Dynamic Real-Time Optimistic Concurrency Control

Jayant R. Haritsa Michael J. Carey Miron Livny

Computer Sciences Department
University of Wisconsin
Madison, WI 53706

ABSTRACT

In a recent study, we have shown that in real-time database
systems that discard late transactions, optimistic concurrency
control outperforms locking. Although the optimistic algorithm
used in that study, OPT-BC, did not factor in transaction dead-
lines in making data conflict resolution decisions, it still outper-
formed a deadline-cognizant locking algorithm. In this paper,
we discuss why adding deadline information to optimistic algo-
rithms is a non-trivial problem, and describe some alternative
methods of doing so. We present a new real-time optimistic con-
currency control algorithm, WAIT-50, that monitors transaction
conflict states and gives precedence to urgent transactions in a
controlled manner. WAIT-50 is shown to provide significant
performance gains over OPT-BC under a variety of operating
conditions and workloads.

1. INTRODUCTION

A Real-Time Database System (RTDBS) is a transaction
processing system that attempts to satisfy the timing constraints
associated with each incoming transaction. Typically, a con-
straint is expressed in the form of a deadline, that is, the user
submitting the transaction would like it to be completed before a
certain time in the future. Accordingly, greater value is associ-
ated with processing transactions before their deadlines as com-
pared to completing them late. Therefore, in contrast to a con-
ventional DBMS where the goal usually is to minimize response
times, the emphasis here is on satisfying the timing constraints
of transactions.

The problem of scheduling transactions in an RTDBS with
the objective of minimizing the percentage of late transactions
was first addressed in [Abbo88, Abbo89]. Their work focused
on evaluating the performance of various real-time scheduling
policies. All these policies enforced data consistency by using a
two-phase locking protocol as the underlying concurrency con-
trol mechanism. Performance studies of concurrency control
methods for conventional DBMSs (e.g.[Agra87]) have con-
cluded that locking protocols, due to their conservation of
resources, perform better than optimistic techniques when
resources are limited. In a recent study [Hari90a], we investi-
gated the behavior of these concurrency control schemes in a
real-time environment. The study showed that for firm deadline
real-time database systems, where late transactions are

This research was partially supported by the National Science
Foundation under grant IRI-8657323.

CH2933-0/90/0000/0094$01.00 © 1990 IEEE

immediately discarded, optimistic concurrency control outper-
forms locking over a wide range of system loading and resource
availability. The key reason for this surprising result is that the
optimistic approach, due to its validation stage conflict resolu-
tion, ensures that eventually discarded transactions do not restart
other transactions. The locking approach, on the other hand,
allows these soon-to-be-discarded transactions to cause other
transactions to be either blocked or restarted due to lock
conflicts, thereby increasing the number of late transactions.

An important difference between the locking algorithm and
the optimistic algorithm that were compared in the above study
lies in their use of transaction deadline information. The locking
algorithm used this information, which was encoded in the form
of transaction priorities, to provide preferential treatment to
urgent transactions. The optimistic algorithm, however, was just
the conventional broadcast commit optimistic scheme [Mena82,
Robi82], and ignored transaction priorities in resolving data con-
tention. The study therefore concluded that, in the firm real-time
domain, a "vanilla" optimistic algorithm can perform better than
a locking algorithm that is "tuned" to the real-time environment.
The following question then naturally arises: How can we use
priority information to improve the performance of the optimis-
tic algorithm and thus further decrease the number of late tran-
sactions?

A simple answer to this question would be to use priority
information in the resolution of data conflicts, that is, to resolve
data conflicts always in favor of the higher priority transaction.
This solution, however, has two problems: First, giving pre-
ferential treatment to high priority transactions may result in an
increase in the number of missed deadlines. This can happen,
for example, if helping a high priority transaction to make its
deadline causes several lesser priority transactions to miss their
deadlines. Second, if fluctuations can occur in transaction prior-
ities, repeated conflicts between a pair of transactions may be
resolved in some cases in favor of one transaction and in other
cases in favor of the other transaction. This would hinder the
progress of both transactions and hence degrade performance.
Therefore, a priority-cognizant optimistic algorithm must
address these two problems in order to perform better than a
simple optimistic scheme.

In this paper, we report on our efforts to develop such an
algorithm, and present a new optimistic concurrency control
algorithm, called WAIT-50. The algorithm incorporates a
priority wait mechanism that makes low priority transactions
wait for conflicting high priority transactions to complete, thus
enforcing preferential treatment for high priority transactions.

To address the first problem raised above, WAIT-50 features a
wait control mechanism. This mechanism monitors transaction
conflict states and, with a simple "50 percent" rule, dynamically
controls when and for how long a transaction is made to wait.
The second problem is handled by having the priority wait
mechanism resolve conflicts in a manner that results in the com-
mit of at least one of the conflicting transactions. Simulation
results show that WAIT-50 performs significantly better than
OPT-BC, the optimistic algorithm used in our earlier study.

The remainder of this paper is organized in the following
fashion: Section 2 reviews our earlier study. In Section 3, we
discuss deficiencies of OPT-BC. The new optimistic algorithm,
WAIT-50, is presented in Section 4. Then, in Section 5, we
describe our RTDBS model and its parameters, while Section 6
highlights the results of the simulation experiments. Finally,
Section 7 summarizes the main conclusions of the study.

