Supporting Exploratory Queries in Databases

Abhijit Kadlag!, Amol V. Wanjari!, Juliana Freire?, and Jayant R. Haritsa!

! Dept. of Computer Science & Automation
Indian Institute of Science, Bangalore 560012, INDIA
{abhijit,amol,haritsa}@csa.iisc.ernet.in
2 Computer Science & Engineering
OGI/OHSU, Beaverton, Oregon 97006, USA
juliana@cse.ogi.edu

Abstract. Users of database applications, especially in the e-commerce domain,
often resort to exploratory “trial-and-error” queries since the underlying data
space is huge and unfamiliar, and there are several alternatives for search at-
tributes in this space. For example, scouting for cheap airfares typically involves
posing multiple queries, varying flight times, dates, and airport locations. Ex-
ploratory queries are problematic from the perspective of both the user and the
server. For the database server, it results in a drastic reduction in effective through-
put since much of the processing is duplicated in each successive query. For the
client, it results in a marked increase in response times, especially when accessing
the service through wireless channels.

In this paper, we investigate the design of automated techniques to minimize the
need for repetitive exploratory queries. Specifically, we present SAUNA, a server-
side query relaxation algorithm that, given the user’s initial range query and a
desired cardinality for the answer set, produces a relaxed query that is expected
to contain the required number of answers. The algorithm incorporates a range-
query-specific distance metric that is weighted to produce relaxed queries of a
desired shape (e.g., aspect ratio preserving), and utilizes multi-dimensional his-
tograms for query size estimation. A detailed performance evaluation of SAUNA
over a variety of multi-dimensional data sets indicates that its relaxed queries can
significantly reduce the costs associated with exploratory query processing.

Keywords: Database, Query Relaxation, Histogram

1 Introduction

Users of database applications, especially in the e-commerce domain, often resort to
exploratory “trial-and-error” queries since the underlying data space is huge and unfa-
miliar, and there are several alternatives for search attributes in this space [1]. Consider,
for example, the query interface provided at Travelocity [2], a popular Web site for
travel planning. Here, for each itinerary, users must select origin and destination air-
ports, departure and return times, departure and return dates, and may optionally select
airlines. Faced with this environment, users often pose a sequence of range queries
while planning their travel schedule. For example, the first query could be:

SELECT * FROM FLIGHTS WHERE

DepartureTime BETWEEN 10.00 A.M. AND 11.00 A.M. AND
DepartureDate BETWEEN 09-11-2003 AND 09-12-2003 AND

Origin = "LAX" AND Destination = "JFK" AND Class = "ECONOMY".

and if the result for this query proves to be unsatisfactory, it is likely to be followed by

SELECT * FROM FLIGHTS WHERE

DepartureTime BETWEEN 08.00 A.M. AND 12.00 A.M. AND
DepartureDate BETWEEN 09-11-2003 AND 09-13-2003 AND

Origin = "LAX" AND Destination = "JFK" AND Class = "ECONOMY".

and so on, until a satisfactory result set is obtained.

Such trial-and-error queries are undesirable from the perspective of both the user
and the database server. For the server, it results in a drastic reduction in effective
throughput since much of the processing is duplicated in each successive query. For
the client, it results in a marked increase in response times, as well as frustration from
having to submit the query repeatedly. The problem is compounded for users who ac-
cess the Web service through a handheld device (PDA, smart-phone, etc.) due to the
high access latencies, cumbersome input mechanisms, and limited power supply.

Too Few Answers

A primary reason for the user dissatisfaction that results in repetitive queries is the
cardinality of the answer set — the Web service may return no or insufficiently few
answers, and worse, give no indication of how to alter the query to provide the desired
number of answers [1]. (The complementary problem of “too many answers” has been
previously addressed in the literature — see, for example [3].)

