
LexEQUAL: Supporting Multiscript Matching
in Database Systems

�

A. Kumaran and Jayant R. Haritsa

Database Systems Lab, SERC/CSA
Indian Institute of Science, Bangalore 560012, INDIA�
kumaran,haritsa � @dsl.serc.iisc.ernet.in

Abstract. To effectively support today’s global economy, database systems need
to store and manipulate text data in multiple languages simultaneously. Current
database systems do support the storage and management of multilingual data,
but are not capable of querying or matching text data across different scripts. As
a first step towards addressing this lacuna, we propose here a new query oper-
ator called LexEQUAL, which supports multiscript matching of proper names.
The operator is implemented by first transforming matches in multiscript text
space into matches in the equivalent phoneme space, and then using standard
approximate matching techniques to compare these phoneme strings. The al-
gorithm incorporates tunable parameters that impact the phonetic match quality
and thereby determine the match performance in the multiscript space. We eval-
uate the performance of the LexEQUAL operator on a real multiscript names
dataset and demonstrate that it is possible to simultaneously achieve good recall
and precision by appropriate parameter settings. We also show that the operator
run-time can be made extremely efficient by utilizing a combination of q-gram
and database indexing techniques. Thus, we show that the LexEQUAL operator
can complement the standard lexicographic operators, representing a first step
towards achieving complete multilingual functionality in database systems.

1 Introduction
The globalization of businesses and the success of mass-reach e-Governance solutions
require database systems to store and manipulate text data in many different natural
languages simultaneously. While current database systems do support the storage and
management of multilingual data [13], they are not capable of querying or matching
text data across languages that are in different scripts. For example, it is not possible
to automatically match the English string Al-Qaeda and its equivalent strings in other
scripts, say, Arabic, Greek or Chinese, even though such a feature could be immensely
useful for news organizations or security agencies.

We take a first step here towards addressing this lacuna by proposing a new query
operator – LexEQUAL – that matches proper names across different scripts, hereafter
referred to as Multiscript Matching. Though restricted to proper names, multiscript
matching nevertheless gains importance in light of the fact that a fifth of normal text
�

A poster version of this paper appears in the Proc. of the �����
	 IEEE Intl. Conf. on Data Engi-
neering, March 2004.

corpora is generic or proper names [16]. To illustrate the need for the LexEQUAL
operator, consider Books.com, a hypothetical e-Business that sells books in different
languages, with a sample product catalog as shown in Figure 11.

Fig. 1. Multilingual Books.com

select Author, Title from Books
where Author = ’Nehru’

or Author = ’ ’ or Author = ’ ’ or Author = ’ ’

Fig. 2. SQL:1999 Multiscript Query

In this environment, an SQL:1999 compliant query to retrieve all works of an au-
thor (say, Nehru), across multiple languages (say, in English, Hindi, Tamil and
Greek) would have to be written as shown in Figure 2. This query suffers from a va-
riety of limitations: Firstly, the user has to specify the search string Nehru in all the
languages in which she is interested. This not only entails the user to have access to
lexical resources, such as fonts and multilingual editors, in each of these languages to
input the query, but also requires the user to be proficient enough in all these languages,
to provide all close variations of the query name. Secondly, given that the storage and
querying of proper names is significantly error-prone due to lack of dictionary support
during data entry even in monolingual environments [10], the problem is expected to
be much worse for multilingual environments. Thirdly, and very importantly, it would
not permit a user to retrieve all the works of Nehru, irrespective of the language of
publication. Finally, while selection queries involving multi-script constants are sup-
ported, queries involving multi-script variables, as for example, in join queries, cannot
be expressed.

The LexEQUAL operator attempts to address the above limitations through the
specification shown in Figure 3, where the user has to input the name in only one
language, and then either explicitly specify only the identities of the target match lan-
guages, or even use * to signify a wildcard covering all languages (the Threshold
parameter in the query helps the user fine-tune the quality of the matched output, as
discussed later in the paper). When this LexEQUAL query is executed on the database
of Figure 1, the result is as shown in Figure 4.

1 Without loss of generality, the data is assumed to be in Unicode [25] with each attribute value
tagged with its language, or in an equivalent format, such as Cuniform [13].

select Author, Title from Books
where Author LexEQUAL ’Nehru’ Threshold 0.25

inlanguages
�
English, Hindi, Tamil, Greek �

Fig. 3. LexEQUAL Query Syntax

Fig. 4. Results of LexEQUAL Query

Our approach to implementing the LexEQUAL operator is based on transforming
the match in character space to a match in phoneme space. This phonetic matching
approach has its roots in the classical Soundex algorithm [11], and has been previously
used successfully in monolingual environments by the information retrieval commu-
nity [28]. The transformation of a text string to its equivalent phonemic string repre-
sentation can be obtained using common linguistic resources and can be represented
in the canonical IPA format [9]. Since the phoneme sets of two languages are seldom
identical, the comparison of phonemic strings is inherently fuzzy, unlike the standard
uniscript lexicographic comparisons, making it only possible to produce a likely, but
not perfect, set of answers with respect to the user’s intentions. For example, the record
with English name Nero in Figure 1, could appear in the output of the query shown
in Figure 3, based on threshold value setting. Also, in theory, the answer set may not
include all the answers that would be output by the equivalent (if feasible) SQL:1999
query. However, we expect that this limitation would be virtually eliminated in practice
by employing high-quality Text-to-Phoneme converters.

