-caching
and pure code-caching approaches. Further, for the work-
loads evaluated in our study, we demonstrate that, given a
fixed cache budget, simple heuristics exist for determining
close-to-ideal sizings of the cache partitions for fragments
and compiled codes.

Our experimental results also show that the combination
of integrated-caching with anticipatory page pre-generation
reduces response times even further during normal loading.

Moreover, by augmenting our system with a simple load-
thresholding feedback mechanism, we are able to achieve
comparable performance during peak loading.

1.2 Organization

The remainder of this paper is organized as follows:
In Section 2, we discuss our integrated fragment and
code-caching technique. The incorporation of page pre-
generation along with a load-thresholding feedback system
is discussed in Section 3. The simulation model for evalu-
ating the various alternatives is described in Section 4, and
the experimental results are highlighted in Section 5. Re-
lated work is reviewed in Section 6. Finally, in Section 7,
we summarize our contributions and outline future research
avenues.

2 Integrated Fragment and Code Caching

In this section, we describe in detail our proposed inte-
grated caching architecture. Before discussing our new ap-
proach, we first provide background material on fragment-
caching and code-caching techniques.

2.1 Fragment Caching

When a web-site receives a request for a dynamic web-
page, it has to execute a script corresponding to the request.
A script is essentially a set of executable code blocks. Each
such code block carries out some computation to generate
a part of the required page, and results in an HTML frag-
ment. An output statement after the code block places the
resulting HTML fragment in a buffer. Once all executable
code blocks in a script have been executed, their output is
assembled together, along with the static component, and
the resulting HTML is sent as a page to the user.

An executable code block can be tagged as cacheable,
if its output is known to not change for a sustained period
of time. When the script is executed, these tags instruct
the application server to first search for the fragment in the
fragment-cache. If the search is successful, the code block
execution is bypassed and the content is returned from the
cache. If not, the code block is executed and the fragment
is generated freshly and also cached for future benefit. The
cache contents are managed by an invalidation mechanism
and a cache replacement policy. A cached fragment is in-
validated whenever the underlying data source updates the
data values on which the fragment is dependent. The details
of fragment caching are available in [5, 6] — we assume the
use of their techniques in the rest of this paper.

2.2 Code Caching

This technique has been recently proposed and imple-
mented in the context of the PHP Accelerator project [16].
Before executing a script, the engine reads, parses, and
compiles the contents into code ready for execution. Since,
in practice, the scripts rarely change, this pre-processing is
targeted for elimination in [16]. They assume that the com-
piled code uses instructions from a virtual instruction set



that is platform independent and once compiled, the code
is executed by a virtual machine that interprets the instruc-
tions. In our context, it is also possible to conceive that
since dynamic web-sites are usually meant for a specific
task, the script can be directly compiled to the native ma-
chine, dispensing with platform independence. This com-
piled code can also be optimized before being put into exe-
cution to improve its efficiency and reduce its footprint.

High performance can be achieved by using a shared
memory cache from which the compiled code can be exe-
cuted directly. We assume that the code caching technique
can be extended to the level of individual code blocks,
where, instead of caching the entire compiled code of a
script, only the compiled code corresponding to an exe-
cutable code block is cached.

2.3 Integrated Caching

Our proposed integrated caching model is a simple combi-
nation of fragment-caching and code-caching. A high level
representation of the proposed integrated caching architec-
ture is given in Figure 1.

Here, a request for a dynamic page triggers the execu-
tion of the corresponding script. While executing the script,
for all those fragments of the script for which the outputs
are already available in the fragment cache, the execution
of the fragment is bypassed, and we save on the fragment
execution time. On the other hand, for those fragments for
which either the outputs are currently not available in the
fragment-cache, or the outputs are invalid, or the fragments
themselves are not cacheable, the fragment code must be
executed from scratch.