2. BACKGROUND

Our earlier study [Hari90a] investigated the relative perfor-
mance of locking protocols and optimistic techniques in an
RTDBS environment. In particular, the performance of a lock-
ing protocol, 2PL-HP, was compared with that of an optimistic
technique, OPT-BC. These particular instances were chosen
because they are of comparable complexity and are general in
their applicability since they make no assumptions about
knowledge of transaction semantics or resource demands. The
details of these algorithms are explained below.

In 2PL-HP, classical two phase locking [Eswa76] is aug-
mented with a High Priority [Abbo88] conflict resolution
scheme to ensure that high priority transactions are not delayed
by low priority transactions. This scheme resolves all data
conflicts in favor of the transaction with the higher priority.
When a transaction requests a lock on an object held by other
transactions in a conflicting lock mode, if the requester’s priority
is higher than that of all the holders, the holders are restarted and
the requester is granted the lock; otherwise, the requester waits

for the lock holders to release the object. The High Priority

scheme also serves as a deadlock prevention mechanism.!

In OPT-BC, classical optimistic concurrency control
[Kung81] is modified to implement the notion of a Broadcast
Commit [Mena82, Robi82]. Here, when a transaction commits,
it notifies other running transactions that conflict with it and
these transactions are immediately restarted. Since there is no
need to check for conflicts with already committed transactions,
a transaction which has reached the validation stage is
guaranteed to commit. The broadcast commit method detects
conflicts earlier than the basic optimistic algorithm, resulting in
less wasted resources and earlier restarts; this increases the
chances of meeting transaction deadlines. An important point to
note is that transaction priorities are not used in resolving data
conflicts.

! This is true only for priority assignment schemes that do not
change a transaction’s priority during the course of its execution.

95

The results of our study showed that both the policy for deal-
ing with late transactions and the availability of resources have a
significant impact on the relative behavior of the algorithms. In
particular, for a firm deadline system, where late transactions are
discarded without being run to completion, OPT-BC outper-
formed 2PL-HP over a wide range of system loading and
resource availability. Figures 1 and 2 present sample graphs of
how the percentage of late transactions varies as a function of
the iransaction amrival raie. These graphs were derived for the
baseline model of the study, which characterized an RTDBS
system with high data contention, under conditions of limited
resources and plentiful resources, respectively.

In the above scenario, 2PL-HP suffered from two major
problems: wasted restarts and mutual restarts. A "wasted res-
tart" occurs when an executing transaction is restarted by
another transaction that later misses its deadline. Such restarts
are useless and cause performance degradation. In OPT-BC,
however, we are guaranteed the commit of any transaction that

160 +———+ OPT-BC
A——A 2PL-HP
80
M
i
s
5 e
P
e
r
c 40
e
n
t
20
[]
00 200 400 60.0 80.0 1000
Arrival Rate

Figure 1: Baseline Model (Limited Resources)

100 +——+ OPT-BC
r—lts 2PL-HP
80
M
i
8
5 60
P
e
r
c W
e
n
t
20
[]
00 200 400 600 800 1000
Arrival Rate

Figure 2: Baseline Model (Plentiful Resources)

reaches the validation stage. Since only validating transactions
can cause restarts of other transactions, all restarts generated by
the OPT-BC algorithm are useful.

The problem of "mutual restarts" arises when fluctuations
occur in transaction priority profiles. For certain types of
dynamic transaction priority assignment schemes (e.g. Least
Slack [Jens86}), it is possible for a pair of concurrently running
transactions to have opposite priorities relative to each other at
different mlntc in time ﬂnrmn their execution, We will refer to
this phenomenon as "priority reversal".? For algorithms like
2PL-HP, which use transaction priorities to resolve data
conflicts, priority reversals may lead to "mutual restarts” — a pair
of transactions restart each other, thus hindering the progress of
both transactions. Since OPT-BC does not use transaction prior-
ities in resolving data contention, such problems simply do not
arise.

3. PROBLEMS WITH OPT-BC

In this section, we will motivate why there is room for
improvement on the OPT-BC algorithm. The validation algo-
rithm of OPT-BC can be succinctly written as:

restart all conflicting transactions;
commit the validating transaction;

Although this algorithm provides immunity from priority
dynamics due to its unilateral commit, it does not allow for
using transaction priorities to further decrease the number of
missed deadlines. To illustrate this problem, consider the
scenario in Figure 3, where the execution profile of two con-
currently executing transactions, X and Y, is shown. X has an
arrival time Ay and deadline Dy, and Y has an arrival time Ay
and deadline Dy. Also, assume that transaction X, by virtue of
its earlier deadline, has a higher priority than transaction Y.
Now, consider the situation where at time ¢ = Vy, when transac-
tion X is close to completion, transaction Y reaches its validation
point and detects a conflict with X. Under the OPT-BC algo-
rithm, ¥ would immediately commit and in the process restart X.
Restarting X at this late stage guarantees that it has no chance of
meeting its deadline.

I X ;
| 1
A S
Ay ‘I’Y Cy Dy

Time

Figure 3: Poor OPT-BC data conflict decision

2 This is different from priority inversion [Sha87), which refers to
the situation where a transaction is blocked (due to data or resource
conflict) by another transaction with a lower priority.

96

If a priority-cognizant algorithm had been used instead, it
would have recognized that X's priority was higher than that of
Y. Then, in some fashion, it would have prevented Y from com-
mitting until X had completed. With this decision, we could

nossiblv gain the comnletion of hoth transactions X and Y hefore

possibly gain the completion of both transactions X and Y before
their deadlines, as shown in Figure 3 where X completes at time
t = Cy and Y completes later at time £ = Cy,

The above example shows how OPT-BC’s indifference to

on e daorad Annthar denor
transaction priorities can degrade performance. Another draw-

back of OPT-BC is that it has an inherent bias against long tran-
sactions, just like the classical optimistic algorithm. The use of
priority information in resolving conflicts can help counter this
bias.