Our phoneme space matches are implemented using standard approximate string
matching techniques. We have evaluated the matching performance of the LexEQUAL
operator on a real multiscript dataset and our experiments demonstrate that it is possible
to simultaneously achieve good recall and precision by appropriate algorithmic param-
eter settings. Specifically, a recall of over 95 percent and precision of over 85 percent
were obtained for this dataset.

Apart from output quality, an equally important issue is the run-time of the LexE-
QUAL operator. To assess this quantitatively, we evaluated our first implementation of
the LexEQUAL operator as a User-Defined Function (UDF) on a commercial database
system. This straightforward implementation turned out to be extremely slow – how-
ever, we were able to largely address this inefficiency by utilizing one of Q-Gram fil-
ters [6] or Phoneme Indexing [27] techniques that inexpensively weed out a large num-
ber of false positives, thus optimizing calls to the more expensive UDF function. Further
performance improvements could be obtained by internalizing our “outside-the-server”
implementation into the database engine.

In summary, we expect the phonetic matching technique outlined in this paper to
effectively and efficiently complement the standard lexicographic matching, thereby
representing a first step towards the ultimate objective of achieving complete multilin-
gual functionality in database systems.

1.1 Organization of this Paper

The rest of the paper is organized as follows: The scope and issues of multiscript match-
ing, and the support currently available, are discussed in Section 2. Our implementation
of the LexEQUAL operator is presented in Section 3. The match quality of LexEQUAL
operator is discussed with experimental results in Section 4. The run-time performance
of LexEQUAL and techniques to improve its efficiency are discussed in in Section 5.
Finally, we summarize our conclusions and outline future research avenues in Section 6.

2 Multiscript Query Processing

In multiscript matching, we consider the matching of text attributes across multiple lan-
guages arising from different scripts. We restrict our matching to attributes that contain
proper names (such as attributes containing names of individuals, corporations, cities,
etc.) which are assumed not to have any semantic value to the user, other than their vo-
calization. That is, we assume that when a name is queried for, the primary intention of
the user is in retrieving all names that match aurally, in the specified target languages.
Though restricted to proper names, multiscript matching gains importance in light of
the fact that a fifth of normal text corpora is generic or proper names [16].

A sample multiscript selection query was shown earlier in Figure 3. The LexE-
QUAL operator may also be used for equi-join on multiscript attributes, as shown in
the query in Figure 5, where all authors who have published in multiple languages are
retrieved.

select Author from Books B1, Books B2
where B1.Author LexEQUAL B2.Author Threshold 0.25
and B1.Language <> B2.Language

Fig. 5. LexEQUAL Join Syntax

The multiscript matching we have outlined here is applicable to many user domains,
especially with regard to e-Commerce and e-Governance applications, web search en-
gines, digital libraries and multilingual data warehouses. A real-life e-Governance ap-
plication that requires a join based on the phonetic equivalence of multiscript data is
outlined in [12].

2.1 Linguistic Issues

We hasten to add that multiscript matching of proper names is, not surprisingly given the
diversity of natural languages, fraught with a variety of linguistic pitfalls, accentuated

by the attribute level processing in the database context. While simple lexicographic and
accent variations may be handled easily as described in [14], issues such as language-
dependent vocalizations and context-dependent vocalizations, discussed below, appear
harder to resolve – we hope to address these issues in our future work.

Language-dependent Vocalizations A single text string (say, Jesus) could be differ-
ent phonetically in different languages (“Jesus” in English and “Hesus” in Spanish).
So, it is not clear when a match is being looked for, which vocalization(s) should
be used. One plausible solution is to take the vocalization that is appropriate to the
language in which the base data is present. But, automatic language identification
is not a straightforward issue, as many languages are not uniquely identified by
their associated Unicode character-blocks. With a large corpus of data, IR and NLP
techniques may perhaps be employed to make this identification.

Context-dependent Vocalizations In some languages (especially, Indic), the vocaliza-
tion of a set of characters is dependent on the surrounding context. For example,
consider the Hindi name Rama. It may have different vocalizations depending on
the gender of the person (pronounced as Rāmā for males and Ramā for females).
While it is easy in running text to make the appropriate associations, it is harder in
the database context, where information is processed at the attribute level.

2.2 State of the Art

We now briefly outline the support provided for multiscript matching in the database
standards and in the currently available database engines.

While Unicode, the multilingual character encoding standard, specifies the seman-
tics of comparison of a pair of multilingual strings at three different levels [3]: using
base characters, case, or diacritical marks, such schemes are applicable only between
strings in languages that share a common script – comparison of multilingual strings
across scripts is only binary. Similarly, the SQL:1999 standard [8, 17] allows the spec-
ification of collation sequences (to correctly sort and index the text data) for individual
languages, but comparison across collations is binary.

To the best of our knowledge, none of the commercial and open-source database
systems currently support multiscript matching. Further, with regard to the specialized
techniques proposed for the LexEQUAL operator, their support is as follows:

Approximate Matching Approximate matching is not supported by any of the com-
mercial or open-source databases. However, all commercial database systems al-
low User-defined Functions (UDF) that may be used to add new functionality to
the server. A major drawback with such addition is that UDF-based queries are not
easily amenable to optimization by the query optimizer.

Phonetic Matching Most database systems allow matching text strings using pseudo-
phonetic Soundex algorithm originally defined in [11], primarily for Latin-based
scripts.

