
Earliest Deadline Scheduling for Real-Time Database Systems

Jayant R. Haritsa Miron Livny Michael J. Carey
Computer Sciences Dejartment

university of wisumsin

Madison, WI 53706

ABSTRACT

Barlier studies have observed that in moderately-loaded
real-time database systems, using an Barliest Deadline policy to
schedule tasks results in the fewest missed deadlines. When the
real-time system is overloaded however, an Earliest Deadhne
schedule performs worse than most other policies. This is due to
Earliest Deadhm? giving the highest Jriority to transactions that
are close to missing their deadlines. In this paper, we present a
new priority assigmnent algorithm called Adaptive Earliest
DeadEne (ABD), which features a feedback control mechanism
that detects overload conditions and modifies transaction pritity
assignments accor&gly. Using a detailed simulation model we
compare the performance of ABD with respect to Barliest Dead-
line and other Axed priority schemes. We also present and
evahtate an extension of the ABD algorithm called Hierarchical
Earliest Deadline (HED). which is designed to handle spplica-
tions that assign different values to transactions and where the
goal is to maximize the total value of the in-time transactions.

1. INTRODUCTION

A Real-Tie Databsse System (RTDBS) is a transaction

processing system that is designed to handle transactions with

completion deadlines. Several Jxevious RTDBS studies (e.g.

[Abbo88. Abbo89]) have addressed the issue of scheduling tran-

sactions with the objective of minimizing the number of late

tmnsactions. A common observation of these studies has been

that assigning priorities to transactions according to sn Earliest

Deadhne [Jiu73] policy minimizes the number of late transac-

tions in systems operating under low or moderate levels of

resource and data contention. This is due to Barliest Deadline

giving the highest priority to transactions that have the least

remaining time in which to complete. These studies have also

observ4 however, that the performance of Earliest Deadline

steeply degrades in an overloaded system. This is because,

under heavy loading. transactions gain high priority only when
they are close to their deadlines. Gaming high priority at this

late stage may not leave sufficient time for transactions to com-

plete before their de&.nes. Under heavy loads, then, a funda-

mental we&tress of the Earliest Deadline Jxiority policy is that it

assigns the highest priority to transactions that are close to miss-

ing their deadlines, thus delaying other trsnsactions that might

l-?ris reaeueh was psrtially supported by the Natimd Sciena
I+ndatiao under gmt IRL86!i7323.

O-8186-2450-7/91 $l.C001991 IEEE

still he able to meet their deadlines.

From the above discussion, the following question naturally

arisea: Clm a priority assignment policy be developed based on

the Earliest Deadl& approach that stabilizes its overload perfor-
mance without sacrificing its light-load virtues? A well-

constructed scheme based on simple real-time principles was
pesented in [Jens85] for realixing this objective. In order to use

this scheme, which was developed in the context of task

scheduling in real-time operating systems, a-priori knowledge of

task processing requirements is necessary. Unfortunately,

knowledge about transaction resource and data requirements is

usually unavailable in database applications [Stan88]. There-

fore, the [Jens85] solution cmmot be used and methods applica-

ble to tratmction scheduling in real-time database systems have

to be developed.

In this paper, we present a new priority assignment algorithm

called Adaptive Earliest Deadline (ABD) that stabilizes the over-

load performance of Earliest Deadline in an RTDBS environ-

ment. The ABD algorithm uses a feedback control mechanism
to achieve this objective and does not require knowledge of tran-

saction characteristics. Using a detailed simulation model, we
compare the performance of the ABD algorithm with that of

Earliest Deadhne and other fixed priority mappings.

There are real-time database applications that may assign dif-

ferent values to tramactions. where the value of a transaction

reflects the return the application expects to receive if the tran-

saction commits before its deadline [Husn89]. For such applica-

tions, the goal of the RTDBS is to maximize the value realized

by the in-time transactions. Mimmixing the number of late tran-

sactions is a secondary concern in this environment. A funda-

mental problem here is how to establish a priority ordering

among transactions that are distinguished by both values and
deadlines piya88, Hari9lal. In particular, it is not clear what

&&@should be established between transaction values and

&adlines in generating the priority ordering.

We present here an extension of the ABD algorithm, called

Hierarchical Earliest Deadhne (HBD), for integrating the value

and deadline characteristics of transactions. The HED algorithm

adaptively varies the tradeoff between value and deadline. based

on transaction deadline miss levels, to maximize the value real-

ixed by the system. We compare the performance of the HED

algorithm to that of mappings which establish fixed tradeoffs
between value and deadline.

Gur simulation model implements a database system archi-

tecture that incorporates a prioriry mqpper unit. The priority

mapper assigns a priority to each transaction on its anivab these

priorities are used by the system schedulers in resolving trans~c-

tion contention for hardware resources and data objects. This

@rity architecture is modular since it separates priority gen-

ffation from priority usage.

In this paper, we restrict our aftenlion to real-time database

systems that executefvm de&line applications. For such appli-

cations, a transaction that misses its deadline loses its value.

Ihis means that transactions are discarded when the RTDBS

detects that the transaction cannot complete before its deadline.
In our model, a transaction is discarded only when it octvauy

misses its deadline since the system has no advance knowledge

of transaction service requirements. Examples of applications
with flnn deadlines are given in [Abbo88].

2. Priority Mappings

In order to resolve contention for hsrdware resources and

data, an RTDBS has to establish a priority ordering among the

transactions. Apart from the previously discussed Earliest
De&line policy, there are a few other mappings described in the

literature that fit our operating constraints. These msppings are
described first in this section. Subsequently. our new priority

mapping, Adaptive Earliest Deadline, is presented. In the fol-

lowing discussion, AT. Dr. and Pr are used to denote the arrival
time, deadline, and priority of transaction 2’. respectively. The

priority assignments of all the mappings are such that smaller Pr
values reflect higher system priority. The details of the map-
pings are presented below.