4. PRIORITY-COGNIZANT ALGORITHMS

As explained in the previous sections, although the OPT-BC
algorithm highlights some major strengths of optimistic con-
currency control in real-time database systems, there remains
potential for improving its performance. We therefore tried to
develop new optimistic algorithms that address the problems of
OPT-BC without sacrificing the performance-beneficial aspects
of the broadcast commit scheme. These algorithms are
described in this section. In the subsequent discussion, we will
use the term conflict set to denote the set of currently running
transactions that conflict with a validating transaction. The acro-
nym CHP (Conflicting Higher Priority) will be used to refer to
transactions that are in the conflict set and have a higher priority
than the validating transaction. Similarly, the acronym CLP
(Conflicting Lower Priority) will be used to refer to transactions
that are in the conflict set and have a lower priority than the vali-
dating transaction. In this section, our aim is to motivate the
development of the algorithms and discuss, at an intuitive level,
their potential strengths and weaknesses.

The example in Section 3, illustrating poor conflict decisions
by OPT-BC, showed that we need a scheme to prevent low
priority transactions that conflict with higher priority transac-
tions from unilaterally committing. The following two options
are available:

(1
)
Two algorithms, OPT-SACRIFICE and OPT-WAIT, were
developed based on these options. WAIT-50 was then

developed as an extension of the OPT-WAIT algorithm. These
three algorithms are presented below.

Restart: The low priority transaction is restarted.
Block: The low priority transaction is blocked.

4.1. OPT-SACRIFICE

In this algorithm, when a transaction reaches its validation
stage, it checks for conflicts with currently executing transac-
tions. If conflicts are detected and at least one of the transac-
tions in the conflict set is a CHP transaction, then the validating
transaction is restarted — that is, it is sacrificed in an effort to
help the higher priority transactions make their deadlines. The
validation algorithm of OPT-SACRIFICE can therefore be writ-
ten as:

if CHP transactions in conflict set then
restart the validating transaction;
else
restart transactions in conflict set;
commit the validating transaction;

Referring back to Figure 3, if we were using OPT-SACRIFICE,
then at time ¢ = Vy, transaction Y would restart itself due to the
conflict with the higher priority transaction X,

OPT-SACRIFICE is priority-cognizant and satisfies the goal
of giving preferential treatment to high priority transactions. It
suffers, however, from two potential problems. First, there is
the problem of wasted sacrifices, where a transaction is
sacrificed on behalf of another transaction that is later discarded.
Such sacrifices are useless and cause performance degradation.
Second, the algorithm does not have immunity to priority
dynamics. For example, the situation may arise where transac-
tion A is sacrificed for transaction B because B’s priority is
currently greater than that of A, and transaction B at a later time
is sacrificed for transaction A because A’s priority is now
greater than that of B. Therefore, priority reversals may lead to
mutual sacrifices. These two drawbacks are analogous to the
"wasted restarts" and "mutual restarts" problems of 2PL-HP.

4.2. OPT-WAIT

This algorithm incorporates a priority wait mechanism: a
transaction that reaches validation and finds CHP transactions in
its conflict set is "put on the shelf", that is, it is made to wait and
not allowed to commit immediately. This gives the higher prior-
ity transactions a chance to make their deadlines first. While a
transaction is waiting, it is possible that it will be restarted due
to the commit of one of the CHP transactions. The validation
algorithm of OPT-WAIT can therefore be written as:

while CHP transactions in conflict set do
wait;

restart transactions in conflict set;

commit the validating transaction;

Referring back to Figure 3, if we were using OPT-WAIT, then
at time ¢ = Vy, transaction Y would wait, without committing, for
transaction X to complete first. Of course, X's completion may
cause Y to be restarted.

There are several reasons that suggest that the priority wait
mechanism may have a positive impact on performance, and
these are outlined below:

(1) Inkeeping with the original goal, precedence is given to

high-priority transactions.
2

The problem of "wasted sacrifices” does not exist
because if a CHP transaction is discarded due to missing
its deadline, or is restarted by some other transaction,
then the waiter is immediately "taken off the shelf" and

committed if no other CHP transactions remain.

(3) Priority reversals are not a problem because, if a CHP
transaction being waited for were to become a CLP tran-
saction, the waiting transaction will no longer wait for it,
and will immediately commit if no other CHP transac-

tions remain.

97

(4) Since transactions wait instead of immediately restart-
ing, a blocking effect is derived — this results in conser-
vation of resources, which can be beneficial to perfor-
mance [Agra87].

(5) The fact that a CHP transaction commits does not neces-

sarily imply that the waiting transaction has to be res-
tarted (1).

The last point requires further explanation: The key observa-
tion here is that if transaction A conflicts with transaction B, it
does not necessarily mean that the converse is true [Robi82].
This is explained as follows: Under the broadcast commit
scheme, a validating transaction A is said to conflict with
another transaction B if and only if

WriteSet, (~\ ReadSety # ¢ (¢))]

We will denote such a conflict from transaction A to B by A—B.
For transaction B to also conflict with transaction A, i.e. for
B—A4, itis necessary that

WriteSety (~ ReadSet, # ¢)

As is obvious from Equations (1) and (2), A—B does not imply
B—A. Therefore, if in fact B—A is not true, then by committing
the transactions in the order (B,A) instead of the order (A,B),
both transactions can be committed without restarting either one.