In summary, while current databases are effective and efficient for monolingual data
(that is, within a collation sequence), they do not currently support processing multilin-
gual strings across languages in any unified manner.

2.3 Related Research

To our knowledge, the problem of matching multiscript strings has not been addressed
previously in the database research literature. Our use of a phonetic matching scheme
for multiscript strings is inspired by the successful use of this technique in the mono-
script context by the information retrieval and pharmaceutical communities. Specifi-
cally, in [23] and [28], the authors present their experience in phonetic matching of
uniscript text strings, and provide measures on correctness of matches with a suite of
techniques. Phonemic searches have also been employed in pharmaceutical systems
such as [15], where the goal is to find look-alike sound-alike (LASA) drug names.

The approximate matching techniques that we use in the phonetic space are being
actively researched and a large body of relevant literature is available (see [19] for a
comprehensive survey). We use the well known dynamic programming technique for
approximate matching and the standard Levenshtein edit-distance metric to measure
the closeness of two multiscript strings in the phonetic space. The dynamic program-
ming technique is chosen for its flexibility in simulating a wide range of different edit
distances by appropriate parameterization of the cost functions.

Apart from being multiscript, another novel feature of our work is that we not only
consider the match quality of the LexEQUAL operator (in terms of recall and precision)
but also quantify its run-time efficiency in the context of a commercial state-of-the-art
database system. This is essential for establishing the viability of multilingual matching
in online e-commerce and e-governance applications. To improve the efficiency of Lex-
EQUAL, we resort to Q-Gram filters [6], which have been successfully used recently
for approximate matches in monolingual databases to address the problem of names
that have many variants in spelling (example, Cathy and Kathy or variants due to
input errors, such as Catyh). We also investigate the phonetic indexes to speed up the
match process – such indexes have been previously considered in [27] where the pho-
netic closeness of English lexicon strings is utilized to build simpler indexes for text
searches. Their evaluation is done with regard to in-memory indexes, whereas our work
investigates the performance for persistent on-disk indexes. Further, we extend these
techniques to multilingual domains.

3 LexEQUAL: Multiscript Matching Operator
In this section, we first present the strategy that we propose for matching multilingual
strings, and then detail our multiscript matching algorithm.

3.1 Multiscript Matching Strategy

Our view of ontology of text data storage in database systems is shown in Figure 6.
The semantics of what gets stored is outlined in the top part of the figure, and how
the information gets stored in the database systems is provided by the bottom part of
the figure. The important point to note is that a proper name, which is being stored
currently as a character string (shown by the dashed line) may be complemented with
a phoneme string (shown by the dotted line), that can be derived on demand, using
standard linguistic resources, such as Text-To-Phoneme (TTP) converters.

Phonetic Matching
(Proposed)

Text Matching
(Existing)

Normalized
Alphabet

Encoding Normalized
Alphabet

Encoding

Text Data

Aural Visual

Audio Grapheme Image/Video

Representation Domain

Semantic Domain

Documents

Phoneme

String−Values

Proper NameOther Attributes

Phoneme
Character Set

Stored As: String Stored As: String

Stored As: BINARY Stored As: BINARY

Concepts Phonetic Value

Complex Concepts

Transform

Character Set
Lexicographic

Fig. 6. Ontology for Text Data

As mentioned earlier, we assume that when a name is queried for, the primary inten-
tion of the user is in retrieving all names that match aurally, irrespective of the language.
Our strategy is to capture this intention by matching the equivalent phonemic strings of
the multilingual strings. Such phoneme strings represent a normalized form of proper
names across languages, thus providing a means of comparison. Further, when the text
data is stored in multiple scripts, this may be the only means for comparing them. We
propose complementing and enhancing the standard lexicographic equality operator of
database systems with a matching operator that may be used for approximate matching
of the equivalent phonemic strings. Approximate matching is needed due to the inher-
ent fuzzy nature of the representation and due to the fact that phoneme sets of different
languages are seldom identical.

3.2 LexEQUAL Implementation

Manager
Server

Cost

Matrix

Char/Phon
CodeTable

Approximate
Matching

TTP

Matched
String[s]

String
Query

Match
Threshold

Database

Lexical
Resources

Approx. Match
Cost Functions

Fig. 7. Architecture

Our implementation for querying multiscript data is shown as shaded boxes in Fig-
ure 7. Approximate matching functionality is added to the database server as a UDF.

Lexical resources (e.g., script and IPA code tables) and relevant TTP converters that
convert a given language string to its equivalent phonemes in IPA alphabet are inte-
grated with the query processor. The cost matrix is an installable resource intended to
tune the quality of match for a specific domain.

Ideally the LexEQUAL operator should be implemented inside the database en-
gine for optimum performance. However, as a pilot study and due to lack of access
to the internals in the commercial database systems, we have currently implemented
LexEQUAL as a user-defined function (UDF) that can be called in SQL statements. As
shown later in this paper, even such an outside-the-server approach can, with appro-
priate optimizations, be engineered to provide viable performance. A related advantage
is that LexEQUAL can be easily integrated with current systems and usage semantics
while the more involved transition to an inside-the-engine implementation is underway.

