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ABSTRACT

Synthesizing data using declarative formalisms has been persua-
sively advocated in contemporary data generation frameworks.
In particular, they specify operator output volumes through row-
cardinality constraints. However, thus far, adherence to these volu-
metric constraints has been limited to the Filter and Join operators.
A critical deficiency is the lack of support for the Projection opera-
tor, which is at the core of basic SQL constructs such as Distinct,
Union and Group By. The technical challenge here is that cardinality
unions in multi-dimensional space, and not mere summations, need
to be captured in the generation process. Further, dependencies
across different data subspaces need to be taken into account.

We address the above lacuna by presenting PiGen, a dynamic
data generator that incorporates Projection cardinality constraints
in its ambit. The design is based on a projection subspace division
strategy that supports the expression of constraints using opti-
mized linear programming formulations. Further, techniques of
symmetric refinement and workload decomposition are introduced
to handle constraints across different projection subspaces. Finally,
PiGen supports dynamic generation, where data is generated on-
demand during query processing, making it amenable to Big Data
environments. A detailed evaluation on workloads derived from
real-world and synthetic benchmarks demonstrates that PiGen can
accurately and efficiently model Projection outcomes, representing
an essential step forward in customized database generation.

PVLDB Reference Format:

Anupam Sanghi, Shadab Ahmed, and Jayant R. Haritsa.
Projection-Compliant Database Generation. PVLDB, 15(5): 998 - 1010, 2022.
doi:10.14778/3510397.3510398

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://dsl.cds.iisc.ac.in/projects/HYDRA/index.html.

1 INTRODUCTION

Synthetic databases are required in a variety of use-cases, rang-
ing from testing and tuning of database engines and applications
to system benchmarking. In the past decade, several frameworks
(e.g. [8, 14, 18, 23]) have advocated data synthesis using a set of car-
dinality constraints. In particular, a cardinality constraint dictates
that the output of a given relational expression over the generated
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database should feature a specified number of rows. For SPJ query
formulations, the canonical constraint representation is:

Iaop(Ti = Ty > . T))l=

where f represents the filter predicates applied on the inner join of a
group of tables Ti, ...Tyy in the database; A represents the projection-
attribute-set, i.e. the set of attributes on which the projection is
applied; and k is a count representing the output row-cardinality
of the relational expression. The provenance of these constraints
could be either from construction of what-if scenarios, or based
on information sourced from an actual client installation - for in-
stance, Annotated Query Plans [11]. Further, the constraints could
be parameterized wrt predicate constants [18, 19], or more com-
monly in industrial practice, strict, where even these constants are
prespecified [8, 23].

Generating synthetic data that adheres to a collection of strict
cardinality constraints was first proposed in the pioneering work
of DataSynth [8, 9]. This initial effort was later extended in Hy-
dra [23, 24] to incorporate dynamism and scale in the generation
process. The key idea in these frameworks is to express the input
constraints using a linear feasibility program (LP), and then use the
LP solution to construct the synthetic database. While these prior
frameworks accurately and efficiently handle an important class of
cardinality constraints, a critical lacuna is support for the projection
operator. In this paper, we investigate the explicit incorporation of
Projection into the data generation framework.

1.1 Incorporating Projections

Our motivation for modeling Projection stems from its core ap-
pearance in the DisTINCT, GROUP By, and UnION SQL constructs
- as a case in point, among the 22 queries in the TPC-H bench-
mark [5], as many as 16 feature the projection operation. Further,
projection-compliant databases can be beneficial to database ven-
dors in a variety of use-cases as listed in [21] (and verified with
industry experts in a recent Dagstuhl Seminar [1]). Among these,
a particularly compelling use-case is in the context of engine up-
grades, where a critical requirement is to synthesize data that can
mimic client environments for regression testing. This facility en-
ables: (a) Catching optimizer bugs such as a change in query plan
leading to performance degradation, or incorrect query rewriting
leading to erroneous query results; (b) Performance evaluation of
operators in the query execution pipeline. For instance, a thorough
assessment of a new memory manager’s ability to handle native
projection-based operators (e.g. hash aggregate, sort) is predicated
on accurate modeling of projection cardinalities; and (c) Given an
operator of interest, evaluating its impact on the performance of
downstream operations. For instance, in the 16 projection-featuring
queries of TPC-H, 12 require a sort operation immediately follow-
ing projection. Further, in 4 queries, the projection output serves as
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an intermediate staging for subsequent filter/join operations. In all
these cases, the projection output cardinality affects the behavior
of the downstream operations.

Apart from regression testing, another common use-case arises
in the context of system benchmarking, when evaluating competing
database platforms for hosting an application.

Our focus here is on the duplicate-eliminating version of pro-
jection where only the distinct rows are retained in the projected
output (the alternative duplicate-preserving option does not alter
the filter output’s row-cardinality, and is therefore trivially han-
dled by the existing frameworks). Additionally, since projection is
a unary operator, we present the ideas using a single-table environ-
ment. To handle multi-relation environments, we can take recourse
to the methodology of [8, 23], where denormalized relations are
constructed as an intermediate step in the solution process.

1.2 Projection-inclusive Constraint (PIC)

To represent a projection-inclusive cardinality constraint ¢ on a
table 7-, we use the quadruple c : (f, A, 1, k), as a shorthand notation.
Here, f represents the filter predicate applied on 77, A represents the
projection attribute-set (PAS), I signifies the row-cardinality of the
filtered table, and k represents the row-cardinality after projection
on this filtered table.

As as sample instance, consider the following set of PICs on a
generated table PurcHASES (PID, Qty, Amt, Year):

c1 : (fi, Amt,500,5) | fi = (Qty < 20) A (1100 < Amt < 2500)
ca ¢ (fo, Amt, 1000,3) | f5 = (Qty > 20) A (500 < Amt < 3000)
c3 : (f3, Qty,3000,9) | 5 = (Qty > 10)

Here, PIC ¢; denotes that applying the fi predicate on PURCHASES
should produce 500 rows in the output, which is further reduced to
5 rows after projecting on the Amt column; the other PICs can be
interpreted analogously.

1.3 Technical Challenges

There are two primary challenges to modeling PICs within the
table generation process, related to handling dependencies within
and across the data subspaces identified by these constraints, as
described below.

Intra-Projection Subspace Dependencies. Consider the projection
subspace spanned by a set of attributes A. Dealing with projection
requires computing union of groups of tuples. For example, for
two tuples/group of tuples by and by, the direct expression for
computing projection along A is:

|7a (b1 U bo)]

However, even if b; and b are disjoint in the original table, their
projections onto A may overlap. Therefore, to handle PICs, explicitly
computing the cardinality of the union of a group of tuples post-
projection is required. Using the fact that projection distributes
over union [26], we can rewrite the above expression as:

|74 (b1) U 74 (b2)]

but even here the union does not translate to a simple summation.
For instance, consider the following two sample rows from the
PURCHASES table:

u : (PID = 10001, Amt = 1500, Qty = 3, Year = 2020), and

v : (PID = 10002, Amt = 1500, Qty = 16, Year = 2021).
Both rows satisfy the filter fi, but the union of their projections
along Amt yields a single outcome — namely, Amt = 1500.

Inter-Projection Subspace Dependencies. When a set of tuples b is
subjected to multiple projections, the data generation for projection
subspaces may be interdependent. Given a pair of PASs A; and A,
sourced from two PICs, we have the inclusion property:

py0hy (b) C 7p, (B) X 7a, (D)
For instance, consider a group of tuples b, from the table Purchases,
satisfying the following disjunctive filter condition:

b = {t € Purchases | (t.Qty > 20 A t.Amt > 3000) V
(10 < t.Qty < 20 A t.Amt > 2500)}

Here, a tuple with Amt = 2700 and Qty = 25 can belong to both
7amt(b) and 7oy (b), but lies outside b’s boundary.