As per the explanation given above, it is possible with our
waiting scheme for the CHP transaction and the waiting transac-
tion to commit in that order without either transaction being res-
tarted. Therefore, the priority wait mechanism has a potential to
actually eliminate some data conflicts. (A simple probabilistic
analysis of the extent to which waiting can reduce data conflicts
is presented in [Hari90b]).

Although the waiting scheme has many positive features, it is
not an unmixed blessing. One potential drawback is that if a
transaction finally commits after waiting for some time, it causes
all of its CLP transactions to be restarted at a later point in time.
This decreases the chances of these transactions meeting their
deadlines, and also wastes resources. A second drawback is that
the validating transaction may develop new conflicts during its
waiting period, thus causing an increase in conflict set sizes and
leading to more restarts. Another way to view this is to realize
that waiting causes objects to be, in a sense, "locked” for longer
periods of time. Therefore, while waiting has the capability to
reduce the probability of a restart-causing conflict between a
given pair of transactions, it can simultaneously increase the
probability of having a larger number of conflicts per transac-
tion. This increase may be substantial when there are many con-
currently executing transactions in the system.

4.3. WAIT-50

The WAIT-50 algorithm is an extension of OPT-WAIT - in
addition to the priority wait mechanism, it incorporates a wait
control mechanism. This mechanism monitors transaction
conflict states and dynamically decides when, and for how long,
a low priority transaction should be made to wait for its CHP
transactions. A transaction’s conflict state is assumed to be

characterized by the index HPpercent, which is the percentage
of the transaction’s total conflict set size that is formed by CHP
transactions. The operation of the wait mechanism is condi-
tioned on the value of this index. In WAIT-50, a simple "50
percent” rule is used — a validating transaction is made to wait
only while HPpercent > 50, that is, while half or more of its
conflict set is composed of higher priority transactions. The
validation algorithm of WAIT-50 can therefore be written as:

while CHP transactions in conflict set and
HPpercent 2 50 do
wait;
restart transactions in conflict set;
commit the validating transaction;

The aim of the wait control mechanism is to detect when the
beneficial effects of waiting, in terms of giving preference to
high priority transactions and decreasing pairwise conflicts, are
outweighed by its drawbacks, in terms of later restarts and an
increased number of conflicts. Therefore, while OPT-WAIT and
OPT-BC represent the extremes with regard to waiting — OPT-
WAIT always waits for a CHP transaction, and OPT-BC never
waits — WAIT-50 is a hybrid algorithm that controls the amount
of waiting based on transaction conflict states. In fact, we can
view OPT-WAIT, WAIT-50, and OPT-BC as all being special
cases of a general algorithm WAIT-X, where X is the cutoff
HPpercent level, with X taking on the values 0, 50, and oo,
respectively, for these algorithms.

We conducted experiments to evaluate the performance of
the various optimistic algorithms, and the following sections
describe our experimental framework and results.

5. REAL-TIME DBMS MODEL

The real-time database system model employed here is the
same as that of our earlier study — in this model, the system con-
sists of a shared-memory multiprocessor DBMS operating on
disk resident data.? The database itself is modeled as a collection
of pages. Transactions arrive in a Poisson stream and each tran-
saction has an associated deadline. Each transaction consists of
a sequence of page read and write accesses. A read access
involves a concurrency control request to get access permission,
followed by a disk I/O to read the page, followed by a period of
CPU usage for processing the page. Write requests are handled
similarly except for their disk I/O — their disk activity is deferred
until the transaction has committed. The following two subsec-
tions describe the workload generation process and the hardware
resource configuration.

5.1. Workload Model

The workload model characterizes transactions in terms of
the pages that they access and the number of pages that they
update. Table 1 summarizes the key workload parameters.
ArrivalRate specifies the rate of transaction arrivals.

3 It is assumed, for simplicity, that all data is accessed from disk
and buffer pool considerations are therefore ignored.

98

DatabaseSize gives the number of pages in the database. The
number of pages accessed by a transaction varies uniformly
between half and one-and-a-half times the value of PageCount.
Page requests are generated from a uniform distribution span-
ning the entire database. WriteProb gives the probability that a
page that is read will also be updated.

We use two transaction deadline assignment formulas in this
study. The first formula, which is the same as the one used in
our previous study, is:

Dr=Ar+SF * Ry (DF1)

where Dr, Ay, and Ry are the deadline, arrival time and resource
time, respectively, of transaction T, while SF is a slack factor.
The resource time is the total service time at the resources that
the transaction requires for its data processing. The slack factor
is a constant that provides control over the tightness/slackness of
deadlines. The formula ensures that all transactions, indepen-
dent of their service requirement, have the same slack ratio —
this is defined to be the ratio (D — Ar) / Ry. Therefore, all tran-
sactions have SF as their slack ratio.

In order to evaluate the effects of variability in transaction
slack ratios, a second deadline assignment formula is used in the
present study. This formula is:

Ar + LSF * R,

T=1Ar + HSF * R, (DF2)

With this formula, transactions will have a slack factor of either

LSF or HSF, with both choices being equally likely. Therefore,

the slack ratio for a transaction will be either LSF or HSF. The

LSF and HSF workload parameters set the slack factors to be

used in the deadline formulas. (For DF1, these two parameters
have the same value).