2.1. Earliest Deadline (ED)

The Earliest Deadline mapping assigns higher priority to
transactions with earlier deadlines, and the transaction priority

assignment is Pr = D,.

22. Latest Deadline (LD)

The Latest Deadline mapping is the opposite of the Earliest

Deadhne mapping. It gives higher priority to trsnsactions with

later deadlines, and the transaction priority assignment is Pr =

1lDr. We expect that, for many real-time applications, newly-

submitted transactions will tend to have later deadhnes than

transactions already executing in the system. Therefore, it

seems plausible that the Latest Deadline mapping would rectify
the overload drawback of Earliest Deadline by giving transac-

tions high priority early on in their execution.

2.3. Random Priority (RP)

The Random Priority mapping randomly assigns priorities to

transactions without taking any of their characteristics into

account The tmnsaction priority assignment is Pr = Random
(0. -). The performance obtained with this mapping reflects the

impact of the mere existence of sufne fixed ordering among the

transactions.

2.4. No Priority (NP)

The No Fkiority mapping gives all transactions the same

piority. and the transaction priority assignment is Pr = 0. This
effwtively means that scheduling at each resource is done in
order of arrival to the resource (i.e., local FCFS). The perfor-

msnce obtained ruder this mapping should be inteqreted as the

performance that would be observed if the real-time dambase
system were replaced by a conventional DBMS (and the feature

of discarding late transactions was retained).

2.5. Adaptive Earliest Deadline (AED)

The Adaptive Earliest Deadline priority assignment algo-
rithm modifies the classical Earliest Deadline mapping based on

the following observation: Given a set of tasks with deadhnes

that can all sanehaw be me& an Earliest Deadline priority order-
ing will also meet all (or most of) the deadlines [Jens85]. The

implication of this observation is that in order to maximixe the

number of in-time transactions, an Earliest Deadline schedule

should be used among the largest set of transactions that can sll

be completed by their deadlines. The flaw of the pure ED msp-

ping is that it uses this schedule among all transactions in the
system, even when the system is overloaded. The AED slgo-

rithm tries to address this flaw by using a feedback control pro-

cess to estimate the number of transactions that are sustainable

under an ED schedule.

2.5.1. Group Assignment

In the AED algorithm, transactions executing in the system
are collectively divided into two groups, HIT and MISS, as

shown in Figure 1. Each transaction, upon arrival, is assigned to

TransList
HIT Group

T1
TZ

(Earliest Deadline)

pas, 5 HlTcaPaci~
I

Tww
0

- /PO% --LilTuyuzclg, --_

pas, > HITcapacity

T NdrW

(Random Priority)

MISS Group

Figure 1: AED priority Mapping

one of the groups. The assignment is done in the following
mamten The newly-arrived transaction is assigned a randomly-

chosen unique integer key, IT. The transaction is then inserted

into a key-ordfrred list of the transactions currently in the sys-
tem, and its position in the list, par,. is noted. If pasr is less

than or equal to HITcopacity, which is a dynamic control vari-

able of the ABD algorithm, the new transaction is assigned to
the HIT group; otherwise. it is assigned to the MISS group.

25.2. Priority Assignment

Afte.r a new transaction is assigned to a group, it is then

assigned a priority using the following formula:

1

(0. Dr. Ir) if Grorcp = HIT

Pr =

(1. 0. I,) ii Group =MISS

With this priority assignment scheme, all transactions in the HIT
group have a higher Priority than transactions in the MISS group.

(Since the priority is a vector. priority comparisons are made in
lexicographic order.) Within the HIT group, the transaction

priority ordering is Earliest Deadline. In contrast, the priority

ordering in the MISS group is Random Priority since the fr’s are

selected randomly. The Ir component of the priority serves to

break the tie for transactions in the HIT group that may have
identical deadlines, thus ensuring a totd priority ordering. Tran-

sactions retain their initial priority assignments for the entire

duration of their residence in the system.

2.53. Discussion

The goal of the AED algorithm is to collect the largest set of

transactions that can be completed before their deadhnes in the

HIT group. It trys to achieve this by controlling the size of the
HIT group, using the HlTca&ty setting as the control variable.

Then, by having an Earliest Deadline priority ordering within

the HIT group, the algorithm incorporates the observation made
in [Jens85] that was discussed earlier. Transactions that cannot

be accomodated in the HIT group are estimated to miss their
deadlines and are therefore assigned to the MISS group. The

motivation for having a Random Priority mapping in the MISS

group is explained in Section 5.

We define the “hit ratio” of a transaction group to be the frac-

tion of transactions in the group that meet theii deadlines. Using

this terminology, we would ideally like to have a (steady-state)

hit ratio of 1 .O in the HIT group and a hit ratio of 0.0 in the MISS

group, since this combination of hit ratios ensures that dl the
“doable” transactions, and drily these transactions, are in the HIT
group. Achieving this goal would require absolute accuracy in

predicting the right HlTcapcity size; this is impossible as the

RTDBS has no knowledge of transaction characteristics. From a

practical standpoinf therefore, our aim is to maintain a high hit

ratio in the HlT group and a low hit ratio in the MISS group.
The key to achieving this lies in the HkTcupucity computation,

which is discussed next.

2.5.4. HIT Capacity Computation

A feedback process that employs system output measure-

ments is used to set the HlTcupacity control variable. The meas-

uremans used are HltRatio(HIT) and IUtRatlo(ALL).
HitRatio is the fraction of transactions in the HIT group
tha are making their deadline, while HitRatio(ALL) is the

corresponding measurement over dl transactions in the system.