3.3 LexEQUAL Matching Algorithm

LexEQUAL (��� , ��� , �)
Input: Strings ��� , ��� , Match Threshold �

Languages with IPA transformations, ��� (as global resource)
Output: TRUE, FALSE or NORESOURCE
1. 	
��� Language of ��� ; 	��� Language of ��� ;
2. if 	 ��� ��� and 	 ��� ��� then
3. ����� transform(��� , 	�); ����� transform(��� , 	�);
4. ��������������� (������� �!�����"� ? � ���#� : � ���$�);
5. if editdistance %�����&#����'(�)%*�,+,�������������) then

return TRUE else return FALSE;
6. else return NORESOURCE;

editdistance(��- , �/.)
Input: String �/- , String ��.
Output: Edit-distance 0
1. 	
���1���/-�� ; 	 � �2����.3� ;
2. Create DistMatrix 4 	
�5&6	��7 and initialize to 89���;: ;
3. for < from 0 to 	� do DistMatrix 4 <=& �>7��?< ;
4. for @ from 0 to 	 � do DistMatrix 4 ��&A@;7��B@ ;
5. for < from 1 to 	� do
6. for @ from 1 to 	
� do

7. DistMatrix 4 <6&5@;7C� Min

D
DistMatrix 4 </EGF &5@;7 +InsCost(�/-�H)

DistMatrix 4 </EGF &5@IEJFK7 +SubCost(� .ML , � - H)
DistMatrix 4 <=&5@IEJFK7 +DelCost(� .ML) N

8. return DistMatrix 4 	
�5&O	�K7 ;
Fig. 8. The LexEQUAL Algorithm

The LexEQUAL algorithm for comparing multiscript strings is shown in Figure 8.
The operator accepts two multilingual text strings and a match threshold value as in-
put. The strings are first transformed to their equivalent phonemic strings and the edit
distance between them is then computed. If the edit distance is less than the threshold
value, a positive match is flagged.

The transform function takes a multilingual string in a given language and re-
turns its phonetic representation in IPA alphabet. Such transformation may be easily
implemented by integrating standard TTP systems that are capable of producing pho-
netically equivalent strings. The editdistance function [7] takes two strings and
returns the edit distance between them. A dynamic programming algorithm is imple-
mented for this computation, due to, as mentioned earlier, the flexibility that it offers in
experimenting with different cost functions.

Match Threshold Parameter A user-settable parameter, Match Threshold, as a frac-
tion between 0 and 1, is an additional input for the phonetic matching. This parame-
ter specifies the user tolerance for approximate matching: 0 signifies that only perfect
matches are accepted, whereas a positive threshold specifies the allowable error (that is,
edit distance) as the fraction of the size of query string. The appropriate value for the
threshold parameter is determined by the requirements of the application domain.

Intra-Cluster Substitution Cost Parameter The three cost functions in Figure 8,
namely InsCost, DelCost and SubsCost, provide the costs for inserting, deleting and
substituting characters in matching the input strings. With different cost functions, dif-
ferent flavors of edit distances may be implemented easily in the above algorithm. We
support a Clustered Edit Distance parameterization, by extending the Soundex [11] al-
gorithm to the phonetic domain, under the assumptions that clusters of like phonemes
exist and a substitution of a phoneme from within a cluster is more acceptable as a
match than a substitution from across clusters. Hence, near-equal phonemes are clus-
tered, based on the similarity measure as outlined in [18], and the substitution cost
within a cluster is made a tunable parameter, the Intra-Cluster Substitution Cost. This
parameter may be varied between 0 and 1, with 1 simulating the standard Levenshtein
cost function and lower values modeling the phonetic proximity of the like-phonemes.
In addition, we also allow user customization of clustering of phonemes.

4 Multiscript Matching Quality

In this section, we first describe an experimental setup to measure the quality (in terms
of precision and recall) of the LexEQUAL approach to multiscript matching, and then
the results of a representative set of experiments executed on this setup. Subsequently,
in Section 5, we investigate the run-time efficiency of the LexEQUAL operator.

4.1 Data Set

With regard to the datasets to be used in our experiments, we had two choices: ex-
periment with multilingual lexicons and verify the match quality by manual relevance
judgement, or alternatively, experiment with tagged multilingual lexicons (that is, those
in which the expected matches are marked beforehand) and verify the quality mechan-
ically. We chose to take the second approach, but because no tagged lexicons of multi-
script names were readily available2, we created our own lexicon from existing mono-
lingual ones, as described below.

2 Bi-lingual dictionaries mark semantically, and not phonetically, similar words.

We selected proper names from three different sources so as to cover common
names in English and Indic domains. The first set consists of randomly picked names
from the Bangalore Telephone Directory, covering most frequently used Indian names.
The second set consists of randomly picked names from the San Francisco Physicians
Directory, covering most common American first and last names. The third set con-
sisting of generic names representing Places, Objects and Chemicals, was picked from
the Oxford English Dictionary. Together the set yielded about 800 names in English,
covering three distinct name domains. Each of the names was hand converted to two
Indic scripts – Tamil and Hindi. As the Indic languages are phonetic in nature, con-
version is fairly straight forward, barring variations due to the mismatch of phoneme
sets between English and the Indic languages. All phonetically equivalent names (but
in different scripts) were manually tagged with a common tag-number. The tag-number
is used subsequently in determining quality of a match – any match of two multilingual
strings is considered to be correct if their tag-numbers are the same, and considered
to be a false-positive otherwise. Further, the fraction of false-dismissals can be easily
computed since the expected set of correct matches is known, based on the tag-number
of a given multilingual string.

