Earliest Deadline Scheduling for Real-Time Database Systems

Jayant R. Haritsa Miron Livny

Michael J. Carey

Computer Sciences Department
University of Wisconsin
Madison, W1 53706

ABSTRACT

Earlier studies have observed that in moderately-loaded
real-time database systems, using an Earliest Deadline policy to
schedule tasks results in the fewest missed deadlines. When the
real-time system is overloaded, however, an Earliest Deadline
schedule performs worse than most other policies. This is due to
Earliest Deadline giving the highest priority to transactions that
are close to missing their deadlines. In this paper, we present a
new priority assignment algorithm called Adaptive Earliest
Deadline (AED), which features a feedback control mechanism
that detects overload conditions and modifies transaction priority
assignments accordingly. Using a detailed simulation model, we
compare the performance of AED with respect to Earliest Dead-
line and other fixed priority schemes. We also present and
evaluate an extension of the AED algorithm called Hierarchical
Earliest Deadline (HED), which is designed to handle applica-
tions that assign different values to transactions and where the
goal is to maximize the total value of the in-time transactions.

1. INTRODUCTION

A Real-Time Database System (RTDBS) is a transaction
processing system that is designed to handle transactions with
completion deadlines. Several previous RTDBS studies (e.g.
[Abbo88, Abbo89)) have addressed the issue of scheduling tran-
sactions with the objective of minimizing the number of late
transactions. A common observation of these studies has been
that assigning priorities to transactions according to an Earliest
Deadline [Liu73] policy minimizes the number of late transac-
tions in systems operating under low or moderate levels of
resource and data contention. This is due to Earliest Deadline
giving the highest priority to transactions that have the least
remaining time in which to complete. These studies have also
observed, however, that the performance of Earliest Deadline
steeply degrades in an overloaded system. This is because,
under heavy loading, transactions gain high priority only when
they are close to their deadlines. Gaining high priority at this
late stage may not leave sufficient time for transactions to com-
plete before their deadlines. Under heavy loads, then, a funda-
mental weakness of the Earliest Deadline priority policy is that it
assigns the highest priority to transactions that are close to miss-
ing their deadlines, thus delaying other transactions that might

This research was partially supported by the National Science
Foundation under grant IRI-8657323.

0-8186-2450-791 §1.00©1991 IEEE

still be able to meet their deadlines.

From the above discussion, the following question naturally
arises: Can a priority assignment policy be developed based on
the Earliest Deadline approach that stabilizes its overload perfor-
mance without sacrificing its light-load virtues? A well-
constructed scheme based on simple real-time principles was
presented in [Jens85] for realizing this objective. In order to use
this scheme, which was developed in the context of task
scheduling in real-time operating systems, a-priori knowledge of
task processing requirements is necessary. Unfortunately,
knowledge about transaction resource and data requirements is
usually unavailable in database applications [Stan88]. There-
fore, the [Jens85] solution cannot be used and methods applica-
ble to transaction scheduling in real-time database systems have
to be developed.

In this paper, we present a new priority assignment algorithm
called Adaptive Earliest Deadline (AED) that stabilizes the over-
load performance of Earliest Deadline in an RTDBS environ-
ment. The AED algorithm uses a feedback control mechanism
to achieve this objective and does not require knowledge of tran-
saction characteristics. Using a detailed simulation model, we
compare the performance of the AED algorithm with that of
Earliest Deadline and other fixed priority mappings.

There are real-time database applications that may assign dif-
ferent values to transactions, where the value of a transaction
reflects the return the application expects to receive if the tran-
saction commits before its deadline [Huan89]. For such applica-
tions, the goal of the RTDBS is to maximize the value realized
by the in-time transactions. Minimizing the number of late tran-
sactions is a secondary concern in this environment. A funda-
mental problem here is how to establish a priority ordering
among transactions that are distinguished by both values and
deadlines [Biya88, Hari91a). In particular, it is not clear what
tradeoff should be established between transaction values and
deadlines in generating the priority ordering.

We present here an extension of the AED algorithm, called
Hierarchical Earliest Deadline (HED), for integrating the value
and deadline characteristics of transactions. The HED algorithm
adaptively varies the tradeoff between value and deadline, based
on transaction deadline miss levels, to maximize the value real-
ized by the system. We compare the performance of the HED
algorithm to that of mappings which establish fixed tradeoffs
between value and deadline.

Our simulation model implements a database system archi-
tecture that incorporates a priority mapper unit. The priority
mapper assigns a priority to each transaction on its arrival; these
priorities are used by the system schedulers in resolving transac-
tion contention for hardware resources and data objects. This
priority architecture is modular since it separates priority gen-
eration from priority usage.

In this paper, we restrict our attention to real-time database
systems that execute firm deadline applications. For such appli-
cations, a transaction that misses its deadline loses its value.
This means that transactions are discarded when the RTDBS
detects that the transaction cannot complete before its deadline.
In our model, a transaction is discarded only when it actually
misses its deadline since the system has no advance knowledge
of transaction service requirements. Examples of applications
with firm deadlines are given in [Abbo88].

2. Priority Mappings

In order to resolve contention for hardware resources and
data, an RTDBS has to establish a priority ordering among the
transactions. Apart from the previously discussed Earliest
Deadline policy, there are a few other mappings described in the
literature that fit our operating constraints. These mappings are
described first in this section. Subsequently, our new priority
mapping, Adaptive Earliest Deadline, is presented. In the fol-
lowing discussion, Ay, Dr, and Py are used to denote the arrival
time, deadline, and priority of transaction T, respectively. The
priority assignments of all the mappings are such that smaller Py
values reflect higher system priority. The details of the map-
pings are presented below.

2.1. Earliest Deadline (ED)

The Earliest Deadline mapping assigns higher priority to
transactions with earlier deadlines, and the transaction priority
assignment is Pr =

2.2. Latest Deadline (LD)

The Latest Deadline mapping is the opposite of the Earliest
Deadline mapping. It gives higher priority to transactions with
later deadlines, and the transaction priority assignment is Pr =
1/Dy. We expect that, for many real-time applications, newly-
submitted transactions will tend to have later deadlines than
transactions already executing in the system. Therefore, it
seems plausible that the Latest Deadline mapping would rectify
the overload drawback of Earliest Deadline by giving transac-
tions high priority early on in their execution.