While executing the fragment code, the web-server must
first interpret and compile the fragment script and then ex-
ecute it. In our proposed integrated caching approach, we
cache the compiled fragment code in the code-cache, so
that any future request for the execution of the same frag-
ment code will save on the compilation overheads, if the
compiled fragment code is still available in the cache.

In principle, it is possible to cache both the output and
the code of a cacheable fragment, but this appears to be an
overkill since if the output is long-lived, then its associated
code will be accessed only rarely. Therefore, it appears
better to cache only the codes of uncacheable fragments,
since these are the codes that will be frequently utilized.

It is important to note that the above solution is guar-
anteed to serve fresh content, since it is associated with
the origin server. Moreover, it also ensures serving correct
pages, since the page is specific to the user request. From
a broad perspective, by integrated-caching we are achiev-
ing the long-term benefits whenever the fragments or their
associated compiled codes are reused in course of time.

2.4 Server Cache Management

In our integrated caching approach, we need to allocate
space in the server cache for hosting both fragments and
compiled fragment codes. Therefore, we partition the
cache into a fragment-cache and a code-cache.
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Figure 1: Integrated Caching Model

24.1 CachePartition Sizing

An immediate issue that arises here is determining the rela-
tive sizes of the fragment-cache and code-cache partitions.
This issue is investigated in detail in our experimental study
presented in Section 5 — our results there indicate that the
size of the code-cache must be in accordance with Equa-
tion 1, given in Section 5.3.

2.4.2 CacheReplacement Policies

Apart from sizing, we also need to decide on cache replace-
ment policies. With regard to the fragment-cache, we are
not aware of any web logs that are available to track the ref-
erence patterns for fragment access. This restricts us to the
use of simple techniques like Least Recently Used (LRU)
for managing the fragment-cache. A similar technique can
be applied for code-caching as well.

An association between the fragments in the fragment-
cache and the data in the origin server is maintained.
Whenever a fragment is invalidated, it is marked invalid in
the fragment-cache, so that the further use of such a frag-
ment is avoided.

In general, no such association is required for the com-
piled codes in the code-cache since their source scripts
rarely change, and further, these changes are usually made
manually, in which case the system administrator can
forcibly flush the code-cache. But in an environment where
script changes are frequent and automatically done, a simi-
lar association between scripts and their cached code frag-
ments can be maintained.

3 Augmentation with Page Pre-Generation

As mentioned in the Introduction, caching helps to reduce
page construction time after a request has been received,
that is, post-facto. However, if it were possible to anticipate
a forthcoming request and have the page generated apriori,
then the response would be instantaneous.



There are several page access prediction models that
have been proposed in the literature [11, 14, 21, 22, 24, 26].
These models can be classified into two categories: point-
based and path-based. The point-based models predict the
user’s next request solely based on the current request being
served for the user. On the other hand, the path-based pre-
diction models are built on entire request paths followed by
users. The path-based predictions use a path profile, which
is a set of pairs, each of which contains a path and the num-
ber of times that path occurs over the period of the profile.
The profiles can be generated from standard HTTP server
logs and the accuracy of these models has been found to be
high enough to justify the pre-generation of dynamic con-
tent [21] — in the rest of this paper, we assume the use of
such a path-based prediction model.

Specifically, for an outgoing user response at the web-
server, the web-server decides to generate the most ex-
pected next page for the user, based on many considerations
such as current system load, the type of user, the benefit of
pre-generating a page and so on. When the web server re-
ceives the next page request from the same user, it checks
whether it has pre-generated the page the user is requesting
now. If so, the page is served immediately. If not, the page
request is treated as a normal page request and the page is
constructed freshly and served.

The key behind the success of this approach is the delay
between user requests. The user response leaving the web-
server will take some time to reach the user and the user
will take some time to click the next page. It is expected
that this time delay is sufficient for the dynamic page pre-
generation, before the arrival of the next request of the same
user. In case of a correct prediction, the server latency in
terms of page construction time is reduced to zero. Thus,
the dynamic page pre-generation achieves the immediate
benefit for the current user.