Moreover, A; and Ay may themselves intersect. Therefore, in
general, expressing a set of PICs with an LP, while ensuring a phys-
ically constructible solution, is often infeasible - this is because the
set of constructible solutions does not form a convex polytope [16].
Hence, alternative methods are needed to address this issue.

1.4 Our Contributions

We present here PiGen, a data generator that addresses the above
challenges and extends the current scope of data generation to
include projection in its ambit. The key design principles are: (a)
Projection Subspace Division, which divides each projection subspace
into regions that allow modeling the unions, thereby ensuring
that the intra-subspace dependencies are resolved; and (b) Isolating
Projections, for independent processing of each projection subspace,
thereby tackling the inter-projection subspace challenge.

Additionally, PiGen leverages the concept of dynamic regenera-
tion [23], and constructs an Enriched Table Summary, that ensures
data can be generated on-demand during query processing while
satisfying the input PICs. Therefore, no materialized table is re-
quired in the entire testing pipeline. Further, the time and space
overheads incurred in constructing the summary is independent
of the size of the table to be constructed and, in our evaluations,
requires only a few 100 KBs of storage.

A detailed evaluation on multiple workloads of PICs, covering
both real-world datasets (IMDB, Census), and synthetic benchmarks
(TPC-DS) has been conducted. The results demonstrates that PiGen
accurately and efficiently models Projection outcomes. As a case
in point, for a workload of PICs, comprising over a hundred PICs
in total, PiGen generated data that satisfied all the PICs, with per-
fect accuracy. Moreover, the entire summary production pipeline
completed within viable time and space overheads.

Organization. The remainder of the paper is organized as follows:
The prior literature is reviewed in Section 2. The problem frame-
work is discussed in Section 3. Further, the key design principles
of PiGen are introduced in Section 4, and then described in detail
in Sections 5 through 8. The end-to-end implementation pipeline
is presented in Section 9, while the experimental evaluation is re-
ported in Section 10. Finally, our conclusions and future research
avenues are summarized in Section 11.



2 RELATED WORK

Over the past three decades, a variety of novel approaches have
been proposed for synthetic database generation. The initial efforts
(e.g. [13, 15]) focused on generating databases using standard math-
ematical distributions. Subsequently, data generation techniques
that incorporated the notion of constraints were proposed — for
instance, adherence to a given set of metadata statistics was ad-
dressed in [7, 20, 25]. In more recent times, generation techniques
driven by constraints on query outputs have been analyzed. A par-
ticularly potent effort in this class was RQP [10], which receives a
query and a result as input, and returns a minimal database instance
that produces the same result for the query. An alternative fine-
grained constraint formulation is to specify the row-cardinalities
of the individual operator outputs, and the techniques advocated in
[8, 11, 14, 18, 19, 22, 23] fall in this category. They can be classified
into two groups based on the nature of constraints. In the first
group, parameterized constraints form the input in QAGen [11],
MyBenchmark [19] and TouchStone [18]. That is, the predicate
constants are variables. From these constraints, these techniques
generate a synthetic database and predicate instantiations, such
that applying the instantiated constraints on the synthetic data
produces the desired number of rows.

On the other hand, a stricter notion of fixed constraints was
considered in [8, 14, 22, 23], where the predicate constants are
prespecified in the input. This strict model helps to generate data
that is (a) more directly representative of the source environment,
and as a consequence (b) more robust to future queries outside of
the original workload. However, while constraints with filter and
join operators have been handled satisfactorily, support for the
projection operator has been minimal, restricted to a few extreme
cases. For instance, DataSynth [8] proposed a projection generator
that catered to single-column tables. Here, due to the single-column
restriction, there are by definition no intra/inter projection subspace
dependencies. In contrast, in PiGen, we consider a general class of
strict PICs, requiring us to explicitly address these challenges.

Complementary to these database studies, the mathematical
literature includes work such as [12, 16, 27] that study conditions
for ensuring feasibility of a given set of projection constraints.
However, they do not adequately address our requirements, as
discussed in detail in Section 9 (PiGen deployment).

3 PROBLEM FRAMEWORK

In this section, we summarize the basic problem statement, and the
underlying assumptions of our PiGen solution.

Statement. Given an input table schema S and a workload W of
strict PICs on S, the objective of data generation is to construct a
table 7, such that it conforms to S and satisfies W.

Assumptions. We assume that each PIC in W is of the form de-
scribed in the Introduction, and that it is strict (i.e., with prespecified
predicate constants). Further, for ease of presentation, we assume
that W is collectively feasible, that is, there exists at least one legal
database instance satisfying all the constraints — the infeasibility
scenario is deferred to Section 9. Finally, for brevity, we present the
ideas using tables with continuous numeric columns; the extension
to other data types is straightforward.

Output. Given S and W, PiGen outputs a collection of table
summaries. Each summary s(77) can be used to deterministically
produce the associated table 7. The tables produced are such that:
(a) all of them conform to S, and (b) each input PIC in W is satisfied
by at least one of them.

Notations. The main acronyms and key notations used in the
rest of the paper are summarized in Tables 1 and 2, respectively.

Table 1: Acronyms

Acronym Meaning
PAS Projection Attribute Set
PIC Projection-inclusive Cardinality Constraint
FB Filter Block
RB Refined Block
PRB Projected Refined Block
CPB Constituent Projection Block
PSD Projection Subspace Division
Table 2: Notations
(a) Input Related (b) Output Table Related
Symbol Meaning Symbol Meaning
S Table Schema T Output Table
f Filter predicate s(7) Summary of 7~
A A PAS U attribute-set in 7~
1 Output row cardinality D Data space of 7~
of a filtered table DA Data subspace
k Output row cardinality spanned by A
after projecting on a
PAS (c) Block Related
c APIC (f,ALk) Symbol Meaning
\ Input PICs workload b An FB
C A compatible R Set of all RBs
PICs workload r An RB
T PRB wrt r
(d) Relation Related and some PAS
Symbol Meaning R® Set of PRBs for A
M A relation btw C | R P A CPB
(Definition 5.2) PA Set of CPBs for A
A A relation btw P4 | ﬁA Xr variable for |r|
(Definition 6.1) Yp variable for |p]|

4 DESIGN PRINCIPLES

In this section we overview the core PiGen design principles, with
the PURCHASES table of the Introduction used as the running exam-
ple to explain their impact. Subsequently, in Sections 5 through 8,
each principle is described in detail. To set the stage, here are some
basic definitions underlying our work.

Definition 4.1. A block is a bag of points (i.e. tuples) in the data
space D of the synthetic table 7.

Definition 4.2. A projection block is a subset of points from D%,
where D# represents the data subspace of the synthetic table 7~
spanned by a given PAS A.



4.1 Region Partitioning

To model the filter predicates associated with W, the data space D
is logically partitioned into a set of blocks. Each block satisfies the
condition that the subset of filter predicates satisfied by the data
points within the block is identical.

The row cardinality of each block is represented using a variable
in the LP. The resultant system is usually highly under-determined
and therefore, to reduce the complexity of solving it, we leverage
the region partitioning technique from [23], which partitions the
data space into the minimum number of blocks.
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Figure 1: Region Partitioning

Here, for a tuple t € D, and a PIC ¢ € W, let c(t) denote the
indicator, set to 1 if ¢ satisfies the filter predicate associated with c,
0 otherwise. Now, a pair of tuples #; and t; are said to be related by
RV if c(t1) = c(tz), for all ¢ € W. RY is an equivalence relation, and
the region partitioning algorithm returns the quotient set of D by
RY . That is, the data points from the same equivalence class (wrt
R"W) form a block. Each resultant block is referred to as a filter-block
(FB). The algorithm outputs the domain of each FB, which forms
its logical condition. The domain of an FB b is denoted as D(b).

