A Holistic XML-to-RDBMS Mapper (Demonstration)

Priti Patil

Jayant R. Haritsa

Database Systems Lab, SERC/CSA
Indian Institute of Science, Bangalore, INDIA
{priti,haritsa}@dsl.serc.iisc.ernet.in

1 Introduction

Over the past few years, XML’s powerful and flexi-
ble data formatting capabilities have made it a dom-
inant standard for information exchange between ap-
plications, especially on the Internet. As an increas-
ing amount of XML data is being processed, efficient
and reliable storage of XML data has become an im-
portant issue. For persistently storing information
from XML sources, there are primarily two techno-
logical choices available: A specialized native XML
store (e.g. Tamino [13], Timber [6]), or a standard re-
lational engine (e.g. IBM DB2 [5], Oracle [9], MS-
SQL Server [3]). From a pragmatic viewpoint, the
latter approach brings with it the benefits of highly-
functional, efficient, and mature technology. There-
fore, a rich body of literature has emerged in the last
five years on the mechanics of hosting XML documents
on relational backends. Specifically, there have been
several proposals for generating efficient mappings be-
tween XML schema (e.g. DTDs or XML Schema) and
relational schema.

A common limitation of much of the prior work
is that it has focused on isolated components of the
relational schema, typically the table configurations.
A complete relational schema, however, consists of
much more than just table configurations — it also
includes integrity constraints, indices, triggers, and
views. Therefore, viable XML-to-relational systems
that intend to support real-world applications need to
provide a holistic mapping that incorporates all fun-
damental aspects of relational schemas.

In this demonstration, we will present a walk-
through of a prototype system called ELIXIR (Es-
tablishing hoLlIstic schemas for XML In Rdbms) that
produces holistic relational schemas tuned to the appli-
cation workload. The prototype is built using Ocamlc
(Objective Caml) [8], a strongly-typed functional pro-
gramming language, around the well-known LegoDB
XML-to-RDBMS framework [1, 4, 11], and uses the
IBM DB2 database engine as the relational backend.

International Conference on Management of Data
COMAD 2005b, Hyderabad, India, December 20-22, 2005
© Computer Society of India, 2005

It has been successfully evaluated on a variety of real-
world and synthetic XML schemas operating under a
representative set of XQuery queries.

Elixir is based on LegoDB’s principled cost-based
approach to mapping design, thereby automatically
delivering efficient mappings that are tuned to the
XML application. This is in marked contrast to the
mapping tools currently provided by commercial data-
base systems, wherein the user is expected to play a
significant role in the design and the tuning is largely
manual.

A novel design feature of Elixir is that it performs
all its mapping-related optimizations in the XML
source space, rather than in the relational target space.
For example, Elixir significantly extends prior table
configuration techniques, based on XML schema trans-
formations, to seamlessly preserve XML integrity con-
straints. With regard to index selection, too, Elixir
makes path-index choices at the XML source and then
maps them to relational equivalents — our experiments
show that this is more desirable than the prevalent
practice of using the relational engine’s index advisor
to identify a good set of indices. Finally, Elixir maps
XML triggers and XML views to obtain relational trig-
gers and relational views, respectively. An integrated
approach to the design of these techniques ensures that
the interactions between the XML inputs and their ef-
fects on the relational outputs are automatically taken
into account during the optimization process.

In a nutshell, the Elixir system attempts to provide
high-quality “industrial-strength” mappings for XML-
on-RDBMS, and this demonstration will showcase its
features. The complete technical details of Elixir are
available in [10].