3.1 Server Load Management

While page pre-generation is useful for reducing response
times, it also involves expense of computational resources.
This is acceptable under normal operating conditions, even
if the page prediction accuracy is not good, since web-
servers are typically over-provisioned in order to be able
to handle peak load conditions [21], and we are only us-
ing this excess capacity. But, when the system is under
peak load conditions, the wasted resources due to the mis-
takes made by the pre-generation process may actually ex-
acerbate the situation, driving the system into a worse con-
dition. To address this issue, we implemented in [23] a
simple linear feedback mechanism that modulates the pre-
generation process to suit the current loading condition. We
use this technique in the work reported here also.

Specifically, the system load is periodically measured,
and if it exceeds a threshold value, the role of the page
pre-generator is restricted in proportion to the excess load.
For each outgoing page response, the web server allows
the page pre-generator to generate pages with probability
prob_gen set as follows:

prob_gen = 1if (current_load < threshold_-load)

100—current_load

100—threshold_-load otherwise

prob_gen =

When the pre-generator is restricted in the above man-
ner, its assigned cache partition may become underutilized
—in this case the size of the fragment-cache is dynamically
enlarged to cover the underutilization of the page cache.

4 Simulation M odel

To evaluate the performance of the proposed integrated-
caching system, we have developed a detailed discrete-
event simulator of a web-server supplying dynamic web-
pages to users — this model is similar to that used in our pre-
vious work [23], and is extended to incorporate the code-
caching feature. Table 1 gives the default values of the pa-
rameters used in our simulator — these values are chosen to
be indicative of typical current web-sites, with some degree
of scaling to ensure manageable simulation run-times.

4.1 Web-site Model

A directed graph is used to model the web-site. Each node
in the graph represents a dynamic web-page, and each edge
represents a link from one page to another page within the
web-site. A node may be connected to a number of other
nodes. The web-site graph is generated in the following
manner: We start with a node called the root node, at level
zero, and an initial fanout FanQOut. Then, at each level [,
for all nodes of that level, the next level nodes are created
and linked, with a uniform random fanout ranging between
(0, FanOut — 1). When a fanout of 0 is chosen at a node,
the generation process at that node is terminated. In order
to model “back-links”, we permit, in the process of linking
a node to other nodes, even the previously generated nodes
of the prior levels to be candidates. The percentage of back
links is determined by the Back Links parameter.

4.2 Web-page Model

Each dynamic web-page consists of a static part and a
collection of identifiable dynamic fragments. A frac-
tion FragCacheable of these dynamic fragments are
cacheable, while the remaining are not. The number of
fragments in a page are uniformly distributed over the
range (MinFragNum,MaxFragNum). Two distributions of
the choice of fragments are considered: Uniform, where
the fragments are selected uniformly from the FragPopula-
tion fragments, and Skewed, where a “90-10” rule applies
in that 90 percent of the fragment choices are made from
10 percent of the FragPopulation fragments. Finally, the
cost of producing a fragment, F'ragCost, is taken to be
proportional to its size which is uniformly distributed over
the range (MinFragSize,MaxFragSize).

The fragment source-code sizes are between
MinimumSourceSize and M azximumSourceSize.
When the fragment source code is compiled, the size of the
compiled code is usually larger as compared to the equiv-
alent source code size — this increase is modeled by the



factor Code BlowupF actor, and the value chosen is based
on our analysis of a representative set of real-world scripts.
The minimum execution speedup due to pre-compilation
is given by ReductionFactor — the value chosen is based
on a conservative estimate of the speedups mentioned in
[16]. We have used conservative parameter values based
on the analysis on real-world scripts reported in [7, 20].

Finally, the accuracy of page access prediction, used
in the page pre-generation process, is determined by the
PagePredict parameter. The load-controlling feedback
mechanism kicks in when the current load exceeds the set-
ting of the T'hresholdLoad parameter.

