
Green Query Optimization: Taming Query Optimization
Overheads through Plan Recycling

Parag Sarda Jayant R. Haritsa∗

Database Systems Lab, SERC/CSA
Indian Institute of Science, Bangalore 560012, INDIA.

Abstract

PLASTIC [1] is a recently-proposed tool to help
query optimizers significantly amortize optimiza-
tion overheads through a technique of plan recy-
cling. The tool groups similar queries into clus-
ters and uses the optimizer-generated plan for the
cluster representative to execute all future queries
assigned to the cluster. An earlier demo [2] had
presented a basic prototype implementation of
PLASTIC. We have now significantly extended
the scope, useability, and efficiency of PLASTIC,
by incorporating a variety of new features, includ-
ing an enhanced query feature vector, variable-
sized clustering and a decision-tree-based query
classifier. The demo of the upgraded PLASTIC
tool is shown on commercial database platforms
(IBM DB2 and Oracle 9i).

1 Introduction
Query optimization is a computationally intensive process,
especially for complex queries. Recently, in [1], we pre-
sented a tool called PLASTIC (PLAn Selection Through
Incremental Clustering), that can be used by query op-
timizers to amortize the optimization overheads through
a technique of “plan recycling”. Specifically, PLASTIC
groups similar queries into clusters and uses the optimizer-
generated plan for the cluster representative to execute all
future queries assigned to the cluster. Queries are charac-
terized by a feature vector that captures both query struc-
tures and statistics, and query similarity is evaluated us-
ing a distance function on these feature vectors. Experi-
ments with a variety of queries (based on the TPC-H bench-
mark [5]) on a commercial optimizer showed that PLAS-

∗∗Contact Author: haritsa@dsl.serc.iisc.ernet.in

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

TIC predicts the correct plan choice in most cases, thereby
providing significantly improved query optimization times.
Further, even when errors were made, only marginal addi-
tional execution costs were incurred due to the sub-optimal
plan choices.

Apart from the obvious advantage of speeding up op-
timization time, PLASTIC also improves query execution
efficiency because optimizers can now always run at their
highest optimization level – the cost of such optimization
is amortized over all future queries that reuse these plans.
Further, the benefits of “plan hints”, a common technique
for influencing optimizer plan choices for specific queries,
automatically percolate to the entire set of queries that are
associated with this plan. Lastly, since the assignment of
queries to clusters is based on database statistics, the plan
choice for a given query is adaptive to the current state of
the database.

An earlier demo [2] had presented a basic prototype im-
plementation of PLASTIC. We have, in the interim period,
significantly extended the scope, useability, and efficiency
of PLASTIC, by incorporating a host of new features, in-
cluding:

• variable-sized clustering to match volatility in plan space;

• integration of a decision tree classifier for fast cluster
identification;

• increased scope for query matching across resources and
schemas; augmented feature vector to account for table
access paths and organizations, as also index types

• computation and incorporation of cost estimations in plan
generation;

• automated mechanisms for creating and visualizing inte-
grated “plan-cost diagrams”, which enumerate the plans
chosen by the optimizer over the query space, and show
the associated costs; and

• a plan analyzer module for comparing plan choices
within and across database platforms.

In this demo, we present a walk-through of the upgraded
PLASTIC tool, and explain how it helps to (a) significantly
amortize the overheads of query optimization, and (b) serve



as a research, educational and administrative tool for under-
standing the intricacies of query plan generation. The demo
is hosted on commercial database platforms (IBM DB2 and
Oracle 9i).

2 Overview of PLASTIC
The well-known inherent costs of query optimization are
compounded by the fact that a query submitted to the
database system is typically optimized afresh, providing
no opportunity to amortize these overheads over prior opti-
mizations. While current commercial query optimizers do
provide facilities for reusing execution plans (e.g. “stored
outlines” in Oracle 9i [6]), the query matching is extremely
restrictive – only if the incoming query has a close textual
resemblance with one of the stored queries is the associated
plan re-used to execute the new query.

Our recently-proposed PLASTIC tool [1] attempts to
significantly increase the scope of plan reuse. It is based
on the observation that even queries which differ in projec-
tion, selection and join predicates, as also in the base tables
themselves, may still have identical plan templates – that
is, they share a common database operator tree, although
the specific inputs to these operators could be different. By
identifying such similarities in the plan space, we can ma-
terially improve the utility of plan cacheing.

PLASTIC captures these similarities by characterizing
queries in terms of a feature vector that includes struc-
tural attributes such as the number of tables and joins
in the query, as well as statistical quantities such as the
sizes of the tables participating in the query. Using a dis-
tance function defined on these feature vectors, queries are
grouped into clusters, which are built incrementally. Each
cluster has a representative for whom the template of the
optimizer-generated execution plan is persistently stored,
and this plan template is used to execute all future queries
assigned to the cluster. In short, PLASTIC recycles plan
templates based on the expectation that its clustering mech-
anism is likely to assign an execution plan identical to what
the optimizer would have produced on the same query.