2 System Architecure

The overall architecture of the Elixir system is de-
picted in Figure 1. Given an XML schema, a set
of documents valid under this schema, and the user
query workload, the system first creates an equivalent
canonical “fully-normalized” initial XML schema [4],
corresponding to an extremely fine-grained relational
mapping, and in the rest of the procedure attempts to

XML Schema XML Disk XQuery XQuery XQuery
withkeys ~ Documents Budget Workload Triggers Views
‘ Additional
" XQuery
Initial Y Y Workload
Schema Index % XML Trigger XML View
Processor r Processor | | Processor
Y Y Relational
. QL elational
Stats Path Ihdices Trighers Vielvs
Collector #
A Y i
XML Data Translation XQuery
transformed Module Rewriting
\ A schiema
Schema i Relational tables, keys,
Transformation | indexes, statistics
Module = and SQL Workload
Cost
A\
Relational Optimizer
\J
\
Stored
Efficient Relational configuration Procedures

consisting of table, keys, indices,
SQL triggers, Relational views

Figure 1: Architecture of the Elixir system

design more efficient schemas by merging relations of
this initial schema.

Summary statistical information of the documents
for the canonical schema is collected using the
StatsCollector module. The estimated runtime cost
of the XML workload, after translation to SQL, on
this schema is determined by accessing the relational
engine’s query optimizer. Subsequently, the original
XML schema is transformed in a variety of ways using
various schema transformations, the relational runtime
costs for each of these new schemas is evaluated, and
the transformed schema with the lowest cost is iden-
tified. This whole process is repeated with the new
XML schema, and the iteration continues until the
cost cannot be improved with any of the transformed
schemas. The choice of transformations is conditional
on their adhering to the constraints specified in the
XML schema, and this is ensured by the Translation
Module.

In each iteration, the Index Processor component,
selects the set of XML path-indices that fit within the
disk space budget!, and deliver the greatest reduction
in the query runtime cost. These path indices are then
converted to an equivalent set of relational indices.
The XQuery queries are also rewritten to benefit from
the path indices, with the query rewriting based on
the concept of path equivalence classes [12] of XML

1Disk usage is measured with respect to the space taken by
the equivalent relational indices.

Schema.

The XML Trigger Processor is responsible for han-
dling all XML triggers — it maps each trigger to either
an equivalent SQL trigger, or if it is not mappable (as
discussed in [10]), represents it with a stored proce-
dure that can be called by the middleware at runtime.
To account for the cost of the non-mappable triggers,
queries equivalent to these triggers are added to the
input query workload.

Finally, the XML View Processor maps XML views
and materialized XML views specified by the user to
relational views and materialized query tables, respec-
tively.

To implement the prototype of the above architec-
ture, we have consciously attempted, wherever possi-
ble, to incorporate the ideas previously presented in
the literature. Specifically, for schema transforma-
tions, we leverage the LegoDB framework [1], with its
associated FleXMap [11] search tool and StatiX [4] sta-
tistics tool; the Index Processor component is based on
the XIST path-index selection tool [12]; and, the DB2
relational engine [5] is used as the backend.

As an example, a sample fragment of a relational
mapping derived from Elixir for an XML banking ap-
plication is shown in Figure 2, including table defi-
nitions, key constraints, index selections, views, and
triggers.

— — XML Schema

<xsd:schema>
<xsd:element name="bank">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="country"
type="CountryType"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:schema>
— — XML Documents

<?xml version="1.0"7>
<bank>
<country>
<name>India</name>

</country> ...
</bank>

— — XML Query workload

FOR $customer IN //customer

FOR $account IN //account

WHERE ($customer/acc-number =
$account/sav-acc-num

OR $customer/acc-number =
$account/check-acc-num)

AND $customer/cust-id = ’1000°’

return <balance>$account/balance</balance>

Frequency 20000

FOR $country IN /bank/country

WHERE $country/name/text() = "INDIA"

UPDATE $country/city

{ INSERT <name>Nasik</name> ...}
Frequency 100

— — XQuery Triggers

CREATE TRIGGER NewCityTrigger
AFTER INSERT OF /bank/country/city
FOR EACH NODE DO (...)