4.3 User Modd

The web-site receives requests from the sessions of differ-
ent users. The creation of sessions is assumed to be Pois-
son distributed [1] with rate ArrivalRate. Each session gen-
erates one or more page requests, in a sequential manner.
The number of pages in a session are uniformly distributed
over the range (MinSessionPage, MaxSessionPage). The
web-site receives requests from the sessions of different
users. Between the page requests of a session, a uniformly
distributed user think time over the range (MinThinkTime,
MaxThinkTime) is modeled.

4.4 CacheMod€

The web-server has a cache for dynamic page construc-
tion, of size CacheSize. The fraction of the cache
given to the code-cache is given by CodeCacheFraction,
with the remainder assigned to the fragment-cum-page
cache. Within the fragment-cum-page cache, the space
is equally divided between the fragments and pages, as
per the recommendation in [23]. The search times in
the code-cache and fragment-cum-page cache are deter-
mined by the CacheSearchTime parameter. The fragments
in the fragment-cache are modeled to be invalidated ran-
domly by the data source with an invalidation rate set by
InvalidRate.

5 Experimentsand Results

Using the above simulation model, we conducted a variety
of experiments, the highlights of which are described here.
The performance metric used in all our experiments is the
average dynamic page construction time, evaluated for a
range of fragment cacheabilities and page prediction accu-
racies, as a function of the session arrival rate and the frac-
tion of the cache assigned to the code-cache. The fragment
cacheability and page prediction accuracy are evaluated for
the following settings: LOW (20%), MEDIUM (50%)
and HIGH (80%), covering the spectrum of real-life web-
site environments. Also, the user arrival rates cover both
normal loading conditions as well as peak load scenarios.
To put the performance of our new Integrated ap-
proach in proper perspective, we compare it against two
benchmark algorithms: Pure_FC, which implements pure
fragment-caching on the entire cache, and Pure_CC, which

Table 1: Simulation Parameter Settings

Parameter Setting

FanOut 10

BackLinks 20 percent
FragPopulation 8000

CacheSize 2MB
CodeCacheFraction 0 to 100 percent
FragCost 20 ms
MinPageSize 10 KB
MaxPageSize 30KB
MinFragNum 1

MaxFragNum 19

MinFragSize 1 KB
MaxFragSize 3KB

ArrivalRate 0 to 12 sessions per second
InvalidRate 1/ms
MinSessionPage 1
MaxSessionPage 19
MinThinkTime 1 second
MaxThinkTime 9 seconds
FragCacheable 20, 50, 80 percent
CacheSearchTime 0.1 ms
NumberofPagesUsed | 2074
MinimumSourceSize | 100 bytes
MaximumSourceSize | 300 bytes
CodeBlowupFactor 10
ReductionFactor 2
ThreshholdLoad 75 percent
PagePredict 20, 50, 80 percent

implements pure code-caching on the entire cache, respec-
tively.

In the initial set of experiments, page pre-generation is
not included, but is considered subsequently.

5.1 Expt. 1: Page Construction Times (Uniform)

In our first experiment, we evaluate the dynamic web-
page construction times for an environment where the
fragment-cacheability is Medium (50 percent), the cache
memory is equally partitioned between the code-cache and
the fragment-cache (there is no page-cache), and the frag-
ment distribution is Uniform.

For this scenario, Figure 2 gives the relative perfor-
mance of the various algorithms as a function of the session
arrival rate. We see here first that the Integrated approach
performs about 20% better than Pure_CC, and 30% better
than Pure_FC. Further, it can sustain performance stabil-
ity for a higher arrival rate (upto 6 sessions per second) as
compared to both Pure_CC and Pure _FC.

