IceCube: Efficient Targeted Mining in Data Cubes

Shrutendra K Harsola
Indian Institute of Science
Bangalore 560012, INDIA

shrutendra@dsl.serc.iisc.ernet.in

Abstract—We address the problem of mining targeted asso-
ciation rules over multidimensional market-basket data. Here,
each transaction has, in addition to the set of purchased items,
ancillary dimension attributes associated with it. Based on these
dimensions, transactions can be visualized as distributed over
cells of an n-dimensional cube. In this framework, a targeted
association rule is of the form {X — Y} g, where R is a convex
region in the cube and X — Y is a traditional association rule
within region R.

We first describe the TOARM algorithm, based on classical
techniques, for identifying targeted association rules. Then,
we discuss the concepts of bottom-up aggregation and cubing,
leading to the CellUnion technique. This approach is further
extended, using notions of cube-count interleaving and credit-
based pruning, to derive the IceCube algorithm. Our experi-
ments demonstrate that IceCube consistently provides the best
execution time performance, especially for large and complex
data cubes.

Keywords-data cube; association rule mining; localized rules

I. INTRODUCTION

In this paper, we address the problem of targeted associ-
ation rule mining (TARM) over complex multi-dimensional
market-basket data cubes. Our goal here is to extend tra-
ditional association rule mining to capture targeted rules
that apply to specific customer segments. Thus the minimum
support for rules in a particular segment is now a percentage
of the number of transactions that map to that segment,
rather than the total number of transactions over all the seg-
ments. To model this scenario, we consider multidimensional
market-basket data in which each transaction has, in addition
to the set of purchased items, ancillary dimension attributes
associated with it. Based on these dimension attributes,
transactions can be visualized as distributed over cells of a
data cube, with customer segments corresponding to convex
regions in the multi-dimensional space.

A sample data cube with time and location dimensions
is shown in Figure 1. The dimension attributes are grouped
into tree-structured containment hierarchies, where cities are
grouped into states and then countries, while quarters are
grouped into years. Transactions are assigned to cells based
on the values of their dimensional attributes, and our goal is
to identify association rules that are applicable to localized
regions. For example, a rule such as:

{raincoat — umbrella}gs washington (sup = 5%, conf = 70%)

Prasad M Deshpande
IBM Research India
Bangalore 560045, INDIA
prasdesh@in.ibm.com

Jayant R Haritsa
Indian Institute of Science
Bangalore 560012, INDIA
haritsa@dsl.serc.iisc.ernet.in

indicates that umbrellas are often bought in conjunction with
raincoats during the fall season in Washington State, USA.

Location

All
country USA Germany
state California Washington [
city Fremont Sacramento Seattle Pullman = = = =
Ql
Q2
Time 2010 Q3 Rj l
Q4
All
|
1
2011 1
year quarter
Figure 1. Example 2D Mining Cube

Prior Work. In the literature, there is a substantial body
of work on rule mining over data cubes (e.g. [8], [12],
[71, [31, [9]). However, most of these prior efforts mine
for inter-dimensional rules over aggregated data in a cube
— for example, they discover rules of the form ‘2011 —
Washington” on the time and location dimensions. While
a few do mine for intra-dimensional rules like us, they
typically employ a single global support threshold at all
levels in the dimension hierarchy. This model enables them
to use variants of the classical Apriori mining algorithm [2],
but makes it infeasible to discover targeted rules except by
taking recourse to the computationally inefficient strategy
of relaxing the minimum support to a much lower value.
Using different supports at different levels in the dimension
hierarchy has been suggested in [5], [12], but they mine each
level in a separate pass, leading to repeated counting of the
same itemset over multiple levels.