The transaction priority assignment scheme used in all the
experiments reported here is Earliest Deadline — transactions
with earlier deadlines have higher priority than transactions with
later deadlines. The system operates under firm deadlines, and
therefore discards late transactions. It is important to note that
while the workload generator uses transaction resource require-
ments in assigning deadlines, we assume that the system itself
lacks any knowledge of these requirements. This implies that a
transaction is detected as being late only when it actually misses
its deadline.

Table 1: Workload Model Parameters

Parameter Meaning

ArrivalRate Transaction arrival rate
DatabaseSize Number of pages in database
PageCount Avg. # pages accessed/transaction
WriteProb Write probability/accessed page
DeadlineFormula | DF1 or DF2

LSF Low Slack Factor

HSF High Slack Factor

5.2. Resource Model

The physical resources in our model consist of multiple
CPUs and multiple disks. There is a single queue for the CPUs
and the service discipline is preemptive-resume, with preemp-
tion being based on transaction priorities. Each of the disks has
its own queue and is scheduled according to a priority-based
variant of the elevator disk scheduling algorithm [Care89].
Requests at each disk are grouped into priority levels and the
elevator algorithm is applied within each priority level; requests
at a priority level are served only when there are no pending
requests at higher priority levels. The details of our implemen-
tation of this algorithm are described in [Hari%0b]. The data
pages are modeled as being uniformly distributed across all the
disks and across all tracks within a disk.

6. EXPERIMENTS and RESULTS

In this section, we present performance results for our simu-
lation experiments comparing the various optimistic algorithms
in a real-time database system environment. Our experiments
evaluated the algorithms under a variety of operating conditions,
workloads, and data access patterns [Hari%0b]. We present only
a subset of the results here due to space limitations. The perfor-
mance metric is MissPercent, which is the percentage of transac-
tions that do not complete before their deadline. MissPercent
values in the range of 0 to 20 percent are taken to represent sys-
tem performance under "normal" loadings, while MissPercent
values in the range of 20 to 100 percent represent system perfor-
mance under "heavy" loading.* The simulations also generated a
host of other statistical information, such as the number of data
conflicts, the time spent in priority waiting, etc. These secon-
dary measures help explain the behavior of the algorithms under
various loading levels. The resource parameter settings are such
that the CPU time to process a page is 10 milliseconds while
disk access times are between 15 and 30 milliseconds, depend-
ing on the level of disk utilization. Disk access times depend on
disk utilization due to the elevator scheduling policy.

For experiments that were intended to factor in the effect of
resource contention on the performance of the algorithms, the
number of processors and number of disks were set to 10 and
20, respectively. For experiments intended to isolate the effect
of data contention, we approximately simulated an “infinite"
resource situation [Agra87], that is, where there is no queueing
for resources. This was done by increasing twenty-fold the
number of processors and the number of disks, from their base-
line values of 10 and 20 to 200 and 400, respectively. A point to
note here is that while abundant resources are usually not to be
expected in conventional database systems, they may be more
common in RTDBS environments since many real-time systems
are sized to handle transient heavy loading. This directly relates
to the application domain of RTDBSs, where functionality,

* Any long-term operating region where the miss percent is large
is obviously unrealistic for a viable RTDBS. Exercising the system to
high miss levels, however, provides valuable information on the
response of the algorithms to brief periods of stress loading.

rather than cost, is usually the driving consideration.

We began our experiments by evaluating the various
optimistic algorithms for the baseline model of our earlier study.
This was done to provide continuity from that study to the
present work. Subsequently, for reasons explained in the fol-
lowing discussion, we moved to a new baseline model. After
initial experiments with this model, further experiments were
constructed around it by varying a few parameters at a time.
These experiments evaluated the impact of data contention,
resource contention, deadline slack variation, transaction write
probabilities, and the wait control mechanism parameter. We
will hereafter refer to the old baseline model as FIX-SR (Fixed
Slack Ratio), and the new baseline model as VAR-SR (Variable
Slack Ratio).

6.1. FIX-SR Baseline Model

The settings of the workload parameters and resource param-
eters for the FIX-SR baseline model are listed in Tables 2 and 3.
These settings generate an appreciable level of both data conten-
tion and resource contention. For this model, Figures 4a and 4b
show MissPercent behavior under normal load and heavy load,
respectively. When the same experiment is carried out under
infinite resources, Figures 5a and 5b are obtained. From this set
of graphs, we can make the following observations:

(1) OPT-SACRIFICE performs significantly worse than the
wait-based algorithms over the entire operating region,
and for the most part, also performs worse than OPT-
BC. The poor performance of this algorithm is primarily
due to the problem of "wasted sacrifices"”, discussed in
Section 4. Also, in the infinite resource case, the
sacrifice policy generates a steep rise in the number of
data conflicts by causing a significant increase in the
average number of transactions in the system. This is
brought out quantitatively in Figure Sc, which plots the
average number of conflicts per input transaction.