2.3. Random Priority (RP)

The Random Priority mapping randomly assigns priorities to
transactions without taking any of their characteristics into
account. The transaction priority assignment is Py = Random
(0, =). The performance obtained with this mapping reflects the
impact of the mere existence of some fixed ordering among the
transactions.

2.4. No Priority (NP)

The No Priority mapping gives all transactions the same
priority, and the transaction priority assignment is Pr = 0. This

cffecﬁvery' means that scheduling at sach resource is done in

order of arrival to the resource (i.e., local FCFS). The perfor-
mance obtained under this mapping should be interpreted as the
performance that would be observed if the real-time database
system were replaced by a conventional DBMS (and the feature
of discarding late transactions was retained).

2.5. Adaptive Earliest Deadline (AED)

The Adaptive Earliest Deadline priority assignment algo-
rithm modifies the classical Earliest Deadline mapping based on
the following observation: Given a set of tasks with deadlines
that can all somehow be met, an Earliest Deadline priority order-
ing will also meet all (or most of) the deadlines [Jens85]. The
implication of this observation is that in order to maximize the
number of in-time transactions, an Earliest Deadline schedule
should be used among the largest set of transactions that can all
be completed by their deadlines. The flaw of the pure ED map-
ping is that it uses this schedule among all transactions in the
system, even when the system is overloaded. The AED algo-
rithm tries to address this flaw by using a feedback control pro-
cess to estimate the number of transactions that are sustainable
under an ED schedule.

2.5.1. Group Assignment

In the AED algorithm, transactions executing in the system
are collectively divided into two groups, HIT and MISS, as
shown in Figure 1. Each transaction, upon arrival, is assigned to

TransList
HIT Group
;‘ (Earliest Deadline)
2
: posr S HITcapacity
Toew —)gpos-r — _ HITcapacity _ __ .
: posr > HITcapacity
TNmeu
(Random Priority)
MISS Group

Figure 1: AED Priority Mapping

one of the groups. The assignment is done in the following
manner: The newly-arrived transaction is assigned a randomly-
chosen unique integer key, Ir. The transaction is then inserted
into a key-ordered list of the transactions currently in the sys-
tem, and its position in the list, posy, is noted. If posy is less
than or equal to HITcapacity, which is a dynamic control vari-
able of the AED algorithm, the new transaction is assigned to
the HIT group; otherwise, it is assigned to the MISS group.

2.5.2. Priority Assignment

After 8 new wransaction is assigned to a group, it is then
assigned a priority using the following formula:

0. Dr, Iy) if Group = HIT
P =

(1, 0, Iy) ifGroup =MISS

With this priority assignment scheme, all transactions in the HIT
group have a higher priority than transactions in the MISS group.
(Since the priority is a vector, priority comparisons are made in
lexicographic order.) Within the HIT group, the transaction
priority ordering is Earliest Deadline. In contrast, the priority
ordering in the MISS group is Random Priority since the I7’s are
selected randomly. The J; component of the priority serves to
break the tie for transactions in the HIT group that may have
identical deadlines, thus ensuring a fotal priority ordering. Tran-
sactions retain their initial priority assignments for the entire
duration of their residence in the system.

2.5.3. Discussion

The goal of the AED algorithm is to collect the largest set of
transactions that can be completed before their deadlines in the
HIT group. It trys to achieve this by controlling the size of the
HIT group, using the HITcapacity setting as the control variable.
Then, by having an Earliest Deadline priority ordering within
the HIT group, the algorithm incorporates the observation made
in [Jens85] that was discussed earlier. Transactions that cannot
be accomodated in the HIT group are estimated to miss their
deadlines and are therefore assigned to the MISS group. The
motivation for having a Random Priority mapping in the MISS
group is explained in Section 5.

We define the "hit ratio” of a transaction group to be the frac-
tion of transactions in the group that meet their deadlines. Using
this terminology, we would ideally like to have a (steady-state)
hit ratio of 1.0 in the HIT group and a hit ratio of 0.0 in the MISS
group, since this combination of hit ratios ensures that all the
"doable" transactions, and only these transactions, are in the HIT
group. Achieving this goal would require absolute accuracy in
predicting the right HITcapacity size; this is impossible as the
RTDBS has no knowledge of transaction characteristics. From a
practical standpoint, therefore, our aim is to maintain a high hit
ratio in the HIT group and a low hit ratio in the MISS group.
The key to achieving this lies in the HITcapacity computation,
which is discussed next.

2.5.4. HIT Capacity Computation

A feedback process that employs system output measure-
ments is used to set the H/Tcapacity control variable. The meas-
urements used are HitRatio(HIT) and HitRatio(ALL).
HitRatio(HIT) is the fraction of transactions in the HIT group
that are making their deadline, while HitRatio(ALL) is the
corresponding measurement over all transactions in the system.
Using these measurements, and denoting the number of transac-
tions currently in the system by NumTrans, the HITcapacity is
set with the following two-step computation:

(1) HITcapacity := HitRatio(HIT) * HITcapacity * 1.05;
(2) if HitRatio{ALL) < 0.95 then
HITcapacity := Min (HITcapacity,
HitRatio(ALL) * NumTrans * 1.25);

STEP 1 of the HITcapacity computation incorporates the
feedback process in the setting of this control variable. By con-
ditioning the new HITcapacity setting based on the observed hit
ratio in the HIT group, the size of the HIT group is adaptively
changed to achieve a 1.0 hit ratio. Our goal, however, is not just
to have a HitRatio(HIT) of 1.0, but to achieve this goal with the
largest possible transaction population in the HIT group. It is
for this reason that STEP 1 includes a 5 percent expansion fac-
tor. This expansion factor ensures that the HITcapacity is
steadily increased until the number of transactions in the HIT
group is large enough to generate a HitRatio(HIT) of 0.95. At
this point, the transaction population size in the HIT group is
close to the required number, and the HITcapacity remains sta-
bilized at this setting (since 0.95 * 1.05 = 1.0).