Using these measurem ems. and denoting the number of transac-

tions currently in the system by NwnTrww the HfTcqacify is
set with the following two-step computation:

(1) HITcapacity I= HitRatio(HlT) * HlTcapcity * 1.05;
(2) if HitRatiu@LL.) < 0.95 then

HlTcapcity := Min (HkTcqmcity,
HitRatio(~UL) * NumTram * 1.25);

STEP 1 of the HlTcqmacity computation incorporates the
feedback process in the setting of this control variable. By wn-

ditioning the new HlTcapcity setting based on the observed hit

ratio in the HlT group, the size of the HIT group is adaptively

changed to achieve a 1.0 hit ratio. Our goal, however, is not just
to have a HitRatio(HlT) of 1.0. but to achieve this goal with the

Iargeti possible transaction population in the HIT group. It is

for this reason that STEP 1 includes a 5 percent expansion fac-

tor. This expansion factor ensures that the HITcupcity is
steadily increased until the number of transactions in the HIT
group is large enough to generate a HitRatio(HlT) of 0.95. At

this point, the transaction population size in the HIT group is

close to the required number. and the HITcqmcity remains sta-
bilized at this setting (since 0.95 * 1.05 = 1 .O).

STEP 2 of the HITcapacity computation is necessary to take

care of the following special scenario: If the system experiences

a long period where HitRatio(AJ..L) is close to 1.0 due to the
system being lightly loaded, it follows that HitRatio(HlT) will

be virtually 1.0 over this extended period. In this situation, the

HITcqacity can become very large due to the 5 percent expan-

sion factor, that is, there is a ‘runaway” effect. If the transaction

arrival rate now increases such that the system becomes over-

loaded (signaled by HitRatio(ALL) falling below 0.95), incre-

mentally bringing the HkTcqocity down from its artificially

high value to the right level could take a considerable amount of

time (with the feedback process of STEP 1). This means that

the system may enter the unstable high-miss region of Earliest

Deadline as every new transaction will be assigned to the HlT
group due to the high HlTcapbty setting. To prevent this from

occurring, an upper bound on the HITcapacity value is used in
STEP 2 to deal with the fianrifion from a lightly-loaded condi-

tion to sn overloaded condition. The upper bound is set to be 25

percent greater than an estimate of the “right” HitCapacity
value, which is derived by computing the number of transactions

that are currently making their deadlines. (The choice of 25 per-

cent is based on our expectation that the estimate is fairly close

to the “right” value.) After the HITcapacity is quickly brought

down in this fashion to near the appropriate setting, the

HitRatioQIlT) value then takes over ss the “fine tuning”
mechanism in determining the Hffcapacity setting.

2.55. Feedback Process

The feedback process for setting the HlTcqmcity control

variable has two parameters, HITbntch and ALLbatch. These
parameters determine the size-s of transaction batches that are
used in complting the output hit ratios. The feedback process

operates in the following manner: Assume that the priorily
-per has just set the HlTcapacity value. The next HITbatch
transactions that are assigned to the HIT section of the bucket

are marked with a special label. At the RTDBS outplt, the com-

pletion status (m-time or late) of these specially-marked transac-

tions is monitored. When the last of these HiTimch transactions
exits the system, HitRatio(HIT) is measured as the fraction of

these transactions that completed before their deadline. The

HitRatio(ALL) is continuously measured at the output as the hit

ratio of the last ALLbatch mnsactions that exited from the sys-

tem. After each measurement of HitRatio(HlT). the

HitRatio(HlT) value is fed back to the priority mq~per along

with the current HitRatio(ALL) value. The priori9 mqper then

reevaluates the HITcupucity setting. aftex which the whole pro-

cess is repeated.

3. Concurrency Control

Several different mechanisms are available for implementing
concurrency wntrol. including locking, timestamps. and

optimistic concurrency control [Bern87]. While we have shown

in previous studies [Hari90a, Hari90b] that optimistic algorithms

can outperfomr locking algorithms in a firm deadline RTDBS,
we will consider only the 2PL-HP prioritized locking algorithm

[Abbo88] here. The reason is that the interaction of optimistic

algorithms and priority policies is somewhat complicated and

space limitations prevent us from presenting these complexities
here. For the workloads considered in this study, however, we

have observed optimistic algorithms to perform better than

2PL-HP (see [Hati9lb]).

In 2PL-HP. classical two-phase locking [Eswa76]. where

transactions hold locks until wmmit time, is augmented with a

High Priority [Abbo88] wnllict resolution scheme. This

scheme ensures that high priority transactions are not delayed by

low priority transactions by resolving all data conflicts in favor

of the transaction with the higher priority. When a transaction

requests a lock on an object held by other transactions in a

wnfhcting lock mode, if the requester’s priority is higher than
that of all the lock holders, the holders are restarted and the

requester is granted the lock, otherwise, the requester waits for

the lock holders to release the object.

4. RTDBS Performance Model

A detailed model of a real-time database system was used to

study the performance of the various priority mappings. We

briefly describe the model in this section (see [Hari9lb] for

details). In this model, the database system consists of a

shared-memory multiprocessor operating on disk resident data

(for simplicity, we assume that all data is accessed from disk and

buffer pool considerations are therefore ignored). The database

itself is modeled as a collection of pages. Transactions srrive in

a Poisson stream and each transaction has an associated dead-

line. A transaction consists of a sequence of read and write page

accesses. A read access involvea a concurrency control request

to get access permission followed by a disk IJD to read the

page. followed by a period of CPU usage for processing the
page. Write requests are handled similarly except for their disk

m - their disk activity is deferred tmtil the transaction has com-

mitted, A transaction that is restarted due to data wnflict fol-

lows the same data Bccess pattern as the original transaction. If

a transaction has not completed by its deadline, it is immediately

aborted and discarded.

Table 1 summa&e s the key parameters of the workload

model. The AfrivalRate parameter specifies the mean rate of

transaction arrivals. The number of pages accessed by a transac-
tion varies uniform.ly between 0.5 end 1.5 times TramSize.
Page requests are generated from a uniform distribution (without

replacement) spanning the entire database. WrifeProb gives the

probability of a page that is read being also updated.

