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Abstract

Many real-time database applications arise in safety-critical
istallations and military systems where enforcing security
i~ crucial to the success of the enterprise. A secure real-time
database svstem has to simultaneously satisfy two require-
ments  guarautee data security and minimize the number
of missed transaction deadlines. We investigate here the
performance implications, in terms of missed deadlines, of
guaranteeing security in a real-time database system. In
particular, we focus on the concurrency control aspects of
this 1ssne

Our main contributions are the following: First, we iden-
tifv which among the previously proposed real-time concur-
reney control protocols are capable of providing protection
agaanst both divect and indirect (covert channels) means of
unauthorized access to data. Second, using a detailed sim-
ulation wodel of a firm-deadline real-time database system,
we profile the real-time performance of a representative set
ol these secure concurrency control protocols. Our exper-
nuents show that a prioritized optimistic concurrency con-
trol protocol. OPT-WAIT, provides the best overall perfor-
wance. Third, we propose and evaluate a novel dual ap-
proach to secure transaction concurrency control that al-
lows the real-time database system to strmultaneously use
different concurrency control mechanisms for guaranteeing
security and for improving real-time performance. By ap-
propriately choosing these different mechanisms, we have
been able to design hybrud concurrency control algorithms
that provide even better performance than OPT-WAIT.

1 Introduction

Mauy real-time database applications arise in safety-critical
installations and military systems where enforcing security
is crucial to the success of the enterprise. Surprisingly, how-
ever. the issue of providing security in real-time database
svstems (RTDBS) has received comparatively little atten-
tion althougl veal-tiie database research has been under-
way for close to a decade now. In this paper, we partially
address this lacuna by making a detailed investigation of the
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performance implications of providing security in the con-
text of real-time applications with “firm-deadlines” {9] - for
such applications, completing a transaction after its deadline
has expired is of no utility and may even be harmful.

Database Security

Most secure database systems have access control mecha-
nisms based on the Bell-LaPadula model [12]. This model
is specified in terms of subjects and objects. An object is a
data item, whereas a subject is a process that requests access
to an object. For example, when a process accesses a data
file for input/output operations, the process is the subject
and the data file is the object. Each object in the system
has a classification level (e.g., Secret, Classified, Public, etc.)
based on the security requirement. Similarly, each subject
has a corresponding clearance level based on the degree to
which it is trusted by the system.

The Bell-LaPadula model imposes two restrictions on all
data accesses:

e A subject is allowed read access to an object only
if the former’s clearance is higher than or identical to
the latter’s classification.

o A subject is allowed write access to an object only if
the former’s clearance is identical to or lower than the
latter’s classification.

Figure 1: Bell-LaPadula access restrictions
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The Bell-LaPadula conditions, by enforcing a “read below,
write above” constraint on transaction data accesses (an ex-
ample is shown in Figure 1), prevent direct unauthorized



access to secure data. They are not sufficient, however, to
protect from “covert channels”. A covert channel is an in-
direet means by which a high security clearance process can
transter mformation to a low security clearance process [11].
For example. if 4 low security process requests access to
an exclusive resource. it will be delayed if the resource is
abieady held by a Ingh security process. otherwise it will im-
mediatelv be granted the resource. The presence or absence
of the delay can be used to encode information by a high
security process that is conspiring to pass on information to
rhe low security process.

Covert channels that use the database system’s physi-
cal resources as the medium for passing on information are
relatively straightforward to tackle — for example, by intro-
ducing uoise” w the formn of duminy transactions that make

nse of these resources. However. this approach is impractical
for covert channels that use dota as the medium (for exam-
ple. presence or absence of a lock on a pre-determined data
itemn). This is because, unlike physical resources which are
tepncay fewsin number. the nuinber of data items is usu-

ally enormons, especially i a database system. In fact, in
heavily loaded systems, noise at the physical resources may
he generated “for free”, but this will probably never be the
case for data since it is trivial to insert an additional data
item that is of relevance only to the conspiring transactions.
Therefore. explicitly making data access covert-channel-free
s more oikal than doing the same for resource access.