Two approaches, both implemented on the client-side, have been proposed for the
“too few answers” problem: The 64K Inc.[4] engine augments query results (if any)
with statistical information about the underlying data distribution. Users are expected to
utilize this information to rephrase their queries appropriately. However, it is unrealistic
to expect that naive Web users will be able (or willing) to perform the calculations
necessary to rephrase their queries.

An alternative approach was proposed in Eureka [1]. In response to the initial user
query, Eureka caches the relevant portion of the database at the client machine, allow-
ing follow-up exploratory queries to be answered locally. A major drawback is that
the user needs to install a customized software for each of the Web services that she
wishes to access. In addition, this strategy may not be feasible for resource-constrained
client devices which may be unable to host the entire database segment, or which are
connected through a low-bandwidth network.

Finally, yet another possibility is to convert the user’s range query into a point query
(e.g., by replacing the box represented by the query with its centerpoint) and then to use
one of the several Top-K algorithms available in the literature (e.g., [5]) with respect to
this point. However, this approach is unacceptable since it runs the risk of not providing
all the results that are part of the original user query. Further, as discussed later in this
paper, closeness to a point may not be equivalent to closeness to the query box.

The SAUNA Technique

In this paper, we propose SAUNA (Stretch A User query to get N Answers), a server-
side solution for efficiently supporting exploratory queries. More formally, given an
initial user query Q' (which we expect to return M answers), and given the desired
number of answers N, if N > M, SAUNA derives a new relaxed query QR which
contains QT and is expected to have NV answers. A pictorial representation of a SAUNA
relaxation is shown in Figure 1 for a two-dimensional range query.

(h, h)

Q Relaxed Query (h!, hl)

Q' Initial Query

M
a1y N

%1%) o
M,N : Estimated Query Cardinalities

Fig. 1. Range query relaxation in 2 dimensions

Note that a variety of relaxed queries, which may even be infinite in number, could
be derived that obey the above constraints. In this solution space, SAUNA aims to de-
liver a relaxed query that (a) minimizes the distance of the additional answers with
respect to the original query, that is, it aims to derive the closest N — M answers, and
(b) minimizes the data processing required to produce this set of answers. The first
goal is predicated on defining a distance metric for points lying outside the original
query — this issue is well understood for point-queries [S] but not for the range (or box)
queries that we consider here. Therefore, SAUNA incorporates a box-query-specific
distance metric that is suitably weighted to produce relaxed queries of a desired shape
(e.g., aspect-ratio preserving with respect to the original query). To achieve the second
goal, SAUNA utilizes multi-dimensional histograms as the tool for query size estima-
tion. Histograms [6,7] are the de facto standard technique for maintaining statistical
summaries in current database systems, and therefore our system is easily portable to
these platforms. While uni-dimensional histograms are currently the norm, techniques
for easily building and maintaining their multi-dimensional counterparts have recently
appeared in the literature [8].

In an overall sense, SAUNA extends the work of [S5] which was limited to point
queries, to the more general and complex class of range queries. As we show in Sec-
tion 5, a detailed performance evaluation of SAUNA over a variety of real and synthetic
multi-dimensional data sets stored on a Microsoft SQL Server 2000 engine indicates
that SAUNA’s relaxed queries can significantly reduce the costs associated with ex-
ploratory query processing, and in fact, often compare favorably with the optimal-sized
relaxed query (obtained through off-line processing). Further, these improvements are

obtained even when the memory budget for storing statistical information is extremely
limited.

2 Problem Definition

We model the data space as being characterized by D dimensions with the correspond-
ing attribute set being { X1, X3, ..., Xp}. For ease of exposition, we assume that all
attribute domains are normalized to the range [0,1].

The initial query posed by the user is a D-dimensional hyper-rectangle defined by
QT ={[tf,nl], 11, hd],...,[15, hL]} where each I! and k! denote the lower and upper
limit of the query along the ith dimension (see Figure 1). Thatis, 0 < I} < h! <1,
Vi 1 < i < D. Here, some attributes will have ranges (i.e., Il < hl), some will be
points (i.e., I] = hl), and some will be don’t-cares (i.e., 1] = 0,h] = 1). We assume
that the user specifies the attributes that are fixed in that they should not be relaxed.