In our experiments,

line assignment:

we used the following formula for dead-

DT=AT+SFT * R,

where D7. and At are the deadline and arrival time of transaction
T, respectively, and R, is the expected execution time of the

largest possible transaction (a transaction accessing 1.5 *

TramSize pages). SF, is a slack factor that varies uniformly

over the range set by the workload parameters LIiF and HSF.
and it determines the tighmess/slackness of deadlines.

The physical resources in our model consist of multiple
CPUs and multiple disks. There is a common queue for the

CPUs and the service discipline is priority preemptive-Resume.

Each of the disks has its own queue and the service discipline is
priority Head-Of-Line. Table 2 summarizes the key parameters

of the system model. The DatabuseSize parameter gives the

number of pages in the database, and the data pages are modeled

as being uniformly distributed across all of the disks. The

Table 1: workload Parameters

Parameter] Meaning

Databadize 1 Number of pages in database

Table 2: System Parameters

NwnCPUs and NwnDidm parameters specify the hardware

resource composition, while the PageCPiJ and PageDisk param-
etas capture CPU and disk processing times per data page.

5. Experiments and Results

In this section. we present simulation performance results for

our experiments comparing the various priority mappings in a

real-time database system environment. The performance
metric used in this set of experiments is Miss Percent. which is

the percentage of input transactiona that the system is unable to

complete before their deadbne. Miss Percent values in the range

of 0 to 20 pacent are taken to represent system performance

under *normaP lo*gs, while Miss Percent values in the rsnge
of 20 to 100 percent represent system performance under

‘heavy” loading. All the experiments evaluate the Miss Percent
as a function of the transaction arrival rate. (The Miss Percent

graphs show mean values with relative half-widths about the

mean of less than 5% at the 90% conlidence interval.)

While describing the AED algorithm in Section 2.5, we men-

tioned two parameters, HfTbatch and ALLbutch, that are used to
determine the sample size in computing transaction hit ratios.

These parameters were both set to 20 in the experiments

described here (we comment on this choice in Section 8).

5.1. Resource Contention (RC)

Our first experiment investigated the performance. of the
priority mappings when resource contention is the sole perfor-

mance limiting factor. The settings of the workload parameters

and system parameters for this experiment are listed in Table 3.

The WritePmb parameter, which gives the probability that an

accessedpageisupdatedissettoO.Otoensurethatthereisno

data contention. Therefore, no concurrency control is required

in this experiment since all trsnsactions belong to the qlcery

(read-only) class.

For this experiment, Figures 2a and 2b show the Miss Per-

cent results under normal load and heavy load conditions,

respectively. From this set of graphs, we observe that at normal

loads. the ED (Earliest Deadline) mapping misses the fewest

deadlines among the lixed priority mappings. As the system

load is increased, however, the performance of ED steeply
degrades. and its performance actually is close to that of NP (No

Priority) at heavy loads. This is because at heavy loads, where

the resources become saturated, transactions under ED and NP

Workload System
Parameter Value Parameter Value

TnznsSize 16 pages DatabawSize 1000 paw
Wrireprob 0.0 NuntCPUs 8

Table 3: RC Parameter Settings

make progress at similar average rates. This is explained as fol-

lows: Under NP. every transaction makes slow but steady pro-

gress from the moment of arrival in the system since all hansac-

tions have the same priority. Under ED, however, a new tram

sactionus~yhasalowpioritysinceitfdeadlinetendstobe

later than those of the transactions already in the system. lhere-

fore, transactions tend to start off at low priority and gain high

priority only as their deadline draws close. This results in Iran-

sactions making little progress initially, but making fast progress

as their deadhne approaches. The net progress made under ED,

however, is about the same as that tmder NP. This was experi-
mentally con6rmed by measuring the average progress that had

been made (i.e. mimber of steps executed) by transactions that

missed their deadline; indeed, we found that once the resources

are saturated, the average progress made by transactions is virtu-

ally the same for NP and ED.

Turning our attention to the RP (Random Priority) mapping,

we observe that it behaves poorly at normal loads since it does

not take transaction time constraints into account At heavy

loads, however, it surprisingly performs significantly better than

ED. The reason for this behavior is the following: Under ED,

as discussed above, transactions gain priority slowly. At heavy
loads, this gradual process of gaining priority causes most tran-

sactions to miss their deadlines. The RP mapping, on the other

hand, due to its static random assignment of priorities, allows
some transactions to have a high priority right from the time

they arrive in the system. Such transactions tend to make their

deadlines, and therefore there is always a certain fraction of the
transactions in the system that are virtually guaranteed to make

their deadlines.

Focusing next on the LD (Latest Deadline) mapping, we

observe that it performs worse than all the other algorithms at

normal loads. The reason is that this mapping gives the highest

priority to transactions that have loose time constraints, thus

tending to miss the deadlines of transactions that have tight time

constraints. At heavy loads, it performs better than ED, how-

ever, since transactions with loose time constraints continue to

make their deadhnes as they retain high priority for a longer

period of time.

Moving on to the adaptive AED mapping, we note that at

normal loads it behaves identically to Earliest Deadline. As the

overload region is entemd, it changes its behavior to be qualita-

tively similar to that of RP, and in fact, performs even better

than RP. Therefore+ in an overall sense, it delivers the best per-

formance. In Figure 2c, the hit ratios in the HIT and MISS
groups are shown. It is clear from this figure that a hit ratio of

more than 0.90 in the HIT group and less than 0.10 in the MZSS

group is achieved through the entire loading range. This indi-

cates that the feedback mechanism used to divide transactions

into HIT and MISS groups is effective and achieves the goal of

having a high hit ratio in the HIT group and a low hit ratio in the

MISS group. In Figure 2d, the average number of transactions in

the HIT group and the average number of transactions in the

whole system are plotted. From this figure, we can wnclude

that for the given workload, the RTDBS can successfully
schedule about 60 wncurrently executing transactions under an

p;’
I
1

P
c
r
C

c
II

t

‘: t
R
8

:
0

30- -ED
-RP

25, -AFD

--Np

-LD
20.

15.

10.