Covert channels based on data can be prevented by pro-
viding hsgher priority to the low security transaction when-
ever a data conflict occurs between a low security transac-
tion and a high security transaction. Taking this approach
ensures that low security transactions do not “see” high se-
curity transactions and are therefore unable to distinguish
hetween their presence or absence. This notion is formal-
ized iu (6] as non-interference. From a database system per-
spective, 1t translates to implementing a concurrency con-
trol mechanism that supports the non-interference feature.
In this paper. we quantitatively investigate the performance
implications of secure concurrency control in the context of
i frim-deadline real-tine database system.

Real-Time Database Security

A secure real-time database system has to simultaneously
satisfv two requurements, namely, provide security and min-
unize the number of missed transaction deadlines. Unfor-
tnnately. the mechanisins for achieving the individual goals
often work at cross-purposes [8]. In a real-time database
svatenn. high priority is usually given to transactions with
carlier deadlines in order to help their timely completion.
On the other hand, in secure database systems, low security
transactions are given high priority in order to avoid covert
channels (as described above). Now consider the situation
wherein a high security process submits a transaction with a
tight deadline in a secure real-time database system. In this
case. it becomes difficult to assign a priority since assign-
ing a high priority may cause a security violation whereas
assighing a low priority may result in a missed deadline.
Oue approach. used by Son et al in [4, 16, 17], to ad-
dress the above problem is to adaptively tradeoff security
for timehness depending on the state of the system. Our
view. however, is that for many applications security is an
“all-or-nothing™ issue, that is, it is a correctness criterion.
In comparison, the number of missed deadlines is a perfor-
mance issuce. Therefore, in our research work, we are investi-
sating the problemn of how to minimize the number of missed
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transaction deadlines without compromising security. As a
first step towards achieving this goal, we have conducted a
detailed simulation study to evaluate what impact the choice
of concurrency control protocol has on the real-time perfor-
mance. Our simulation model captures a real-time database
system with an open transaction arrival process. Transac-
tions are assigned security levels and have corresponding re-
strictions on their data accesses. Each transaction also has
a deadline and the deadline is “firm” — that is, transactions
which miss their deadlines are considered to be worthless
and are “killed” (immediately discarded from the system
without being executed to completion).

Secure Real-Time Concurrency Control

In recent years, several concurrency control (CC) protocols
that are specially tailored for real-time database systems
have been developed. These include prioritized variants of
two-phase locking (2PL) such as Wait Promote and High
Priority [3], and prioritized variants of optimistic concur-
rency control (OPT) such as Sacrifice and Wait [9]. These
algorithms were primarily designed to minimize the number
of missed transaction deadlines and have been evaluated on
this basis in [3, 9].

There are significant differences between the real-time
environment in which the above concurrency control algo-
rithms were compared and the secure real-time environment.
In particular, the following issues need to be considered:
First, not all real-time concurrency control algorithms may
satisfy the non-interference property mentioned earlier. Sec-
ond, there are multiple transaction classes corresponding to
the various security clearance levels. Third, the data ac-
cess patterns of transactions are constrained by the Bell-
LaPadula model. Fourth, conflicts are resolved based on
both security considerations and timeliness considerations.
Finally, there is the question of class fairness, that is, how
evenly are the missed deadlines spread across the transac-
tions of the various clearance levels.

Due to the above differences, the performance profiles of
real-time concurrency control algorithms need to be reeval-
uated in the secure domain — we address this issue here.

Dual Approach

A feature of the secure environment is that there are two
categories of data conflicts: inter-level and intra-level. Inter-
level conflicts are data conflicts between transactions belong-
ing to different security clearance levels whereas intra-level
conflicts are data conflicts between transactions of the same
level. The important point to note here is that only inter-
level conflicts can result in security violations, not intra-
level conflicts. This opens up the possibility of using dif-
ferent concurrency control strategies to resolve the different
types of conflicts. In particular, we can think of construct-
ing mechanisms such that inter-level conflicts are resolved in
a secure manner while intra-level conflicts are resolved in a
timely manner. The advantage of this dual approach is that
the real-time database system can maximize the real-time
performance, by appropriate choice of intra-level CC pro-
tocol, without sacrificing security. In contrast, the tradeoff
approach mentioned earlier requires the application to com-
promise on security in order to achieve enhanced real-time
performance. We investigate here the performance of var-
ious combinations of concurrency control mechanisms for
resolving inter-level and intra-level data conflicts.