The relaxed query is denoted by QF = {[iff, hf], [IF hE,... [IE, hE]}, with
QI CQBand0 < IF <!l and1 > AP > hl, Vi 1 < i < D. The differences
ra =1F =18 andry, = hE — bl (ry,rin > 0) are used to denote the relaxations
w.r.t. the lower and upper limits of the original query along the ¢th dimension.

Along with the query, the user also provides N, the desired cardinality of the answer
set. The estimated cardinalities of the original and relaxed queries are denoted by M =|
Q! | and N' =| QF |, respectively. Relaxation is invoked only if M < N, and the
goal of the relaxation system is to produce a relaxed query such that (a) N’ > N, (b)
N' — N is minimized, (c) the additional N — M answers returned to the user are the
closest neighbors of T, and (d) the data processing required to produce these additional
answers is minimized. The definition of closest neighbors is made precise in the next
section.

3 Distance Metrics for Box Queries

Most distance functions used in practice are based on the general theory of vector p-
norms [9], with 1 < p < o0. For example, p = 2 is the classical Euclidean metric,p = 1
represents the Manhattan metric, and p = oo results in the Max metric. In the remainder
of this paper, for ease of exposition, we assume that all distances are measured with the
Euclidean metric. Note, however, that the SAUNA relaxation algorithm can be easily
adapted to any of the alternative metrics.

3.1 Reference Points

When computing the distances of database tuples with respect to point queries, it is
clear that the distances are always to be measured (whatever be the metric) between the
pair of points represented by the database tuple and the point query. However, when we
come to box (range) queries, which is the focus of this paper, the issue is not so clear-cut
since it is not obvious as to which point in the box should be treated as the reference
point. In fact, it is even possible to think of distances being measured with respect to a
set of reference points.

One obvious solution is to take some point inside the box (e.g., the center), treat the
box as being represented by this point, and then resort to the traditional distance mea-
surement techniques. However, this formulation appears highly unsatisfactory since the
spatial structure of the box, which is representative of the user intentions, is completely
ignored. Instead, we contend here that the user’s specification of a box query implies
that she would prefer answers that are close to the periphery of the box. To motivate
this, consider the example situation shown in Figure 2, where point P is farther from
the box center, O, than point @) i.e., 72 > r4, but P’s distance from the closest face of
the box is smaller than the corresponding distance for () i.e., r1 < r3. In this situation,
we expect the user to prefer point P over () since there is less deviation with respect to
the complete box. The above observation can be formally captured by the following ref-

Q

k

I

r4: 3
I
Query OL
7777777777777 L=ep

—>
1”2 r]

r<ry r4<r2

Fig. 2. Measuring distance from periphery. P is closer to periphery than Q

erence point assignment technique: For measuring the distance between a point P and
a query box B, the reference point on B is the point of intersection of the perpendicular
line drawn from P to the nearest face or corner of the box B.

In summary, given a point P = {py,p2, ..., pp } and a box-query B with lower and
upper limits /;(B) and h;(B) respectively, we denote the component of distance on the
i-th dimension as

di(P,B) = p; — hi(B) if p; > hi(B)
=U1;(B) —p; if pi<li(B)
=0 otherwise

and the overall (Euclidean) distance between P and B as

dist(P,B) = (1

Note that with this formulation, all points that lie within or on the box have an associated
distance of zero.

3.2 Attribute Weighting

An implicit assumption in the above discussion is that relaxation on all dimensions is
equivalent. However, it is quite likely that the user finds relaxation on some attributes

more desirable than on others. For example, a business traveler may be time-conscious
as compared to price, whereas a vacationer may have the opposite disposition. There-
fore, we need to weight the distance on each dimension appropriately. That is, we mod-
ify Equation 1 to

D
dist(P, B) = | Y (di(P, B) x w;)? (2)

i=1

where w; > 0 is the weight assigned to dimension ¢.