To make the above concrete, consider the three filter predicates,
fi, f2, f3 on PurcHASEs. For simplicity, Figure 1 shows only the 2D
data space comprising the Qty and Amt attributes since no condi-
tions exist on the other attributes. In this figure, the filter predicates
are represented using regions delineated with colored solid-line
boundaries. When region partitioning is applied on this scenario,
it produces the four disjoint FBs: by, b, b3, by, whose domains are
depicted with dashed-line boundaries.

4.2 Isolating Projections

To circumvent inter-projection subspace dependencies, we “isolate”
the projections. Specifically, a symmetric refinement strategy is
executed to refine each FB into a set of disjoint blocks, called refined-
blocks (RBs). The refinement is executed such that each resultant
RB exhibits translation symmetry along each applicable projection
subspace. That is, for each domain point of an RB r along a particular
PAS, the projection of the domain of r along the remaining attributes
is identical.

For instance, consider FB by in Figure 1. Clearly, it is asymmetric
along the PAS Qty - specifically, compare the spatial layout in the
range 10 < Qty < 20 with that in Qty > 20. After refinement, this
block breaks into r4q and ry, as shown in Figure 2(a) - it is easy
to see that ryq and ry;, are symmetric. (The other FBs (by, b, b3)
happen to be already symmetric, and are shown as r;,ry and r3,
respectively, in Figure 2(a)). This refinement allows for the values

CPBs Amount (7 4,,¢)
A p{™ =n(r) nn(r)
* pfmt = n(r) \n(ry)

o pi™ =m(ry) \n(r)

m pi™ =n(rs)

CPBs Quantity (mq:y)
A p? = n) \ ()
Y P8 = n(s) nnlrap)
o P =n(r) Nn(ng)
O ¥ =n0ua) \ ()
G pdY = n(up) \ m(r3)

oty _
35810 12 14 16 182022 24 26 28 30 <O P =n(rs) \n(rap)

1
-
E Qty = (a) Constituent Projection Blocks (CPBs)

Amt | 1500 | 2300 | 1300 | 2300 2000 1700 1500 | 3300 | 2800
Qty 3 5 8 12 18 16 16 12 12
Amt 900 900 3300 | 3600 300 100 700 1500 | 2000
Qty 14 18 22 26 24 30 22 30 28

(b) Sample Purchases Table (Distinct Rows)

Figure 2: Symmetric Refinement and PSD

along different projection subspaces to be generated independently.
That is, D(r) = D(mam¢(r)) X D(mgsy(r)), for each RB r.

The above refinement, however, does not scale when the pro-
jections applied on an FB are along partially overlapping PASs, i.e.
when different PASs share some attribute(s). Therefore, to eliminate
such situations, we resort to decomposing the workload into non-
overlapping sub-workloads using a vertex coloring-based strategy.
As a consequence, for each such sub-workload, a separate summary
is produced at the conclusion of the LP solution process.

4.3 Projection Subspace Division

To deal with intra-projection subspace dependencies, the domain of
each PAS is logically divided into a set of projection blocks, called
constituent-projection-blocks (CPBs). This construction ensures that
each projection cardinality is expressible as a summation over the
cardinalities of these CPBs. Further, we ensure that the minimum
number of CPBs is produced, aiding in efficient LP formulations.
For our example scenario, PiGen divides the data subspace associ-
ated with the Amt dimension into 4 CPBs: p‘l“mt, p‘z“mt, p?mt, pf’"t,

and the Qty dimension subspace into 6 CPBs: p?ty,p?ty, ...,p?ty,

as shown in Figure 2(a). Each CPB has a semantic meaning associ-
ated with it. For example, p‘l“”” semantically represents the Amt
values present in both r; and ry. Further, the CPBs need not be mu-
tually disjoint, as in the case of p?mt and pfmt . Finally, Figure 2(a)
also shows the unique tuples enumerated by the sample output
table shown in Figure 2(b), and the CPB (s) to which each of these

tuples belongs.

4.4 Constraints Formulation

The LP solving procedure is constructed using variables repre-
senting the row cardinalities of RBs and CPBs. For instance, if x;
represents the cardinality of RB r;, and y}“mt and ygty represent



the cardinalities of CPBs p?mt and p,?ty, respectively, then PICs
are expressed by linear equations as follows:

cr:oxp g =500,y gdmly gAml g
c2: x3=1000, ypmt=3
C3: X+ X3+ X4q + X4p = 3000,

t t t t t t
ley+y2Qy+y3Qy+y4Qy+y5Qy+y6Qy=9

Finally, additional sanity constraints are added to the LP to ensure
data constructibility. For example, the distinct row-cardinality of the
projection of an RB is upper-bounded by the RB’s native cardinality.

4.5 Enriched Database Summary

To construct the final summary, the domain of each PAS is divided
into a set of intervals and then the CPBs are assigned these intervals.
A sample summary for the PURCHASES table is shown in Figure 3,
after incorporating an additional attribute Year to illustrate a multi-
dimensional projection.

Each segment of the summary corresponds to a populated RB.
Specifically, the figure shows the tabulation for the rq, r3 and ry,
RBs. Each tabulation comprises of a column for each PAS acting on
the RB, and an additional last column indicating the total number
of tuples present in the RB. In each PAS column, the information
for generating data of the associated projection subspace is present.
Specifically, we maintain the intervals in the projection subspace
along with their distinct counts. As a case in point, the first tabula-
tion, corresponding to rq, is interpreted as “generate 500 tuples, such
that there are 5 distinct values of Amt in the interval [1100,2500),
and 20 distinct value pairs of {Qty, Year} of which 12 are from the
2D interval [1,10), [1990,2000), and the remaining 8 from the
2D interval [1,10), [2010,2020)”

Amt Qty, Year #Tuples
(Q) [1, 10), (Y) [1990, 2000): 12
r :
1| [1100,2500):5 | ) 1110y, (v) [2010, 2020): 08| >
Amt Qty Year #Tuples
3 [500, 3000): 3 [[2250' jg))i [1990,2020) | 1000
Qty Amt, Year #Tuples
Fap ) (A) [1,500) U [3000,3600),
20, 25): 5 (¥) [1990, 2020): 6 2000

Figure 3: PiGen Table Summary

For attributes that do not feature in any projection subspace,
no associated distinct cardinality is maintained — an example is
Year in rs. Lastly, the primary-key column (PID in the example)
is omitted from the summary and is assumed to be a sequence of
distinct natural numbers during on-demand tuple generation.

In the following sections, we present the internal details of each of
the aforementioned concepts.

5 ISOLATING PROJECTIONS

To facilitate independent processing of projection sub-spaces, we
refine the FBs so that the resultant blocks become symmetric. The
symmetry is formally defined as follows:

Definition 5.1. A block r in the data space of a U-dimensional
table 7~ is symmetric along a PAS A iff

D(r) = D(m(r)) X D(myy\4,(r))
where D(.) returns the domain of the input block.
Likewise r is symmetric along PASs A1, Ay, ..., Ay iff
D(r) = D(ra, (r)) X D(7rp, (r)) X ...
X D(ra (1) X D(mg\(a,0A,U...UAL) (1)

The Cartesian product implies that for a symmetric block, the
data can be independently generated for each PAS considered. There-
fore, Symmetric Refinement module refines each FB into a set
of symmetric blocks along the PASs acting on it. Hence, post-
refinement, the different projection spaces can be processed in-
dependently. The refinement algorithm is discussed in Section 5.1.