STEP 2 of the HITcapacity computation is necessary to take
care of the following special scenario: If the system experiences
a long period where HitRatio(ALL) is close to 1.0 due to the
system being lightly loaded, it follows that HitRatio(HIT) will
be virtually 1.0 over this extended period. In this situation, the
HITcapacity can become very large due to the 5 percent expan-
sion factor, that is, there is a "runaway" effect. If the transaction
arrival rate now increases such that the system becomes over-
loaded (signaled by HitRatio(ALL) falling below 0.95), incre-
mentally bringing the HITcapacity down from its artificially
high value to the right level could take a considerable amount of
time (with the feedback process of STEP 1). This means that
the system may enter the unstable high-miss region of Earliest
Deadline as every new transaction will be assigned to the HIT
group due to the high HITcapacity setting. To prevent this from
occurring, an upper bound on the HITcapacity value is used in
STEP 2 to deal with the transition from a lightly-loaded condi-
tion to an overloaded condition. The upper bound is set to be 25
percent greater than an estimate of the "right" HitCapacity
value, which is derived by computing the number of transactions
that are currently making their deadlines. (The choice of 25 per-
cent is based on our expectation that the estimate is fairly close
to the "right" value.) After the HITcapacity is quickly brought
down in this fashion to near the appropriate setting, the
HitRatio(HIT) value then takes over as the "fine tuning"
mechanism in determining the HiTcapacity setting.

2.5.5. Feedback Process

The feedback process for setting the HlTcapacity control
variable has two parameters, HiTbatch and ALLbatch. These
parameters determine the sizes of transaction batches that are
used in computing the output hit ratios. The feedback process
operates in the following manner: Assume that the priority
mapper has just set the HITcapacity value. The next HITbatch
transactions that are assigned to the HIT section of the bucket
are marked with a special label. At the RTDBS output, the com-
pletion status (in-time or late) of these specially-marked transac-
tions is monitored. When the last of these HITbatch transactions
exits the system, HitRatio(HIT) is measured as the fraction of
these transactions that completed before their deadline. The
HitRatio(ALL) is continuously measured at the output as the hit
ratio of the last ALLbatch transactions that exited from the sys-
tem. After each measurement of HitRatio(HIT), the
HitRatio(HIT) value is fed back to the priority mapper along
with the current HitRatio(ALL) value. The priority mapper then
reevaluates the HITcapacity setting, after which the whole pro-
cess is repeated.

3. Concurrency Control

Several different mechanisms are available for implementing
concurrency control, including locking, timestamps, and
optimistic concurrency control [Bern87]. While we have shown
in previous studies [Hari90a, Hari90b] that optimistic algorithms
can outperform locking algorithms in a firm deadline RTDBS,
we will consider only the 2PL-HP prioritized locking algorithm
[Abbo88] here. The reason is that the interaction of optimistic
algorithms and priority policies is somewhat complicated and
space limitations prevent us from presenting these complexities
here. For the workloads considered in this study, however, we
have observed optimistic algorithms to perform better than
2PL-HP (see [Hari91b]).

In 2PL-HP, classical two-phase locking [Eswa76], where
transactions hold locks until commit time, is augmented with a
High Priority [Abbo88] conflict resolution scheme. This
scheme ensures that high priority transactions are not delayed by
low priority transactions by resolving all data conflicts in favor
of the transaction with the higher priority. When a transaction
requests a lock on an object held by other transactions in a
conflicting lock mode, if the requester’s priority is higher than
that of all the lock holders, the holders are restarted and the
requester is granted the lock; otherwise, the requester waits for
the lock holders to release the object.

4. RTDBS Performance Model

A detailed model of a real-time database system was used to
study the performance of the various priority mappings. We
briefly describe the model in this section (see [Hari91b] for
details). In this model, the database system consists of a
shared-memory multiprocessor operating on disk resident data
(for simplicity, we assume that all data is accessed from disk and
buffer pool considerations are therefore ignored). The database
itself is modeled as a collection of pages. Transactions arrive in

a Poisson stream and each transaction has an associated dead-
line. A transaction consists of a sequence of read and write page
accesses. A read access involves a concurrency control request
to get access permission, followed by a disk /O to read the
page, followed by a period of CPU usage for processing the
page. Write requests are handled similarly except for their disk
1/O — their disk activity is deferred until the transaction has com-
mitted. A transaction that is restarted due to data conflict fol-
lows the same data access pattern as the original transaction. If
a transaction has not completed by its deadline, it is immediately
aborted and discarded.

Table 1 summarizes the key parameters of the workload
model. The ArrivalRate parameter specifies the mean rate of
transaction arrivals. The number of pages accessed by a transac-
tion varies uniformly between 0.5 and 1.5 times TransSize.
Page requests are generated from a uniform distribution (without
replacement) spanning the entire database. WriteProb gives the
probability of a page that is read being also updated.

In our experiments, we used the following formula for dead-
line assignment:
Dr=A7r+SFr * R pux

where Dy and Ay are the deadline and arrival time of transaction
T, respectively, and R, is the expected execution time of the
largest possible transaction (a transaction accessing 1.5 *
TransSize pages). SFr is a slack factor that varies uniformly
over the range set by the workload parameters LSF and HSF,
and it determines the tighmess/slackness of deadlines.