Contributions

lu this paper, we quantitatively investigate the performance
iuplications of guarantecing security in a firm-deadline real-
tune database svstew. Our main contributions are the fol-
lowing:

I We identify which among the previously proposed
real-time concurrency control protocols are capable
of providing protection against both direct and indi-
rect (covert channels) means of unauthorized access to
data. That is, which protocols support the concept of
non-interference.

2. Using a detailed simulation model of a firm-deadline
real-time database system, we profile the real-time per-
tormance of a representative set of secure concurrency
control protocols. Our simulations consider a variety
of security-classified transaction workloads and system
configurations. To isolate and quantify the perfor-
wance effects of supporting covert channel security, we
also evaluate the performance of the CC protocols in
the context of a baseline system that prevents direct
unauthorized access, but not covert channels (that is,
it only supports the Bell-LaPadula restrictions). Our
experiments show that a prioritized optimistic concur-
rency control protocol, OPT-WAIT, provides the best
overall performance.

3. We evaluate the effectiveness of a novel dual approach
to secure transaction concurrency control wherein si-
multaneously different CC mechanisms are used for
guaranteeing security and for improving real-time per-
formance. respectively. In particular, we investigate
the performance of various combinations of concur-
rency control mechanisms for resolving inter-level and
intra-level data conflicts. Our results show that some
of these hybrid concurrency control algorithms perform
cven better than OPT-WAIT.

2 Related Work

The design of secure CC protocols in the context of con-
ventronal database systems has been investigated by sev-
eral research groups (see [20] for a survey). In compari-
son. little attention has been given to developing secure CC
protocols for real-time database systems. The only work
thiat we are aware of in this area is a series of papers by
Son et al [4, 13, 16, 17, 19]. In particular, a concurrency
coutrol protocol that attempts to balance the dual require-
ments of security and timeliness is presented in [4, 16, 17].
In their scheme. transactions dynamically choose between
2PL-HP” {3]. an (unsecure) real-time version of 2PL, and
S2PL [15]. a secure (non-real-time) version of 2PL. The goal
ot the protocol is 1o tradeoff security for real-time perfor-
mance with the tradeoff depending on the state of the sys-
tew and the application’s requirements.’ In contrast, in our
work. we have assumed that full security is a fundamental
requuirement aud that it is not permissible to improve the
real-time performance at the cost of security.

In 13}, a concurrency control protocol that ensures both
security and timeliness is proposed. For this scheme, how-
ever, the RTDBS is required to maintain twoe copies of each

"I'he tradeolf approach. and alternative schemes to implement the
tradeott, have also been considered in the Secure Alpha project [8],
wihnch nvestigated the interactions between security and timeliness
e the context of a distributed real-time operating system.
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data item. Further, transactions are required to obtain all
their data locks before starting execution (i. e., strict static
locking). These requirements limit the applicability of the
protocol. In our work, we consider more general database
environments where all data items are single-copy and trans-
actions acquire data locks dynamically.

Another feature of their work is that it is primarily ad-
dressed towards “soft-deadline” applications, that is, real-
time applications in which there is value to completing tasks
even after their deadlines have expired. In contrast, we
have concentrated on firm-deadline applications. The type
of deadline has a significant impact on both the performance
evaluation model and on the interpretation of the results, as
observed earlier for (unsecure) real-time transaction concur-
rency control [3, 9].

3 Secure Concurrency Control Protocols

As mentioned in the Introduction, assigning priorities in a
secure real-time database system is rendered difficult due
to having to satisfy multiple functionality requirements. In
our study, since we assume that security is a correctness
requirement, the database system is forced to assign trans-
action priorities based primarily on security clearance levels
and only secondarily on deadlines. In particular, we assign
priorities as a vector P = (LEVEL, INTRA), where LEVEL
is the transaction security clearance level and INTRA is the
value assigned by the priority mechanism used within the
level. We assume that security levels are numbered from
zero upwards, with zero corresponding to the lowest secu-
rity level. Further, priority comparisons are made in lexi-
cographic order with lower priority values implying higher
priority.