— — XML Views

CREATE VIEW important_customer AS

FOR $customer IN //customer

FOR $account IN //account

WHERE ($customer/acc-number =
$account/sav-acc-num

OR $customer/acc-number =
$account/check-acc-num)

AND $account/balance > 100000

return <balance>$account/balance</balance>

- Materialized XML views

CREATE MATERIALIZED VIEW customer_balance AS
FOR $customer IN //customer
FOR $account IN //account
WHERE $customer/acc-number =
$account/savings-acc-number
OR $customer/acc-number =
$account/checking-acc-number
return
<customer-balance>
<id>$customer/cust-id</id>
<acc-num>$customer/acc-number</acc-num>
<balance>$customer/balance</balance>
</customer-balance>
DATA INITIALLY IMMEDIATE REFRESH IMMEDIATE

(a) Input

— — Tables

CREATE TABLE Customer (Customer-id-key INTEGER
PRIMARY KEY, id INTEGER NOT NULL, name VARCHAR(25),
address VARCHAR(25), acc-number INTGER NOT NULL,
parent-Country INTEGER, parent-City INTEGER);
CREATE TABLE Account (Account-id-key INTEGER
PRIMARY KEY, sav-or-check-account-number INTEGER,
parent-Country INTEGER, Balance DECIMAL(10,2));

— — Relational keys equivalent to XML keys

ALTER TABLE Customer ADD CONSTRAINT Customer-key
UNIQUE (id, parent-Bank);

ALTER TABLE Account ADD CONSTRAINT Acc-key UNIQUE
(sav-or-check-acc-num, parent-Country);

ALTER TABLE Customer ADD CONSTRAINT Acc-fkey
FOREIGN KEY (acc-number, parent-Country) REFERENCES
Account (sav-or-check-acc-num, parent-Country) ;

— — Recommended Indices

CREATE INDEX name-index ON Customer (name);
CREATE INDEX acc-num-index ON
Account (sav-or-check-acc-num, parent-Country);

— — SQL Triggers

CREATE TRIGGER Increment-Counter
AFTER INSERT ON Customer
REFERENCING NEW AS new_row
FOR EACH ROW
BEGIN ATOMIC
UPDATE Branch-office
SET Acc-counter = Acc-counter + 1
WHERE Branch-office.Id = new_row.Branch
END

_ Stored Procedure

CREATE PROCEDURE NewCityTrigger

(IN cust-name STRING, IN city-name STRING,

IN city-state STRING,...)
BEGIN

Send-mail (cust-name, city-name, city-state, ...)
END

— — Relational views

CREATE VIEW important_customer AS
(SELECT C.id, C.acc-number, A.balance
FROM Customer C, Account A
WHERE C.acc-number = A.sav-or-check-acc-number
AND A.balance > 10000)

_ Materialized Query Tables

CREATE TABLE customer_-balance AS

(SELECT C.id, C.acc-number, A.balance

FROM Customer C, Account A

WHERE C.acc-number = A.sav-or-check-acc-number)
DATA INITIALLY IMMEDIATE
REFRESH IMMEDIATE

(b) Output

Figure 2: Example Elixir Mapping

3 Integrated Schema-Centric Approach

In producing XML-to-relational mappings, there are
two possibilities: A source-centric approach, wherein
the optimization of the mapping is carried out in the
XML space, and then translated to the equivalent
in the relational space; or a target-centric approach,
where a mapping is made from the XML space to the
relational space, and then optimized in the relational
space to fine-tune the mapping. A key design feature
of Elixir is that it performs all its mapping-related op-
timizations in the XML source space, rather than in
the relational target space. The evaluation of the qual-
ity of these optimizations is done at the target, and the
feedback is used to guide the optimization process in
the XML space, in an iterative manner, resulting in
a dynamically-derived mapping tuned to the applica-
tion. This approach is based on our observation that
an organic understanding of the XML source can re-
sult in more informed choices from the performance
perspective.