The physical resources in our model consist of multiple
CPUs and multiple disks. There is a common queue for the
CPUs and the service discipline is priority Preemptive-Resume.
Each of the disks has its own queue and the service discipline is
priority Head-Of-Line. Table 2 summarizes the key parameters
of the system model. The DatabaseSize parameter gives the
number of pages in the database, and the data pages are modeled
as being uniformly distributed across all of the disks. The

Parameter | Meaning

ArrivalRate | Transaction arrival rate
TransSize Avg. transaction size
WriteProb | Write probability/accessed page
LSF Low Slack Factor

HSF High Slack Factor

Table 1: Workload Parameters

Parameter Meaning

DatabaseSize | Number of pages in database
NumCPUs Number of processors

NumbDisks Number of disks

PageCpu CPU time for processing a data page
PageDisk Disk service time for a page

Table 2: System Parameters

NumCPUs and NumbDisks parameters specify the hardware
resource composition, while the PageCPU and PageDisk param-
eters capture CPU and disk processing times per data page.

5. Experiments and Results

In this section, we present simulation performance results for
our experiments comparing the various priority mappings in a
real-time database system environment. The performance
metric used in this set of experiments is Miss Percent, which is
the percentage of input transactions that the system is unable to
complete before their deadline. Miss Percent values in the range
of 0 w 20 percent are taken to represent system performance
under "normal” loadings, while Miss Percent values in the range
of 20 to 100 percent represent system performance under
"heavy" loading. All the experiments evaluate the Miss Percent
as a function of the transaction arrival rate. (The Miss Percent
graphs show mean values with relative half-widths about the
mean of less than 5% at the 90% confidence interval.)

While describing the AED algorithm in Section 2.5, we men-
tioned two parameters, HITbatch and ALLbatch, that are used to
determine the sample size in computing transaction hit ratios.
These parameters were both set to 20 in the experiments
described here (we comment on this choice in Section 8).

5.1. Resource Contention (RC)

Our first experiment investigated the performance of the
priority mappings when resource contention is the sole perfor-
mance limiting factor. The settings of the workload parameters
and system parameters for this experiment are listed in Table 3.
The WriteProb parameter, which gives the probability that an
accessed page is updated, is set to 0.0 to ensure that there is no
data contention. Therefore, no concurrency control is required
in this experiment since all transactions belong to the query
(read-only) class.

For this experiment, Figures 2a and 2b show the Miss Per-
cent results under normal load and heavy load conditions,
respectively. From this set of graphs, we observe that at normal
loads, the ED (Earliest Deadline) mapping misses the fewest
deadlines among the fixed priority mappings. As the system
load is increased, however, the performance of ED steeply
degrades, and its performance actually is close to that of NP (No
Priority) at heavy loads. This is because at heavy loads, where
the resources become saturated, transactions under ED and NP

Workload System

Parameter | Value Parameter Value

TransSize 16 pages || DatabaseSize | 1000 pages

WriteProb | 0.0 NumCPUs 8

LSF 133 NumDisks 16

HSF 40 PageCpu 10ms
PageDisk 20ms

Table 3: RC Parameter Settings

make progress at similar average rates. This is explained as fol-
lows: Under NP, every transaction makes slow but steady pro-
gress from the moment of arrival in the system since all transac-
tions have the same priority. Under ED, however, a new tran-
saction usually has a low priority since its deadline tends to be
later than those of the transactions already in the system. There-
fore, transactions tend to start off at low priority and gain high
priority only as their deadline draws close. This results in tran-
sactions making little progress initially, but making fast progress
as their deadline approaches. The net progress made under ED,
however, is about the same as that under NP. This was experi-
mentally confirmed by measuring the average progress that had
been made (i.e. number of steps executed) by transactions that
missed their deadline; indeed, we found that once the resources
are saturated, the average progress made by transactions is virtu-
ally the same for NP and ED.

Turning our attention to the RP (Random Priority) mapping,
we observe that it behaves poorly at normal loads since it does
not take transaction time constraints into account. At heavy
loads, however, it surprisingly performs significantly better than
ED. The reason for this behavior is the following: Under ED,
as discussed above, transactions gain priority slowly. At heavy
loads, this gradual process of gaining priority causes most tran-
sactions to miss their deadlines. The RP mapping, on the other
hand, due to its static random assignment of priorities, allows
some transactions to have a high priority right from the time
they arrive in the system. Such transactions tend to make their
deadlines, and therefore there is always a certain fraction of the
transactions in the system that are virtually guaranteed to make
their deadlines.

Focusing next on the LD (Latest Deadline) mapping, we
observe that it performs worse than all the other algorithms at
normal loads. The reason is that this mapping gives the highest
priority to transactions that have loose time constraints, thus
tending to miss the deadlines of transactions that have tight time
constraints. At heavy loads, it performs better than ED, how-
ever, since transactions with loose time constraints continue to
make their deadlines as they retain high priority for a longer
period of time.

Moving on to the adaptive AED mapping, we note that at
normal loads it behaves identically to Earliest Deadline. As the
overload region is entered, it changes its behavior to be qualita-
tively similar to that of RP, and in fact, performs even better
than RP. Therefore, in an overall sense, it delivers the best per-
formance. In Figure 2c, the hit ratios in the HIT and MISS
groups are shown. It is clear from this figure that a hit ratio of
more than 0.90 in the HIT group and less than 0.10 in the MISS
group is achieved through the entire loading range. This indi-
cates that the feedback mechanism used to divide transactions
into HIT and MISS groups is effective and achieves the goal of
having a high hit ratio in the HIT group and a low hit ratio in the
MISS group. In Figure 2d, the average number of transactions in
the HIT group and the average number of transactions in the
whole system are plotted. From this figure, we can conclude
that for the given workload, the RTDBS can successfully
schedule about 60 concurrently executing transactions under an

236

wa -2

Y L]

Cmm X =

mBoneory mn—-:

30 ——=o ED

8——8a po b]
251 & 4 AED

$—< NP

¥——-x 1D
201
157 //
101
59

00 100 200, 300 400
Figure 3a: RC (Normal Load)

10 %d—e

08

0.6 —o HIT
&——a MISS

04

02

N

0.0 v .
0.0 25.0 A rrl'r:'gloknte 750 100.0
Figure 3c: AED (Group Hit Ratio)

25 ——* ED
G——~8 Rrp
o———=8
20 AED
15
10
5
o
0.0 5.0 Arriyli uls.o 20.0

Figure 4a: RC + DC (Normal Load)