5.2 Expt. 2: Page Construction Times (Skewed)

When the above experiment is carried out with a Skewed
fragment distribution, the resulting performance is as
shown in Figure 3. We see here that the performance



T T
"Pure_FC" —— . :
"Pure_CC" - i i
140 - "Integrated" ---e--- ! :

-
R N

100

o 98
0009004900090 q0 000000

80 |- B

Page_construction_time(in ms)-->

60 1

| | | | |
0 1 2 3 4 5 6
Session Arrival Rate -->

Figure 2: Page Construction Times (Uniform)

200

"PureLFC” —»—‘
"Pure_CC" -
"Integrated" ------

150 |-

100 |-
[ B B A S e

50 |

Page_construction_time(in ms)-->
-

raad
00090000 0-0-0-0-0-9 -0 0000

0 I I I I I
0 2 4 6 8 10 12

Session Arrival Rate -->

Figure 3: Page Construction Times (Skewed)

differences between Integrated and the baselines substan-
tially increase — now, Integrated is 40 percent better than
Pure_CC and 60 percent better compared to Pure_FC. In
most real-world situations, fragment choices are indeed
skewed, highlighting the importance of the Integrated ap-
proach to page construction.

Further, the Integrated algorithm sustains performance
stability for much higher arrival rates (upto 12 sessions per
second) as compared to both Pure_CC (6 sessions per sec-
ond) and Pure_FC (4 sessions per second).

5.3 Expt. 3: Cache Partitioning (Uniform)

In our next experiment, we investigated the performance
impact on the Integrated approach of various choices of
cache partitioning sizes between the code-cache and the
fragment-cache. This is done over the entire range of
fragment-cacheability levels (Low, Medium and High), re-
sulting in three different cases. The results for all these

cases are shown in Figures 4(a-c) for arrival rates 1 through
4, as a function of the code-cache percentage size, and for
a Uniform fragment distribution.

In these figures, we first observe that all the Integrated
graphs have a “cup shape” with the highest construction
times being at the extremes (0 percent code-cache and
100 percent code-cache), and the lowest somewhere in be-
tween. Further, we find that a simple heuristic relation-
ship exists between the best partition, which leads to lowest
page construction time, and the fragment-cacheability:

BestPartition = 100 — Fragment_cacheability (1)

So, for example, with High (80%) fragment-cacheability,
the Best Partition occurs at about 20% for the code-cache.
In all our other experiments also, we found this heuristic to
approximately hold true.

An important point to note here is that the setting of 0
percent code-cache is equivalent to a Pure_FC approach,
while 100 percent code-cache is equivalent to Pure_CC. We
observe in the graphs that the performance of both Pure FC
and Pure_CC are very highly variable with regard to the
fragment-cacheability level.

5.4 Expt. 4: Cache Partitioning (Skewed)

When the above experiment was carried out with a Skewed
fragment distribution, the resulting performance is as
shown in Figures 5(a-c). We see here that the cup shapes
are much deeper as compared to the Uniform case, indicat-
ing that choosing the Best Partition appropriately becomes
even more critical. But this is not difficult since the choice
continues to be in accordance with Equation 1.

5.5 Expt. 5: Page Pre-generation (Uniform)

We now move on to investigating the impact of the op-
tional page pre-generation on dynamic page construction
times. In our first experiment here, the caching algorithms
are augmented with page pre-generation for 50 percent
page predictability, the rest of the parameters remaining
the same as that of Expt 1 (as mentioned earlier, the inter-
nal partitioning of the fragment-cum-page cache is always
equally split between fragments and pages, as per [23]).

For this environment, the page construction times are
shown in Figure 6 — for graph readability, we only show
the performance of the basic Integrated algorithm and its
PG (page pre-generation) variation. We first see here that
PG_Integrated performs upto 30 percent better than basic
Integrated during normal loading (upto 2 user sessions per
second), and no worse during peak loading (by virtue of
the feedback-based load-control mechanism). In a nutshell,
PG_Integrated provides both excellent average-case perfor-
mance and stable worst-case performance.