Targeted ARM. Mining for localized rules with region-
specific support counts is a difficult problem since the
fundamental Apriori monotonicity property — all subsets of a
frequent itemset must also be frequent — no longer holds. For
example, with reference to Figure 1, the itemsets (Washing-

ton, raincoat) and (Q3, raincoat) may lack 1% support in the
individual regions corresponding to (Washington) and (Q3),
but (Washington, Q3, raincoat) can still retain 1% support in
the (Washington, Q3) region (the shaded box in Figure 1).

One obvious mechanism to generate such localized pat-
terns is to include the dimensional attributes as part of the
transactional schema (e.g. [10], [5], [12]), and mine with the
support threshold reduced to the value required by the most
thinly-populated region. However, this approach is computa-
tionally impractical due to the large number of spurious pat-
terns generated and processed in the more populous regions.
Therefore, we instead take recourse to a bottom-up method
similar to the TOARM approach [11]. In this method, the
frequent itemsets in individual cells are initially computed,
and subsequently aggregated to compute the itemsets for the
regions. We then exploit the cube operator to avoid counting
the same itemset repeatedly over multiple regions, leading to
the CellUnion algorithm. Limiting the redundant counting
of itemsets is further improved through incorporating an
interleaved counting-cubing technique and a credit-based
pruning mechanism, resulting in the IceCube algorithm. An
experimental evaluation over a representative set of synthetic
datasets shows that IceCube consistently provides superior
execution performance, especially for large and complex
data cubes.

In the rest of the paper, we focus solely on targeted mining
of frequent itemsets, since generating association rules from
these frequent itemsets is a straightforward task [1].

II. PROBLEM DEFINITION

We consider market-basket data in which transactions
possess ancillary dimensional information. That is, each
transaction is of the form T = {iy,...,ig;d1,...,dn},
where i1, ...,1% are the market-basket items, and d1, ..., d,
are the values of the dimensional attributes. For example,
{raincoat, umbrella, shoes; Q3, Seattle} is a transaction with
three purchased items: raincoat, umbrella and shoes, while
Q3 and Seattle are the values of the time and location
dimensions, respectively.

Consider a cube constructed over n dimensions, with each
dimension j having an associated tree hierarchy, the tree
node values comprising its domain, D;. As a case in point,
the domain of location in Figure 1 is {USA, California, Fre-
mont, Sacramento, Washington, Seattle, Pullman, Germany,
...}. Let D be the cartesian product of the dimensional
domains, that is, D = D; X Dy X --- x D,. Then, any
C = (c1,¢2,...,¢,) € D defines a cell in the cube, if
Vj,c; is a leaf in the 4" dimension’s hierarchy. Further, any
R = (r1,r2,...,7) € D defines a region in the cube, if
3j s.t. r; is not a leaf in the 4t dimension’s hierarchy. For
example, R; = (Q2, California) defines a region containing
two cells: (Q2, Fremont) and (Q2, Sacramento).

Let minsup be the user-specified minimum support
threshold, expressed as a percentage of the transaction

population over which it is evaluated. Our goal is to identify
all the rargeted frequent patterns of the form {I} g, where
R is a region in the cube and [is a frequent pattern in the
subset of transactions belonging to the region defined by R.
For example, if there are 100000 transactions in region (Q3,
Washington), items raincoat and umbrella appear together
in 5000 of these transactions, and minsup is 1%, then
the targeted frequent itemset corresponds to the example
presented in the Introduction:

{raincoat, umbrella} {time: Q3, location: Washington} (su» =5%)
Note that when R 1s the entire cube, then we obtain the
traditional global mining results.

In the sequel, we will use the notation Lj(C;) to denote
(locally) frequent itemsets of size k in cell C;.

III. CUBE MINING ALGORITHMS

In this section, we describe a suite of three mining
algorithms for producing targeted region-specific association
rules — these algorithms, titled TOARM, CellUnion and
IceCube, cover a broad spectrum of design choices, and are
quantitatively compared on a variety of performance metrics
in the experimental evaluation of Section IV.