1001
"
80
1
: /ﬂ
)
P
e
r
c 4 —o Ep
e
|‘| G——& Rp
20 A&——& AED
—-= Np
—X 1p
o+ - v
40.0 55.0 A mmokmss.o 100.0
Figure 3b: RC (Heavy Load)
250 e—9 ALL
aA——a >
200 /
P
°
P 150
u
1
a
{ 100
°
n
50
%o 250 so0 750 1000
. : Arrlvaloknte : :
Figure 3d: AED (Population)
100
80
M
i
s
s 60
P
e
r
c ¥ 6e—o gp
e
n o——=a Rp
t
20 &—4A AED

0+
200 400 mﬂﬂ 80.0

100.0

Figure 4b: RC + DC (Heavy Load)

Earliest Deadline schedule. For system loadings above this
level, a pure Earliest Deadline schedule causes most transactions
to miss their deadline since they receive high priority only when
they are close to missing their deadline. The AED mapping,
however, by its division of transactions into different priority
groups, creates a "“core set” of transactions in the HIT group that
are virtually certain to make their deadlines independent of sys-
tem loading conditions. Viewed from a different perspective,
we have revisited the classic multi-programming thrashing prob-
lem where increasing the number of transactions in a system can
lead to decreased throughput. In our framework, adding tran-
sactions to a set of transactions that can just be completed with
an Earliest Deadline schedule causes more missed deadlines.

As promised in the description of the AED algorithm in Sec-
tion 2.5, we now provide the rationale for using a Random Prior-
ity mapping in the MISS group. The reason is the following:
Transactions assigned to the MISS group essentially "see” a
heavily-loaded system due to having lower priority than transac-
tions of the HIT group. Since our experiments show Random
Priority to have the best performance among the non-adaptive
algorithms at heavy loads, we have chosen this priority ordering
for the MISS group. The reason that AED does better than the
pure RP mapping at heavy loads is that the transaction popula-
tion in the HIT group is sufficiently large that using ED, instead
of RP, among this set has an appreciable performance effect. As
the loading level is increased even further, however, the perfor-
mance of AED would asymptotically reach that of RP since the
number of transactions in the HIT group would be small com-
pared to the total number of trasnactions in the system.

Summarizing the results of the above set of experiments, we
can draw the following conclusions for the query workloads
examined in this section: First, the AED mapping provides the
best overall performance. Its feedback mechanism is effective
in detecting overload conditions and limiting the size of the HIT
group to a level that can be handled by an Earliest Deadline
schedule. Second, at normal loads, the Earliest Deadline priority
ordering meets most transaction deadlines and is therefore the
right priority mapping in this region. At heavy loads, however,
the Random Priority algorithm delivers the best performance
among the non-adaptive algorithms due to guaranteeing the
completion of high-priority transactions.

As in this experiment, we observed No Priority and Latest
Deadline to perform poorly for the other workloads that we con-
sidered. Therefore, we will present further results only for the
Earliest Deadline, Random Priority and Adaptive Earliest Dead-
line priority mappings.

5.2. Resource and Data Contention (RC + DC)

Our next experiment explored the situation where both
resource contention and data contention contribute towards sys-
tem performance degradation. This was done by changing the
write probability from 0.0 to 0.25, which implies that one-fourth
of the data items that are read will also be updated. The 2PL-HP
algorithm (see Section 4) is used as the concurrency control
mechanism since the workload now includes transactions that

belong to the updater class.

For this experiment, Figures 3a and 3b show the Miss Per-
cent results for the various priority mappings under normal load
and heavy load conditions, respectively. From these figures it is
evident that Earliest Deadline performs the best at low loads,
while Random Priority is superior at heavy loads. The AED
mapping behaves almost as well as ED at low loads and behaves
like RP in the overload region, thus providing the best overall
performance. In this experiment, the increased contention levels
cause the population in the HIT group to be quite small com-
pared to the overall system population at heavy loads. There-
fore, using ED instead of RP in this group does not have an
appreciable performance effect. We therefore see that the per-
formance of AED approaches that of RP at a lower load than in
the pure resource contention experiment (see Figure 2b).

From the above set of experiments, we observe that the AED
algorithm is capable of performing well under both resource
contention and data contention. We conducted further experi-
ments to examine the effects of changes in deadline assign-
ments, transaction write probabilities, hardware resource quanti-
ties, etc. The results of these experiments reinforced the general
conclusions given above. We also conducted a few preliminary
experiments to determine how well the AED algorithm could
adapt to bursty transaction arrival patterns. In these experi-
ments, the AED algorithm proved to be robust in its perfor-
mance [Hari91b).

We have seen that the AED algorithm exhibits ED-like
behavior in the light-load region and RP-like behavior in the
overload region. From these results, it might appear that a much
simpler approach than AED would be to switch from ED to RP
(for all transactions) when the transaction miss percentage
exceeds a threshold. The threshold, of course, would be the
miss level at which RP starts performing better than ED. The
problem with this approach is that we do not a-priori know this
changeover threshold. Also, the threshold is a function of work-
load characteristics and may vary dynamically with changes in
the input workload. For example, in the pure resource conten-
tion experiment, the ED to RP changeover miss percent thres-
hold is about 25 percent (see Figure 2a); in the resource plus
data contention experiment, however, the threshold is about 50
percent (see Figure 3b). Therefore, while the AED algorithm is
complicated, the complexity appears necessary to make the
priority assignment adapt to changing workload and system con-
ditions.