0m
0.0

Figure 3a: RC (Normal Load)

la - 1
0.8’

0.4. -M-I

- MISS

0.4.

0.2.

Figure 3c: AED (Group Hit Ratio)

20.
- AED

S

s 15.

P
e

e

Figure 4a: RC + DC (Normal Load)

Y
S
S

100

80

60

40
-ED

--Rp

20
-AED

-NP

“Lo ss.0 AdG&~tim loo.0

Figure 3b: RC (Heavy Load)

Figure 3d: AED (Population)

80

T
s

8 60

P
e

LO -ED
e
II -RP
t

20 -AED

+
fO.0 a.o&o,f&nl.o 100.0

Figure 4bz RC + DC (Heavy Load)

Earliest Deadline schedule. For system loadings above this

level, a pure Earliest Deadline schedule causes most transactions

to miss their deadhne since they receive high priority only when
they are close to missing their deadline. The AED mapping.

however, by its division of transactions into different priority

groups, creates a “core set” of transactions in the HIT group that

are virtually certain to make their deadlines independent of sys-

tem loading conditions. Viewed from a different perspective,

we have revisited the classic multi-programming thrashing prob-

lem where increasing the number of transactions in a system can

lead to decrecrsed throughput. In our framework, adding tnm-
sactions to a set of &msactions that can just be completed with

an Earliest Deadline schedule causes more missed deadlines.

As promised in the description of the AED algorithm in Sec-

tion 2.5, we now provide the rationale for using a Random Prior-

ity mapping in the MISS group. The reason is the following:

Transactions assigned to the MISS group essentially “see” a
heavily-loaded system due to having lower priority than transac-

tions of the HIT group. Since our experiments show Random

Priority to have the best performance among the non-adaptive
algorithms at heavy loads, we have chosen this priority ordering

for the MISS group. The reason that AED does better than the

pure RP mapping at heavy loads is that the transaction popula-
tion in the HIT group is sufficiently large that using ED, instead

of RP, among this set has an appreciable performance effect. As
the loading level is increased even further, however, the perfor-

mance of AED would asymptotically reach that of RP since the

munber of transactions in the HIT group would be small com-

pared to the total number of trasnactions in the system.

Summarizing the results of the above set of experiments. we
can draw the following conclusions for the query workloads

examined in this sectiox~ Fist. the AED mapping provides the

best overall performance. Its feedback mechanism is effective

in detecting overload conditions and limiting the size of the HIT

group to a level that can be handled by an Earliest Deadline

schedule. Second, at normal loads, the Earliest Deadline priority

ordering meets most transaction deadhnes and is therefore the

right priority mapping in this region. At heavy loads, however,
the Random Priority algorithm delivers the best performance

among the non-adaptive algorithms due to guaranteeing the

completion of high-priority transactions.

As in this experimenk we observed No Priority and Latest

Deadhne to perform poorly for the other workloads that we con-

sidered. Therefore, we will present further results only for the

Earliest Deadline., Random Priority and Adaptive Earliest Dcad-

line priority mappings.

5.2. Resource and Data Contention (RC + DC)

Our next experiment explored the situation where both

resource contention und data contention contribute towards sys-

tem performance degradation. This was done by changing the

write probability from 0.0 to 0.25, which implies that one-fourth

of the data items that are read will also be updated. The 2PL-HP

algorithm (see Section 4) is used as the concurrency control

mechanism since the workload now includes transactions that

belong to the updater class.

For this experiment, Figures 3a and 3b show the Miss Per-

cent results for the vsrious priority mappings under normal load
and heavy load conditions, respectively. From these figures it is
evident that Earliest Deadline performs the best at low loads,

while Random Priority is superior at heavy loads. The AED

mapping behaves almost as well as ED at low loads and behaves

like RP in the overload region. thus providing the best overall

performance. In this experimmL the increased contention levels

cause the population in the HIT group to be quite small com-

pared to the overall system population at heavy loads. There-

fore, using ED instead of RP in this group does not have an
appreciable performance effect. We therefore see that the per-

formance of AED approaches that of RP at a lower load than in

the pure resource contention experiment (see Figure 2b).

From the above set of experiments, we observe that the AED
algorithm is capable of performing well under both resource

contention and data contention. We conducted further experi-

ments to examine the effects of changes in deadline assign-

ments, transaction write probabilities, hardware resource quanti-

ties, etc. The results of these experiments reinforced the general

conclusions given above. We also conducted a few preliminary
experiments to determine how well the AED algorithm could

adapt to bursty transaction arrival patterns. In these experi-
ments, the AED algorithm proved to be robust in its perfor-

mance [Hari9lb].

We have seen that the AED algorithm exhibits ED-like

behavior in the light-load region and RP-like behavior in the

overload region. From these results, it might appear that a much

simpler approach than AED would be to switch from ED to RP

(for all transactions) when the transaction miss percentage

exceeds a threshold. The threshold, of course, would be the

miss level at which RP starts performing better than ED. The
problem with this approach is that we do not a-priori know this

changeover threshold. Also, the threshold is a function of work-

load characteristics and may vary dynamically with changes in

the input workload. For example, in the pure resource contm-

tion experiment, the ED to RP changeover miss percent thres-

hold is about 25 percent (see Figure 2a); in the resource plus

data contention experiment, however, the threshold is about 50

percent (see Figure 3b). Therefore, while the AED algorithm is

complicated, the complexity appears necessary to make the

priority assignment edapt to changing workload and system con-
ditions.