A. TOARM Algorithm

A property of the cube that is straightforward to observe
is that an itemset can be frequent in a region only if it is
frequent in atleast one of the cells in that region. This prop-
erty has been used previously in the TOARM [11] approach
for online association rule mining over regions. To compute
the frequent itemsets for a region R, the TOARM algorithm
computes the union, Ug, of the frequent itemsets over all
individual cells in the region R. Any itemset frequent in the
region must necessarily belong to this set. The algorithm
then counts the itemsets in g over all the cells in R
and prunes the itemsets that do not satisfy the minimum
support criterion. A straightforward adaption of the TOARM
algorithm for our problem is to repeatedly invoke TOARM
for each region R in the cube. The pseudocode for this
approach is listed in Figure 2.

Algorithm TOARM:
For each region R in the cube
e Let C1,C5,...,C), be the cells contained in region R
o Compute union: Compute union of local frequent item-
sets from all cells contained in R.
- Ur = L(Cl) U---u L(Cm)
e Count: Count all the itemsets of U/r over region R i.e.
VI € Ug, compute count(I, R).
o Filter and generate output: ¥I € U,
— if count(I,R) > ntrans(R) * minsup, output
targeted frequent itemset {I}r

Figure 2. Algorithm TOARM

Algorithm CellUnion:
1) Compute union: Compute union of locally frequent
itemsets from all cells of the cube.
e U=L(C1)U---UL(Cn)
2) Count: Count all the itemsets of I/ within each cell, i.e.
VI € U and V cells C, compute count(I,C).
3) Cube: For all itemsets in U, recursively aggregate cell
level counts to obtain region level counts.
o This provides VI € U and V regions R, the value
of count(I, R).
4) Filter and generate output: Y1 € U,V R
e if count(I,R) > ntrans(R) x minsup, output
targeted frequent itemset {I}r

Figure 3. Algorithm CellUnion

B. CellUnion Algorithm

TOARM counts an itemset separately for each region,
thus leading to repeated counting. Instead, we could take the
union, U/, of the frequent itemsets over all the cells in the
cube. A frequent itemset over any region of the cube must
necessarily be present in I/. We first count the itemsets in
U over all cells in the cube, after which the counts for any
region can be simply computed by aggregating the counts
from cells contained in the region.

The pseudocode of this CellUnion algorithm is shown
in Figure 3. Here, Step 2 which counts itemsets can be
efficiently achieved using a trie data structure. Further, Step
3 can also be computed efficiently using a cubing algorithm.
Now, note that only Step 2 is dependent on both the
transaction cardinality and the number of frequent itemsets
in each cell, whereas all other steps are solely dependent
on the frequent itemset population in each cell. However, it
is still possible that the initial union sizes may turn out to
be extremely large, resulting in inflated counting overheads.
We attempt to address this issue in the next algorithm.

C. IceCube Algorithm

The IceCube algorithm (Interleaved Credit Elimination
Cube Mining Algorithm) is based on two ideas, described
below: 1) credit-based elimination or pruning of candidate
itemsets; and 2) interleaving of counting and cubing pro-
cesses (in contrast to the previous algorithms where cubing
and counting were two separate and distinct phases).

Credit-based Pruning. We use the concept of credit, as
defined recently in [4]. Specifically, for each cell, we have
the set of frequent itemsets and their counts. Let sup(C)
be the absolute support threshold for cell C' i.e. sup(C) =
minsup * ntrans(C). We now define the credit of an

itemset [in cell C as:
count(I,C) — sup(C),
credit(I,C) = if I is frequent in cell C