6. Extending AED for Transaction Values

In this section, we consider the case where transactions have
different values assigned to them. The goal here is to maximize
the sum of the values of those transactions that commit by their
deadline, and minimizing the number of missed deadlines
becomes a secondary concern. A fundamental problem when
transactions are characterized by both value and deadline is how
to construct a priority ordering, since this requires a tradeoff to
be established between these two orthogonal characteristics. In
[Hari91a], several priority mappings that establish different, but

fixed, tradeoffs between value and deadline were investigated.
It was found that one of two mappings — either Earliest Deadline
(ED) or Highest Value (HV), which implement extreme trade-
offs — almost always provided the best performance. The Earli-
est Deadline mapping is the same as that discussed so far, and
transaction values are not taken into account. In the Highest
Value mapping, transactions with higher value are given higher
priority, and transaction deadlines are ignored. For transaction
workloads with a limited, uniform spread in their values, Earli-
est Deadline provided the best performance at light loads.
Under heavy loads, however, the Highest Value mapping gen-
erated the most value. For workloads that had a large spread or
pronounced skew in transaction values, the Highest Value map-
ping was found to deliver the best performance throughout virtu-
ally the entire loading range.

In this section, we present a value-based extension of the
AED algorithm called Hierarchical Earliest Deadline (HED),
which adaptively varies the tradeoff between value and deadline
to maximize the value realized by the system. Informally, the
HED algorithm groups transactions, based on their values, into a
hierarchy of prioritized buckets. It then uses an AED-like algo-
rithm within each bucket to determine the relative priority of
transactions belonging to the bucket. The details of the HED
algorithm are described below, after which the rationale behind
the construction of the algorithm is discussed.

6.1. Bucket Assignment

The HED algorithm functions in the following manner: The
priority mapper unit maintains a value-based dynamic list of
buckets, as shown in Figure 5. Every transaction, upon arrival,
is assigned based on its value to a particular bucket in this list.

TOP 0
MaxValue oo
Min Value oo
Trans Lint 256
Tu Max Value 13500
, Min Value 4500
Tlu J'
Trans List 512
T21 MaxValue 1500
, Min Value 500
Tsm
;
BOTTOM MAXINT
MaxValue 0
MinValue 0

Figure 5: HED Bucket Hierarchy

Each bucket in the list has an associated MinValue and Max-
Value auribute — these attributes bound the values that transac-
tions assigned to the bucket may have. Each bucket also has an
identifier, and bucket identifiers in the list are in monotonically
increasing order. There are two special buckets, TOP and BOT-
TOM, that are always at the head and tail of the list, respec-
tively. The MinValue and MaxValue attributes of TOP are set to
o, while the MinValue and MaxValue attributes of BOTTOM
are set to zero. Since we assume that all transaction values are
finite and positive, no transactions are ever assigned to these
buckets, and their function is merely to serve as permanent list
boundaries. The identifiers of the TOP and BOTTOM buckets
are preset to 0 and MAXINT, respectively.

When a new transaction, 7T,,,,, armrives in the system, it is
assigned to the bucket closest to TOP that satisfies the constraint
MinValue < Value,,, < MaxValue. If no such bucket exists, a
new bucket is inserted in the list between the bucket closest to
TOP that satisfies MinValue < Value,,, and its predecessor, and
the transaction is assigned to this bucket. A newly created
bucket is assigned its identifier by halving the sum of the
identifiers of its predecessor and successor buckets. For exam-
ple, a bucket inserted between buckets with identifiers 256 and
512 will have 384 as its identifier. When a transaction leaves
the system, it is removed from its assigned bucket. A bucket
that becomes empty is deleted from the bucket list.

The MinValue and MaxValue attributes of a bucket are set as
follows: Each bucket maintains an AvgValue attribute that mon-
itors the average value of the set of transactions that are
currently assigned to the bucket. The MinValue and MaxValue
attributes of the bucket are then computed as
(AvgValuelSpreadFactor) and (AvgValue*SpreadFactor),
respectively, where SpreadFactor is a parameter of the HED
algorithm. The SpreadFactor parameter controls the maximum
spread of values allowed within a bucket. Whenever a transac-
tion enters or leaves the system, the associated bucket updates
its AvgValue, MinValue and MaxValue attributes.

6.2. Group Assignment

In similar fashion to the AED algorithm, transactions in each
bucket are divided into HIT and MISS groups, with the HIT
group size controlled by a HITcapacity variable. After a new
transaction has been assigned to a bucket, its group assignment
within the bucket is as follows: The transaction is first given a
randomly chosen unique integer key, I7. It is then inserted into
a value-ordered list of transactions belonging to the bucket, with
transactions that have identical values being ordered by their /»
keys. The position of the new transaction in the list, posr, is
noted. If posr is less than or equal to the HITcapacity of the
bucket, the new transaction is assigned to the HIT group in the
bucket; otherwise, it is assigned to the MISS group. The
HITcapacity computation in each bucket is implemented with a
separate feedback process; each feedback process is identical to
that described for the AED algorithm in Section 2.5.

234

6.3. Priority Assignment

After its bucket and group assignment, a new transaction is
assigned its priority using the following formula:

(Br, 0, Dy, Ir) if Group = HIT
PT =
Br, 1, 1/Vy, Iy) if Group = MISS

where By is the identifier of the transaction’s bucket.

The above priority assignment results in transactions of
bucket i having higher priority than all transactions of bucket j
for j > i, and lower priority than all ransactions of bucket g for
8 < i. Within each bucket, transactions in the HIT group have a
higher priority than transactions in the M/SS group. The tran-
saction priority ordering in the HIT group is Earliest Deadline,
while the priority ordering in the MISS group is Highest Value.
The Iy priority component serves to break the tie for transactions
in the HIT or MISS group that have identical deadlines or values,
respectively. This ensures a total priority ordering of all tran-
sactions in the system.

As mentioned earlier, the priority assignment process within
each bucket is similar to that of the AED algorithm. There are,
however, two important differences: First, the transaction list
within a bucket is ordered based on transaction values, instead
of transaction keys. Second, the priority ordering within the
MISS group is Highest Value instead of Random Priority.