A block-level diagram of the PLASTIC architecture is
shown in Figure 1. The user query is first processed by the
Feature Vector Extractor which also accesses the system
catalogs and obtains the information required to produce
the feature vector. The SimilarityCheck module establishes
whether this feature vector has a sufficiently close match
with any of the cluster representatives in the Query Clus-
ter Database. If a match is found (solid lines in Figure 1),
the plan template for the matching cluster representative is
accessed from the Plan Template Database. The plan tem-
plate is converted into a complete plan by the Plan Gener-
ator module, which fills in the operator inputs based on the
specifics of the current query.

On the other hand, if no matching cluster is found
(dashed lines in Figure 1), the Query Optimizer is invoked
in the traditional manner and its output plan is used to ex-
ecute the query. This plan is also passed to the Plan Tem-
plate Generator which converts the plan into its template

Figure 1: The PLASTIC Architecture

representation for storage in the Plan Template Database.
Concurrently, the query feature vector is stored in the
Query Cluster Database, as a new cluster representative.

3 New Features of PLASTIC
A basic prototype implementation of PLASTIC was
demonstrated earlier in [2]. In this section, we describe
in detail the new features of PLASTIC that are highlighted
in the current demo. These new features significantly ex-
tend the scope, useability, and efficiency of PLASTIC, as
explained below.

Variable-Sized Clustering. PLASTIC originally imple-
mented fixed-size clusters, resulting in the twin problems of
insufficient clusters in the high-volatility (rapid changes in
plan choices) regions of the plan space and redundant clus-
ters in the low-volatility (gradual changes in plan choices)
regions. We have now incorporated variable-sized cluster-
ing in PLASTIC, providing several small-sized clusters in
the high-volatility region and a few large-sized clusters in
the low-volatility region. Our scheme is based on the obser-
vation that the high-volatility region is typically present in
the highly-selective region of the plan space. Therefore, we
have modified the distance function, used to compare sim-
ilarities between queries, such that the cluster size thresh-
olds are small in the highly-selective regions, and large in
the less-selective regions – details are available in [3].

A sample output of variable-sized clustering for a TPC-
H-based query template1 is shown in Figure 2. Here, the
axes represents the selectivities of a pair of the participat-
ing relations, namely PART and PARTSUPP, and the dots
represent the cluster representatives. Our initial experimen-
tal results indicate that variable clustering can reduce plan
prediction errors by almost 50 percent [3].

1A query template represents a query in which some or all of the con-
stants in the where-clause predicates have been replaced by bind variables.



Figure 2: Variable-Sized clustering

Decision-Tree Classifier. In the original tool, identify-
ing the matching cluster (if any) for the new query, was
achieved by comparing the new query with the cluster rep-
resentatives until either a similar representative was found,
or all were found to be dis-similar. This process can be-
come computationally expensive when a large number of
clusters are present, as would often be the case. To hasten
the process of cluster identification, we have now incorpo-
rated a new classifier module into the PLASTIC architec-
ture (see Figure 1), which operates on the clusters in the
database, after grouping them based on plan commonality
– that is, clusters sharing the same plan are grouped to-
gether and a classifier is built on these groups. Specifically,
the popular C 5.0 [7] decision-tree classifier has been inte-
grated into our prototype.

To optimize the grouping process, initially the plan tem-
plate of each query representative is traversed in post-order
and an MD5 hash signature of this traversal is computed.
Subsequently, these signatures, rather than the plans them-
selves, are compared to decide plan commonality among
clusters. Such grouping significantly reduces the number
of class labels in the cluster database, and has twofold ad-
vantages: Firstly, it increases the accuracy of the classi-
fier, and secondly, results in a decision tree of lesser height,
thereby requiring lesser time for classification. Quantita-
tively, our experiments show that the cluster identification
time reduces by an order of magnitude, at only a small cost
in the overall matching accuracy [3]. In fact, with the clas-
sifier, the identification cost is proportional to the hetero-
geneity of the clusters, whereas in the earlier version, the
cost was proportional to the cardinality of the clusters.

The decision tree also helps to identify the attributes of
the query feature vector that have the most impact on plan
choices. We expect that this information will be especially
beneficial for both database administrators and query opti-
mization researchers/students. A sample output of the clas-
sifier module is shown in Figure 3 (here, ETS refers to Ef-
fective Table Size, a query feature vector component [1]).

Figure 3: Classifier Module Output

Increased Scope for Query Matching. Our earlier work
was effective only when all the queries were on a com-
mon schema. We have now extended the PLASTIC tool
to share plan templates even for queries operating on dif-
ferent schemas. An example of the breadth of matching is
shown in Figure 4, where Query 2 is correctly identified
as having the same plan template as Query 1, which is a
cluster representative in the database.