-1, otherwise

That is, the credit of an itemset I in cell C' indicates the extra
count of I above the support threshold in that cell. The credit
will be zero or positive for frequent itemsets in that cell,
and negative for non-frequent itemsets. Since we don’t have
the actual counts of non-frequent itemsets, we assume the
maximum possible count which is (sup(C)—1). Hence, the
credit for non-frequent itemsets is taken as —1. Extending
the notion of credit from cells to regions, the credit of an
itemset I in region R is the aggregate credit of I over all
cells C contained in region R, that is,

credit(I, R) = Z credit(I,C)
CeR

Analogous to cells, we can prune from any region all
candidate itemsets whose credit is negative in that region.
Further, we need to count an infrequent itemset I in a cell
C, only if there exists a region R enclosing C' in which [
can possibly be frequent. Step 1 in the pseudocode of the
IceCube algorithm shown in Figure 4 describes how to use
credit-based pruning to compute the final set of “survivor
itemsets”, denoted S(C), to be counted in each cell C. So,
instead of counting the whole union U/ in each cell, we
merely need to count the cell-specific survivor subsets.

Interleaved Counting and Cubing. Here, the two proce-
dures of counting and cubing are carried out in an interleaved
fashion, iterating over the itemset length. The idea is that it
is necessary to count an itemset of length k in a cell C' only
if all its subsets of length (k —1) are frequent in at least one
region containing the cell C. More concretely, in each itera-
tion k, we first generate and count the candidate k-itemsets,
after which these counts are cubed to generate frequent k-
itemsets over all regions. Interleaving the two phases ensures
that the number of candidates evaluated during each pass is
reduced since frequent itemset information is available at
the region level (unlike CellUnion, where frequent itemset
information was only available at the cell level).

We now define the notion of region k-set of a cell: The
region k-set of a cell C, denoted Ry (C), includes all k-
itemsets that are frequent in some region enclosing cell C.
Armed with this notion, the following lemma (proof in [6])
is useful in pruning the itemsets to be counted in each cell,
as shown in Step 2 of Figure 4.

Lemma 1. A k-itemset Iy, needs counting in cell C' only if

1) I € Si(C), where Si(C) is the subset of S(C)
containing itemsets of length k, and
2) All (k — 1)-subsets of I, € Ry_1(C)

D. IceCube Example

We now present a simple example to help illustrate the
working of the IceCube algorithm. Specifically, consider
a cube containing 4 cells, C; through C4, as shown in
Figure 5. The cube has 5 associated regions: R; con-

Algorithm IceCube:

1) Generate survivor sets for each cell of the cube using
credit-based pruning mechanism

o Compute cell union:

U= L(C1) U--- UL(CN)

o Compute cell level credits: In each cell, compute
credits for all itemsets in U —

VI € Y and V cells C, credit(I,C).

o Cube to get region credits: Recursively aggregate
cell credits to obtain region credits —
VI € U and Y regions R, credit(I, R).

o Identify survivor itemsets: In each cell, only re-
tain candidate itemsets with non-negative credits in
some enclosing region —

VI € U and V regions R, if credit(I,R) > 0,
then add I to S(C) V cells C contained in region
R, where S(C') is the survivor set for cell C.

2) TIterate over itemset length. Pass k is as follows:

o For each cell C

- If (k =1), then candy(C) = Si(C)
else (use Lemma 1)
* Compute candi(C) from Rj_1(C) using
Apriori-gen [2].
* Prune using survivor sets —
candy (C) = cand,(C) N Sk(C)
— Count all itemsets of candy(C) within cell C

o Cube: Recursively aggregate cell counts of itemsets
to obtain counts over all regions.

o Filter and generate output: if count(I,R) >
ntrans(R) * minsup, then
— Output targeted frequent itemset {I}r
- Add I to the region sets Ry (C) of all cells C

contained in region R.

Figure 4. Algorithm IceCube

nzz/\n

c;: Cy: I,I, I,I,
M2 | 1.1,(8) | I.I5(7) :> I,I, I,I,

Ny

Cs: Cy: I,I, I,I,

ny; | I,I5(4) I, 1,1,

23

(a) Local frequent 2-itemsets, L,(C;) (b) Survivor 2-itemsets, $,(C))

Figure 5. Step 1 of IceCube: Credit-based Survivor Sets

taining (C1,Cs); Ro containing (C3,Cy4); Rs contain-
ing (Cy,C3); R4 containing (Cy,Cy4); and Rs containing
(C1,C4,C5,Cy). Assume that each individual cell stores
100 transactions and that the mining support threshold is
4%.