6.4. Discussion

The core principle of the AED mapping is to use an Earliest
Deadline schedule among the largest possible set of transactions
that can be completed by their deadline, i.e. the HIT group. The
HED mapping extends this principle in two ways: First, within
a bucket, it ensures that higher-valued transactions are given
precedence in populating the HIT group, as this should increase
the realized value. Second, by creating a value-based hierarchy
of buckets, the HED algorithm ensures that transactions with
substantially different values are not assigned to the same
bucket. The reason for doing this is the following: The AED
algorithm only approximates a hit ratio of 1.0 in the HIT group.
Therefore, there is always the risk of losing an extremely high-
valued transaction since transactions within the HIT group are
prioritized by deadline and not by value. Missing the deadlines
of such "golden” transactions can seriously affect the realized
value; our solution is to establish a value-based bucket hierar-
chy, thus ensuring the completion of high-valued transactions.

7. Experiments and Results

In this section, we present performance results for our exper-
iments comparing the Earliest Deadline, Highest Value and
Hierarchical Earliest Deadline priority mappings when transac-
tions have different values. The performance metric used now is
Loss Percent, which is the ratio of the sum of the values of late
transactions to the total input value, i.e., it is the percentage of
the offered value that is not realized by the system. Just as for
the earlier Miss Pexcent figures, Loss Percent values in the range

of 0 to 20 percent and 20 to 100 percent are taken to represent
system performance under “"normal” loadings and "heavy" load-
ings, respectively.

We experimented with two value assignment distributions:
Uniform and Skewed. In the Uniform distribution, transactions
were randomly assigned values from a uniform distribution
ranging between 50 and 150. In the Skewed distribution, 10
percent of the ransactions constituted 90 percent of the offered
value. Transactions belonging to this group had values ranging
uniformly between 450 and 1350, while the remaining 90 per-
cent had values ranging between 6 and 16. The average value of
a transaction for both distributions is thus the same, namely 100.

While we evaluated the performance of the mappings for a
variety of workloads, due to space constraints we will discuss
only the results obtained for the case where system performance
is limited by both resource contention and data contention. The
settings of the workload and system parameters are the same as
those for the experiment of Section 5.2. The SpreadFactor
parameter of the HED algorithm is set to 3 in the experiments
described here (we comment on this choice in Section 8).

7.1. Uniform Value Distribution

Our first experiment investigated the performance of the
priority mappings for the Uniform transaction value workload.
For this experiment, Figures 6a and 6b show the Loss Percent
results under normal load and heavy load conditions, respec-
tively. From this set of graphs, it is clear that at normal loads,
the Earliest Deadline (ED) mapping delivers the most value.
This might be considered surprising since ED is a value-
indifferent mapping, while the Highest Value (HV) mapping is
value-cognizant. The reason for ED’s good performance is that
it misses the deadlines of very few (if any) transactions and
therefore delivers the most value. In contrast, the Highest Value
mapping focuses its effort on completing the high-value transac-
tions. In the process, it prevents some lower value transactions
from making their deadlines, even though most of these dead-
lines could have been met (as demonstrated by ED), thereby los-
ing more of the offered value. As the system load is increased,
however, the performance of ED steeply degrades, while the
performance of HV becomes considerably superior. This is
because following the Highest Value principle is a better idea at
high loads since the system has sufficient resources to handle
only a fraction of the transactions in the system. In such a situa-
tion, the transactions that should be run are those that can deliver
high value.

Moving on to the HED mapping, we note that at normal
loads it behaves almost identically to Earliest Deadline. Then,
as the overload region is entered, it changes its behavior to be
similar to that of Highest Value. Therefore, in an overall sense,
the HED mapping delivers the best performance. It should be
noted that for this uniform workload, all transactions are
assigned to the same bucket since transaction values are all
within a factor of 3 (the SpreadFactor setting) of each other.

Summarizing the above results, we can draw the following
conclusions for the uniform value workload: First, the HED

240

&—A HED

“Tonmey weaol™
S &

th

0
00 0 A n_&g] te15.0 20.0
Figure 6a: Uniform Values (Normal Load)

201 ——© ED
a——~a yy
——ap HED
L 15
°
s
s
P
e 10
r
c
e
n
t 5
00..0 5.0 10 5 0.0
il ArrivaloRatel 0 2

Figure 7a: Skewed Values (Normal Load)

mapping provides the best overall performance. Its feedback
mechanism is effective in detecting overload conditions and lim-
iting the size of the HIT group to a manageable number. It also
realizes a high value by populating the HIT group with higher-
valued transactions. Second, under normal loads, the Earliest
Deadline priority ordering meets most transaction deadlines and
is therefore the right schedule in this region. Under high loads,
however, the Highest Value mapping delivers good performance
as it guarantees the completion of high-value transactions.

7.2. Skewed Value Distribution

The next experiment examined the effect of having a skew in
the transaction value distribution. For this experiment, the
Skewed value distribution was used to assign values to transac-
tions. The Loss Percent results for this experiment are shown in
Figures 7a and 7b. From these figures we note that the perfor-
mance of the Earliest Deadline (ED) mapping remains the same
as for the Uniform value distribution (compare with Figures 6a

1001
wl
L
(]
8
s 60*
P
[]
r
c 407
e
': —© ED
20 G—8 gy
b—_‘m
%00 %0 00 800 1000
: Arvival Rate)

Figure 6b: Uniform Values (Heavy Load)

100}
80¢
L
(]
s
s 601
P —=© gp
e
r G 8 Hv
c 407
e a— 4 HED
n
t
201
W

0 —
20.0 40.0 A rﬂg‘:ﬂute 80.0 100.0
Figure 7b: Skewed Values (Heavy Load)

and 6b). This is because the ED mapping is value-indifferent.
The figures also show that the performance of the Highest Value
(HV) mapping improves greatly as compared to the Uniform
case. Note that even at low load, the HV mapping performs
almost as well as the ED mapping. The HV mapping, by mak-
ing certain that all of the (few) high-value transactions make
their deadline, ensures that it always realizes at least 90 percent
of the offered value. In addition, at low loads, the value of the
missed transactions constitutes a very small fraction of the total
value, and the performance impact of having a higher number of
missed deadlines than ED is therefore negligible.