Impact of Overlapping Projection Subspaces. When partially over-
lapping PASs, say A; and Ay, are applied on an FB b, symmetric
refinement becomes computationally challenging. This is because
Aj, Ay have to be made conditionally independent for b, requiring
refinement such that each resulting block is symmetric along A
and A for each domain point in D(A; N Ay). This is easily done
by enumeration for small cardinality domains, but does not scale
in general. Hence, in PiGen we bypass such overlapping projec-
tion operations by ensuring, as described in Section 5.2, that the
input workload is initially itself decomposed such that there are no
projection subspace overlaps in the resulting sub-workloads.

5.1 Symmetric Refinement

The refinement for each FB is done independently. Given an FB b
and its associated PASs, this module refines b into a group of RBs,
such that each RB is symmetric along the input PASs.

Let us first understand the refinement procedure along a single
PAS A. Here, given b and A, the refinement is carried out as follows:

(1) LetIbe the subset of all interval-combinations in D(A) that
are present in b. The interval boundaries along an attribute
are computed using the constants that appear in the filter
predicates of the input PICs. For some interval-combination
I €1, let by denote the part of b whose projection along
Ais T.

(2) For each interval combination J € I, the projection of b 1
along U \ A is computed, and denoted as x(b 7).

(3) A hashmap H is created with keys as 7(b ) and value as
7. Hence, the parts of b where the projection of b along
U \ A do not alter with changing values of A are clubbed
together into a single hash entry. This construction provides
independence between A and the U \ A subspaces.

(4) Each entry e in H corresponds to an RB, constructed by
taking the region stored as key in e for the U \ A attribute-
set, and a union of regions stored as value in e for the A
attribute-set.

Interestingly, the above refinement strategy also ensures that the
number of resultant blocks is kept to a minimum, as proved in [21].

Extension to Multiple PAS. We now move on to the multiple PAS
scenario. Let there be oo PASs (A1, Ay, ..., Ay) applicable on b across
all PICs. This implies that there are @ + 1 projection subspaces —



7p, (b), ma, (b), ..., ma, (D), and myp\ (4, uA,U...UA,,) (D). Tt is easy to see
that the block becomes symmetric when refined along any « of
these a + 1 subspaces.

The refinement is done iteratively, where the output of refine-
ment along one subspace is fed into the next in the sequence. Since
any sequence among the chosen « subspaces results in a symmet-
ric block, there are a total of (agl)a! ways to do the refinement.
The specific choice that we make from this large set of options is
important because it has an impact on the number of variables in
the LP, and hence the computational complexity and scalability of
the solution procedure. In particular, the number of CPBs created
depends on the geometry of the RBs, and usually more overlaps
of RBs along a PAS results in more CPBs. More precisely, if we
refine a block along a subspace, the overlaps in that space remain
unaffected, but the overlaps along the remaining subspaces may
increase. Therefore, to minimize this collateral impact, we adopt
the following greedy heuristic in PiGen: The subspace having the
maximum FB overlaps with b is chosen as the next subspace to be
refined in the iterative sequence.

Mapping RBs to PICs. The set of RBs, denoted by R, are connected
with the set of PICs using the following relation:

Definition 5.2. An RB r € R is related by relation M to a PIC ¢
containing filter predicate f, iff D(r) satisfies f. That is,

rMc & t satisfies f,Vt € D(r)

For a PIC c, the associated filter predicate’s output cardinality [
can be expressed as the union of a group of RBs related to ¢ by M,

as follows:
LU rl= D) Irl=1

rirMc rirMc
Since all the RBs are mutually disjoint, the union could be replaced
with summation in the above equation.

5.2 Workload Decomposition

As discussed previously, symmetric refinement is performed when
distinct PASs applicable on an FB are non-overlapping. This holds
true when, for each domain point ¢, the distinct PASs across various
PICs that are applicable on ¢, are mutually disjoint. For any given
collection of sets (PASs) to be mutually disjoint, it is equivalent
to say that they are pairwise disjoint. This leads us to defining the
concept of an intersecting pair of PICs.

Definition 5.3. A pair of PICs (c;
(fa, Ag, Io, ky)) intersect iff:
o their PASs partially intersect, i.e.,
Ai1NAy#0,A1 # Ay, and

e fi and f; overlap, i.e., there exists a point ¢ in the domain
space of 7~ such that t satisfies f; and f5.

(fi A, I k1), ¢

For example, consider the following pair of constraints, c4 and cs,
on the PURCHASES table:

cq4 :(Amt < 2500 A Year > 1990, (Qty, Year), 500, 20)
s :(Qty > 20 A Year < 2020, (Amt, Year), 2000, 6)

We see that the filters in the two constraints overlap, and the
corresponding PASs also partially intersect.

In the Workload Decomposition module, the input workload is
split such that there are no intersecting pairs of PICs in the resulting
sub-workloads. We refer to a workload with no intersecting pairs
as a compatible workload, and denote it using C.

Given an original workload W, the set of intersecting pairs
IP is computed first. Subsequently, we construct compatible sub-
workloads Cq, Cy, .., C,, that cover the entire workload. Additionally,
we aim towards minimizing n, i.e. the number of sub-workloads.
This minimization is desirable to facilitate common platform for
workload performance evaluation. Since the minimization is NP-
complete (reduction from vertex coloring), we adopt a heuristic
based on greedy vertex coloring. The algorithm iterates over the
PICs, and in each iteration, the PIC ¢ with minimum intersections in
IP is picked and assigned to a compatible sub-workload C;. If multi-
ple compatible options are available, an assignment that minimizes
the skew in the sub-workload sizes is made. On the other hand, if
no such assignment is possible, a new sub-workload is constructed,
and initialized with c.

In the worst case, the above algorithm can create one sub-
workload per query. However, it is our experience that in practice,
a small number of sub-workloads is usually sufficient. Further, we
hasten to add that even if the worst case materializes, the overheads
incurred would be marginal as only a single small summarized table
is stored per sub-workload.

6 PROJECTION SUBSPACE DIVISION

We now turn our attention to handling intra-projection subspace

dependencies. The projection output cardinality with respect to a

PIC ¢ can be expressed using the relation M as follows:

| U 7l =k
rirMc

We use the shorthand 7 to represent the projection of an RB r on A,

i.e. 7 = ma(r), and this projection block is referred to as a projected-
—=A

refined-block (PRB). The set of all PRBs for a PAS A is shownasR .

Further, for brevity, we overload the same relation M to establish an

association between PRB 7 and a constraint c. That is, rMc¢ <& rMc.

Hence we can rewrite the above equation as:

| U 7=k
rirMc

The union here cannot be replaced with summation because unlike

RBs, the PRBs need not be disjoint. Therefore, to be able to express

the constraint as a linear equation, the projection subspace DA

needs to be divided into a set of CPBs. The set of CPBs correspond-

ing to a PAS A is denoted using P“. Each element p € P4 logically

represents a subset of D#. Further, a relation L* is provided that

. =A
connects the elements of P with elements of R . We first define
the notion of what constitutes a valid division, and then go on to
presenting an algorithm that provides the (unique) optimal division.

6.1 Valid Division
A valid division is defined as follows:
—A
Definition 6.1. Given C,R" and M, a division (PA, LA) with re-

spect to a projection data subspace D is called a valid division if it
satisfies the following two conditions:



- _—=A . .
Condition 1. EachPRB7 € R is expressible as a union of a group
of elements from PA, determined by relation LA

— _ _=A
r= U p. VrekR
pipLAT

Condition 2. All elements in P# that are related to a constraint
¢ € C through the composite relation

Mo L% = {(p,0)|3F € R™ : TMe A pLAT)

(ie., all elements of the set {p : (p,c) e Mo LAY), should be
mutually disjoint for all ¢ € C.