For this scenario, the locally frequent 2-itemsets along
with their counts are enumerated in Figure 5(a). The
credits computed for these itemsets are credit(l;1s,Ch)
= 4; credit(I1I3,C3) = 3; credit(Ials,C3) = 0; with
all other credits being —1. Aggregating the cell-level
credits over regions results in the following non-negative

assignments: credit(I1Is, R1) = 3; credit(l1l2, R3)
= 3; credit(I1Iz,Rs) = 1; credit(liIs,R1) = 2;
credit(I1 I3, Ry) = 2; and credit(I I3, Rs) = 0. Mapping
these regions back to the constituent cells produces the
survivor itemsets shown in Figure 5(b). Note that itemset
1115, although frequent in cell C's, is eliminated from being
counted in the enclosing regions.

The cell-level counts of the individual items are given
in Figure 6(a). Aggregating them generates the following
region-level frequent l-items: Ry = {I;(15), I2(8), I5(8)},
Ry ={}, Ry = {11(8), 12(12)}, Ry = {I3(8)}, R5 = {}.
Mapping these frequent 1-items back to the cells generates
region 1-sets as shown in Figure 6(b). Then, applying
the Apriori-gen function generates the cell-level candidates
shown in Figure 6(c). Intersecting these candidates with the
corresponding survivor sets (Figure 5(b)) delivers the final
set of candidates counted by IceCube, shown in Figure 6(d).

Overall, in this example, CellUnion would count a total
of 3*4=12 itemsets, whereas IceCube counts only 5.

Implementation Details. Thus far, we have described only
the logical construction of the various cube mining algo-
rithms. Due to space restrictions, we refer the reader to
[6] for the implementation details related to itemset support
counting, candidate generation, and cubing.

IV. EXPERIMENTAL EVALUATION

In this section, we describe the experimental framework
under which the various targeted mining algorithms of
Section III were evaluated, and sample results obtained
under this framework. A more comprehensive set of results
is available in [6].

Data Cube Generation. The IBM Quest Generator [13]
is a popular tool for generating synthetic market-basket
databases. However, it does not include dimension attributes,
and we therefore had to augment the generator to provide
these additional semantics — the details of this process are
available in [6].

We used this augmented generator to generate five syn-
thetic datasets, D1 through D5, each containing ten million
transactions, with varying number of dimensions, hierarchies
and fanouts. The statistical characteristics of these datasets
are shown in Table I, and cover a wide spectrum of region
cardinalities ranging from 87 for D1 to 1458 for D5. While
these cube sizes may appear small compared to traditional
data warehousing scenarios, we expect that the dimensions
will typically be rolled up before targeted mining is initiated.
For example, in the fime dimension, it is unlikely to be
useful to mine rules at the lowest granularity such as a
minute. Instead, rollups to higher levels, such as a month or a
quarter, are more likely to be the norm. Finally, to determine
a reasonable support threshold for mining, a thumb rule of
minsup = 0.2 x db_density was used, where db_density

I,(8) | I, (7) I, I, I.I, I,I, 1,1, 1.1,
I,(8) |I,(0) I, I, I,I, I,I. I,I, I,I,
I,(0) |I.(8) |:> I, I, |:> 1,1, |I,I, |:>

I,(0) |I, (O) I, I, I,I, I,I,

I,(4) |I,(0) I,

I;(4) |I;(0)
(a) Counts of 1-items (b)Region 1-sets, Ry(Cy) (c) Cand,(Cy) (d) Cand,(Cy N S,(C)

Figure 6.

refers to the density of the market-basket data computed over
the entire cube.