With the above scheme, transactions at a lower security
level have higher priority than all transactions at a higher se-
curity level, a necessary condition for non-interference. For
the intra-level priority mechanism, any priority assignment
that results in good real-time performance can be used. For
example, the classical Earliest Deadline assignment where
transactions with earlier deadlines have higher priority than
transactions with later deadlines. In this case, the priority
vector would be P = (LEVEL, DEADLINE).

In conjunction with the above priority assignment, it
would seem at first glance that, in principle, any real-time
concurrency control protocol could be used in a secure RT-
DBS and that the actual choice of protocol would be based
only on the relative performance of these protocols. How-
ever, not all the previously proposed real-time CC algorithms
are amenable to supporting security requirements. For ex-
ample, consider the 2PL Wait Promote algorithm proposed
in [3]: This protocol, which is based on 2PL, incorporates a
priority inheritance mechanism [18)] wherein, whenever a re-
quester blocks behind a lower-priority lock holder, the lock
holder’s priority is promoted to that of the requester. In
other words, the lock holder inherits the priority of the lock
requester. The basic idea here is to reduce the blocking
time of high priority transactions by increasing the priority
of conflicting low priority lock holders (these low priority
transactions now execute faster and therefore release their
locks earlier).

The Wait Promote approach is not suitable for secure
real-time database systems. This is because it permits the
blocking of high priority transactions by low priority trans-
actions which violates the requirement of non-interference
between the transactions of different security levels (as men-
tioned in the Introduction, non-interference means that low



security transactions should not be able to distinguish be-
tween the presence or absence of high security transactions).

To generalize the above observation, a real-time CC pro-
tocol that permits, to even a limited extent, high priority
transactions to be adversely affected by low priority trans-
actions. a phenomenon known as priority inversion in the
real-thme literature [18], cannot be used in a secure RTDBS.
Apart from Wait Promote, other examples of real-time CC
algorithims thar fall into this category include 2PL-CR [3),
2PL-0S/BI [2] aud WAIT-50 [9).

I the remainder of this section, we briefly present a
representanve set of concurrency control protocols that, by
virtue ol bemg complesely free from priority inversion, could
he wsed to resolve conflicts in a secure real-time database
svstem. These protocols use either locking or optimistic
concurreney coutrol as the basic regulatory mechanism.

3.1 2PL High Priority

The 2PL High Priority (2PL-HP) scheme [3] modifies the
classical strict two-phase locking protocol (2PL) [5] by incor-
porating a priority conflict resolution scheme which ensures
that lugh prioriee sransactions are not delayed by low pri-
ority transactions. In 2PL-HP, when a transaction requests
a lock on a data item that is held by one or more higher
priority trausactions i a conflicting lock mode, the request-
ing transaction waits for the item to be released (the wait
quene for a data itew 1s nanaged in priority order). On the
other hand, if the data item is held by only lower priority
transactious in a conflicting lock mode, the lower priority
transactions are restarted and the requesting transaction is
granted the desired lock.? Note that 2PL-HP is inherently
deadlock-free if priorities are assigned uniquely (as is usually
the case in real-time database systems).

3.2 OPT-SACRIFICE

The OPT-SACRIFICE algorithm [9] modifies the classical
forward (or broadeast) optimistic concurrency control pro-
tocol TOPTTY 1] by incorporating a priority sacrifice mech-
awsm. Inotlus algorithm, a transaction that reaches its
validation stage checks for conflicts with currently execut-
iy transactions. I conflicts are detected and one or more
transactions in the conflict set is a higher priority transac-
tion. then the validating transaction is restarted — that is,
it is sacrificed in an effort to help the higher priority trans-
actions make their deadlines. Otherwise, the transaction is
allowed to comuuit, restarting in the process the lower pri-
orny transactions (if anv) iy its conflict set.