To convert English names into corresponding phonetic representations, standard
linguistic resources, such as the Oxford English Dictionary [22] and TTP converters
from [5], were used. For Hindi strings, Dhvani TTP converter [4] was used. For Tamil
strings, due to the lack of access to any TTP converters, the strings were hand-converted,
assuming phonetic nature of the Tamil language. Further those symbols specific to
speech generation, such as the supra-segmentals, diacritics, tones and accents were re-
moved. Sample phoneme strings for some multiscript strings are shown in Figure 9.

Fig. 9. Phonemic Representation of Test Data

The frequency distribution of the data set with respect to string length is shown in
Figure 10, for both lexicographic and (generated) phonetic representations. The set had
an average lexicographic length of 7.35 and an average phonemic length of 7.16. Note
that though Indic strings are typically visually much shorter as compared to English
strings, their character lengths are similar owing to the fact that most Indic characters
are composite glyphs and are represented by multiple Unicode characters.

We implemented a prototype of LexEQUAL on top of the Oracle 9i (Version 9.1.0)
database system. The multilingual strings and their phonetic representations (in IPA
alphabet) were both stored in Unicode format. The algorithm shown in Figure 8 was
implemented, as a UDF in the PL/SQL language.

0

10

20

30

40

50

60

70

2 4 6 8 10 12 14 16 18

C
ou

nt

String Length

Character Strings
English

Tamil
Hindi

0

10

20

30

40

50

60

70

2 4 6 8 10 12 14 16 18

C
ou

nt

String Length

Phonemic Strings
English

Tamil
Hindi

Fig. 10. Distribution of Multiscript Lexicon (for Match Quality Experiments)

4.2 Performance Metrics

We ran multiscript selection queries (as shown in Figure 3). For each query, we mea-
sured two metrics – Recall, defined as the fraction of correct matches that appear in the
result, and Precision, defined as the fraction of the delivered results that are correct. The
recall and the precision figures were computed using the following methodology: We
matched each phonemic string in the data set with every other phonemic string, count-
ing the number of matches (���) that were correctly reported (that is, the tag-numbers of
multiscript strings being matched are the same), along with the total number of matches
that are reported as the result (���). If there are � equivalent groups (with the same tag-
number) with ��� of multiscript strings each (note that both � and ��� are known during
the tagging process), the precision and recall metrics are calculated as follows:

Recall = � � 	�
�������� � H�� ��� and Precision = � � 	 � �
The expression in the denominator of recall metric is the ideal number of matches,
as every pair of strings (i.e.,

� H�� �) with the same tag-number must match. Further,
for an ideal answer for a query, both the metrics should be 1. Any deviation indicates
the inherent fuzziness in the querying, due to the differences in the phoneme set of
the languages and the losses in the transformation to phonemic strings. Further, the
two query input parameters – user match threshold and intracluster substitution cost
(explained in Section 3.3) were varied, to measure their effect on the quality of the
matches.

4.3 Experimental Results

We conducted our multiscript matching experiments on the lexicon described above.
The plots of the recall and precision metrics against user match threshold, for various
intracluster substitution costs, between 0 and 1, are provided in Figure 11.

The curves indicate that the recall metric improves with increasing user match
threshold, and asymptotically reaches perfect recall, after a value of 0.5. An inter-
esting point to note is that the recall gets better with reducing intracluster substitution
costs, validating the assumption of the Soundex algorithm [11].

In contrast to the recall metric, and as expected, the precision metric drops with
increasing threshold – while the drop is negligible for threshold less than 0.2, it is rapid

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

R
ec

al
l

User Match Threshold

Intracluster Substitution Cost: 0.00
Intracluster Substitution Cost: 0.25
Intracluster Substitution Cost: 0.50
Intracluster Substitution Cost: 0.75
Intracluster Substitution Cost: 1.00

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

User Match Threshold

Intracluster Substitution Cost: 0.00
Intracluster Substitution Cost: 0.25
Intracluster Substitution Cost: 0.50
Intracluster Substitution Cost: 0.75
Intracluster Substitution Cost: 1.00

Fig. 11. Recall and Precision Graphs

in the range 0.2 to 0.5. It is interesting to note that with an intracluster substitution
cost of 0, the precision drops very rapidly at a user match threshold of 0.1 itself.
That is, the Soundex method, which is good in recall, is very ineffective with respect to
precision, as it introduces a large number of false-positives even at low thresholds.

Selection of Ideal Parameters for Phonetic Matching Figure 12 shows the precision-
recall curves, with respect to each of the query parameters, namely, intracluster sub-
stitution cost and user match threshold. For the sake of clarity, we show only the plots
corresponding to the costs 0, 0.5 and 1, and plots corresponding to thresholds 0.2,
0.3 and 0.4. The top-right corner of the precision-recall space corresponds to a per-
fect match and the closest points on the precision-recall graphs to the top-right corner
correspond to the query parameters that result in the best match quality. As can be seen
from Figure 12, the best possible matching is achieved by a substitution cost between
0.25 and 0.5, and for thresholds between 0.25 and 0.35, corresponding to the knee
regions of the respective curves. With such parameters, the recall is � 95%, and preci-
sion is � 85%. That is, � 5% of the real matches would be false-dismissals, and about

� 15% of the results are false-positives, which must be discarded by post-processing,
using non-phonetic methods.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

P
re

ci
si

on

Recall

Precision-Recall (By Intracluster Substition Cost)

Intracluster Substitution Cost: 0.00
Intracluster Substitution Cost: 0.50
Intracluster Substitution Cost: 1.00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

P
re

ci
si

on

Recall

Precision-Recall (By User Match Threshold)

Threshold: 0.2
Threshold: 0.3
Threshold: 0.4

Fig. 12. Precision-Recall Graphs

We also would like to emphasize that quality of approximate matching depends on
phoneme sets of languages, the accuracy of the phonetic transformations, and more im-
portantly, on the data sets themselves. Hence the matching needs to be tuned as outlined
in this section, for specific application domains. In our future work, we plan to inves-
tigate techniques for automatically generating the appropriate parameter settings based
on dataset characteristics.