5.6 Expt 6: Page Pre-generation (Skewed)

When the above experiment was carried out with a Skewed
fragment distribution, the resulting performance is as
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Figure 7: Impact of Page Pre-generation (Skewed)

shown in Figure 7. We see here that the performance is
improved only marginally (by about 10 percent at the low
loads). This is because when the fragment distribution
is skewed, then most of the frequent fragments are either
served from the fragment cache or executed directly from
the code cache and they are the ones which are frequently
requested. So there is little work remaining, even when the
page is constructed after receiving the request. Hence the
impact of the page pre-generator is marginal in this case.

5.7 Summary

As described above, we have carried out a variety of exper-
iments on the proposed Integrated caching both with and
without page pre-generation. To summarize our experi-
mental results, we observe that Integrated caching (with-
out page pre-generation) performs 20 percent better than
Pure_CC(the code caching) and 30 percent better than
Pure_FC(the fragment caching), under Uniform fragment

distribution. Under Skewed fragment distribution, it per-
forms 40 percent better than Pure_CC and 60 percent better
than Pure_FC.

The extended Integrated caching with feedback-
controlled page pre-generation performs better than the In-
tegrated caching during normal loading and dose no worse
during peak loading. We observe that during normal load-
ing speedups of 10 to 30 percent can be realized, depending
on the fragment distribution.

6 Redated Work

In this section, we survey some of the literature related to
the issues presented in this paper.

A widely used existing approach to address Web perfor-
mance problems is based on the notion of content-caching,
and a variety of such methods are discussed in [15]. Var-
ious types of database caching have been suggested, in-
cluding caching database tables in main memory [30] and
caching the results of database queries [17]. Database
caching approaches can reduce only some of the delays
associated with query processing operations. In [25], a
caching system that caches content at various levels, such
as database queries, HTML fragments, and pages is pro-
posed. This work concentrates primarily on the declara-
tive specification of websites and offers a number of tools
for the easy implementation, deployment and monitoring of
these sites. Another approach is presentation layer caching,
which caches HTML fragments. Many application servers
provide this type of caching capability (e.g., WebLogic
from BEA Systems [28]), which can mitigate delays due to
presentation layer tasks. An efficient technique to compose
web pages from fragments for web-based publications is
given in [4] and this scheme was implemented in the 2000
Olympic Games web-site hosted by IBM. Fragment-based
web publication allows parts of dynamic web-pages to be
cached. All of the above-mentioned caching approaches
can help to reduce the delays associated with content gener-
ation. Since they reside at the origin server, these solutions
do guarantee the correctness of the content.

There are two broad approaches that use proxies to
cache dynamic pages, namely page-level caching and dy-
namic page assembly. In page-level caching, the proxy
caches the complete page outputs of dynamic sites. Page-
level caching has been considered in [2, 3, 32]. The page-
level caches can improve web-site performance by reduc-
ing delays associated with page generation. However, there
are some major limitations associated with using page-level
caching. The most important limitation of proxy-based
page level caching is serving incorrect pages, whenever the
page level caching must rely on the request URL to identify
pages in cache. When pages are dynamically generated,
different invocations of a given script are not guaranteed to
produce the same page [8]. Another limitation of page level
caching solutions is that there is often very little reusability
of full HTML pages. Specially, the sites that serve highly
personalized pages may make every page instance unique
and reusable only if the same user makes the same request.



This can lead to low hit ratios. Page level caching may
also lead to unnecessary invalidation. If only one or a few
elements on a page become invalid, then the entire page
becomes invalid [8].

Dynamic page assembly is an approach popularized by
Akamai [27] as part of the Edge Side Includes (ESI) initia-
tive [29]. This approach entails establishing a template for
each dynamically generated page. The template specifies
the content and layout of the page using a set of markup
tags. A drawback of this approach is the requirement that
a site follow a specified page design paradigm, specifically,
the use of templates which in turn call separate dynamic
scripts for each dynamically generated fragment, forcing
that page layout be known in advance. Thus, sites support-
ing dynamic layouts will not be able to take the advantage
of dynamic page assembly. Another drawback of the dy-
namic page assembly approach is that it cannot be used in
the context of pages with semantically interdependent frag-
ments. The approach presented in [18] can be considered to
be a dynamic page assembly approach. This work proposes
a proxy cache that stores query templates, along with query
results, which are used to manage the cache. This approach
can only mitigate some delays associated with query pro-
cessing, but it does not address the other delays associated
with dynamic page generation.