Condition 1 is needed to associate a PRB with its constituent
CPBs. This is required during data generation in order to populate
appropriate RBs based on the cardinalities of CPBs obtained from
the LP solution. Condition 2 enforces that each constraint is com-
prised of disjoint constituent CPBs, thereby enabling expression of
the constraints as linear equations.

For ease of presentation, we drop A, which can be assumed
implicitly, from the superscript in the rest of this section.

6.2 Optimal Division

The number of CPBs in P determine the number of variables in
the LP. Therefore, reducing the size of P helps in reducing the
LP complexity, providing workload scalability and computational
efficiency. Hence, we define an optimal division as a valid division
that has the minimum number of CPBs.

Definition 6.2. A valid division (P, L) is called an optimal division
iff there does not exist any other valid division (P’, L) such that
|P’|< |P|. We represent the optimal division by (P*, L*).

Each element p of P maps to a collection of sets from R using L.
Let R(p) represent the set of PRBs that are related to p through L.
Therefore, as a first step towards identifying the optimal division, let
us characterize how CPBs interact with PRBs as follows: Consider a
vector vy, corresponding to each CPB p in P. The vector is of length
m, where each element is associated with an element of R. Further,
the element associated with 7 € R is denoted by 0p(7). Specifically,
element UP(F) is set to 1 iff pLr. For such cases, p C 7. Next, the
elements in v, corresponding to the sets R(p”) \ R(p) for all p’ such
that (p,c), (p’,c) € M o L for some ¢ € C, are represented as 0,
denoting the absence of values from these sets (using Condition 2).
The remaining elements of v, are set as X’ denoting a don’t care
state, i.e. p and 7 may or may not have an intersection. Finally, p
can be expressed in terms of v, as:

p= (V7N U 7 ¢Y)
Fop(f)=1  7:0,(F)=0

Let the set of vectors corresponding to the elements in P* be

denoted as V* - the algorithm for computing this set is given below.

Opt-PSD Algorithm. We begin our computation of the projection
subspace division by creating a Division Graph. In this graph, a
vertex is created corresponding to each element of R. Then, an edge
is added between vertices corresponding to 71 and 3 if there exists a
constraint ¢ such that 71 Mc and r2Mc, (i.e. both PRBs are related to
a common constraint ¢), and the domains of 71 and ry intersect. The

Algorithm 1: Optimal Projection Subspace Division

Input: Division Graph G
Output: Optimal Vectors-set V*
1 toBeSplit « 0;
2 for7 inR do

3 Oinit < {X}", Vinie(r) < 1;

4 toBeSplit «— {vinit };

5 while toBeSplit # 0 do

6 v « toBeSplit.pop();

7 pivot, targets «— getPivot(G, v);

8 if pivot exists then

9 ‘ toBeSplit < toBeSplit U Split(v, targets);
10 else

1 L V* « V*U {v};

12 return V*;

resultant graph G is given as input to Algorithm 1, which returns the
set of vectors V* in the output. Leveraging the vectors, the contents
of the CPBs are computed using Equation 1. Then, the L* relation
is populated with the expression: (p,7) € L*,if vp(r) = 1,0 € V*.
The rest of the algorithm proceeds as follows:

Firstly, we iterate over the vertices of G. In the iteration for a
PRB 7, a vector is initialized with ‘x’ for all the positions except
that corresponding to 7, which is set to 1 (Line 3 of Algorithm 1).
These initial vectors are recursively further split in the while loop
(Line 5), using a running list of vectors called toBeSplit.

Secondly, in each iteration of the while loop, an element v from
toBeSplit is popped and split using a pivot vertex; the resultant
elements are re-inserted in the list. A pivot PRB is distinguished
as one which is included in v and co-occurs in a constraint ¢ with
another PRB (target) whose current assignment in the vector is
X. To select the pivot vertex in G, the getPivot function is used,
which makes the choice based on the following conditions: (a)
o(pivot) = 1, and (b) there exists a PRB 7 such that there is an edge
between the vertices corresponding to pivot and 7. Further, the
value for 7 in the vector v is X.

Finally, the collection of all PRBs that satisfy condition (b) is
denoted as the targets set corresponding to pivot, and is returned
by the getPivot function. Now, v is split using the Split function
(detailed in [21]), which computes a powerset enumeration of the
vector positions corresponding to PRBs in targets.

We have also incorporated optimizations to Algorithm 1 to pre-
vent redundant computations. Due to space limitations, these op-
timizations, along with the algorithm’s proof of correctness and
optimality, are deferred to [21].

7 CONSTRAINTS FORMULATION

LP formulation requires constraints that capture the PICs while
ensuring that the solution corresponds to a physically constructible
database. In a valid division, each PRB is covered by a set of CPBs
and all CPBs related to a same PIC are mutually disjoint. As a
consequence, a constraint ¢ (f, A, I, k) can now be expressed as a
summation of cardinalities of CPBs related to ¢ through M o L4:

lza(op(TI= 25 Ipl @)

pi(p.c)eMoLA



Further, since each 7 € @A is related to at least one ¢ € C
—_ _=A
through M o L%, the CPBs associated with 7 € R through L% are

.. . . —_ _=A
also disjoint. Hence, the cardinality of ¥ € R* can be represented
as a summation of the cardinalities of related CPBs:

Fl= >3 Ipl (©)]
ppLAT
The LP construction uses the above facts while constructing con-
straints. Specifically, two types of LP variables are constructed - x,
and y,, denoting |r| (r € R) and |p| (p € PA), respectively.
Given this framework, there are two classes of constraints, Ex-
plicit Constraints and Sanity Constraints, that constitute the input
to the LP and are discussed in the remainder of this section.

7.1 Explicit Constraints

These are the LP constraints that are directly derived from the
PICs. Specifically, for each PIC, ¢ : (f, A, [, k), the following pair of
constraints is added for Filter and Projection Output:

(a) Filter Output | (b) Projection Output (from Equation 2)

Zxr=l Z yp =k

rirMe pi(p,c)eMoLA

7.2 Sanity Constraints

These are the additional constraints necessary and sufficient to
ensure that the LP solution can be used for constructing a physical
database instance. Here, there are three types of constraints:

Type 1: These constraints ensure that the row cardinality for each
RB and CPB are non-negative in the LP solution. That is,

xr 20,Vr €R, and y, 20,Vp € P4, forall PAS A

Type 2: These constraints ensure the row cardinality for each RB
is > the number of distinct tuples along each applicable
PAS for it. Using Equation 3, these constraints, for each RB
r and each of its associated PAS A, are expressed as:

D) Yp <xr
ppLAT

Type 3: Even after satisfying the above sanity constraints, the
total number of tuples for an RB may be positive while the
number of distinct tuples along some projection subspace
remains 0. This possibility is prevented by the following
constraint for each RB r and each associated PAS A:

xr < |7 Z Yp
ppLAT
In the above, ¥ = ma(r) and |7| is the cardinality of 7,
which is an upperbound on x,. We assume that |7 | is given
as an input PIC with no filter predicate.

8 DATA GENERATION

The table summary compactly stores information needed for gen-
erating the associated tuples. In this section, we first discuss how
the summary is constructed and then the tuple generation process.