6. Extending AED for Transaction Values

In this se&on, we consider the case where transactions have

different values assigned to them. The goal here is to maximize

the sum of the values of those transactions that commit by their

deadline, and minimizing the number of missed deadlines

bccomea a secondary concern. A fundamental problem when

transactions are characterized by both value and deadhne is how

to construct a priority ordering since this requires a tradeoff to

be established between these two orthogonal characteristics. In

[Hari9la]. several priority mappings that establish different, but

fixed, tradeoffs between value and deadline were investigated.
It was found that one of two mappings - either Earliest Deadline

(ED) or Highest Value (HV), which implement extreme trade-

offs - almost always provided the best performance. The Earli-

transaction values are not taken into account. In the Highest

Value mapping, transactions with higher value are given higher
priority. and transaction deadlines are ignored. For transaction

workloads with a limited uniform stead in their values, Earli-

est Deadline provided the best performance at light loads.
Under heavy loads, however, the Highest Value mapping gen-
erated the most value. For workloads that had a large spread or

pronounced skew in transaction values, the Highest Value map-

ping was found to deliver the best performance throughout virtu-

ally the entire loading range.

In this section, we pesent a value-based extension of the

AED algorithm called Hierarchical Earliest Deadline (HED),
which adaptively varies the tradeoff between value and deadline

to maximize the value realized by the system. Informally, the

HED algorithm groups transactions. based on their values, into a
hierarchy of prioritized buckets. It then uses an AED-like algo-

rithm within each bucket to determine the relative priority of

transactions belonging to the bucket. The details of the HED

algorithm are described below. after which the rationale behind
the construction of the algorithm is discussed.

6.1. Bucket Assignment

The HED algorithm functions in the following manner: The

priority mapper unit maintains a value-based dynamic list of

buckets, as shown in Figure 5. Every transaction, upon arrival,
is assigned based on its value to a particular bucket in this list.

Figure 5: HED Bucket Hierarchy

Each bucket in the list has an associated MinVdue and Max-

v&e attribute - these attrilxnes bound the values that hansac-

tions assigned to the bucket may have. Each bucket also has an

identilier, and bucket identifiers in the list are in monotonically

increasing order. There are two special buckets, TOP and BOT-

TOM, that are always at the head and tail of the list, respec-

tively. The MinVdue and UuxVdue attributes of TOP are set to

0~. while the MinVdue and MaxVdne attibutes of BtYITOM
are set to zero. Since we assume that all transaction values are

linite and positive, no tmnsactions are ever assigned to these

buckets, and their function is merely to serve as permanent list
boundaries. The identifiers of the TOP and BCJITOM buckets

arepresettoOandMAXINT, respectively.

When a new tmnsaction, T,. arrives in the system, it is

assigned to the bucket closest to TOP that satisfies the constraint

MWalue 5 vall&?_ _ < MaxVdue. If no such bucket exists. a

new bucket is inserted in the list between the bucket closest to

TOP that satisfies MinVdue < Value,_ and its predecessor. and

the transaction is assigned to this bucket A newly created
bucket is assigned its identilier by halving the sum of the

identifiers of its predecessor and successor buckets. For exam-

ple, a bucket inserted between buckets with identiliers 256 and

512 will have 384 as its identifier. When a transaction leaves

the system, it is removed from its assigned bucket. A bucket

that becomes empty is deleted from the bucket list.

The MinVdue and MaxVdue attributes of a bucket are set as

follows: Each bucket maintains an AvgVdue attribute that mon-

itors the average value of the set of transactions that are

currently assigned to the bucket. The MinVdue and MaxVdue

attributes of the bucket are then computed as
(AvgVduelSpreadFactor) and (AvgVdue*SpreadFactor).

respectively, where SpreadFactor is a parameter of the HED

algorithm. The SpreadFactor parameter controls the maximum

spread of values allowed within a bucket. Whenever a transac-

tion enters or leaves the system, the associated bucket updates

its AvgVdue. MinVdue and MaxVdue attributes.

6.2. Group Assignment

In similar fashion to the AED algorithm, transactions in each

bucket are divided into HIT and MISS groups, with the HlT

group size controlled by a HITcapaity variable. After a new

transaction has beeJl assigned to a bucket its group assignment

within the bucket is as follows: The transaction is first given a

randomly chosen unique integer key, Ir. It is then inserted into

a value-ordered list of transactions belonging to the bucket, with

transactions that have identical values being ordered by their IT

keys. The position of the new transaction in the list, ~0%. is

noted. If posr is less than or equal to the HITcapacity of the
bucket, the new transaction is assigned to the HlT group in the

bucket; otherwise, it is assigned to the MISS group. The

HlTcqmcity computation in each bucket is implemented with a

separate feedback process; each feedback process is identical to

that described for the AED algorithm in Section 2.5.

6.3. Priority Assignment

After its bucket and group assignmen& a new transaction is

assigned its priority using the following formula:

Pr =

@r. 1. 1% Ir) ifGrorrp =MISs

where BT is the iderhh of the transaction’s bucket.

The above priority assignment results in transactions of

bucket i having higher piarity than all transactions of bucket j
for j > i. and lower priority than all transactions of bucket g for

g < i. Within each bucket, transactions in the HIT group have a

higher priority than transactions in the MISS group. The tran-

saction priority ordering in the HIT group is Earliest Deadline,

while the piority or&ring in the MISS group is Highest Value.

The IT priority wmponent serves to break the tie for transactions

in the HIT or MISS group that have identical deadlines or values,

respectively. This ensurea a total priority o&ring of all han-

sactions in the system.

As mentioned earlier, the priority assignment process within
each bucket is similar to that of the AED algorithm. There are,

however, two important differences: Fibs4 the transaction list

within a bucket is or&red based on tmnsaction values, instead
of transaction keys. Second, the priority ordering within the

MISS group is Highest Value instead of Random Priority.

6.4. Discussion

The wre principle of the AED mapping is to use an Earliest

D&line schedule among the largest possible set of transactions

that can be completed by their &adline, i.e. the HIT group. The

HED mapping extends this principle in two ways: Fmt, within

a bucket, it ensures that higher-valued transactions are given

pecedence in populating the HIT group. as this should increase
the realized value. Second, by creating a value-based hierarchy

of buckets, the HED algorithm ensures that transactions with

substantially different values are not assigned to the same
bucket. The reason for doing this is the following: The AED

algorithm only approximates a hit ratio of 1.0 in the HIT group.
Therefore, there is always the risk of losing an extremely high-

valued transaction since transactions within the Hfl group are
prioritized by deadline and not by value. Missing the deadlines

Of Such “golden” transactions can seriously affect the realixed

value; our solution is to establish a value-based bucket hierar-

chy, thus ensuring the completion of high-valued transactions.