Overall, the proxy caching approaches can provide
significant bandwidth savings, but their applicability in
caching dynamic pages is rather limited and their primary
use is in caching fixed layout content.

There are several page access prediction models that
have been proposed in the literature, based on informa-
tion gained from mining web logs. Several Markov models
derived from the behaviour patterns of many users, which
predict which documents a user is likely to request next,
are presented in [26]. Based on an evaluation of their pre-
dictive accuracy, hybrid models which combine the indi-
vidual models in different ways are derived and shown to
have greater predictive accuracy. The use of path profiles
for describing HTTP request behavior has been introduced
along with an algorithm for efficiently creating these pro-
files, in [21]. This paper also claims that predictive accura-
cies are high enough to justify generating dynamic content
before the client requests it. An n-gram based model to
develop path profiles of users from very large data sets is
presented in [22].

Web prefetching is an alternative technique to web
caching used to reduce the noticeable response time per-
ceived by users. Prefetching is often proposed in an attempt
to retrieve objects in advance of a client request. This idea
has been implemented in a number of browser add-ons.
The prefetch techniques in various contexts are discussed
in [11, 14, 24]. The prefetching implementations can cause
problems with undesirable side-effects and server abuse.
Any unused prefetched page increases both bandwidth con-
sumption and load on the server. The prefetching tech-
nique, if used for enriching the client side cache,may be
useful in case of static contents. Client side caching is not

at all useful for dynamic web pages. For the dynamic web
pages cached at client side, there is no way for the server to
invalidate, whenever the page/page-fragments become in-
valid at the origin server.

In our earlier work [23], we have studied the effi-
cient combination of fragment-caching with page pre-
generation. Our experiments have shown that significant
page response time reduction is possible by splitting the
cache evenly between the page and fragment partitions.

Code-caching is a recent technique proposed in the con-
text of script execution. Before executing a script, the script
execution engine reads, parses, and compiles the contents
into compiled code ready for execution. Since, in practice,
the scripts rarely change, this pre-processing is targeted for
elimination in code caching. Such techniques have been re-
cently implemented in the context of the PHP Accelerator
project [16], JIT compiler of JVM [33], etc. In these cases
it is assumed that the compiled code uses instructions from
a virtual instruction set that is platform-independent and
once compiled, the code is executed by a virtual machine
that interprets the instructions. The code-caching technique
used by ScriptBasic [31] stores object code for scripts writ-
ten in BASIC.

7 Conclusions

In this paper, we have proposed a simple integrated caching
approach to reduce dynamic web-page construction times
by appropriately combining both fragment-caching and
code-caching. We made a detailed evaluation of the inte-
grated caching approach over a range of cacheability lev-
els and fragment choice distributions. Our experimental
results showed that the integrated approach can provide
significant reductions in construction times, especially for
skewed fragment distributions. We were also able to iden-
tify a simple heuristic for identifying the appropriate size
of the code cache partition.

We extended our integrated caching model to incorpo-
rate anticipatory page pre-generation with feedback-based
load control. The results of this enhancement indicate that
the extended approach performs significantly better during
normal loading and does no worse during peak loading.

In summary, the techniques proposed in this pa-
per achieve long-term benefits through fragment and
code-caching and immediate benefits through page pre-
generation. Currently, our work uses a LRU-based cache
replacement policy. If web-logs for fragment access be-
come available, then it will be interesting to study the per-
formance of customized cache-replacement policies. Fur-
ther, our current results are based on simulation experi-
ments. In our future work, we plan to obtain a more real-
istic assessment of the performance improvements by de-
ploying the proposed integrated policy in an actual web
Server.
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