5 Multiscript Matching Efficiency

In this section, we analyze the query processing efficiency using the LexEQUAL opera-
tor. Since the real multiscript lexicon used in the previous section was not large enough
for performance experiments, we synthetically generated a large dataset from this mul-
tiscript lexicon. Specifically, we concatenated each string with all remaining strings
within a given language. The generated set contained about 200,000 names, with an
average lexicographic length of 14.71 and average phonemic length of 14.31. The Fig-
ure 13 shows the frequency distribution of the generated data set – in both character and
(generated) phonetic representations with respect to string lengths.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 5 10 15 20 25 30 35

C
ou

nt

String Length

Generated Character Strings

 0

 5000

 10000

 15000

 20000

 25000

 30000

 5 10 15 20 25 30 35

C
ou

nt

String Length

Generated Phonemic Strings

Fig. 13. Distribution of Generated Data Set (for Performance Experiments)

5.1 Baseline LexEQUAL Runs

To create a baseline for performance, we first ran the selection and equi-join queries
using the LexEQUAL operator (samples shown in Figures 3 and 5), on the large gener-
ated data set. Table 1 shows the performance of the native equality operator (for exact
matching of character strings) and the LexEQUAL operator (for approximate match-
ing of phonemic strings), for these queries3. The performance of the standard database
equality operator is shown only to highlight the inefficiency of the approximate match-
ing operator. As can be seen clearly, the UDF is orders of magnitude slower compared
with native database equality operators. Further, the optimizer chose a nested-loop tech-
nique for the join query, irrespective of the availability of indexes or optimizer hints,
indicating that no optimization was done on the UDF call in the query.

3 The join experiment was done on a ��� � � subset of the original table, since the full table join
using UDF took about 3 days.

Query Matching Methodology Time

Scan Exact (= Operator) 0.59 Sec
Scan Approximate (LexEQUAL UDF) 1418 Sec
Join Exact (= Operator) 0.20 Sec
Join Approximate (LexEQUAL UDF) 4004 Sec

Table 1. Relative Performance of Approximate Matching

To address the above problems and to improve the efficiency of multiscript matching
with LexEQUAL operator, we implemented two alternative optimization techniques,
Q-Grams and Phonetic Indexes, described below, that cheaply provide a candidate set
of answers that is checked for inclusion in the result set by the accurate but expen-
sive LexEQUAL UDF. These two techniques exhibit different quality and performance
characteristics, and may be chosen depending on application requirements.

5.2 Q-Gram Filtering

We show here that Q-Grams4, which are a popular technique for approximate matching
of standard text strings [6], are applicable to phonetic matching as well.

The database was first augmented with a table of positional q-grams of the original
phonemic strings. Subsequently, the three filters described below, namely Length filter
that depends only on the length of the strings, and Count and Position filters that use
special properties of q-grams, were used to filter out a majority of the non-matches
using standard database operators only. Thus, the filters weed out most non-matches
cheaply, leaving the accurate, but expensive LexEQUAL UDF to be invoked (to weed
out false-positives) on a vastly reduced candidate set.

Length Filter leverages the fact that strings that are within an edit distance of k cannot
differ in length, by more than k. This filter does not depend on the q-grams.

Count Filter ensures that the number of matching q-grams between two strings � � and
� � of lengths

� � � � and
� ��� � , must be at least (����� � � � � ����� � � � �
	��	 ��� 	��������), a

necessary condition for two strings to be within an edit-distance of � .
Position Filter ensures that a positional q-gram of one string does not get matched to

a positional q-gram of the second that differs from it by more than � positions.

A sample SQL query using q-grams is shown in Figure 14, assuming that the query
string is transformed into a record in table Q, and the auxiliary q-gram table of Q is

4 Let � be a string of size � in a given alphabet � and �
4 <=&5@;7 , F �G<
�3@ ��� , denote a substring
starting at position < and ending at position @ of � . A Q-gram of � is a substring of � of length� . A Positional Q-gram of a string � is a pair %�<=&������ � ���! "�� 4 <=&6<$# � E FK7 ' where �%��� � ���& '�� is
the augmented string of � , which is appended with (� -1) start symbols(say, () and (� -1) end
symbols (say,)), where the start and end symbols are not in the original alphabet. For example,
a string LexEQUAL will have the following positional q-grams:

�
(1, (!(L), (2, (Le), (3, Lex),

(4, exE), (5, xEQ), (6, EQU), (7, QUA), (8, UAL), (9, AL)), (10, L)�)) � .

