AN INTEGRATED APPROACH FOR REDUCING DYNAMIC WEB PAGE CONSTRUCTION
TIME

Suresha

Database Systems Lab
SERC, Indian Institute of Science
Bangalore 560012, INDIA.
suresha@isl .serc.iisc.ernet.in

ABSTRACT

e-Business web sites employ dynamic web pages to
deliver more appropriate contents to their users, based
on their customization and personalization. Such page
generation puts heavy load on the web server, due to
script execution overheads, leading to increased response
time. The overall response time is made up of two
types of latencies, namely network latency and server-
side latency. In this paper we address primarily the
server-side latency. We have proposed an integrated
approach, which reduces dynamic web page construc-
tion time by more than 60% when compared to re-
cently proposed fragment caching technique, for input
independent dynamic web pages. We have integrated
prediction based dynamic web page pre-generation with
fragment-caching, assuming that a user-profile based
page prediction is available. As we show subsequently
our novel integrated approach reduces dynamic web
page construction time by achieving both eventual ben-
efit through fragment-caching and immediate benefit
through dynamic web page pre-generation. We have
developed a detailed simulation model and have pro-
vided the experimental results that validate our claims.

1. INTRODUCTION

In the recent years many web sites are adopting dy-
namic web page generation technologies to serve the
page content dynamically, with significant flexibility
in delivering custom contents to users. To provide web
visitors the personalized experiences, web sites are in-
creasingly relying on dynamic content generation ap-
plications. Dynamic web pages enable much wider

Jayant R. Haritsa

Database Systems Lab
SERC, Indian Institute of Science
Bangalore 560012, INDIA.

haritsa@lsl.serc.iisc.ernet.in

range of interactions than static HTML pages can pro-
vide. However, these benefits come at a huge cost. Dy-
namic web page generation significantly reduces the
web server scalability due to on-demand page gener-
ation. Hence, the performance and scalability are be-
coming major issues for e-business web sites as the In-
ternet traffic is increasing tremendously every day, as
well as web sites are becoming complex by attempting
to generate more dynamic web pages. Over the past
few years, web sites have transitioned from a static
content model to a dynamic content model. The dy-
namic content generation increases the load on the web
server infrastructure, and which in turn increases the
response time. According to recent research, server-
side latency accounts for 40% of the total page delivery
time end users experience [12]. Delays can be detri-
mental for web sites, as users tend to leave a site if
the response time is too long. A widely cited study by

Zona Research has helped to quantify this phenomenon [9].

This study indicates that users will abandon requests
with exponentially increasing probability as response
time grows.

The potential bottlenecks in serving dynamic web
pages are of two types: (a) network latency and (b)
server-side latency. While much work has been done
to address network latency, the attention is now turn-
ing to wards server-side latency. We have attempted
to reduce server-side latency by integrating prediction
based page pre-generation with recently proposed frag-
ment caching technique [4, 3, 5]. We expect that the
proposed integrated approach would make the page
construction time as close to zero as possible. We as-
sume user-profile based page prediction is provided.

1.1. Organization

The remainder of this paper is organized as follows: In
Section 2 we give a brief description of related work.
Then, in Section 3, we discuss our proposed architec-
ture by integrating page pre-generation with fragment-
caching. The Section 4 describes the simulation model
used. In Section 5, the experimental results are dis-
cussed. The Section 6 summarizes our contributions,
along with future work.

2. RELATED WORK

A widely used approach to address the world wide web
performance problems is based on Content caching.
A variety of such methods exist [8]. These caching
approaches can be classified as proxy-based caching,
server-side caching, and combined caching solutions.

2.1. Proxy-based Caching Approaches

Proxy-based caching approaches are based on caching
content outside the site’s infrastructure. Such content
can include static content such as media files or HTML
files. These solutions do not guarantee the correct-
ness of output. In the recent years, the interest is to
study the usefulness of using proxies to cache the out-
put of dynamic web sites. Two broad approaches exist
in using proxies to cache dynamic pages: page-level
caching and dynamic page assembly. In Page-level
caching approach, the proxy caches full page outputs
of dynamic sites. There are many limitations associ-
ated with using page-level caching solutions to cache
dynamic pages. Firstly, the page level caching solu-
tions must rely on the request URL to identify pages
in cache. Secondly, the page-level caching solution
has often very little re-usability of full HTML pages.
Thirdly, caching at the page level causes unnecessary
invalidation, even if only one or a few elements on a
page become invalid, then the entire page becomes in-
valid. Dynamic page assembly is an approach popular-
ized by Akamai [10] as part of the Edge Side Includes
(ESI) initiative [6]. A key drawback is the requirement
that a site follows a specified page design paradigm,
specifically, the use of templates. This requires that
the page layout be known in advance.