Data No. Avg No. Dim Fan- No. No. Cube
Cube | trans | length | dim | levels out cells | Regions | Density
D1 10M 8 2 3 3 81 87 0.013
D2 10M 8 2 3 4 256 185 0.023
D3 10M 8 2 3 5 625 336 0.039
D4 10M 8 2 4 3 729 871 0.052
D5 10M 8 3 3 3 729 1468 0.038

Table 1

DATASET CHARACTERISTICS

Computational Platform. All our cube mining algorithms
were implemented in C++, and their evaluation was con-
ducted on a Sun Ultra 24 quad core machine with 8 GB of
RAM, running on the Ubuntu 10 operating system.

A. Results

We present in Figure 7 the log-scale execution times of the
various cube mining algorithms, with regard to computing
targeted association rules on the five synthetic datasets.

We first observe here that the classical algorithm,
TOARM, is extremely inefficient, taking several tens of
minutes or even hours to complete its execution. This poor
performance is a consequence of the redundancy arising out
of computing localized itemsets afresh for each region in the
cube, as well as processing a large number of candidates that
eventually turn out to be infrequent.

Secondly, we see that the CellUnion algorithm notice-
ably reduces the computational overheads as compared to
TOARM, because it carries out the counting for all regions
together, making the subsequent cubing pass very efficient.
However, its running time increases sharply with the cube
complexity, since the union of frequent itemsets sharply
expands with the increased number of cells. This results in
an excessive number of candidates being wastefully counted.

Finally, turning to IceCube, we find that it consistently
provides the best performance across all the datasets. More
importantly, its performance differential with respect to the
other algorithms increases with cube complexity, with its
performance being more than an order-of-magnitude better
than CellUnion for datasets D3, D4 and DS5.

Step 2 of IceCube: Region Sets and Cubing

100000
3

10000

]

£
T 1000 {f ETOARM
v

g" ! m CellUnion
2 100 1y B lceCube
£

5

5 10 4+

3

o
b

I . B e ot
DI(87) D2(185) D3(336) D4(871) D5(1468)
Dataset (no. of regions)
Figure 7. Execution Time for Mining Targeted Rules

Candidates Counted. To better understand the execution
time behavior of the various algorithms, we explicitly eval-
uated the number of candidates that they each counted,
normalized to the number counted by TOARM. This statistic
is shown on a log-scale in Figure 8, and the interesting
observation here is that the number counted by IceCube is
orders of magnitude less than that of TOARM and, in fact, an
order of magnitude less than even that counted by CellUnion
for the more complex cubes! This statistic clearly highlights
the potent power of the credit-based pruning and count-cube
interleaving strategies that form the core of IceCube.

Region Processing Time. To assess the practicality of the
algorithms in absolute terms, we have shown in Figure 9
the time taken per region across the different datasets. We
observe here that for IceCube, the average processing time
per region is less than 4 seconds for all datasets and actually
goes down to sub-second times for the complex cubes.

Memory Consumption. Finally, while so far only the
time aspect was discussed, we also monitored the peak
memory consumption overheads of the various algorithms.
We found that the memory occupancy of all three algorithms
is comparable, IceCube using marginally less than the other
algorithms. The consumption was related to the data cube
complexity, with D5 requiring a little over 1 GB of space.

Targeted Mining. To quantify the number of targeted pat-

100 -
E
Y
v
a BTOARM
E m CellUnion
210 4
3 BlceCube
(")
“
L
b
=]
o
c
S
5
g I
DI1(87) D2(185) D3(336) D4(871) D5(1468)
Dataset (no. of regions)
Figure 8. Number of Candidates Counted
25
2
—20
5
=
g
85 | - o & TOARM
= i :
% G m CellUnion
@ =
Z10 4-E
@ e 8 lceCube
£
[= i
s
- -
o0 e = _E _E
D1(87) D2(185) D3(336) D4@871) D5(1468)

Dataset (no. of regions)

Figure 9. Average Processing Time per Region

terns that are discovered, we measured the distribution of
frequent itemsets over the region space — a sample result for
dataset D3 is shown in Figure 10. Here, the rightmost bar
(625 cells) corresponds to the entire cube and shows what
traditional association rule mining would have produced — in
this case, 73 frequent itemsets. But, as we move leftwards in
the graph, the region sizes become progressively smaller, and
we observe that the number of frequent itemsets increases
substantially, reaching an average level of as many as 360
itemsets for regions with five constituent cells. This clearly
demonstrates that there are significant data mining patterns
that become visible only under localized observation, justi-
fying the motivation for targeted mining.