SELECT N.ID, N.Name
FROM Names N, AuxNames AN, Query Q, AuxQuery AQ
WHERE N.ID = AN.ID

AND Q.ID = AQ.ID
AND AN.Qgram = AQ.Qgram
AND � ��� �% � � � � � ���;'�E3��� �%�� � ���#� '�� � �(+���� �	�
����%�� � ���#� '
AND � � � �I:��,E��� � �I:��$���)%*��+(��� ���
����%�� � ��� �$'='

GROUP BY N.ID, N.PName
HAVING count(*) �)%*��� � % � � � � � � �>'�E F�E %=%*��+C��� � %�� � ���#� '�E F�' + � '='

AND LexEQUAL(N.PName, Q.str, e)

Fig. 14. SQL using Q-Gram Filters

created in AQ. The Length Filter is implemented in the fourth condition of the SQL
statement, the Position Filter by the fifth condition, and the Count Filter by the GROUP
BY/HAVING clause. As can be noted in the above SQL expression, the UDF function,
LexEQUAL, is called at the end, after all three filters have been utilized.

Query Matching Methodology Time

Scan LexEQUAL UDF + q-gram filters 13.5 Sec
Join LexEQUAL UDF + q-gram filters 856 Sec

Table 2. Q-Gram Filter Performance

The performance of the selection and equi-join queries, after including the Q-gram
optimization, are given in Table 2. Comparing with figures in Table 1, the use of this
optimization improves the selection query performance by an order of magnitude and
the join query performance by five-fold. The improvement in join performance is not
as dramatic as in the case of scans, due to the additional joins that are required on the
large q-gram tables. Also, note that the performance improvements are not as high as
those reported in [6], perhaps due to our use of a standard commercial database system
and the implementation of LexEQUAL using slow dynamic programming algorithm in
an interpreted PL/SQL language environment.

5.3 Phonetic Indexing

We now outline a phonetic indexing technique that may be used for accessing the near-
equal phonemic strings, using a standard database index. We exploit the following two
facts to build a compact database index: First, the substitutions of like phonemes keeps
the recall high (refer to Figure 11), and second, phonemic strings may be transformed
into smaller numeric strings for indexing as a database number. However, the down-
side of this method is that it suffers from a drop in recall (that is, false-dismissals are
introduced).

To implement the above strategy, we need to transform the phoneme strings to a
number, such that phoneme strings that are close to each other map to the same number.
For this, we used a modified version of the Soundex algorithm [11], customized to the
phoneme space: We first grouped the phonemes into equivalent clusters along the lines
outlined in [18], and assigned a unique number to each of the clusters. Each phoneme
string was transformed to a unique numeric string, by concatenating the cluster iden-
tifiers of each phoneme in the string. The numeric string thus obtained was converted
into an integer – Grouped Phoneme String Identifier – which is stored along with the
phoneme string. A standard database B-Tree index was built on the grouped phoneme
string identifier attribute, thus creating a compact index structure using only integer
datatype.

For a LexEQUAL query using phonetic index, we first transform the operand mul-
tiscript string to its phonetic representation, and subsequently to its grouped phoneme
string identifier. The index on the grouped phoneme string identifier of the lexicon is
used to retrieve all the candidate phoneme strings, which are then tested for a match in-
voking the LexEQUAL UDF with the user specified match tolerance. The invocation of
the LexEQUAL operator in a query maps into an internal query that uses the phonetic
index, as shown in Figure 15 for a sample join query. Note that any two strings that
match in the above scheme are close phonetically, as the differences between individ-
ual phonemes are from only within the pre-defined cluster of phonemes. Any changes
across the groups will result in a non-match. Also, it should be noted that those strings
that are within the classical definition of edit-distance, but with substitutions across
groups, will not be reported, resulting in false-dismissals. While some of such false-
dismissals may be corrected by a more robust design of phoneme clusters and cost
functions, not all false-dismissals can be corrected in this method.

SELECT N.ID, N.Name
FROM Names N, Query Q
WHERE N.GroupedPhonStringID = Q.GroupedPhonStringID

AND LexEQUAL(N.PName, Q.PName, e)

Fig. 15. SQL using Phonetic Indexes

We created an index on the grouped phoneme string identifier attribute and re-ran
the same selection and equi-join queries on the large synthetic multiscript dataset. The
LexEQUAL operator is modified to use this index, as shown in the SQL expression in
Figure 15, and the associated scan and join performance is given in Table 3.

Query Matching Methodology Time

Scan LexEQUAL UDF + phonetic index 0.71 Sec
Join LexEQUAL UDF + phonetic index 15.2 Sec

Table 3. Phonemic Index Performance

While the performance of the queries with phonetic index is an order of magnitude
better than that achieved with q-gram technique, the phonetic index introduces a small,
but significant 4 - 5% false-dismissals, with respect to the classical edit-distance metric.
A more robust grouping of like phonemes may reduce this drop in quality, but may not
nullify it. Hence, the phonetic index approach may be suitable for applications which
can tolerate false-dismissals, but require a very fast response times (such as, web search
engines).

6 Conclusions and Future Research

In this paper we specified a multilingual text processing requirement – Multiscript
Matching – that has a wide range of applications from e-Commerce applications to
search engines to multilingual data warehouses. We provided a survey of the support
provided by SQL standards and current database systems. In a nutshell, multiscript pro-
cessing is not supported in any of the database systems.

