HYDRA: A Dynamic Big Data Regenerator

Anupam Sanghi¢ Raghav Sood¢ Dharmendra Singh¢ Jayant R. Haritsa® Srikanta Tirthapura*

“Indian Institute of Science, Bangalore, India
{anupamsanghi, dharmendra, haritsa} @iisc.ac.in

ABSTRACT

A core requirement of database engine testing is the ability to create
synthetic versions of the customer’s data warehouse at the vendor
site. Prior work on synthetic data regeneration suffers from criti-
cal limitations with regard to (a) scaling to large data volumes, (b)
handling complex query workloads, and (c) producing data on de-
mand. In this demo, we present HYDRA, a workload-dependent
dynamic data regenerator, that materially addresses these limita-
tions. It introduces the concept of dynamic regeneration by con-
structing a minuscule memory-resident database summary that can
on-the-fly regenerate databases of arbitrary size during query exe-
cution. Further, since the data is generated in memory, the veloc-
ity of generation can be closely regulated. Finally, to complement
dynamic regeneration, Hydra also ensures that the process of sum-
mary construction is data-scale-free.

PVLDB Reference Format:

Anupam Sanghi, Raghav Sood, Dharmendra Singh, Jayant R. Haritsa and
Srikanta Tirthapura. HYDRA: A Dynamic Big Data Regenerator. PVLDB,
11 (12): 1974-19717, 2018.

DOI: https://doi.org/10.14778/3229863.3236238

1. INTRODUCTION

In industrial practice, relational database vendors often need to
test their OLAP engines on the data warehouses present at the cus-
tomer sites. This requirement arises for reasons like: (a) analyzing
performance issues during query processing, (b) performing func-
tional testing of embedded-SQL programs, and (c) proactively as-
sessing the performance impacts of planned engine upgrades. Due
to privacy concerns, however, transferring data from the client to
the vendor may not be a viable option. Moreover, even if the client
is willing to share, transferring and storing the data at the vendor’s
site may have impractical time and space overheads, especially in
the impending Big Data era. Therefore, looking into the future,
vendors need to be able to dynamically regenerate representative
databases that mimic, for the intended purposes, the behavior of
the client data processing environments.

A rich body of literature exists on data regeneration, includ-
ing both workload-independent (WI) techniques (e.g. [7, 8]) and

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.

Proceedings of the VLDB Endowment, Vol. 11, No. 12

Copyright 2018 VLDB Endowment 2150-8097/18/8.

DOI: https://doi.org/10.14778/3229863.3236238

*lowa State Univerity, Ames, USA
raghavsood33 @gmail.com snt@iastate.edu

workload-dependent (WD) techniques (e.g. [6, 9, 4]). The WI ap-
proaches, including those that are specifically targeted towards Big
Data environments (e.g. [11, 13]), fail to retain satisfactory statis-
tical fidelity. This shortcoming is addressed in the WD schemes
— specifically, they generate synthetic data that exhibits volumet-
rically similar behavior to the original database on the customer
query workload. That is, with common query execution plans at
the client and vendor sites, the output row cardinalities of individ-
ual operators in these plans are almost identical. However, these
techniques suffer from substantive practical limitations, especially
with regard to: (a) scaling to large data volumes, (b) handling com-
plex query workloads, and (c) producing data on demand.

We have attempted to address the above limitations of WD tech-
niques in designing a new database regenerator called Hydra [12].
This tool forms part of our ongoing CODD project [5], which
incorporates a novel metaphor of “dataless databases”, whereby
database environments with the desired characteristics are simu-
lated without persistently generating and/or storing the contents.

Hydra currently focuses on the volume and velocity facets [1] of
Big Data, which are of primary interest in the context of enterprise
relational warehouses. It introduces the concept of dynamic re-
generation by constructing a minuscule memory-resident database
summary that can on-the-fly regenerate arbitrary client databases
during query execution. Since the data is generated in memory, the
velocity of data generation can be closely regulated, as compared
to disk-resident databases. To complement dynamic regeneration,
Hydra also ensures that the process of summary construction is
data-scale-free. Specifically, the summaries for complex Big Data
client scenarios are constructed within just a few minutes.

On the implementation front, Hydra is completely written in
Java, running to over 15K lines of code, and is currently oper-
ational on the PostgreSQL v9.3 engine [3]. It has an intuitive
user interface that facilitates modeling of enterprise database envi-
ronments, delivers feedback on the regenerated data, and tabulates
performance reports on the regeneration quality. The entire tool,
including the source, can be downloaded at [2], and has already
been deployed in major telecom and software organizations.