SELECT *
FROM EMPLOYEE, EMP_ACT, EMP_PHOTO
WHERE EMPLOYEE.empno = EMP_ACT.empno

and EMP_ACT.empno = EMP_PHOTO.empno
and EMPLOYEE.empno > 0
and EMP_ACT.empno < 400
and EMP_PHOTO.empno between 10 and 390

Query 1

SELECT EMPLOYEE.name, EMPLOYEE.project,
EMP_RESUME.resume

FROM EMPLOYEE, EMP_ACT, EMP_RESUME
WHERE EMPLOYEE.empno = EMP_ACT.empno

and EMP_ACT.empno = EMP_RESUME.empno

Query 2

Figure 4: Breadth of Matching by PLASTIC

We have also augmented the PLASTIC feature vector to
take into account different table access paths (table scans
and index scans), table organizations (clustered and B-
tree), and index types (unique, cluster, and reverse).

Further, it was earlier conservatively assumed that the
presence of an index on a query attribute in the cluster rep-
resentative meant that it would be used and therefore a new
query that lacked an index on its corresponding attribute
could not be matched to this representative. The system
now checks for the actual usage of such resources in the
representative and removes it from the representative’s fea-
ture vector if not used, thereby increasing the scope for
query matching and plan sharing.

Including Cost Estimations in Generated Plans. The
plans generated by PLASTIC were incomplete in that they
did not include the associated operator costs, although this
is a standard feature of plans generated by the optimizer.
Note that the costs of the cluster representative’s plan can-
not be directly used for this purpose since there can be



significant variation in the matched queries, although they
share a common plan template. To address this issue, we
have included an estimation module in the plan generator
that scales and interpolates the costs of the cluster repre-
sentative to reflect the costs of the new query, and includes
this information in the generated plan.

Since the new query and its matched cluster representa-
tive may differ on selectivities of multiple relations, a mul-
tivariate strategy is required to compute the interpolated
values. Currently, we have implemented first order multi-
variate interpolation based on barycentric coordinates [8],
which has a low time complexity. Our initial experiments
indicate that the interpolation is accurate to within 90 per-
cent [3].

Automated Plan-Cost Diagram Generator. Generating
a “plan diagram” [1], which is an enumeration of the plan
choices of the optimizer over the query space, is a computa-
tionally expensive process since it involves firing of a large
number of queries. Earlier, this diagram was constructed
from scratch for each query, but we have now added a fa-
cility for persistently storing these diagrams directly in the
database, from which they can be immediately retrieved at
the desired time. We have also mapped these stored plan di-
agrams with the associated clusters, to provide better visual
interfaces for generating, viewing, and reorganizing query
clusters. Further, we have augmented the plan diagram,
which is a qualitative picture, to include quantitative costs,
thereby resulting in a combined plan-cost diagram. An ex-
ample plan-cost diagram2 corresponding to a TPC-H-based
query, is shown in Figure 5. Note that there are eleven plan
optimality regions (P1 through P11) spanning the entire se-
lectivity spectrum on the PART and PARTSUPP relations,
and the sizes of the dots indicate the relative plan costs.

Figure 5: PLASTIC Plan-Cost Diagram

Plan Analyzer Module. A new Plan Analyzer module,

2The diagram is based on plan selections obtained with the IBM DB2
query optimizer.

intended for analyzing the specific differences between a
pair of query execution plans, has been incorporated in the
Plastic tool. We expect that this module will be especially
beneficial for database administrators and query optimiza-
tion researchers/students to help understand plan choices
made by the optimizer.

The module identifies differences between plans us-
ing an adaption of the X-Diff [4] algorithm (which was
proposed for computing differences between XML docu-
ments). It can be used in two ways: (a) to compare plan
choices for different versions of a query on a single plat-
form, or (b) to compare choices for the same query across
database platforms. Part of a sample output of the mod-
ule, showing the differences between Plan 7 and Plan 9 of
Figure 5, is shown in Figure 6 (the source plans are omit-
ted because of their complexity and size). From this figure,
we can see that these two plans differ only in the access
method (index scan versus table scan) for the PARTSUPP
relation.

Figure 6: Plan Differences

Acknowledgements. This work was supported in part by a Swar-
najayanti Fellowship from the Dept. of Science & Technology,
Govt. of India. We thank Vibhuti Sengar for his technical advice.

References
[1] A. Ghosh, J. Parikh, V. Sengar and J. Haritsa, “Plan Selec-

tion based on Query Clustering”, Proc. of 28th Intl. Conf. on
Very Large Data Bases (VLDB), August 2002.

[2] V. Sengar and J. Haritsa, “PLASTIC: Reducing Query Opti-
mization Overheads through Plan Recycling”, Proc. of ACM
SIGMOD Intl. Conf. on Management of Data, June 2003.

[3] P. Sarda, “Green Query Optimization: Taming Query Op-
timization Overheads through Plan Recycling”, Master’s
Thesis, CSA, Indian Institute of Science, July 2004.

[4] Y. Wang, D. DeWitt and J.Cai, “X-Diff: A Fast Change De-
tection Algorithm for XMLDocuments” Proc. of 19th IEEE
Intl. Conference on Data Engineering, March 2003.

[5] http://www.tpc.org

[6] http://download-east.oracle.com/otndoc/oracle9i/
901 doc/server.901/a87503/toc.htm

[7] http://www.rulequest.com/see5-info.html

[8] www.library.uu.nl/digiarchief/dip/diss/2003-1028-
125323/appd.pdf