8.1 Summary Construction

Each projection subspace is dealt with independently thanks to the
projection isolation techniques. Consider the projection subspace
corresponding to PAS A - here, the first step is to assign an interval

to each CPB p € P2, A challenge in this assignment is that the
domains of different CPBs may intersect. For instance, the domains
of CPBs p?ty and pgty intersect in PUrcHASEs. However, since
CPBs related to a common projection constraint should not inter-
sect, we assign disjoint intervals to these CPBs to ensure Condition
2. Hence, pZQ 'Y and pﬁQty are allocated disjoint intervals for PAS
Qty as (p?ty, c3), é‘)ty, c3) EMo LP!Y_ On the other hand, in the
case of PAS Amt, p?mt and pfm[ are not related to any ¢ in C, and
therefore their data generation intervals can overlap.
As per above, a feasible interval assignment for PURCHASES is:

pimt — [1100,2500) | p2Y  [20,25)
pAmt — [500,3000) | pY  [25,40)

The summary is maintained RB-wise, with the template structure
shown in Figure 4. We see here that all the CPBs associated with the
block, along with their distinct tuple cardinalities, are represented
in the summary. Using « to denote the total number of associated
PASs, an RB can be represented in @ + 1 components, with each
component associated with a PAS having a distinct row-cardinality.
For the attribute-set on which no projection is applied for the RB,
shown as Ay, r;, the domain of the projection block is kept as is
and no distinct tuple count is maintained. Lastly, each RB has an
associated total cardinality. A populated instance of the template,
and its interpretation, was discussed earlier in Section 4.5.

Aq Ay Ag Ale ft
CPB4y: card., | CPBy: card., CPB4y: card., RB
CPBs: card., | CPB;: card., CPBy: card., PB Card.

Figure 4: Sample RB in Summary

8.2 Tuple Generation

Using the information in the summary, the tuples of the table are
instantiated. Specifically, the algorithm iterates over each RB and
generates the number of rows specified in the associated total cardi-
nality value. For an RB and an associated PAS A, each CPB is picked
and the corresponding partial tuples are generated. This gives a
collection of partial tuples for A which may be less than the total
cardinality. To make up the shortfall without altering the number
of distinct values, we repeat the generated partial tuples until the
total cardinality is reached. For the Aj, ¢, component, which only
has a single interval, any partial-tuple within its boundaries can
be picked for repetition. Finally, partial-tuples across all projection
spaces of the RB are concatenated to construct its output tuples.

Inter-Block Dependencies. We have to ensure that the partial-
tuples associated with a CPB are identical for each of the associated
RBs. To do so, we employ a deterministic algorithm that takes an
interval and a cardinality as input, and produces a series of distinct
points, equal to the cardinality, from the interval — this series is
used in all the associated RBs. As a case in point, for the sample
summary in Figure 3, the partial tuples generated for the CPB with
interval [20, 25) and distinct row cardinality 5 are identical in both
r3 and rgp.



9 PIGEN DEPLOYMENT

The end-to-end data generation pipeline starts with a workload W
of PICs over a table 7~ serving as the pipeline input. Then Workload
Decomposition splits W into a set of compatible sub-workloads.
Subsequently, the rest of the pipeline, comprising of LP Formula-
tion and Data Generation, is executed independently for each of
these sub-workloads. The LP Formulation for a sub-workload C
begins with Region Partitioning followed by Symmetric Re-
finement algorithm. This gives the set of RBs. For each PAS across
all PICs, the PRBs are computed using the RBs. These PRBs and
C are then used by the Projection Subspace Division module
to construct the set of CPBs. Next, at the Constraints Formula-
tion stage, an LP is constructed using variables representing the
cardinalities of RBs and CPBs. This construction is then given as
the input to the LP Solver. From the solution produced by the LP
solver, a comprehensive table summary is constructed using the
Summary Construction module. This summary is used by the
Tuple Generation module to synthesize the data. It can generate
tuples on-demand during query processing, thereby eschewing the
need for data materialization. Alternatively, if the user desires a ma-
terialized database instance, it can be generated from the summary
and stored persistently.

Finally, PiGen leverages the graphical model-based table de-
composition techniques proposed in [8] to construct the table in a
piece-meal fashion and then stitch these constituent pieces together.
Each sub-table consists of a subset of attributes determined by the
attributes that co-appear in the PICs, thereby further reducing the
LP complexity.

Having presented the mechanics of PiGen, we now take a step
back and critique the approach on relevant aspects.

9.1 Workload Feasibility

Feasibility of a set of PICs implies that the PICs can be accurately
satisfied by a single database instance. This notion can be classified
into the following two scenarios:

Intra-PIC Feasibility. This form of feasibility deals with PICs at
an individual level. Specifically, a PIC ¢ : (f, A, [ k) is feasible iff:

0<k<I<|T|orl=k=0 (4)
We prove this in the full version of the paper [21].

Inter-PIC Feasibility. This is a stronger form of feasibility, where
in addition to PICs being individually feasible, they are also required
to be mutually compatible. For instance, consider the additional
constraint, cg, on the PURCHASES table:

c : (Amt < 2000 A Year > 2000, Qty, 400, 25)

We observe here that ¢4 and c¢ cannot be satisfied together. Specif-
ically, ¢¢ requires 25 distinct Qty values for the range Amt <
2000 A Year > 2000, while ¢4 requires that the number of dis-
tinct (Qty, Year) pairs is 20 for a larger covering range, constituting
an impossible situation.

Defining a set of necessary and sufficient conditions that en-
sure solution feasibility for various types of input constraints has
been looked at in the database literature. For instance, [17] deals
with schematic constraints on the participation cardinalities for
the relationships between entities in the ER model, and provides

necessary and sufficient conditions to determine whether database
instances exist such that all entities and relationships are popu-
lated. However, giving a similar holistic solution in the statistical
query-based constraints space, is still an open problem, although
restricted versions have been attempted. Specifically, feasibility of
projection cardinality constraints has been discussed in [12, 16, 27].
A class of constraints, called BT inequalities, were proposed in
[12], which capture the necessary conditions to be satisfied by the
projection output cardinalities. However, this constraint set is not
sufficient, making it still possible that no actual database can satisfy
these values. Subsequently, another class of constraints, called NC
(non-uniform cover) inequalities, was proposed in [27]. While this
constraint set creates sufficient conditions for database construc-
tion, the limitation is that satisfiability of these conditions is not
guaranteed. Further, the feasibility space does not exhibit a convex
behaviour, making it inexpressible as a set of linear constraints [16].

9.2 Solution Guarantees

We discuss the solution guarantees for feasible and infeasible work-
loads separately below.

Feasible Workload. The input workload feasibility is true by def-
inition when the PICs have been derived from an existing setup.
In such scenarios, PiGen ensures, thanks to the explicit LP con-
straints, that the generated data satisfies the PICs with 100% ac-
curacy. Further, the sanity constraints ensure the LP solution is
always constructible. This leads us to the following lemma:

LEMMA 9.1. For a feasible and compatible set of PICs, PiGen always
produces an instance of the table that satisfies all the constraints.

Given an initially feasible workload, workload-decomposition
can always produce sub-workloads that are both feasible and com-
patible. Therefore, for any initially feasible workload, the data pro-
duced by PiGen can cover all the input constraints. We formally
prove Lemma 9.1 in Appendix A.

Infeasible Workload. Intra-PIC feasibility check can be trivially
verified at the pre-processing stage by checking the adherence of
constraints to Condition 4. However, if the input has inter-PIC
infeasibility, the following two possibilities may arise: (a) It may so
happen that Workload Decomposition, while resolving intersection
PICs, may as a collateral benefit, also produce feasible sub-workloads.
For example, by partitioning the workload {c4, c5, ¢¢} into {c4} and
{cs, ¢c6}, the resulting sub-workloads become non-intersecting as
well as feasible. In this scenario, PiGen produces one table for each
sub-workload (using Lemma 9.1). (b) Alternatively, in case this
beneficial effect of decomposition does not happen, then the LP
constraints (discussed in Section 7) themselves become infeasible.
Hence, the LP solver eventually flags this infeasibility. We have
explicitly verified this to be the case for the Z3 solver with a few
deliberately created infeasible constraint sets.