Demo Highlights. The highlights of the demo (detailed in Sec-
tion 4) include the following components: (a) Client Interface,
which captures the construction and transfer of the information
synopsis created at the client site; (b) Vendor Interface, which
presents the synthetic database summary and explicit verification of
volumetric similarity; (¢) Dynamic Regeneration, which demon-
strates on-the-fly data generation during query execution on a data-
less database; and (d) Scenario Construction, which helps the
vendor to pro-actively simulate anticipated client environments.

2. HYDRA DESIGN

Hydra leverages the declarative approach to data regeneration
proposed in the DataSynth tool [4]. To illustrate this approach, con-
sider a relational database with the toy schema shown in Figure 1a
(where the pk and fk denote primary-key and foreign-key attributes,
respectively). A sample query on this schema is listed in Figure 1b,
and the corresponding execution plan in Figure 1c. A special as-
pect of this plan is that the output edge of each operator is annotated
with the associated row cardinality, as evaluated during the client’s
execution. It is therefore referred to as an Annotated Query Plan
(AQP) [6]. The AQPs constructed over the entire query workload
are then collectively formulated as a set of linear programs (LPs),
one per schema relation. These LPs separately are then input to an
SMT solver, and the solutions are used to construct the synthetic
database. The objective of the regeneration process at the vendor
site is to ensure that the synthetic data closely mimics the opera-
tor data volumes indicated in the AQP. This helps to preserve the
multi-dimensional layout and flow of the data, a pre-requisite for
achieving comparable performance on the client’s workload.

R (Rpk Sk, Tfk) S(Spk,A,B) T (Tpk C)

(a) Database Schema

select * from R, S, T
where R.S_fk =S.S pk and R.T_fk=T.T_pk
and S.A >=20and SSA <60 and T.C>=2and TC <3

(b) Example Query

T3oooo

900 THR 50000
X

o: SR
2sC<3 400 80000
1500 T
020<4<60 R
T700
S

(¢) Annotated Query Plan (AQP)

Figure 1: Example Database Scenario

Novelties. Hydra is able to handle significantly more complex
query workloads than DataSynth, as detailed in [12]. This im-
provement is due to a novel region-partitioning algorithm [12] that
results in an LP encoding whose complexity (in terms of the num-
ber of variables) is several orders of magnitude smaller in compar-
ison to the grid-partitioning approach of [4]. In fact, our region-
partitioning corresponds to an LP with the minimum number of
variables [12].

Second, Hydra introduces the concept of dynamic regeneration
by constructing a minuscule database summary that can on-the-
fly regenerate databases of arbitrary size during query execution.
This approach is imperative for Big Data systems, where work-
ing with materialized solutions entails impractical time and space
overheads. Specifically, dynamic generation eliminates the need to
store data on the disk and its subsequent load by the engine — in-
stead, all data is created and delivered on demand. An orthogonal
benefit is that the generation rate can be strictly controlled, thereby
addressing the velocity aspect of Big Data.

Third, our database summary generation, thanks to its unique
data-scale-free feature, is extremely efficient. As a case in point,
the summary for a large workload of 131 distinct queries on the
TPC-DS database was generated in less than 2 minutes on a vanilla
computing platform, occupying only a few KB of space [12].

Finally, our summary generation method also delivers better fi-
delity than prior work with regard to volumetric similarity. For
instance, on the above-mentioned query workload, more than 90%
of the volumetric constraints were satisfied with virtually no error,
while the remaining were all satisfied with a relative error of less
than 10% [12]. Further, since the magnitude of the volumetric dis-
crepancy is constant for a given query workload, the relative errors
becomes progressively smaller with increasing database size.

The above efficiency and accuracy in constructing the summary
are an outcome of the deterministic alignment strategy of Hydra
(details in [12]), as opposed to the sampling-based strategy of [4].

3. HYDRA ARCHITECTURE

We now present an overview of Hydra’s architecture, shown in
Figure 2. In this figure, the green boxes represent the new com-
ponents designed specifically for Hydra, whereas the yellow boxes
are sourced from the prior literature.

Input AQPs Query Workload

AANA @ 0 0 O | Metadata
Schema| Py P2 P3 .. P, || dy 92 Q5.0 (M)

Preprocessor

Metadata

\ 1
\ 1
: [DataSynth] L 4 Tranfer [cODD] :
1 Database Engine\ :
1

i LPI Tuple !
: S Generator I
| 1
. | Z3 solver :
\ 1
\ 1
'| Summary Database |
1 | Generator Summary) Vendor Site!

Figure 2: Hydra Architecture

At the client site, Hydra fetches the schema, metadata and the
query workload with its corresponding AQPs, and ships this en-
tire information to the vendor. If required, privacy concerns can
be addressed by passing the information through an appropriate
anonymization layer at the client.