3.3 OPT-WAIT

The OPTAVAIT algorithim [9] modifies the forward OPT
protocol by incorporating a priority wast mechanism. Here,
A transaction that reaches validation and finds higher prior-
ity trausactions in its conflict set is “put on the shelf”, that
is. it is wade to wait and not allowed to commit immedi-
arelv. This gives the higher priority transactions a chance
to 1hiake their deadlines first. While a transaction is waiting
on the shelf, it is possible that it may be restarted due to
the commit of one of the conflicting higher priority trans-
actions. If at any time during its shelf period, the waiting
transaction finds no higher priority transactions remaining
imits conflict set, it is committed, restarting in the process
the Tower priority transactions (if any) in its conflict set.

v onew reader s allowed to join a group of lock-holding readers
poonty as higher than that ol ell the waiting writers.

[
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3.4 S2PL

A secure locking-based protocol called Secure 2PL (S2PL)
was recently proposed in [15]. The basic principle behind Se-
cure 2PL is to try to simulate the execution of conventional
2PL without blocking the actions of low security transac-
tions by high security clearance transactions. This is ac-
complished by providing a new lock type called virtual lock,
which is used by low security transactions that develop con-
flicts with high security transactions. The actions corre-
sponding to setting of virtual locks are implemented on pri-
vate versions of the data item (similar to optimistic concur-
rency control). When the conflicting high security transac-
tion commits and releases the data item, the virtual lock of
the low security transaction is upgraded to a real lock and
the operation is performed on the original data item. To
complete this scheme, an additional lock type called depen-
dent virtual lock is required apart from maintaining, for each
executing transaction T, lists of the active transactions that
precede or follow T; in the serialization order. The complete
details are given in [15].2

Note that Secure 2PL may not perform well in the real-
time domain since it does not include any real-time-specific
features. We include it here for two reasons: First, it serves
as a baseline against which to compare the real-time CC
algorithms. Second, we use it in one of the “dual approach”
protocols evaluated in this study.

4 Dual Approach

In this section, we move on to discussing our new dual ap-
proach to secure real-time concurrency control. As men-
tioned in the Introduction, a feature of the secure environ-
ment is that there are two categories of conflicts: inter-level
and intra-level. This opens up the possibility of using dif-
ferent concurrency control strategies to resolve the different
types of conflicts. In particular, we can think of construct-
ing mechanisms such that inter-level conflicts are resolved in
a secure manner while intra-level conflicts are resolved in a
timely manner. For example, S2PL could be used for inter-
level conflicts while OPT-WAIT could be used to resolve
intra-level conflicts. The advantage of this dual approach is
that the real-time database system can maximize the real-
time performance without sacrificing security.

At first glance, it may appear that using multiple concur-
rency control mechanisms in parallel could result in violation
of the transaction serializability requirement. This could
happen, for example, if the serial orders enforced by the in-
dividual mechanisms were to be different. A detailed study
of a generalized version of this problem is presented in [21],
wherein the transaction workload consists of a mix of trans-
action classes and the objective is to allow each transaction
class to utilize its preferred concurrency control mechanism.
They propose a database system architecture wherein intra-
class conflicts are handled by the class’s preferred concur-
rency control manager while inter-class conflicts are handled
by a new software module called the Master Concurrency
Controller (MCC) that interfaces between the transaction
manager and the multiple concurrency control managers.
The MCC itself implements a complete concurrency control
mechanism. A single global serialization order is ensured
in the entire database system by using a Global Ordering

3In our implementation, we have had to partially modify Secure
2PL since the algorithm (as described in {15]) does not eliminate non-
interference under all circumstances — the details of the modifications
are available in 7).



Table 1. Simulation Model Parameters
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ClassLevels
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Number of pages in the database
Number of Classification Levels
Transaction arrival rate

Number of Clearance Levels

Slack Factor in Deadline assignment
Average transaction size (in pages)
Page write probability

Number of processors

Number of disks

CPU time for processing a data page
Disk service time for a data page

Scheme The details of this scheme and the proof of its
correctness are given in [21].