(2) OPT-WAIT, due to its priority cognizance, performs
very well at low levels of data contention (Figs.4a, 5a).
As data contention increases, however, its performance

Table 2: FIX-SR Baseline Model Workload Settings

Parameter Value
DatabaseSize 1000 pages
PageCount 16 pages
WriteProb 0.25
DeadlineFormula | DF1
SlackFactor, 4.0
SlackFactor, 4.0

Table 3: FIX-SR Baseline Model Resource Settings

Parameter | Value
NumCPUs | 10
NumDisks 20

+——+ OPFT-BC 100y +—+ oOPTBC
@————0 OPT-WAIT 0——8 OPT-WAIT
————+ WAIT-%0 ——+ WAIT-50
A———&QPT-SACRIFICE
4&——40PT-SACRIFICE
20 80
M M
i i
s s
S 18 L}
P P
e e
r r
c 10 ¢ 4
e e
n n
t t
5 20
0 [}
0.0 50 100 150 2006 250 259 50.0 75.0 100.0
Arrival Rate Arrival Rate
Fig. 4a: FIX-SR (Normal Load) Fig. 4b: FIX-SR (Heavy Load)
60 +———+ OPT-BC 12 +——+ OPTBC
O————8 OPT-WAIT O———0 OPT-WAIT
>— WAIT-50 L e ‘WAIT-50
4&—————40PT-SACRIFICE 10 OFT-SACRIFICE
D
M a
i t
s 4 3 8
s
P C
[
e n 6 ’
r f
c 1
e 20 | 4
n c
t t
s
2
0 — —_— [} -
500 600 700 800 90.0 100.0 0.0 200 400 60.0 80.0 1000
Arrival Rate Arrival Rate
Fig. 5b: Inf. Res. (Heavy Load) Fig. 5c: Conflicts (Inf. Res.)
100 +———+ OPT-BC 20 +——+ OPTBC
O0———© OPT-WAIT 0———0 OPT.-WAIT
— WAIT-50 &——n® WAIT-50
80
M M 15
i i
s s
s 60 8
P P
e e 19
r r
[4 40 4
e [
n n
t t 5
20
0 v - — []
25.0 50.0 75.0 100.0 00 100 200 300 40.0 50.0
Arrival Rate Arrival Rate

Fig. 6b: VAR-SR (Heavy Load)

Fig. 7a: Inf. Res. (Normal Load)

100

At

OPT-BC

wn—Z

~-3 006N

..
X 200 300 400 500
.0 106 Arrival Rate
Fig. 5a: Inf. Res. (Normal Load)
20 +————+ OPT-BC
O———0 QPT-WAIT
*~——a WAIT-50
M 15
i
E
13
P
e 10
r
4
e
n
t S
% 00 150 200 250
00 30 11§r.riva.l Rate) :
Fig. 6a: VAR-SR (Normal Load)
50 +——+ OPT-BC
0——© OPT-WAIT
*———¢ WAIT-50
40
M
i
8
s 39
P
e
T
¢ 20
e
n
t
10
: 700 800 90.0 100.0
506 600 A halRate)

Fig. 7b: Inf. Res. (Heavy Load)

steadily degrades. Finally, at high contention levels
under infinite resources (Fig.5b), it performs
significantly worse than OPT-BC. The reason for OPT-
WAIT’s poor performance in this region is that its prior-
ity wait mechanism, just like the sacrifice policy, causes
an increase in the average number of transactions in the
system. This population increase generates a
corresponding rise in the number of data conflicts (see
Fig. 5¢), resulting in higher miss percentages.

(3) WAIT-50 provides the best overall performance. At
low data contention levels, it behaves like OPT-WAIT,
and at high contention levels it behaves like OPT-BC.
The explanation for this behavior is given in the next

section.

Under high resource contention (Fig.4b), WAIT-50 and
OPT-WAIT behave identically to OPT-BC. This is
because, with heavy resource contention, it is uncom-
mon for a low priority transaction to reach its validation
stage much before its deadline, and therefore the wait-
times of transactions are mostly small. Accordingly, the
priority wait mechanism has very limited impact, and
WAIT-50, OPT-WAIT, and OPT-BC become essen-
tially the same algorithm.

The above results are encouraging because they show that
there are performance benefits to be gained by using priority-
cognizant algorithms. It is all the more encouraging that these
performance improvements are obtained despite all transactions
having the same slack ratio (from using deadline formula DF1).
A fixed transaction slack ratio reduces the likelihood of a vali-
dating transaction finding a higher priority transaction in its set
of conflicting transactions. This creates favorable circumstances
for OPT-BC since the detrimental effects of its priority insensi-
tivity are reduced.

@

6.2. VAR-SR Baseline Model

In order t generate a workload with variation in transaction
slack ratios, the VAR-SR baseline model was developed for the
current study. This model uses deadline assignment formula
DF2 to generate variation in transaction slack ratios. The work-
load parameters LSF and HSF are set at 2.0 and 6.0, respec-
tively.’ The remaining workload parameter settings and resource
parameter settings are the same as those for the FIX-SR baseline
model (see Tables 2 and 3). In the subsequent discussions, we
will compare the performance of only the OPT-BC, OPT-WAIT
and WAIT-50 algorithms since OPT-SACRIFICE invariably
performed worse than the wait-based algorithms.

For the VAR-SR baseline model, Figures 6a and 6b show the
behavior of the algorithms under normal load and heavy load,
respectively. When the same experiment was carried out under
infinite resources, Figures 7a and 7b were obtained. From this
set of graphs we can make the following observations:

% These parameter selections ensure that the mean slack ratio is
the same as that of the FIX-SR baseline model, namely 4.0.

101

(1) The priority-cognizant algorithms, WAIT-50 and OPT-
WAIT, now perform significantly better than OPT-BC
under normal loads.

(2) WAIT-50 again turns in the best overall performance by

behaving like OPT-WAIT at low data contention levels
and like OPT-BC at high data contention levels.