7. Experiments and Results

In this section, we present performance results for our exper-

iments comparing the Earliest Deadline, Highest Value and
Hierarchical Earliest Deadhne priority mappings when transac-

tions have different values. The performance metric used now is

Loss Percent. which is the ratio of the sum of the values of late

transactions to the total input value, i.e., it is the percentage of

the offered value that is not real&d by the system, Just as for

the earlier Miss Percent figures, Loss Percent values in the range

ofOto2Opementand20to1OOpercentaretakentorepre5mt

system performance under “normal” loadings and “heavy” load-

ings. respectively.

We experimented with two value assignment distributions:

Uniform and Skewed. In the Uniform distribution. transactions
were randomly assigned values from a uniform distribution

ranging between 50 and 150. In the Skewed distribution. 10

percent of the transactions wnstituted 90 percent of the offered

value. Transactions belonging to this group had values ranging

uniformly between 450 and 1350, while the remaining 90 per-
cent had values ranging between 6 and 16. The average value of

a transaction for both distributions is thus the same, namely 100.

While we evald the performance of the mappings for a

variety of workloads, due to space constraints we will discuss

only the results obtained for the case where system performance

is limited by both resource wntention and data contention. The

settings of the workload and system parameters are the same as

those for the experiment of Section 5.2. The SpmadFuctof
parameter of the HED algorithm is set to 3 in the experiments

described here (we comment on this choice in Section 8).

7.1. Uniform Value Distribution

Our lirst experiment investigated the performance of the

priority mappings for the Unifmm transaction value workload.
For this experiment, Figures 6a and 6b show the Loss Percent

results under normal load and heavy load wnditions. respec-

tively. From this set of graphs, it is clear that at normal loads,
the Earliest Deadline (ED) mapping delivers the moat value.

This might be considered surprising since ED is a value-

indifferent mapping, while the Highest Value (HV) mapping is

valuecognizant The reason for ED’s good performance is that

it misses the deadlines of very few (if any) transactions and

therefore delivers the most value. In wntrast, the Highest Value

mapping focuses its effort on completing the high-value transac-

tions. In the process. it prevents some lower value transactions

from making their deadlines, even though most of these dead-

lines could have been met (as demonstrated by ED), thereby los-

ing more of the offered value. As the system load is increased,

however, the performance of ED steeply degrades, while the

performance of HV becomes wnsiderably superior. This is

because following the Highest Value principle is a better idea at

high loads since the system has sufficient resources to handle

only a fraction of the transactions in the system. In such a situa-

tion, the transactions that should be run are those that can deliver

high value.

Moving on to the HED mapping, we note that at normal

loads it behaves almost identically to Earliest Deadline. Then,

as the overload region is entered it changes its behavior to be

similar to that of Highest Value. Therefore, in an overall sense,

the HFD mapping delivers the best performance. It should be
noted that for this uniform workload all tmnsactions are

assigned to the same bucket since transaction values are all

within a factor of 3 (the SpreadFactor setting) of each other.

Summarizing the above results, we can draw the following

wnclusions for the uniform value workload: First, the HED

20

1
-ELI

-I-IV P

on 5J arrlo%LttuB 20.0

Figure 613: Uniform Values (Normal Load)

L 15.
0
S
S

f 10.
r
C
e
II
t 5.

-LO 5.0 Adm&atc 15.0 20.0

Figure 7~ Skewed Values (Normal Load)

mapping provides the beat overall performsnce. Its feedback

mechanism is effective in detecting overload conditions and lim-

iting the size of the HIT group to a manageable munber. It also

real&s a high value by populating the HIT group with higher-

valued tranmctions. Second. under normal loads, the Earliest
Deadhne priority ordering meets most transaction deadlines and

is therefore the right schedule in this region. Under high loads.
however. the Highest Value mapping delivers good performance

as it guaranteea the completion of high-value transactions.

7.2. Skewed Value Distribution

The next experiment examined the effect of having a skew in

the transaction value distribution. For this experiment, the

Skewed value distribution was used to assign values to transac-

tions. The Loss Percent results for this experiment are shown in

Figures 7a and 7b. From these figures we note that the perfor-

mance of the Earliest Deadline (ED) mapping remains the same

as for the Uniform value distribution (compare with Figures 6a

0
S

s 611

P
e

e
0
t

2a

lo.0 40.0 *~60&$&0.0 100.0

Figure 6b: Uniform Values (Heavy Load)

L
0
S
8

P
e
r
C
e
n
t

So.0 hi.0 60% 80.0
Arrival ate

loo.0

Figure 7b: Skewed Values (Heavy Load)

and 6b). This is because the ED mapping is value-indifferent.

The figures also show that the performance of the Highest Value

(HV) mapping improves greatly as compared to the Uniform

case. Note that even at low load, the HV mapping performs

almost as well as the ED mapping. The HV mapping, by mak-

ing certain that all of the (few) high-value transactions make
their deadline. ensures that it always realixes at least 90 percent

of the offered value. In addition. at low loads, the value of the

missed transactions constitutes a very small fraction of the total

value, and the performance impact of having a higher number of

missed deadlinea than ED is therefore negligible.

If we now consider the HED mapping, we observe that it

performs better than both ED and HV over the entire loading

range. The reason for its good Performance is twofold: First,

the bucket hierarchy construction ensures that the few high-

valued transactions sre assigned to a separate higher priority

bucket. This guarantees that these transactions are completed

and therefore their value is realized. Second, using the AJZD

241

policy within each bucket results in more deadlines being made
and a corrt?sponding incmase in the realixed value.