For our study, we assume use of the above architecture.
In this framework. a S2PL/OPT-WAIT combination, for ex-
atuple. would correspond to using S2PL at the Master Con-
curreney Controller for resolving inter-level conflicts, and
asing OPT-WAIT as the local concurrency controller within
cach security level for resolving intra-level conflicts.

5 Simulation Model

L the previous section, we discussed various secure concur-
reney control protocols. To evaluate the real-time perfor-
wance of these algorithms, we developed a detailed simu-
lation wodel of a firm-deadline real-tiine database system,
similar to that described in [9]. A summary of the key model
parameters is given in Table 1.

fnour model. the svstem consists of a shared-memory
multiprocessor DBMS operating on disk-resident data (for
simphicity. we assume that all data is accessed from disk
and buffer pool considerations are therefore ignored). The
database is modeled as a collection of DBSize pages that
are uniformly randomly distributed across all of the disks.
The database is equally partitioned into ClassLevels secu-
vty classification levels (for example, if the database has
1000 pages and the number of classifications is 5, pages 1
throngh 200 belong to level 1, pages 201 through 400 be-
long to level 2, and so on). Transactions are generated in a
Poissou stream with rate ArrivalRate and each transaction
lias an associated security clearance level and a firm com-
pletion deadline. A transaction is equally likely to belong
to any of the ClearLevels security clearance levels. (For
sunplicity, we assume in this study that the categories (e.g.,
Secret. Public) for data classification and transaction clear-
ance areadentical). Deadlines are assigned using the formula
1y = Ar+SF*«Ry. where Dy, Ay and Ry are the deadline,
arrival tine and resource time, respectively, of transaction
T. while SF is a slack factor. The resource time is the total
service the at the resources that the transaction requires
for its data processing. The SlackFactor parameter is a
constant that provides control over the tightness/slackness
of transaction deadlines.

A transaction consists of a sequence of page read and
page write accesses.  The number of pages accessed by a
transaction varnes uniformly between half and one-and-a-
half times the value of TransSize. The WriteProb pa-
rameter determines the probability that a transaction op-
cration is a write. Due to security reasons, each transac-
tion can only access data from a specific segment of the
database. and page requests are generated by uniformly ran-
dowly sampling (without replacement) from the database
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over this range. The permitted access range is determined
by both the security clearance level of the transaction and
the desired operation (read or write), and is according to
the Bell-LaPadula specifications: a transaction cannot read
(resp. write) pages that are classified higher (resp. lower)
than its own clearance level. A transaction that is restarted
due to a data conflict has the same clearance level, and
makes the same data accesses, as its original incarnation. If
a transaction has not completed by its deadline, it is imme-
diately killed (aborted and discarded from the system).

A transaction read access involves a concurrency control
request to get access permission, followed by a disk I/O
to read the page, followed by a period of CPU usage for
processing the page. Write requests are handled similarly
except for their disk I/O - their disk activity is deferred
until the transaction has committed. We assume that the
RTDBS has suflicient buffer space to allow the retention of
updates until commit time.

The physical resources of the database system consist of
NumC PU s processors and NumDisks disks. There is a sin-
gle common queue for the CPUs and the service discipline
is Pre-emptive Resume, with preemptions being based on
transaction priorities. Each of the disks has its own queue
and is scheduled according to a Head-Of-Line (HOL) pol-
icy, with the request queue being ordered by transaction
priority.* The PageCPU and PageDisk parameters cap-
ture the CPU and disk processing times per data page, re-
spectively.

6 Experiments and Results

In this section, we present the performance results from
our simulation experiments comparing the various secure
CC protocols in a firm-deadline RTDBS environment.
The primary performance metric of our experiments is
MissPercent, which is the percentage of input transactions
that the system is unable to complete before their deadlines.
We compute this percentage on a per-clearance-level basis
also. MissPercent values in the range of 0 to 20 percent
are taken to represent system performance under “normal”
loads, while MissPercent values in the range of 20 percent
to 100 percent represent system performance under “heavy”
loads [9]. Only statistically significant differences are dis-
cussed here {7].