2.2. Server-Side Caching Approaches

The server-side caching approaches can help to reduce
the delays associated with generating content. Also,
since they reside at the server, these solutions do guar-
antee the correctness of the output, unlike proxy-based
caches.

There are approaches based on the idea of caching
at the various layers within the site architecture. For
instance, various types of database caching have been
suggested, including caching the results of database
queries [7] and caching database tables in main mem-
ory. But these solutions are limited in scope and do
not address other delays associated with dynamic web
page generation as such. There are some solutions
based on caching of entire dynamic page [1]. The page
level caching of dynamic pages has many limitations
as discussed in Section 2.1. A recently proposed so-
lution is based on caching of components of dynamic
pages, called fragment caching [3]. This solution re-
duces dynamic page construction time, but limited by
the fragment cacheability and the page construction
takes place only after receiving the page request.

2.3. Combined Caching Approach

The Combined Caching approach was recently pro-
posed in [2]. It caches dynamic content fragments in
the proxy caches, but the layout information would be
determined, on demand, from the source site infras-
tructure. The Combined Caching approach has the fol-
lowing limitations: The page construction for getting
the page skeleton starts only after receiving the request
by the server. The skeleton has to be scanned multiple
times for filling the holes with fragment contents from
proxy at each proxy level.

3. PROPOSED ARCHITECTURE

We propose an integrated architecture to reduce dy-
namic web page construction time. We integrate a
page pre-generator with fragment caching solution pro-
posed in [4, 3, 5]. We are making an assumption that
most of the user sessions consists of sequence of input
independent page clicks, may be with a very few in-
put dependent page clicks. The input dependent pages
are really hard to pre-generate and we are working on
that. The page pre-generator can be implemented on

an independent processor and can independently start
pre-generating the page assigned to it in consultation
with application servers.

3.1. Existing Fragment Caching Model

When a user requests a dynamic page, his/her browser
sends the corresponding URL to the web site and the
web server maps this URL to a corresponding script
and submits the script for execution to the applica-
tion server and waits for the response from applica-
tion server. The application server executes the script
that generates the page. This script may access many
data resources like DBMS, to retrieve the content re-
quired and create several objects and format the con-
tent for display. This step often requires significant
work, especially for sites running complex business
logic. The response from the application comes back
to web server waiting for it. Then the web server sends
the response to the browser.

A script can be thought of as a number of code
blocks. Each code block carries out some computa-
tion to generate a part of the required page and results
in an HTML fragment. An output statement after the
code block places the resulting HTML fragment in a
buffer. Once all the code blocks in a script have been
executed, the resulted HTML is sent as a page to the
user. If we know that a code block’s output does not
change for a sufficiently long time, then such a code
block can be tagged as cacheable. When the script is
executed, these tags instruct the application server to
first check for the fragment in the fragment cache. If
the requested fragment is found in the cache, then the
code block execution is bypassed and the content is
returned from the cache. If requested fragment is not
found in the cache, then the code block is executed
and the fragment is generated freshly and a copy of the
fragment is also cached for eventual benefit. However,
fragment-caching technique does not address the ques-
tion “what portion of the dynamic web page can be
cached?” and does not totally eliminate script exe-
cution time.