One option certainly is to explicitly acquire these weights from the user, and use
them in the above equation. However, as a default in the absence of these inputs, we
resort to the following: Use the box shape as an indicator of the user’s intentions.
Specifically, we can assume that the user is willing to accept a relaxation on each range
dimension that is proportional to the range size in that dimension, i.e., the user would
prefer what we term as an Aspect-Ratio-Preserving relaxation (this metric preserves the
aspect ratio of the user-supplied query, hence the name). This objective can be easily
implemented by setting the weights

aspect __ 1 _ Maxz'D: (hz(B) - lz(B))

w _ _ 1
¢ Asp_ratio(i) h;(B) —1;(B)

An alternative interpretation of the user’s box-query structure could be that at-
tributes should be relaxed in inverse proportion to their range sizes, since the user has
already built in relaxation into the larger ranges of her query. This can be implemented
with the following weighting function

inverse

Wit = Asporatioli) = 31 b (B — L(B))

/MBR Approximation Zj R A E
: Kb
|

?ﬁ g 1kb Ef Core Region | Q Y !
ka ! ka M- -4
A 2P)

o a o b
= e o R

! |

(a) va | Kb o

! L

Extended Region
(b)

Fig. 3. Distance Metrics and Relaxation regions: (a) Aspect (b) Inverse

Figure 3 shows an example of the relaxed queries produced by using the Aspect and
Inverse metrics, respectively. Given a constant k£ and relaxation units a and b (in the x
and y axes, respectively), we see in these figures that the locus of points equidistant from

the original query is not hyper-rectangular in the corners. Therefore, we approximate
the relaxed queries by their Minimum Bounding (Hyper)-Rectangles since only hyper-
rectangular queries are supported in core SQL, discounting special features such as
UDF (User Defined Functions). The area enclosed within the locus is referred to as the
core region and the area between the core region and the MBR rectangle is called the
extended region.

As a final point, note that if the user has specified a point query as opposed to a box
query, then the above formulation degenerates to a traditional Top-N query [5], where
the goal is to find the nearest N neighbors to the query point.

4 The SAUNA Relaxation Algorithm

SAUNA, our new query relaxation technique, attempts to ensure the desired cardinality
and quality of answers for user queries while simultaneously trying to reduce the cost
of relaxed query execution. Specifically, the relaxation algorithm generalizes to box
queries the approach taken for point queries in [5].

Histograms are used for query size estimation in the SAUNA relaxation process.
In particular, we use multi-dimensional histograms for the experiments reported in
this study. Although such histograms have been previously touted as being resource-
intensive to create and maintain, recent work [8] has addressed this problem by propos-
ing an online adaptive mechanism for easily building and maintaining multi-dimensional
histograms, the so-called self-tuning histograms.

Due to their summary nature, histograms can provide only estimates, and not the
exact values. Therefore, when relaxing a query to produce N answers, there is always
a risk of either under-estimating or over-estimating the cardinality of the answer set.
While under-estimation results in inefficiency due to accessing more database tuples
than necessary, over-estimation requires the query to be relaxed further and submitted
again — a restart in the terminology of [5].

Estimation strategies possible in this environment include a conservative approach
that completely eliminates restarts at the risk of getting many more tuples than nec-
essary, and an optimistic approach that trades restarts for improved efficiency. These
No-Restarts and Restarts approaches were implemented in [5] by assuming that all
database tuples in a histogram bucket are at the maximum or minimum distance, re-
spectively, with respect to the point query. In Figure 4, we present the MinDist and
MaxDist algorithms to find these minimum and maximum distances, respectively for
range queries. Both these algorithms are linear in the number of query attribute dimen-
sions. We describe below the various relaxation strategies for box queries that are based
on these distance computations. The range query counterparts of the NoRestart and
Restart approaches in [5] are termed here as Box-NoRestart and Box-Restart, respec-
tively. For more details, we refer the reader to [10].