An additional performance metric is ClassFairness which
captures how evenly the missed deadlines are spread across
the transactions of the various clearance levels. To com-
pute this we use, for each class i, the formula Fairness;

CommitTrans;/InputTrans; : - .
BommitTrans/ TnpuiTrans: - In this formula, CommitTrans;

and InputTrans; are the number of committed transactions
and the number of input transactions, respectively, of class
1, while CommitTrans and InputTrans are the total num-
ber of committed transactions and the total number of input
transactions, respectively, across all classes. With this for-
mulation, a protocol is ideally fair, if the fairness value is 1.0
for all classes. Fairness values greater than one and lesser
than one indicate positive bias and negative bias, respec-
tively.

The transaction priority assignment used for the secure
protocols in the experiments described here is P = (LEVEL,
DEADLINE), thereby ensuring that there are no covert chan-
nels since a low security transaction is delayed only by trans-
actions of its own level or those of lower security levels.

*For simplicity, our model uses the non-interference method for
eliminating covert channels at the physical resources also — an alter-
native method is the “noise” technique mentioned in the Introduction.



Table 2: Baseline Parameter Settings
CDI3Sizc | 1000 pages NumCpus | 10
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6.1 Comparative Protocol

To help isolate and understand the performance cost that
oceurs due to having to eliminate covert channels, we have
also simulated the performance achievable in the absence of
covert channel security requirements. That is, the perfor-
mance achievable if ouly Bell-LaPadula conditions had to
be satistied. For this scenario, a priority assignment of P =
DEADLINE 1 nsed. In the following experiments, we will
refer to the performnance achievable under this scenario as
DIRECT since the Bell LaPadula conditions prevent di-
et |lll(lll[ll()l'17,l’,(1 Access to d(lt,d

6.2 Experiment 1: Resource and Data Contention

The settings of the workload parameters and system param-
eters for our first experiment are listed in Table 2. These
settings were chosen with the objective of having significant
data contention and resource contention in the system, thus
helping to bring out the performance differences between the
various concurrency control protocols.

I this experiment, there are two security levels: Secret
and Publee. For this svstem, Figures 2a and 2b show the
AMissPercent heliavior as a function of the overall transaction
arrival rate. ln Figure 2a, the overall miss percentages of the
fullv scenre algorithms and their DIRECT (Bell-LaPadula)
connterparts s profiled. We see here that at normal loads
the performance of the secure algorithms is worse than that
of their DIRECT counterparts. In contrast, under heavy
loads the performance of the secure algorithms is actually
better than that of the DIRECT algorithms. The reason
for this is that while the Earliest Deadline priority assign-
ment is excellent for a set of tasks that can be completed
hefore thewr deadlines, it becomes progressively worse as the
task set overloads its capacity [10]. In this situation, the
secure protocols feature of grouping the transactions into
prioritized levels means that Earliest Deadline is operational
withiu stmallcr sets of transactions, leading to improved per-
formance at higher loads. In summary, although elimination
of covert channels results in performance degradation at nor-
mal loads. it reduces the miss percentage under heavy loads.

Focusing on the secure real-time algorithms, we observe
first i Figure 2a that the performance of 2PL-HP is signif-
icantly worse chan that of the optimistic algorithms, OPT-
WAIT and OPT-SACRIFICE (denoted by OPT-SCR in the
legend). In fact, 2PL-HP’s performance is no better than
that of S2PL which. as mentioned in Section 3, is a non-
real-time protocol!  The poor performance of 2PL-HP is
primuanly because of its “wasted restarts” problem, which
was ats main drawback in unsecure real-time CC also [9]:

\ ramsaction may be restarted by a higher priority trans-
action that laver unsses ats deadline. This means that the
restart did not result in the higher priority transaction meet-
g s deadhne: Inaddition, it may cause the lower priority

transaction to wmiss its deadline as well, apart from wasting
the resources imvested in the transaction prior to its restart.
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The effect of the wasted restarts problem is magnified in
the secure domain for the following reason: In unsecure real-
time CC, a transaction that is close to its deadline would
usually not be restarted since it would have high priority.
However, in the secure model, where the transaction level is
also a factor in the priority assignment, Secret transactions
that are close to their deadlines may still be restarted due
to data conflict with a Public transaction.