3.2. Proposed Integrated Model

An high level representation of our proposed archi-
tecture is given in Figure 1. We retain the fragment
caching architecture given in [4, 3, 5] as it is. The

Fragment Cache Manager
and fragment cache

Web Site 1

b
- Web/App. Server ’
Client
: /n ernet 1
b

= Page pre-generator
and pre—generator buffer

Figure 1: Proposed Architecture

page pre-generator is a separate engine. The working
of the page pre-generator is controlled by web server.
In our proposed approach, the web server maintains a
set of recent sessions’ information of users in-memory.
If a user session is just starting, then an entry is made
in the session list. For each user session, when a re-
sponse for a request leaves the system, the system de-
cides whether to pre-generate a next most expected
page or not, for the same user, based on some predic-
tion knowledge and other system considerations such
system’s current load, the benefit of pre-generating a
page, the type of user and so on. Once the system de-
cides to pre-generate a page for a particular user, it se-
lects the most probable expected page for the user and
starts pre-generating it. In fact, the page pre-generator
submits the request to one of the application servers for
executing the script. The selected application server
carries out the execution of the script requested by the
page pre-generator in consultation with fragment cache
and returns the response back to the page pre-generator.
The page pre-generator keeps the response in its buffer.
There are several page predictions techniques avail-
able [15, 14, 13]. We assume that a user-profile based
page prediction model is available to our proposed in-
tegrated approach.

When web server receives next page request for the
same user in the same session, if the page is available at
page pre-generator, it serves the page directly from the
page pre-generator. If not, then page is freshly com-
puted as usual. Note that the user response leaving the
web server will take some time to reach the user and
user will take some time to click the next page. By that
time the page pre-generator can complete the page pre-
generation. There by whenever the page pre-generated
is same as the page requested by the user, then the page
construction time is almost zero. If the same user is

not asking for any page for next some fixed amount of
time, then the session is treated as over and the page
pre-generated if any is discarded. The exact amount of
time that how long the page pre-generator should wait
before discarding the page pre-generated for a user ses-
sion can be decided based on the available resources to
page pre-generator, like buffer size.

In case of a hit we expect page construction time
almost zero as the page would be ready by the time re-
quest reaches the site. Where as in case of a miss there
is no wasted page construction time with respect to
user requests. By fragment caching we are achieving
the eventual benefit whenever the fragment is reused
in course of time. Whereas by page pre-generation we
are achieving immediate benefit.

The page pre-generator is allocated a buffer, which
is a part of the fragment cache. The total size of all
the pages pre-generated can not exceed this buffer size.
When a new page pre-generated has to be put into the
page pre-generator buffer and if the buffer is full, then
a set of already pre-generated pages have to be va-
cated as victims, to make the room for new page pre-
generated. We have used Least Recently Used (LRU)
page replacement policy here. The pages in the page
pre-generator are invalidated if any of the fragment in-
volved in the assembly is invalidated.

4. SIMULATION MODEL

To evaluate the performance of the proposed architec-
ture, we have developed a detailed simulator. Our sim-
ulation model is a scale down version of a web server.
The web site is modeled as a directed graph. Each node
in the graph represents a dynamic web page. Each
page is connected to a number of other nodes repre-
senting hyper links, through which one can traverse the
web site. The complete web site as a directed graph is
pre-generated by a data generator.

The sessions are generated with an independent
Poisson stream, with a given arrival rate. Each such
session will generate many page requests. The param-
eters used in our simulation are given in table 1[without
explanation due to space limitation].

Time units per second

Fragment cache hit cpu time
Fragment cache miss penalty

Avg. number of pagesin asession
Fragment invalidation rate

Avg. think time betn. page requests
Avg. number of fragments in a page
Mean fragment size

Mean fragment cost

Total number of fragments considered

100000

10 time units
10 time units
10

0.001 per sec.
5 secs.

10

2000 bytes
2000 time units
8000

Table 1: Simulation parameters

6000

5500 —
5000 —
4500
4000
3500 —
3000 —
2500 -
2000 -

Page Construction Time

1500

1000

500

Approaches

Figure 2: Page Construction Time

5. EXPERIMENTS AND RESULTS

We conducted an experiment to prove our idea. The
main goal of this work is to reduce the dynamic web
page construction time. In the experiment we have
used an arrival rate of 1200 page requests per minute
and a prediction accuracy of 60%. We have used pages
with 80% of fragment-cacheability. We compare two
strategies to construct dynamic web pages: The first
strategy is when both page pre-generation and frag-
ment caching are used: With Page-pre-generation
and With fragment Caching (WPWC). The second
strategy is when only fragment caching is used, but

without page pre-generation: With Out Page-pre-generation

and With fragment Caching (WOPWC). The Fig-

ure 2 gives the relative performance WPWC and WOPWC.