Box-Dynamic Strategy Since Box-Restarts and Box-NoRestarts represent extreme
solutions, an obvious question is whether an intermediate solution that provides the
best of both worlds can be devised? For this, we adopt the dynamic workload-based
mapping strategy of [5], which attempts to find the relaxation distance that minimizes

Algorithm MinDist (Box q, Bucket b, Algorithm MaxDist (Boz q, Bucket b,

Metric metric) { Metric metric) {

Point Nearest, Nearest', Nearest"; Point Farthest, Farthest', Farthest";
Vi:1<i<D Vi:1<4i<D
begin begin
Nearestt = ¢ if bl <g < P Farthestt = bt if ¢ <!

=b ifq < b = bt otherwise

= b otherwise
Nearestl = g ifbl <gqF < b} Farthest! = bt if gf <bt

=b ifql < b = bl otherwise

= b otherwise
if |8 — Nearest)| < | — Nearest!|| if |¢¢ — Farthestl| > |q — Farthest?|

Nearest; = Nearest! Farthest; = Farthest!
else else
Nearest; = Nearest? Farthest; = Farthest?
end Vi endV 1
return distmetric (Nearest, q) return distmetric (Farthest, q)
} }
(a) MinDist (b) MaxDist

Fig. 4. Algorithms for computing distances

the expected number of tuples retrieved for a set of queries while ensuring a reduced
number of restarts. This is implemented as follows: Given « as a parameter such that

dg(a) = dPP + o (dPN? —dP")

where d?F and dPVE are the Box-Restarts and Box-NoRestarts distances for query g,
we need to find the value of d, (o) that minimizes the average number of tuples retrieved
for a given query workload. Since d;(«) is a unidimensional function of ¢, the golden
search algorithm [11] can be utilized to estimate this optimal value of «. Note that
this approach requires an initial “training workload” to determine a suitable value of «,
which can then be used in the subsequent “production workloads”.

Relaxation Algorithm While the Box-Dynamic strategy does reduce the likelihood
of restarts, it does not completely eliminate them. To ensure that we do not get into a
situation where there are repeated restarts of a given query, we follow the strategy that
if the Box-Dynamic strategy happens to fail for a particular query, then we immediately
resort to the conservative Box-NoRestarts strategy — that is, all queries are relaxed with
at most one restart. The complete sequence of steps of the SAUNA relaxation algorithm
is shown in Figure 5. The input parameter W to the algorithm is the set of weights to
be used in case we wish to have dimension-specific relaxations.

Algorithm SAUNA Relaxation (Query QT , Integer N, Weights W)
{

1 M= estimateCardinality(QI);

2 ifM <N

3 QF =relaxBoxDynamic(Q?, N, W);

4 numAnswers = execute(Q);

5 if numAnswers > N return the N nearest answers;
6 else

7 QRI = relaxNoRestart(Q*, N, W);

8 execute(QR');

9 endif

10 else

11 numAnswers = execute(Q?);

12 if numAnswers > N return all answers;
13 else

14 M =numAnswers;

15 go to Step 7;

16 endif

17 endif

18 return

}

Fig. 5. SAUNA relaxation algorithm

5 Performance Evaluation

We have conducted a detailed performance evaluation of the SAUNA technique and a
representative set of results are presented here — for full details see [10].

5.1 Experimental Settings

In our experiments, we used a variety of synthetic and real-world data sets — these
datasets are the same as those used in [5]. The real-world data sets consisted of the
US census data set (199, 523 tuples) and the Forest data set (581,012 tuples) obtained
from [12]. We selected from these data sets the same set of attributes as [5]. The syn-
thetic data consisted of the Gauss and Array data sets, each containing 500, 000 tu-
ples [5].