9.3 Solution Complexity

Computationally, the bottleneck of the pipeline lies in the LP solver.
The LP complexity is primarily governed by the number of CPBs
created, which is determined by the overlaps between the blocks
intra-projection subspaces. The extent of overlaps is reflected by



the outdegree of vertices in the Division Graph G(V, E) introduced
in Section 6. For adversarial cases, the number of CPBs can be as
high as the number of connected induced subgraphs of G, which
can go up to 2Vl [21]. Further, |V| itself is O(2|W‘). However, these
worst-case exponential scenarios are relatively rare in practice, and
our experience is that the count is usually well within the solver’s
computational limits. We quantitatively assess this aspect in our
experimental evaluation (Section 10).

Further, for infeasible workloads, the only additional overheads
incurred are the checks for intra-PIC feasibility. This verification
takes constant time for an input PIC.

Lastly, the decision version of the general data generation prob-
lem is NEXP-complete, as shown in [8].

9.4 Limitations and Extensibility

While PiGen takes a substantive step towards addressing the pri-
mary challenges of projection modeling, there are some practical
limitations wrt its current coverage and scope, as described next.

Multiple Summaries. We would ideally like to produce a single
summary instance that satisfies all the PICs. However, PiGen may
have to produce multiple summaries, and hence multiple databases,
to cater to constraint workloads that feature overlapping projection
spaces. From a practical perspective, this multiplicity does not
impose a substantive overhead due to the minuscule size of each
summary. Further, PiGen attempts to reduce the number of sub-
workloads to the minimum required to ensure compatibility.

Workload Scale. PiGen currently handles workloads of reason-
able complexity as showcased in our experiments. However, for
more complex scenarios, a promising recourse is to introduce ap-
proximation, where volumetric accuracy is marginally compromised
to achieve solution tractability. For example, a plausible heuristic
could be to not create all the CPBs in one go, but to create them
greedily until the error limit is reached. Being a highly underde-
termined system, there always exist a sparse solution to the LP —
therefore, this iterative process is expected to converge quickly.

Incremental Workloads. Currently the entire constraint workload
is assumed to be given as the input. An alternative scenario is
where the constraints are incrementally provided. This may appear
problematic since PiGen does not allow modifying the solution to
satisfy additional constraints. However, its data-scale-free summary
creation permits rebuilding the solution from scratch cheaply.

10 EXPERIMENTS

In this section, we evaluate the empirical performance of a Java-
based implementation of PiGen. The popular Z3 solver [6] is in-
voked by the tool to compute the solutions for the LP formulations.
Our experiments cover the accuracy, time and space overheads
and scalability aspects of PiGen, and are conducted using the Post-
greSQL v9.6 engine [3] on a vanilla HP Z440 workstation.

Workload Construction. In presenting the experimental results,
we initially focus on fully compatible workloads. Subsequently, in
Section 10.5, we discuss the corresponding performance for work-
loads featuring intersection. A variety of real world and synthetic

benchmarks were used in designing the workloads. For represen-
tative large fact tables from each of the benchmarks, a workload
of compatible PICs was derived by executing a set of queries. The
denormalized versions of these tables were considered for construct-
ing PICs. The details of the compatible workloads are as follows:

TPC-DS Suite: This suite comprises of four workloads, corre-
sponding to the four TPC-DS tables [4] subject to the maxi-
mum number of projection operations in the benchmark -
namely, STORE_SALES (SS), CATALOG_SALES (CS), WEB_SALES
(WS), and INVENTORY (INV).

Census Workload: Here, the Census dataset framework used in
[14] is extended to additionally feature projections apart
from the extant filter cardinality constraints. In particular, a
single workload was constructed on the PERSONs (P ) table.

IMDB Suite: This suite is designed from the JOB [2] benchmark
based on the IMDB dataset. It comprises of three workloads,
corresponding to the three tables subject to the maximum
projection operations — namely, MOVIE_KEYWORD (MK),
cAsT_INFO (CI), and MOVIE_cOoMPANIES (MC).

The complexity of these various workloads is quantitatively char-
acterized in Table 3. Note that they feature a substantial degree of
both inter-projection complexity (up to 10 projection subspaces and
6 dimension subspaces) and intra-projection complexity (maximum
degree of the Division Graph vertices goes as high as 72).

Table 3: Workload Complexity

Dataset | Table # # PAS Length | Vertex Degree
PICs | PASs | Avg. | Max. | Avg. Max.
SS 16 8 1.4 5 3.95 10
CS 15 10 2.2 5 4.74 15
TPEDS s 16 8 2 6 5.7 16
INV 6 3 1.5 4 0.92 4
Census P 220 3 1.67 2 1.33 72
MK 16 4 1.25 2 5.68 14
IMDB CI 14 3 2.67 3 3.7 17
MC 19 4 1.5 2 3.75 15

Baselines. We compare PiGen against the DataSynth and Hy-
dra frameworks which both support strict cardinality constraints.
For DataSynth, projection constraints need to be restricted to sin-
gle attribute tables, whereas in Hydra, only the filter constraints
are considered in the generation process. We deliberately omit the
evaluation of systems dealing with parameterized cardinality con-
straints such as Touchstone [18] and MyBenchmark [19]). This is
due to the organic differences, highlighted in Section 2 between
their problem framework and ours, which render quantitative com-
parisons to be infructuous.

10.1 Constraint Accuracy

When PiGen was run on the aforementioned workloads, the gen-
erated data satisfied all the constraints with 100% accuracy. To
appreciate the complexity present in these successfully modeled
constraints, we present a representative sample constraint applied
on the denormalized relation of STORE_SALES from TPC-DS below:



c:(f, A 31921358,15061)

f:d_year = 2002 A
(i_category € (‘Jewelry’’Women’) A i_class € (‘mens watch’/dresses’)) V
(i_category € (‘Men’;Sports’) A i_class € (‘sports-apparel’;sailing’)) and
A : {i_category,i_brand,s_store_name,s_company_name,d_moy}.
Note that there are several attributes in the projection set, and both
conjunctive and disjunctive predicates in the filter condition.
When the same experiments were carried out with Hydra, we
found that typically over 90% of the constraints had a relative error
of greater than 90%. Turning our attention to DataSynth, we also
generated a customized workload from the TPC-DS benchmark,
comprising of only single attribute projection and filter constraints
to suit DataSynth’s restricted environment. Even for this simplified
scenario, we found several cases, where the LP solution obtained
from DataSynth was inconstructible. An example illustration show-
casing this fundamental problem is available in [21].
Due to this clear inability of both DataSynth and Hydra to pro-
duce data that satisfies projection-compliant constraints, we restrict
our attention to PiGen in the rest of this section.

10.2 Generated Data

We now show a concrete example of how the data generated by
PiGen satisfies the input PICs. Consider the following PIC from the
Census workload on the PERSONS table:

(18 < Age < 85 A Relationship = ‘Spouse’

A PUMA = 822, (Age, Sex), 205, 4)

A snippet of the generated table is shown in Table 4. Here, the first
four rows in the (Age, Sex) columns are repeated in round-robin
fashion, while the remaining attributes have a fixed constant value,
for producing the first 205 rows. Then, the subsequent rows (206th
row onwards) in the table are assigned values that do not satisfy
the above constraint.