A case in point of the above approach is that Elixir
identifies a good set of indices in the XML space and
then maps them to equivalent indices in the relational
space. This is marked contrast to the industrial prac-
tice recommended in [2], where the relational engine’s
index advisor is used to arrive at the index choices. For
finding good XML indices, Elixir leverages the recently
proposed XIST tool [12], which makes path-index rec-
ommendations, given an input consisting of an XML
schema, query workload, data statistics, and disk bud-
get. However, XIST does not make use of semantic
information such as keys from the XML schema. As
keys and the choice of path indices are closely related,
we have extended XIST to use the information about
keys by giving priority to the paths corresponding to
keys during the index selection process. An additional
benefit of source-based index choices is that the knowl-
edge can be used to guide the XQuery-to-SQL transla-
tion during query processing (details in [10]). Finally,
our experimental results in [10] quantitatively demon-
strate that the source-centric approach is preferable to
a target-centric approach.

In principle, the collection of techniques incorpo-
rated in Elixir can each be applied independently for
mapping specific input features from the XML world
to their relational counterparts, and thereby produce
holistic schemas. However, this can result in ineffi-
cient performance due to not taking their inherent re-
lationships into account — for example, generating an
optimized relational mapping and then defining trig-
gers on this mapping can be significantly worse than
intrinsically considering the triggers during the opti-
mization process. Therefore, Elixir consciously takes
an integrated approach to producing efficient holistic
schemas — for example, the choice of path indices is de-
pendent on the XML keys, while the choice of schema
transformations is influenced by the presence of XML

triggers and views. This integration ensures that all
the interactions between the XML inputs and their im-
pact on the relational outputs are automatically taken
into account during the optimization process.

4 Demonstration

To the best of our knowledge, the Elixir system is
the first to attempt production of holistic XML-to-
RDBMS mappings. In this demonstration, we will
provide a walkthrough of its features, and explain how
its cost-based and source-centric approach to mapping
can result in efficient relational schemas that are tuned
to the application workload.

Acknowledgements

This work was supported in part by a Swarnajayanti Fel-
lowship from the Dept. of Science & Technology, Govt. of
India.

References

[1] P. Bohannon, J. Freire, P. Roy and J. Siméon. From
XML schema to relations: A cost based approach to
XML storage. In Proc. of IEEE ICDE, 2002.

[2] S. Chaudhuri, Z. Chen, K. Shim and Y. Wu. Stor-
ing XML (with XSD) in SQL Databases: Interplay of
Logical and Physical Designs. In Proc. of IEEE ICDE,
2004.

3] A. Conrad. A survey of MS-SQL Server 2000
XML features. hitp://msdn.microsoft.com/library/
en-us/dnexzml/html/xml07162001.asp ?frame=true.

[4] J. Freire, J. Haritsa, M. Ramanath, P. Roy and
J. Siméon. Statix: Making XML count. In Proc. of
ACM SIGMOD, 2002.

[5] IBM DB2 XML Extender. hitp://www-3.ibm.com/
software/data/db2/extenders/xmlext/library.html.

[6] H. Jagadish et al. TIMBER: A Native XML Database.
The VLDB Journal, 11(4), 2002.

[7] R. Krishnamurthy, V. Chakaravarthy and
J. Naughton. On the Difficulty of Finding Optimal
Relational Decompositions for XML Workloads: a
Complexity Theoretic Perspective. In Proc. of ICDT,
2003.

[8] Objective Caml. http://caml.inria.fr/ocaml/ .

Oracle XML DB. http://technet.oracle.com/tech/
xml/content.html.

[10] P. Patil and J. Haritsa. Holistic Schema Map-
pings for XML-on-RDBMS. Tech. Rep. TR-
2005-02, DSL, Indian Institute of Science.
http://dsl.serc.iisc.ernet.in/publications/report/
TR/TR-2005-02.pdf .

[11] M. Ramanath, J. Freire, J. Haritsa and P. Roy.
Searching for efficient XML-to-relational mappings. In
Proc. of XSym, 2003.

[12] K. Runapongsa, J. Patel, R. Bordawekar and S. Pad-
manabhan. XIST: An XML Index Selection Tool. In
Proc. of XSym, 2004.

[13] Tamino. http: //wwwl.softwareag.com/Corporate/
products/tamino/prod_info/default.asp.

=