We proposed a strategy to solve the multiscript matching problem, specifically for
proper name attributes, by transforming matching in the lexicographic space to the
equivalent phonetic space, using standard linguistic resources. Due to the inherent fuzzy
nature of the phonetic space, we employ approximate matching techniques for match-
ing the transformed phonemic strings. Currently, we have implemented the multiscript
matching operator as a UDF, for our initial pilot implementation. We confirmed the fea-
sibility of our strategy by measuring the quality metrics, namely Recall and Precision,
in matching a real, tagged multilingual data set. The results from our initial experi-
ments on a representative multiscript nouns data set, showed good recall (� 95%) and
precision (� 85%), indicating the potential of such an approach for practical query pro-
cessing. We also showed how the parameters may be tuned for optimal matching for a
given dataset. Further, we showed that the poor performance associated with the UDF
implementation of approximate matching may be improved significantly, by employ-
ing one of the two alternate methods: the Q-Gram technique, and a Phonemic Indexing
technique. These two techniques exhibit different quality and performance character-
istics, and may be chosen depending on the requirements of an application. However,
both the techniques, as we have demonstrated, are capable of improving the multiscript
matching performance by orders of magnitude.

Thus, we show that the LexEQUAL operator outlined in this paper is effective in
multiscript matching, and can be made efficient as well. Such an operator may prove to
be a valuable first step in achieving full multilingual functionality in database systems.

In our future work, we plan to investigate techniques for automatically generating
the optimal matching parameters, based on a given dataset, its domain and a training
set. Also, we plan to explore extending the approximate indexing techniques outlined
in [1, 21] for creating a metric index for phonemes. We are working on an inside-the-
engine implementation of LexEQUAL on an open-source database system, with the
expectation of further improving the runtime efficiency.

Acknowledgements This work was partially supported by a Swarnajayanti Fellowship from
the Department of Science and Technology, Government of India.

References

1. R. Baeza-Yates and G. Navarro. Faster Approximate String Matching. Algorithmica, Vol
23(2):127-158, 1999.

2. E. Chavez, G. Navarro, R. Baeza-Yates and J. Marroquin. Searching in Metric Space. ACM
Computing Surveys, Vol 33(3):273-321, 2001.

3. M. Davis. Unicode collation algorithm. Unicode Consortium Technical Report, 2001.
4. Dhvani - A Text-to-Speech System for Indian Languages. http://dhvani.sourceforge.net/.
5. The Foreign Word – The Language Site, Alicante, Spain. http://www.ForeignWord.com.
6. L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas, S. Muthukrishnan and D. Srivastava. Ap-

proximate String Joins in a Database (almost) for Free. Proc. of 27th VLDB Conf., September
2001.

7. D. Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge University Press, 2001.
8. International Organization for Standardization. ISO/IEC 9075-1-5:1999, Information Tech-

nology – Database Languages – SQL (parts 1 through 5). 1999.
9. The International Phonetic Association. Univ. of Glasgow, Glasgow, UK.

http://www.arts.gla.ac.uk/IPA/ipa.html.
10. D. Jurafskey and J. Martin. Speech and Language Processing. Pearson Education, 2000.
11. D. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching. Addison-

Wesley, 1993.
12. A. Kumaran and J. Haritsa. On Database Support for Multilingual Environments. Proc. of

9th IEEE RIDE Workshop, March 2003.
13. A. Kumaran and J. Haritsa. On the Costs of Multilingualism in Database Systems. Proc. of

29th VLDB Conference, September 2003.
14. A. Kumaran and J. Haritsa. Supporting Multilexical Matching in Database Systems.

DSL/SERC Technical Report TR-2004-01, 2004.
15. B. Lambert, K. Chang and S. Lin. Descriptive analysis of the drug name lexicon. Drug

Information Journal, Vol 35:163-172, 2001.
16. M. Liberman and K. Church. Text Analysis and Word Pronunciation in TTS Synthesis.

Advances in Speech Processing, 1992.
17. J. Melton and A. Simon. SQL 1999: Understanding Relational Language Components. Mor-

gan Kaufmann, 2001.
18. P. Mareuil, C. Corredor-Ardoy and M. Adda-Decker. Multilingual Automatic Phoneme Clus-

tering. Proc. of 14th Intl. Congress of Phonetic Sciences, August 1999.
19. G. Navarro. A Guided Tour to Approximate String Matching. ACM Computing Surveys, Vol

33(1):31-88, 2001.
20. G. Navarro, E. Sutinen, J. Tanninen, J. Tarhio. Indexing Text with Approximate � -grams.

Proc. of 11th Combinatorial Pattern Matching Conf., June 2000.
21. G. Navarro, R. Baeza-Yates, E. Sutinen and J. Tarhio. Indexing Methods for Approximate

String Matching. IEEE Data Engineering Bulletin, Vol 24(4):19-27, 2001.
22. The Oxford English Dictionary. Oxford University Press, 1999.
23. U. Pfeifer, T. Poersch and N. Fuhr. Searching Proper Names in Databases. Proc. Conf.

Hypertext-Information Retrieval-Multimedia, April 1995.
24. L. Rabiner and B. Juang. Fundamentals of Speech Processing. Prentice Hall, 1993.
25. The Unicode Consortium. The Unicode Standard. Addison-Wesley, 2000.
26. The Unisyn Project. The Center for Speech Technology Research, Univ. of Edinburgh,

United Kingdom. http://www.cstr.ed.ac.uk/projects/unisyn/.
27. J. Zobel and P. Dart. Finding Approximate Matches in Large Lexicons. Software – Practice

and Experience, Vol 25(3):331-345, March, 1995.
28. J. Zobel and P. Dart. Phonetic String Matching: Lessons from Information Retrieval. Proc.

of 19th ACM SIGIR Conf., August 1996.