Table 4: Sample Rows produced for PERsONs Table

Age Sex Relationship | PUMA | Tenure
18 M Spouse 822 Rented
25 F Spouse 822 Rented
36 M
68 M .
Repeated in Round Robin Spouse 822 Rented
(Row # 206) 76 F Parent 100 Owned

10.3 Time and Space Overheads

We now turn our attention to PiGen’s computational and resource
overheads. The summary construction times and sizes for various
tables across workloads are reported in Table 5. We see here that
the construction times range from a couple of seconds to a few tens
of minutes. From a deployment perspective, these times appear
acceptable since database generation is usually an offline activity.
Moreover, the summary sizes are minuscule, within a few 100 KBs.

Drilling down into the summary production time, which is typi-
cally in the order of a few minutes, we find that virtually all of it is

Table 5: Overheads Table 6: Block Profiles

Summar Cardinality of
Table | e S}ilze Table | ppo | RBs yCPBs
SS 21 min 58 kB SS 74 88 132662
CS 32 min 117 kB CS 139 141 165936
WS 15 min 64 kB WS 119 132 73929
INV 2s 13 kB INV 11 16 41
MK 2 min 15.5 kB MK 30 32 30083
CI 41s 13.6 kB CI 278 301 14386
MC 3.6 min | 27.7 kB MC 187 203 42835
P 30 min 416 kB P 1193 | 1529 7170

consumed in the LP solving stage. In fact, the collective time spent
by the other stages was usually less than ten seconds. These results
highlight the need for minimizing the number of LP variables, since
the solving time is largely predicated on this number. To obtain a
quantitative understanding, we report the sizes of the intermediate
results at various pipeline stages in Table 6 — specifically, the table
shows the number of FBs, RBs, and CPBs created by PiGen. We
see here that there is a huge jump in the number of regions from
the initial FB to the final CPBs, testifying that the workloads have
considerable overlaps among their constituent PICs, representing
“tough-nut” scenarios wrt projection. An exception to this observa-
tion is the PERSONS table from Census dataset, where even though
the maximum degree for a vertex in the Division graph was 72
(Table 3), the overlaps between PICs are limited as also indicated
by the average degree which is less than 2.

We also evaluated the time taken to flag infeasibility by PiGen
for the cases where the input workload itself has infeasible PICs.
In our experience, this situation was usually caught within a few
minutes. As a case in point, on adding an infeasible constraint to the
220 PICs set for CENSUS data, the error was flagged in 3 minutes.

The table summaries can be used to either dynamically generate
tuples during query processing, or produce materialized instances.
Representative generation times are reported in Table 7, and we
see that even a huge table such as SS, with close to 3 billion records,
is generated within just a few minutes.

Table 7: Tuple Generation Time

Table | # Rows Tupl‘e Gen. Table | # Rows Tupl'e Gen.
Time Time

SS 2.9bn 4 min WA 0.72 bn 8 seconds

CS 1.4 bn 1.5 min INV 0.78 bn 9 seconds

10.4 Scalability Profile

Data Scale. The time and space overheads incurred to produce
table summaries are intrinsically data-scale-free, i.e., they do not
depend on the generated size. We explicitly verified this property
by running PiGen over 10 GB, 100 GB and 1 TB versions of TPC-DS.

Workload Scale. The time and space requirements with increas-
ing number of PICs is shown in Figures 5(a) and 5(b), respectively,
for the Census workload. The figures highlight that the memory
consumption is relatively stable and manageable (few GB) across



log (Exec. Time) (s)
S = N W
Main Memory (GB)

No. of PICs No. of PICs

Figure 5: (a) Execution Time (b) Memory Usage

the spectrum, but that time scalability can be a limitation for work-
loads beyond a certain complexity (Figure 5(a) is on a log scale).

10.5 Workload Decomposition

We now turn our attention to intersecting workloads, which require
the pre-processing step of workload decomposition. To model this
scenario, we added intersecting PICs to the TPC-DS workload suite,
with the final workloads having the following PIC distributions: SS
(52 PICs), CS (28 PICs), WS (29 PICs), and INV (8 PICs).

We evaluated PiGen for these four tables and the results are
shown in Table 8. We observe that despite using an approximate
vertex coloring algorithm, the partitioning led to at most 6 sub-
workloads for ensuring internal compatibility. Interestingly, the
aggregate summary generation times are extremely small, complet-
ing in just a few seconds, and much lower than the corresponding
numbers for the TPC-DS compatible suite in Table 5. At first glance,
this might appear surprising given that the intersecting version
is more complex in nature — the reason is that due to workload
decomposition, an array of databases is produced with low indi-
vidual production complexity, whereas a single unified database is
produced for the compatible case. From a deployment perspective,
it is preferable to generate the smallest number of databases, and
therefore we would always strive to minimize the decomposition.

Finally, we also verified the quality of the approximation algo-
rithm for decomposition. That is, how far is the obtained number
of sub-workloads from the actual minimum count. To assess this,
we implemented the exponential algorithm that computes the true
minimum number of sub-workloads and in the cases where this
exhaustive algorithm could be evaluated, we found that the approx-
imation algorithm returned the same count as the optimal.

Table 8: Workload Decomposition

Sub-Workload Aggregate Aggregate
Table . . .
Sizes Summary Time | Summary Size
SS 13,11,8,7,7,6 14s 135 kB
CS 14,5,5,4 12s 69 kB
WS 12,10,7 7s 58 kB
INV 6,2 3s 16 kB

11 CONCLUSIONS

Synthetic data generation from a set of cardinality constraints has
been strongly advocated in the contemporary database testing lit-
erature. PiGen expands the scope of the supported constraints to

include, for the first time, the general Projection operator. The pri-
mary challenges in this effort were tackling dependencies within a
projection subspace and across different projection subspaces. By
using a combination of workload decomposition and symmetric
refinement, dependencies across various projection subspaces were
handled. Within a projection subspace, union was converted to
summation via division of the space. Further, an optimal division
strategy was presented to construct efficient LP formulations of
the constraints. The experimental evaluation on real-world and
synthetic benchmarks indicated that PiGen successfully produces
generation summaries with viable time and space overheads.
Currently, PiGen deems any exact solution to the LP as satis-
factory for database generation. This choice could be materially
improved in two ways: 1) By using approximation algorithms that
sacrifice constraint accuracy to a limited extent to achieve bet-
ter workload scalability; and 2) By preferentially directing the LP
solver towards solutions with reduced sparsity so as to improve the
robustness of the generated database to future unseen queries.

A PROOF OF LEMMA 9.1

We briefly discuss the proof for Lemma 9.1, which is split into two
parts: (a) The LP constructed for a feasible compatible workload C
is always satisfiable; (b) Given any LP solution, data can be always
be constructed from it, and this data will satisfy C.

Part (a): Given workload feasibility, there exists at least one
instance T of the table that satisfies C. Further, due to compatibility,
C is modeled in a single LP. Say T does not satisfy this LP. This
implies T does not satisfy at least one of the Explicit or Sanity
constraints. If T violates an Explicit constraint, then it does not
satisfy at least one input PIC. This is because each input PIC is
modeled using two Explicit constraints that ensure the data satisfies
the PIC. Further, there cannot be a physical table that violates
any Sanity constraint due to its inherent nature. Hence, T satisfies
all the Sanity constraints as well. Therefore, by contradiction, we
can conclude that T satisfies the LP - in fact, the LP gives the
necessary conditions for data generation adhering to the workload.
This implies that for feasible workloads, the LP is satisfiable.

Part (b): For a particular PAS A, the Sanity constraints ensure
that for each populated RB, the total tuple count in the RB is at least
the number of distinct rows along A, and the distinct row count is
positive. Hence, the data along each projection subspace is gener-
ated easily. Further, since RB is symmetric in nature, data across
its different projection subspaces can be generated independently
and concatenated. Therefore, any LP solution is sufficient for data
generation. Since, each PIC is modelled in the LP using the Explicit
constraints, the generated data is compliant with C.
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