As can be seen from this experiment, and will be further
confirmed in subsequent experiments, WAIT-50 provides per-
formance close to either OPT-BC or OPT-WAIT in operating
regions where they behave well, and provides the same or
slightly better performance at intermediate points. Therefore, in
an overall sense, WAIT-50 effectively integrates priority and
waiting into the optimistic concurrency control framework. The
control mechanism is clearly quite competent at deciding when
the benefits of waiting, in terms of helping high priority transac-
tions to make their deadlines, are outweighed by the drawbacks
of causing an increased number of conflicts. In Figure 7c, we
plot the "wait factor" of OPT-WAIT and WAIT-50, which
measures the total time spent in priority-waiting due to each
algorithm, normalized by the waiting time of OPT-WAIT. As
can be seen from this figure, WAIT-50’s wait factor is close to
that of OPT-WAIT at low contention levels but decreases
steadily as the data contention level is increased. Therefore,
while OPT-WAIT and OPT-BC represent the extremes with
regard to waiting, WAIT-50 gracefully controls the waiting to
match the data contention level in the system.

6.3. Write Probability

All the previously described experiments were carried out for
a write probability of 0.25. The next set of experiments look
into the performance effects of varying transaction write proba-
bilities. In the first experiment, the write probability was
increased to 1.0, keeping the other parameters the same as those
of the baseline model. This experiment was conducted for both
finite resource and infinite resource scenarios, and the results are
shown in Figures 8 and 9a. From this set of figures, we can
make the following observations:

(1) OPT-WAIT suffers a substantial performance degrada-
tion and does worse than OPT-BC over almost the entire
operating region. There are two reasons for this: First,
the increased write probability generates higher levels of
data contention which, in combination with the popula-
tion increase effect of the priority wait mechanism,
results in a steep increase in the number of conflicts.
Second, the conflict-elimination capability of OPT-
WAIT vanishes since all conflicts are now bi-
directional. These effects are captured dramatically in
Figure 9b, which profiles the average number of
conflicts per input transaction under infinite resources.

Although WAIT-50 also employs the priority wait
mechanism, it does not suffer OPT-WAIT’s perfor-
mance degradation. This is due to its control mechan-
ism, which ensures OPT-BC-like behavior when high
data contention levels are reached by sharply reducing
its wait factor. Figure 9c, which plots the wait factor of
the algorithms for the infinite resources case, shows this

2

1.0
60— OFT-WAIT
[¥] *——— WAIT-30
w
a
i
t 0.6
F
a
< 04
t
[
r .
02
0.0
0.0 200 40.0 600 800 100.0
Arrival Rate
Fig. 7c: Wait Factor (Inf. Res.)
407 +——+ OPT-BC
0———6 OPT-WAIT
¢——e WAIT-30
D
a 30
t
a
C
0
n 20
f
1
i
c
t 10
s
[}
0.0 200 400 60.0 80.0 100.0
Arrival Rate
Fig. 9b: Conflicts (Inf. Res.)
50 4————+ OPT-BC
O—© OPT-WAIT
e WAIT-50
40
M
i
s
s 30
P
e
r
c 20
€
n
t
10
0
0.00 025 0.50 0.75 1.00
Write Probability

Fig. 11: Inf. Res. (Amr. Rate = 20)

100 +————+ OPT-BC
@———© OPT-WAIT
*————0 WAIT-50
80
M
i
s
5 60
P
[
r
e 40
€
n
t
20
0
0.0 200 400 600 800 1000
Arrival Rate

Fig. 8: Write Pr. = 1.0 (Finite Res.)

100 4————-+ OPT:BC
8 OPT-WAIT
¢ WAIT-0

80

M

i

s

L]

P

e

r

c W

e

n

t
20
°
0.0 200 800 100.0

40.0 60.
Arrival Rate
Fig. 9a: Write Pr. = 1.0 (Inf. Res.)

1.0 o—e—» 60 +——= OPT-BC
0———0 OPT-WAIT
—— WaAT-50
0———© OPT-WAIT 50
0.8 —— WAIT-50
w i
‘I' s 40
t 0.6 s
P
F e ¥
A r
¢ o4 ¢
° ; 20
r t
02 10
“ 80.0 100.0 ?)00 025 0.50 0.75 1.00
.0 200 400 600 X ! . .. 3 K
0 Arrival Rate Write Probability
Fig. 9c: Wait Factor (Inf. Res.) Fig. 10: Finite Res. (Arr. Rate = 20)
20 +——+ OPT-BC 50 +———+ OPT-BC
*——0 WAIT *——v0 WAIT
—— WAT-% —————¢ WAT-S0
&———8 WAIT-25 &4 WAIT-25
8 WAIT-7S 40 ——8 WAIT-7S
M 15 M
i i
s s
5 5 3
P P
€ 10 e
c ¢
e e
n n
t s t
10
0 T J 0 v - \
0.0 100 200 300 400 50.0 500 600 700 80.0 90.0 100.0
Arrival Rate Arrival Rate

Fig. 12a: Control (Normal Load)

102

Fig. 12b: Control (Heavy Load)

effect quantitatively.

In the second experiment, the write probability was varied
from 0.0 to 1.0, keeping the arrival rate constant at 20
transactions/sec. Figures 10 and 11 show how the algorithms
behave under conditions of finite and infinite resources, respec-
tively. These graphs clearly show that while OPT-WAIT per-

£ (a1l ot 1o aanflios lavels OPT ba
forms well at low conflict levels, OPT-BC does much better at

high conflict levels. We also observe that WAIT-50 again pro-
vides good performance over the entire range.