The experiments were performed using multidimensional equidepth histograms [6],
as they are both accurate and simple to implement. Further, an /NV-dimensional un-
clustered concatenated-key B7 -tree multidimensional index covering all the query at-
tributes was built over each data set.

The query workload consists of queries with the number of range dimensions vary-
ing from 2 to 4, which is typical of many e-commerce applications. The specific queries
were generated by moving a query template over the entire domain space, returning a
set of 100 queries. All results we report are averages for this set of hundred queries.

To serve as comparative yardsticks for SAUNA’s performance, we used two bench-
marks:

Sequential (SEQ) : In this strategy, a sequential scan of the database is made in order
to produce a sorted list of the tuples w.r.t. their distance from the query box, after
which the top IV tuples are returned.

Optimal (OPT) : This strategy refers to a hypothetical optimal relaxation strategy
which produces the minimally relaxed query that contains the desired answer set.
Note that even the minimum bounding hyper-rectangle enclosing the N nearest tu-
ples of a query box is not guaranteed to return N answers only, and often returns
more than N answers. In our experiments, the answers for OPT were found through
an offline complete scan of all the data tuples.

For the results shown here, the experimental settings were number of desired an-
swers N = 10, Aspect distance metric, and number of histogram buckets = 256; the
gauss and array datasets were generated with a zipfian parameter z = 1.

Our experiments were conducted on a Pentium IV machine running the Windows
2000 operating system.

5.2 SAUNA performance

The performance of SAUNA as compared to SEQ and OPT is shown in Figure 6(a)
with respect to the number of tuples retrieved (the Y-axis is shown on a log scale), for
the various datasets. The labels in the X-axis: cen, cov, arr and gz refer to the census
dataset, cover dataset, array dataset and gauss dataset, respectively, while the number
in brackets refers to the number of data dimensions. Note that the data is clustered on
the disk and hence the percentage of tuples retrieved is indicative of the number of disk
accesses.

The first point to observe here is that for all the datasets, SAUNA requires pro-
cessing less than 4% of the tuples — in fact, for the census and array datasets they are
less than 1%. Secondly, note that there is a substantial difference between the optimal
performance and that of SAUNA. This is due to the fact that SAUNA relies on statis-
tical information that is limited by a tight memory budget (only 256 histogram buck-
ets, consuming around SKB memory, were used in this experiment). The performance
gap between SAUNA and OPT is considerably larger for the gz and cover datasets as
compared to the array and census datasets (this behavior was also seen in our other
experiments). We attribute this to the dense and clustered nature of the gz and cover
datasets which results in retrieval of a large number of tuples even from a small query
space. Again this is largely dependent on the quality of histograms available.

In Figure 6(b), we show the running times of the SAUNA and OPT strategies (ex-
cluding the time required to find the optimal relaxed query), normalized to the execution
time of SEQ, for the various datasets (the Y-axis is shown on a log scale). The first point
to note here is that the SAUNA execution times are below 10% of the sequential scan
time for all the datasets. Secondly, for the census and array datasets the SAUNA times
are close to that of OPT, and even for the other datasets the difference is not much.
The number of query restarts were found to be negligible for census and array datasets.

ot [SAUNA PSEQ mopt MSAUNA [JSEQ

100 100
[
s 10 -
[
g ! -
0 2
% 0.1 L g
2 g 1 — -
=)
0 0
N 0.01 L 5
X
0001 3 il ‘ i
@l cend Al gl o) @ @® w®) o
Dataset(Dim) Dataset(Dim)
(a) Percentage of tuples retrieved (b) Execution time

Fig. 6. SAUNA Performance

About 10% of the queries required restarts for the gz and cover datasets, which we
attribute to the skew in these datasets.

The execution time figures clearly indicate the efficiency of SAUNA w.r.t. the op-
timal strategy. Again, it should be noted that it is not the relaxation algorithm, but the
quality of the histograms (the type and number of buckets) that affect the efficiency
of SAUNA as compared to the optimal in terms of number of tuples retrieved or the
execution time.