When the information is received at the vendor, it initially goes
through a Preprocessor, sourced from [4]. This component facili-
tates the independent processing of each relation in the subsequent
steps, a key requirement for model tractability and regeneration ef-
ficiency. The AQPs are then evaluated by the LP Formulator and
an optimized LP is constructed for each relation, using our new
region-partitioning approach. This collection of LPs is passed to
the Z3 solver [10], which provides feasible per-relation solutions as
the output. Leveraging these solutions, the Summary Generator
constructs a summary using our deterministic alignment algorithm.
Further, a post-processing step is executed to ensure that referen-
tial constraints are not violated across the solutions. This step may
incur minor additive errors in satisfying the volumetric constraints,
but their impact is expected to be negligible at Big Data scale.

Tables Columns Most Frequent Values Histogram Buckets
STORE = i_manager_id = value frequency — 69.18 —
STORE_SALES i_class 0.46 187 76.39
ITEM i_category 2.49 186 84.30
DATE_DIM i_color 4.43 183 92.29
Client Query [102 |+] Annotated Query Plan

- |16966
SELECT * | XISS
FROM DATE_DIM D, STORE_SALES SS, ITEM | 1% 928430
WHERE d_date_sk =ss_sold_date_sk O manager id=1 DX SS
i =i 366
and ;s_ltem_sk = i_item_sk 102000' 365~ \28800991
and i_manager_id =1 04 year=2000 sS
and d_year = 2000 I F3049
L= D

Figure 3: Client Site: Metadata, Queries and Annotated Query Plans

Subsequently, the Tuple Generator generates the requisite data
on-demand, one row at a time, for each relation appearing in the
query, using the database summary. As a proof of concept, we have
implemented this functionality in the PostgreSQL v9.3 engine [3]
by adding a new feature called datagen, which is included as a
property for each relation in the database. On enabling this fea-
ture for a relation, the traditional scan operator is replaced with the
equivalent dynamic regeneration operator.

Finally, the metadata transfer functionality of CODD [5] is used
to ensure a common choice of plan at the client and vendor sites.

4. HYDRA DEMONSTRATION

In the demo, the audience will actively engage with a variety of
visual scenarios that showcase the utility of the HYDRA tool.

4.1 Client Site

At the Client Site, the client supplies the query workload and
the corresponding AQPs are obtained by optimizing and executing
these queries on the client platform. Currently, the JSON format
is supported to parse the execution plans. The next screen in the
client interface is shown in Figure 3. In this figure, the top half
profiles the metadata statistics. Specifically, the user can choose a
specific table column, and the system presents the distribution of
the most frequent values and the bucket boundaries of the equi-
depth histogram for this column.! In the bottom half, the user can
pick a query from the input workload (the figure shows a canonical
SPJ query on the TPC-DS schema), and the corresponding SQL
text is displayed at the bottom left along with the associated AQP at
the bottom right. The widths of the edges connecting the operators
in the plan are scaled to visually indicate the volume of data flowing
in each of these edges. Finally, once the user selects the SUBMIT
button, all this information is transferred to the Vendor Site.

"The metadata visualization is customized for PostgreSQL [3].

4.2 Vendor Site

After receiving the above-mentioned information package from
the client, the Vendor Site initiates the data regeneration process.
Here, the primary interface during the LP solving stage tabulates
the LPs complexity in terms of their number of variables and run
times. Subsequently, in the next screen, shown in Figure 4, the
final database summary is displayed. The user can select an indi-
vidual relation, and the system shows its summary in the top middle
panel. The difference in the schema of a relation summary and that
of the corresponding relation is that the pk column in the relation
is replaced with a #TUPLES column — this column captures the
number of tuples that share the vector of data values present in the
remaining columns. For instance, the first row in the item relation
summary in Figure 4 indicates that there are 917 rows with values
<40, pop, Music, ...>.The pkcolumns are subsequently
generated as auto-numbers. Note that this approach does not affect
the referential constraints or the AQP constraints, as the foreign-
keys have already been assigned compatible values.

Secondly, the top right panel shows the runtime configuration
settings where the user can choose to either dynamically generate
or optionally materialize the selected relation. Also, for dynamic
generation, the desired velocity, measured in rows per second, can
be set using the slider bar. The chosen relation’s row count for
the original and synthetic database are shown below the bar. To
assess the overall quality of the regenerated data, the bottom left
graph plots the percentage of volumetric constraints that are satis-
fied within a given relative error. Finally, the user can also drill
down to a query-specific AQP comparison by selecting a query
from the drop down menu. In this mode, the corresponding SQL
text and AQP are shown in the bottom middle and right panels, re-
spectively. The edges in the AQP are annotated with the original
cardinality in green color, and the relative errors (typically minor)
incurred as a result of the regeneration are shown in red color.