8. Conclusions

In this paper. we have addressed the issue of stabilixing the

overload performance of Earliest Deadline in real-time dambase
systems for applications with Rrm deadlines. Our operating con-

straint is that a-priori knowledge of transaction resource require-
ments or data access pattems is not available. We introduced

the Adaptive Earliest Deadline (AED) priority assignment algo-

rithm and using a detailed simulation model of a real-time data-

base system studied its performance relative to Earliest Dead-

line and other fixed ~xiority mappings. Our experiments showed
that for the workloads considered in this study, which examined

both resource contention in isolation and in association with data

contention, the AED algorithm delivaed the best overall perfor-

mance. At light loads, it behaved exactly like Earliest Deadline,

at high loads its behavior was similar to that of Random priority,
which was the best performer among the fixed priority map-

pings. The feedback control mechanism of AED was found to
be accurate in estimating the number of transactions that could
be sustained under an ED schedule. AED’s policy of restricting

the use of the Earliest Deadline approach to the HTT group

delivered stabilized performance at high loads. The AED algo-

rithm has also been observed to be robust to limited fluctuations

in the transaction arrival pattern.

Jn some real-time applications, different transactions may be

assigned different values. Assigning priorities to transactions

when they are character&d by both values and deadhnes is a

challenging problem. We introduced the Hierarchical Earliest

Deadhne (HED) priority assignment algorithm here to address

this issue. The HED algorithm groups transactions. based on

their value. into a hierarchy of prioritixed buckets; it then uses
the AED algorithm within each bucket Using our RTDBS

simulation model, we evahutted the performance of HED with

respect to mappings that establish fixed tradeoffs between values
and deadlines. Gur experiments showed that, both for work-

loads with limited spread in transaction values and for work-

loads with pronounced skew in transaction values, the HED

algorithm provided the best overall performance. At light loads,

its behavior was identical to that of Earliest Deadline, while at

heavy loads its performance was better than that of Highest

Value. Use of the AED algorithm within the transactions of a

bucket decreased the number of missed deadlines. Also, by giv-

ing preference to more valuable transactions in populating the

HIT group of each bucket, the HED algorithm increased the
realii value. For workloads with pronounced skew in transac-

tion values, the hierarchical nature of the HED algorithm was
effective in ensuring that “golden” (high-valued) transactions
were completed and their value real&d.

While the AED and HED algorithms appear promising in

their approach and performance. they have some limitations in
their current form. In particular, they have several algorithmic

parameters (HITbatch, SpreadFactor, etc.) that need to be set by

the database administrator. The settings in the experiments

discussed here were atrived at aftex experimentation with several

different choices. However, these senings may not prove suit-

able for other workloads and enviromnents. Therefore. a
mechanism that adaptively generates the right settings is
requited Another limitation of the algorithms is that they

assume a transaction workload that is homogeneous in its

characteristics, which is not always the case in practice. We
lqe to address these limitations in our future research

REFERENCES

[Abbot381 Abbott, R.. and Garcia-Molina, H., “Scheduling

Real-Tune Transactions: A Perfm Evaluation,” Proc. of
tk 14th Int. Co& on Very Large Databare System. Aug. 1988.

[Abbos9] Abbott, R., and Garcia-Molina, H.. “Scheduling

Real-Time Transactions with Disk Resident Data,” Proc. of tk
ISth Int. Co@ 011 Very L.arge Database Systems. Aug. 1989.

[Bern871 Bernstein, P.. Hadzilacos. V.. and Goodman, N.,

“Concurrencyn Control and Recovery in Database Systems,”

Addison-Wesley, 1987.

fBiya&3] Biyabani, S., Stankovic, J., and Ramamn &am. K..

‘The Integration of Deadline and Criticalness in Hard Real-
Tie Scheduling,” Proc. of tk 9th IEEE Real-Time System
Synrposirun, Dec. 1988.

[BuchS9] Buchmann, A., et al, ‘Time-Critical Database
Scheduling: A Framework for Integrating Real-Tie Scheduling

and Concurrency Control,” Proc. of tk 5th In&. Co& on Data
Engineering. Feb. 1989.

fEswa76] Eswaran, K., et al, ‘The Notions of Consistency and

Redicate Locks in a Database System,” Comm. of tk ACM,
Nov. 1976.

fI-iari!JOal Haritsa, J., Carey, M., Livny, M.. “On Being

optimistic about Real-Time Constraints,” Proc. of tk 1990
ACM PODS Symposium, April 1990.

[HarhXtbl Haritsa J.. Carey, M.. Livny, M.. “Dynamic Real-

time Gptimistic Concurrency Control.” Pnx. of Zlth IEEE
Real-T& Systems Sympsiutn, Dec. 1990.

IHarblal Haritsa, J.. Carey, M.. Livny. M.. “Value-Based
Scheduling in Real-Tie Database Systems,” Tech. Report
1024. Univ. of Wiinsin, Madison, May 1991.

[HarEllb] Ha&a, J.. ‘Transaction Scheduling in Fi Real-

Tune Database Systems,” PhD. Thesis. Computer Sciences

Department, Univ. of Wisconsin Madison August 1991.

~uan89] Huang, J., et al, “Experimental Evaluation of Real-

Tie Transaction Recessing.” Proc. of 10th IEEE Real-Time
Systetns Symposium. Dec. 1989.
[JensSS] Jensen, E., Locke, C., and Tokuda, H., “A Time-

Driven Scheduling Model for Real-Tie Operating Systems,”

Proc. of 6th IEEE Real-Time Systtn~ Symposium, Dec. 1985.
&lu73] Liu. C. and Layland, J.. “Scheduling Algorithms for
h4ultiprogramming in a Hard Real-Time Environment,” Journal
@the ACM, Jan. 1973.

[Stat&I] Stankovic. J. and Zhao, W.. “On Real-Time Transac-

tions,” ACM SIGMOD Record, March 1988.

242