It is clear from the Figure 2 that our integrated ap-
proach performs better than the fragment-caching tech-
nique.

6. CONCLUSION AND FUTURE WORK

We have proposed an Integrated Architecture to reduce
the dynamic web page construction time assuming that
a user-profile based page prediction model available
to the web server. Our proposed solution reduces dy-
namic page construction time by integrating page pre-
generation with fragment caching. Our preliminary ex-
perimental results have shown that our proposed model
reduces the dynamic page construction time more than
60% when compared to fragment caching technique.

The most challenging part of our work which is
still open is pre-generating those pages which are in-
put dependent. At present what we have simulated is a
scale down version. We are working on extending the
work to a more realistic web site. We are carrying out
experiments to study the proposed integrated approach
with exhaustive set of inputs, the effect of cacheability,
different prediction probability. We believe that the
fragment access may not show any temporal locality
of reference due to their random assembly in different
pages. Hence we are working on suitable fragment-
cache replacement policy. We also plan to study con-
sidering pre-generating more than one probable page
and second level of storage for pages replaced due to
page replacement at page pre-generator.

REFERENCES

[1] Arun lyengar and Jim Challenger “Improving Web
Server Performance by Caching Dynamic Data”.
Proc. of Usenix Symp. Internet Technologies and Sys-
tems, Monterey, California, December 1997.

[2] Anindya Datta, Kaushik Dutta, Helen Thomas, De-
bra VanderMeer, Suresha and Krithi Ramamritham,
“Proxy-Based Acceleration of Dynamically Gener-
ated Content on the World Wide Web:An Approach
and Implementation”. Proc. of ACM-SIGMOD Con-
ference, June 2002, Madison, Wisconsin, pp. 97-108.

[3] Anindya Datta, Kaushik Dutta, Helen Thomas, Debra
VanderMeer and Krithi Ramamritham “Accelerating
Dynamic Web Content Generation”. IEEE Internet
Computing 6(5): 26-35 (2002).

[4] Chutney Technologies, Inc. “Dynamic Content Ac-
celeration: A Caching Solution to Enable Scalable
Dynamic Web Page Generation”. Proc. of ACM SIG-
MOD Conference, Santa Barbara, CA, May 2001

[5] Anindya Datta, Kaushik Dutta, Helen Thomas, De-
bra VanderMeer, Krithi Ramamritham, Dan Fishman
“A Comparative Study of Alternative Middle Tier
Caching Solutions to Support Dynamic Web Content
Acceleration”. Proc. of VLDB Conference, Roma,
Italy, 2001, pp. 667-670.

[6] ESI Consortium. Edge side
http://www.esi.org. 2001.

[7] Q. Luo, J.F. Naughton, R. Krishnamurthy, P. Cao
and Y.Li, “Active query caching for database web
servers”. Proc. of WebDB 2000.

[8] C. Mohan, “Tutorial: Caching technologies for web
applications”. Proc. of VLDB Conference, September
2001.

[9] Zona Research. Quoted in Interactive Week Vol.6, No.
36, September 1996.

[10] Akamai Technologies. http://www.akamai.com.

[11] K. Yagoub, D. Florescu, V. Issarny and P. Valduriez,
“Caching strategies for data intensive web sites”.
Proc. of VLDB Conference, 2000, pp. 188-199.

[12] Christian Huitema. “Network vs. server issues in end-
to-end performance”. Keynote address, Performance
and Architecture of Web Servers workshop, held in
conjunction with ACM SIGMETRICS, June 2000.

[13] S. Schechter, M. Krishnan, and M. D. Smith. “Using
Path Profiles to Predict HTTP Requests”. Proc. of
International World Wide Web Conference, Brisbane,
Qld., Australia, April 1998, pp. 457-467.

[14] Dan Duchamp. “Prefetching Hyperlinks”. Proc. of
Second USENIX Symp. on Internet Technologies and
Systems, Boulder, CO, 1999, pp. 127-138.

[15] O Kit Hong, Fiona Robert P. Biuk-Aghai. “A Web
Prefetching Model Based on Content Analysis”. Proc.
of Macau IT Congress 1999, Macau, 17-20 March
1999, pp. 61-66.

includes.