Tables

Relation Summary

STORE 211 # TUPLES | i_manager_id i_class i_category i_color Materialize Data
STORE_SALES 917 40 pop Music Velocity

— # rows/sec
ITEM 21 91 dresses Women chocolate [———]
DATE DIM 25 0 accessories Men hisque

— Row Count
WAREHOUSE 1749 1 reference Electronics 102000 Original

— - o

STORE_RETURNS & Ja? n | Hama alm anel e l 102035 ‘ Generated

Generation Quality

Client Query :

AQP Comparison

100
g : 16965
T 80 SELECT * | NDSFSF
2 FROM DATE_DIM D, STORE_SALES SS, 1847 928430
g 60 d d K = 14 d K *U-‘V \m_nn%
e WHERE d atefs 755759 - ate s Sumanageras DIMSS
g 40 and §s_|tem_sk = i_item_sk 102000 - Qﬁgg&fl
3 5 and i_manager_id =1 e I 04_year=2000 SS
S and d_year = 2000 |7§?é.9
o .16%
ES OU 20 40 60 4 | v~ D

% Relative Error

Figure 4: Vendor Site: Database Summary, Runtime Configuration Settings, Generation Quality and AQP Comparison

4.3 Dynamic Regeneration

In this segment of the demo, we explicitly demonstrate that the
regenerated database has absolutely no data stored in the physi-
cal tables — i.e. the “dataless” approach. Instead, using our tuple
generator, data is generated and supplied on-demand during query
execution. As an example of the final outcome, a few sample rows
for the initial columns of the ITEM table (highlighted in Figure 4)
are enumerated in Table 1.

Table 1: Sample Tuples

item_sk | i_manager_id i_class i_category
0 40 pop Music
917 91 dresses Women
938 0 accessories Men
963 1 reference | Electronics

4.4 Scenario Construction

Finally, Hydra also facilitates the vendor to pro-actively simulate
anticipated client environments, by constructing synthetic AQPs
through injecting cardinality annotations into the original client
AQPs. For such “what-if” scenarios, Hydra creates the regener-
ation summary after verifying the feasibility of the synthetic as-
signments. This feature is particularly useful for testing the ability
of the vendor’s engine to robustly handle boundary condition sce-
narios and stressed Big Data environments. In the demo, we will
model an extrapolated exabyte scenario to showcase this feature,
focusing on the efficient summary creation and the on-demand data
generation.

Acknowledgements.. We thank Huawei Technologies India and TCS In-
novation Labs for their valuable feedback and support in this project.

S. REFERENCES

[1] Big Data. en.wikipedia.org/wiki/Big_data

[2] Hydra Database Regenerator.
dsl.cds.iisc.ac.in/projects/HYDRA

[3] PostgreSQL. postgresgl.org/docs/9.3

[4] A. Arasu, R. Kaushik, and J. Li. Data Generation using
Declarative Constraints. In Proc. of ACM SIGMOD Conf.,
2011, pgs. 685-696.

[5] S. Ashoke and J. R. Haritsa. CODD: A Dataless Approach to

Big Data Testing. PVLDB, 8(12):2008-2011, 2015.

C. Binnig, D. Kossmann, E. Lo, and M. T. Ozsu. QAGen:

Generating Query-Aware Test Databases. In Proc. of ACM

SIGMOD Conf., 2007, pgs. 341-352.

[7] N. Bruno and S. Chaudhuri. Flexible Database Generators.
In Proc. of 31st VLDB Conf., 2005, pgs. 1097-1107.

[8] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J.
Weinberger. Quickly Generating Billion-Record Synthetic
Databases. In Proc. of ACM SIGMOD Conf., 1994, pgs.
243-252.

[9] E. Lo, N. Cheng, W. W. Lin, W.-K. Hon, and B. Choi.
MyBenchmark: generating databases for query workloads.
The VLDB Journal, 23(6):895-913, 2014.

[10] L. De Moura and N. Bjgrner. Z3: An efficient SMT solver. In
Proc. of TACAS Conf., 2008, pgs. 337-340.

[11] T. Rabl, M. Danisch, M. Frank, S. Schindler and
H. Jacobsen. Just can’t get enough - Synthesizing Big Data.
In Proc. of ACM SIGMOD Conf., 2015, pgs. 1457-1462.

[12] A. Sanghi, R. Sood, J. R. Haritsa, and S. Tirthapura. Scalable
and Dynamic Regeneration of Big Data Volumes. In Proc. of
21st EDBT Conf., 2018, pgs. 301-312.

[13] J. W. Zhang and Y. C. Tay. Dscaler: Synthetically Scaling A
Given Relational Database. PVLDB, 9(14):1671-1682, 2016.

[6

—_