6.4. Wait Control Mechanism

The final experiment presented here examines the effect of
the choice of 50 as the cutoff value for the HPpercent control
index. Keeping all parameters the same as those of the baseline
model, we measured the performance of WAIT-25 and WAIT-
75 under conditions of infinite resources. Figures 12a and 12b
give the results of this experiment under normal load and heavy
load, respectively. From these graphs, we can make the follow-
ing observations:

(1) Lowering the cutoff value to 25 percent results in a
slight improvement of normal load performance, but
worsens the heavy load performance. This behavior is
due to the increased wait factor that is delivered by the

lowered cutoff value.

(2) Raising the cutoff value to 75 percent has the opposite
effect: the normal load performance becomes worse,
while there is a slight improvement in heavy load perfor-
mance. This behavior is due to the decreased priority
cognizance that is delivered by the increased cutoff

value.

A 50 percent cutoff, therefore, appears to establish a reason-
able tradeoff between these opposing forces, providing good
performance across the entire range of loading. The basic philo-
sophy is that at light loads, when data contention levels are low,
waiting is always beneficial. At heavy loads, however, when
data contention levels are high, waiting is the wrong thing to do.
WAIT-50 is effective in dynamically making this transition.

7. CONCLUSIONS

In this paper, we have addressed the problem of incorporat-
ing transaction deadline information into optimistic concurrency
control algorithms. We presented a new real-time optimistic
concurrency control algorithm, called WAIT-50, that uses tran-
saction deadline information to improve data conflict resolution
decisions. The algorithm features a priority wait mechanism
that gives precedence to urgent transactions. This mechanism
forces low priority transactions to wait for conflicting high prior-
ity transactions to complete, thus enforcing preferential treat-
ment for high priority transactions. We showed that the
mechanism has a capacity to eliminate some data conflicts due
to its wait component, which causes changes to be made to the
commit order of transactions. The priority-wait mechanism pro-
vides immunity to priority fluctuations by resolving conflicts in
a manner that results in the commit of at least one of the
conflicting transactions.

103

While the priority wait mechanism works well at low system
contention levels, it can cause significant performance degrada-

tion at }nn‘h contention levels l-“r gpnpmtmg a steep increase in

the number of data conflicts. A simple wait control mechanism
consisting of a "50 percent” rule is used in the WAIT-50 algo-
rithm to address this problem. The "50 percent” rule is the fol-
lowing: If half or more of the transactions conflicting with a
transaction are of higher priority, the transaction is made to wait;
otherwise, it is allowed to commit.

Using a simulation model of a RTDBS, we studied the per-
formance of the WAIT-50 algorithm over a range of workloads
and operating conditions. WAIT-50 was shown to provide
significant performance gains over OPT-BC, a priority-
insensitive optimistic algorithm. The wait control mechanism of
WAIT-50 was found to be effective in maintaining good perfor-
mance, even at high data contention levels. In summary, we
conclude that the WAIT-50 algorithm utilizes transaction prior-
ity information to stably provide improved performance.

REFERENCES

[Abbo88] Abbott, R., and Garcia-Molina, H., "Scheduling
Real-Time Transactions: a Performance Evaluation," Proc. of
the 14th VLDB Conference, Aug. 1988.

[Abbo89] Abbott, R., and Garcia-Molina, H., "Scheduling
Real-Time Transactions with Disk Resident Data," Proc. of the
15th VLDB Conference, Aug. 1989.

[Agra87] Agrawal, R, Carey, M., and Livny,M., "Con-
currency Control Performance Modeling: Alternatives and
Implications," ACM Trans. on Database Systems, Dec. 1987.

[Care89] Carey, M., Jauhari, R., and Livny, M., "Priority in
DBMS Resource Scheduling," Proc. of the 15th VLDB Confer-
ence, Aug. 1989.

[Eswa76] Eswaran, K., Gray, J., Lorie, R., and Traiger, I,
"The Notions of Consistency and Predicate Locks in a Database
System," Communications of the ACM, Nov. 1976.

[Hari90a] Haritsa, J., Carey, M., and Livny, M., "On Being
Optimistic about Real-Time Constraints,” Proc. of the 1990
ACM PODS Symposium, April 1990.

[Hari90b] Haritsa, J., Carey, M., and Livny, M., "Dynamic
Real-Time Optimistic Concurrency Control," Tech. Report,
University of Wisconsin-Madison, October 1990.

[Jens86] Jensen, E., Locke, C., and Tokuda, H., "A Time-
Driven Scheduling Model for Real-Time Operating Systems,”
Proc. 7th IEEE Real-Time System Symposium, IEEE 1986.
[Kung81] Kung, H., and Robinson, J, "On Optimistic
Methods for Concurrency Control,” ACM Trans. on Database
Systems, June 1981.

[Mena82] Menasce, D., and Nakanishi, T., "Optimistic versus
Pessimistic Concurrency Control Mechanisms in Database
Management Systems," Information Systems, vol. 7-1, 1982.

[Robi82] Robinson, J., "Design of Concurrency Controls for
Transaction Processing Systems,” Ph.D. Thesis, Camegie Mel-
lon University, 1982.

[Sha87] Sha, L., Rajkumar, R., and Lehoczky, J., "Priority
Inheritance Protocols: An Approach to Real-Time Synchroniza-
tion," Tech. Report Carnegie Mellon University, Dec. 1987.