V. CONCLUSIONS

We extended traditional ARM to computing targeted rules
in the framework of multi-dimensional data cubes. The
primary hurdle here is that since the support thresholds are
localized to individual regions, the classical monotonicity
properties that are usually leveraged to deliver efficiency no
longer hold. We addressed this challenge by developing the
IceCube algorithm, which efficiently achieves the new min-
ing objective by bringing together and integrating notions

400 +

360
14}
2
£ 300 -
2 267
I
f=
0)
3
$ 200
- 173
bai
6
~
GJ
£
3 100 - 73
()
g
Q
< 04 . . .
5 25 125 625
Region size (in terms of number of cells)
Dataset D3

Figure 10. Number of Targeted Itemsets

of cubing, count-cube interleaving and credit-based pruning.
Our experimental results over a representative range of data
cubes indicate that IceCube provides excellent performance,
in both absolute and relative terms, as compared to the prior
art. The primary underlying reason is that the interleaving
and pruning strategies reduce, by an order of magnitude or
more, the redundant counting of itemsets, In our future work,
we intend to investigate the extension of the ideas proposed
here to other data mining patterns.

REFERENCES

[1] R. Agrawal, T. Imielinski, and A. N. Swami, “Mining associa-
tion rules between sets of items in large databases,” SIGMOD
Conf., 1993.

[2] R. Agrawal and R. Srikant, “Fast algorithms for mining
association rules in large databases,” VLDB Conf., 1994.

[3] B.-C. Chen, L. Chen, Y. Lin, and R. Ramakrishnan, “Predic-
tion cubes,” VLDB Conf., 2005.

[4] M. Das, D. P, P. Deshpande, and R. Kannan, “Fast rule mining
over multi-dimensional windows,” SDM Conf., 2011.

[5] J. Han and Y. Fu, “Discovery of multiple-level association
rules from large databases,” VLDB Conf., 1995.

[6] S. Harsola, P. Deshpande and J. Haritsa, “Targeted Associ-
ation Rule Mining in Data Cubes,” Tech. Rep. TR-2012-03,
Database Systems Lab, Indian Institute of Science, 2012. http:
//dsl.serc.iisc.ernet.in/publications/report/TR/TR-2012-03.pdf

[7] T. Imielinski, L. Khachiyan, and A. Abdulghani, “Cube-
grades: Generalizing association rules,” Data Mining and
Knowledge Discovery, 6 (3), 2002.

[8] M. Kamber, J. Han, and J. Chiang, “Metarule-guided mining
of multi-dimensional association rules using data cubes,”
KDD Conf., 1997.

[9] R. B. Messaoud, S. L. Rabaséda, O. Boussaid, and R. Mis-
saoui, “Enhanced mining of association rules from data
cubes,” DOLAP Conf., 2006.

[10] R. Srikant and R. Agrawal, “Mining generalized association
rules,” VLDB Conf., 1995.

[11] C.-Y. Wang, S.-S. Tseng, and T.-P. Hong, “Flexible online
association rule mining based on multidimensional pattern
relations,” Information Sciences, 176 (12), 2006.

[12] H. Zhu, “On-line analytical mining of association rules,”
Master’s Thesis, Simon Fraser University, 1998.

[13] IBM Quest market-basket synthetic data generator. http://
www.cs.nmsu.edu/~cgiannel/assoc_gen.html