Besides different datasets, we also evaluated the performance of SAUNA with re-
spect to (a) varying N, the desired result cardinality; (b) varying the skew in the data; (c)
varying the distance metric; and, (d) varying the number of buckets in the histogram.
Due to space constraints, we refer the reader to [10] for more details. An interesting
feature that we observed is that the performance of SAUNA w.r.t. OPT, improved dra-
matically with increased values of N. Thus in environments where a higher number
of answers are expected (e.g., in a banking application where the manager wants to
see a list of 250 customers with balance more than $100, 000), we expect SAUNA to
perform even better. Further, the performance of SAUNA is robust in that even with
heavily-skewed data, it retrieved less than 3% of the tuples to achieve the desired re-
laxation. Also we found that the performance characteristics for Inverse distance metric
are very similar to those of the Aspect metric.

Overall, our experiments show that SAUNA, despite being constrained by the lim-
ited memory resources, robustly and efficiently provides automated query relaxation.
When more memory is provided, the performance improves accordingly.

6 Conclusions

In this paper, we proposed SAUNA, a novel server-based framework for automated
query relaxation that improves the efficiency and efficacy of query exploration over
large and unknown data spaces. Unlike previous approaches that are limited to point
queries, SAUNA is able to relax multi-dimensional range queries. Through the use of
an intuitive range-query-specific distance metric, SAUNA returns high-quality answers
that are closest to the user-specified query box. In addition, the SAUNA framework can
be easily integrated with commercial RDBMS that support histograms.

Our experimental results indicate that SAUNA significantly reduces the costs asso-
ciated with exploratory query processing, and in fact, often compares favorably with
the optimal-sized relaxed query Further, these improvements are obtained even when
the memory budget for storing statistical information is extremely limited. Specifically,
even with as low a memory budget as 5 KB, SAUNA was able to provide satisfactory
relaxation retrieving less than 10% of the tuples in the database and taking less than
10% of the time taken by sequential scan.

Acknowledgements This work was supported in part by a Swarnajayanti Fellowship
from the Dept. of Science & Technology, Govt. of India.

References

1. J. Shafer and R. Agrawal. Continuous querying in database-centric web applications. Com-
puter Networks, 33(1-6):519-531, 2000.
2. Travelocity. http://www.travelocity.com.
3. M. Carey and D. Kossmann. On saying “enough already!” in SQL. In Proc. of SIGMOD
Conf., pages 219-230, 1997.
4. 64K Inc. DBGuide introduction and technology overview, 1997.
5. N. Bruno, S. Chaudhuri and L. Gravano. Top-k selection queries over relational databases:
Mapping strategies and performance evaluation. ACM TODS, 27(2), 2002.
6. M. Muralikrishna and D. DeWitt. Equi-depth histograms for estimating selectivity factors
for multi-dimensional queries. In Proc. of SIGMOD Conf., pages 28-36, 1998.
7. V.Poosala, Y. Ioannidis, P. Haas and E. Shekita. Improved histograms for selectivity estima-
tion of range predicates. In Proc. of SIGMOD, pages 294-305, 1996.
8. A. Aboulnaga and S. Chaudhuri. Self-tuning histograms: Building histograms without look-
ing at data. In Proc. of SIGMOD Conf., pages 181-192, 1999.
9. L. Gradshteyn and 1. Ryzhik. Tables of Integrals, Series and Products. Academic Press, 2000.
10. A.Kadlag, A. Wanjari, J. Freire and J. Haritsa. Supporting Exploratory Queries in Databases.
Technical Report, TR-2003-02, DSL/SERC, 2003.
http://dsl.serc.iisc.ernet.in/pub/TR/TR-2003-02.pdf.
11. W. Press et al. Numerical Recipes in C : The Art of Scientific Computing. Cambridge
University Press, 1993.
12. UCI knowledge discovery in databases archive.
http://kdd.ics.uci.edu/summary.data.type.html.