If we now consider the HED mapping, we observe that it
performs better than both ED and HV over the entire loading
range. The reason for its good performance is twofold: First,
the bucket hierarchy construction ensures that the few high-
valued transactions are assigned to a separate higher priority
bucket. This guarantees that these transactions are completed
and therefore their value is realized. Second, using the AED

241

policy within each bucket results in more deadlines being made
and a corresponding increase in the realized value.

8. Conclusions

In this paper, we have addressed the issue of stabilizing the
overload performance of Earliest Deadline in real-time database
systems for applications with firm deadlines. Our operating con-
straint is that a-priori knowledge of transaction resource require-
ments or data access patterns is not available. We introduced
the Adaptive Earliest Deadline (AED) priority assignment algo-
rithm and, using a detailed simulation model of a real-time data-
base system, studied its performance relative to Earliest Dead-
line and other fixed priority mappings. Our experiments showed
that for the workloads considered in this study, which examined
both resource contention in isolation and in association with data
contention, the AED algorithm delivered the best overall perfor-
mance. At light loads, it behaved exactly like Earliest Deadline;
at high loads its behavior was similar to that of Random Priority,
which was the best performer among the fixed priority map-
pings. The feedback control mechanism of AED was found to
be accurate in estimating the number of transactions that could
be sustained under an ED schedule. AED’s policy of restricting
the use of the Earliest Deadline approach to the HIT group
delivered stabilized performance at high loads. The AED algo-
rithm has also been observed to be robust to limited fluctuations
in the transaction arrival pattern.

In some real-time applications, different transactions may be
assigned different values. Assigning priorities to transactions
when they are characterized by both values and deadlines is a
challenging problem. We introduced the Hierarchical Earliest
Deadline (HED) priority assignment algorithm here to address
this issue. The HED algorithm groups transactions, based on
their value, into a hierarchy of prioritized buckets; it then uses
the AED algorithm within each bucket. Using our RTDBS
simulation model, we evaluated the performance of HED with
respect to mappings that establish fixed tradeoffs between values
and deadlines. Our experiments showed that, both for work-
loads with limited spread in transaction values and for work-
loads with pronounced skew in transaction values, the HED
algorithm provided the best overall performance. At light loads,
its behavior was identical to that of Earliest Deadline, while at
heavy loads its performance was better than that of Highest
Value. Use of the AED algorithm within the transactions of a
bucket decreased the number of missed deadlines. Also, by giv-
ing preference to more valuable transactions in populating the
HIT group of each bucket, the HED algorithm increased the
realized value. For workloads with pronounced skew in transac-
tion values, the hierarchical nature of the HED algorithm was
effective in ensuring that "golden” (high-valued) transactions
were completed and their value realized.

While the AED and HED algorithms appear promising in
their approach and performance, they have some limitations in
their current form. In particular, they have several algorithmic

parameters (HITbatch, SpreadFactor, etc.) that need to be set by
the database administrator. The settings in the experiments

discussed here were arrived at after experimentation with several
different choices. However, these settings may not prove suit-
able for other workloads and environments. Therefore, a
mechanism that adaptively generates the right settings is
required. Another limitation of the algorithms is that they
assume a transaction workload that is homogeneous in its
characteristics, which is not always the case in practice. We
hope to address these limitations in our future research.

REFERENCES

[Abbo88] Abbott, R., and Garcia-Molina, H., "Scheduling
Real-Time Transactions: A Performance Evaluation,” Proc. of
the 14th Int. Conf. on Very Large Database Systems, Aug. 1988.
[Abbo89] Abbott, R., and Garcia-Molina, H., "Scheduling
Real-Time Transactions with Disk Resident Data," Proc. of the
15th Int. Conf. on Very Large Database Systems, Aug. 1989.
[Bern87] Bemstein, P., Hadzilacos, V., and Goodman, N,
"Concurrencyn Control and Recovery in Database Systems,"
Addison-Wesley, 1987.

[Biya88] Biyabani, S., Stankovic, J., and Ramamritham, K.,
"The Integration of Deadline and Criticalness in Hard Real-
Time Scheduling,” Proc. of the 9th IEEE Real-Time Systems
Symposium, Dec. 1988.

[Buch89] Buchmann, A. et al, "Time-Critical Database
Scheduling: A Framework for Integrating Real-Time Scheduling
and Concurrency Control," Proc. of the 5th Int. Conf. on Data
Engineering, Feb. 1989.

[Eswa76] Eswaran, K., et al, "The Notions of Consistency and
Predicate Locks in a Database System," Comm. of the ACM,
Nov. 1976.

[Hari90a) Haritsa, J.,, Carey, M., Livny, M., "On Being
Optimistic about Real-Time Constraints,” Proc. of the 1990
ACM PODS Symposium, April 1990.

[Hari90b] Haritsa, J., Carey, M., Livny, M., "Dynamic Real-
time Optimistic Concurrency Control," Proc. of 1ith IEEE
Real-Time Systems Symposium, Dec. 1990.

[Hari91a] Haritsa, J.,, Carey, M., Livny, M., "Value-Based
Scheduling in Real-Time Database Systems,” Tech. Report
1024, Univ. of Wisconsin, Madison, May 1991.

[Hari91b] Haritsa, J., "Transaction Scheduling in Firm Real-
Time Database Systems,” Ph.D. Thesis, Computer Sciences
Department, Univ. of Wisconsin, Madison, August 1991.
[Huan89] Huang, J., et al, "Experimental Evaluation of Real-
Time Transaction Processing,” Proc. of 10th IEEE Real-Time
Systems Symposium, Dec. 1989.

[Jens85) Jensen, E., Locke, C., and Tokuda, H., "A Time-
Driven Scheduling Model for Real-Time Operating Systems,"
Proc. of 6th IEEE Real-Time Systems Symposium, Dec. 1985.
[Liu73] Liu, C. and Layland, J., "Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment," Journal
of the ACM, Jan. 1973.

{Stan88] Stankovic, J. and Zhao, W., "On Real-Time Transac-
tions," ACM SIGMOD Record, March 1988.

242