Moving on to OPT-SACRIFICE, we find that there is a

change of performance behavior in the secure environment in
that the gap between its performance and that of 2PL-HP
is more than that observed for unsecure real-time CC [9].
The main problem for OPT-SACRIFICE in the unsecure
domain was that it suffered from “wasted sacrifices” (sacri-
fices for a transaction that is eventually killed). The effect
of this problem is diminished in the secure domain due to
the access pattern restrictions of the Bell-LaPadula model:
The definition of conflict in forward optimistic concurrency
control is that a conflict exists between the validating trans-
action V and an executing transaction E if and only if the
intersection of the write set of V and the current read set
of E is non-empty. For the LaPadula model, where blind
writes are permitted due to the “read-below, write-above”
paradigm, optimistic algorithms will correctly conclude that
there is no conflict between items that are in the intersec-
tion of the write set of V and the write set of E but not in
the read set of E. In fact, it is easy to see that a validating
Secret transaction will never have conflicts with erecuting
Public transactions in this model. Therefore, the possibility
of wasted sacrifices decreases as compared to the unsecure
domain. Note that for 2PL-HP, however, blind-writes can
unnecessarily result in write-write conflicts and cause either
blocking or restarts, thereby further deteriorating its perfor-
mance. :
Turning our attention to OPT-WAIT, we see that it pro-
vides the best performance across the entire loading range.
This is because it derives, similar to OPT-SACRIFICE, the
above-mentioned benefits arising out of the Bell-LaPadula
access restrictions. In addition, it suffers neither from
wasted restarts nor from wasted sacrifices. Instead, all
restarts are useful in that they are made “on demand” and
at the commit time of a higher priority transaction.

Finally, moving on to S2PL, we find that it manages to
perform on par with 2PL-HP in spite of not being dead-
line cognizant. This is due to its “optimistic-like” feature of
wirtual commit, which considerably reduces the amount of
blocking associated with 2PL. This phenomenon is similar to
that seen in [9], wherein a conventional (non-real-time) op-
timistic protocol performed better than locking-based real-
time protocols.

In Figure 2b, we present the miss percentages of the vari-
ous concurrency control protocols on a per-security-level ba-
sis. This graph clearly shows how the high-security Secret
transaction class (dashed lines) suffers much more than the
Public transaction class (dotted lines) to satisfy the goal of
avoiding covert channels. Figure 2c¢ provides statistics about
the corresponding breakup of the “restarts ratio” (the aver-
age number of restarts of a transaction) on a level basis. We
see here that Secret transactions are restarted much more
often than Public transactions under normal loads. Un-
der heavy loads the number of restarts decrease for Secret
transactions since resource contention, rather than data con-
tention, becomes the more dominant reason for these trans-
actions missing their deadlines.

In Figure 2d, we present a different view of the trans-
action restarts picture. Here, the restarts of Secret trans-
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actions are categorized into those caused by Public trans-

actions (i. e.. anter-level restarts) and those caused by Se-
cret trausactions (i. e., snira-level restarts). Note that this
hreakup is meaningful only for Secret transactions since all
restarts are intra-level for Public transactions. The graph
clearly shows that Secret transactions suffer more from inter-
level conflicts (dashed lines) than from intra-level conflicts
(dotted lines) over most of the loading range.

Finally, in Figure 2e, we plot the fairness factor of each
CC protocol for the Secret transaction class. We observe
that at light loads when virtually all transactions make their
deadlines, all the concurrency control protocols are (triv-
iallv) fair. As the loading increases, however, the proto-
cols become increasingly unfair since they selectively miss
the deadlines of Secret transactions to accommodate the
Pubhe rransactions. With regard to the relative fairness
of the secnre real-nme algorithms, the graph clearly shows
that OPT-WAIT and OPT-SACRIFICE provide much bet-
ter fanrness than 2PL-HP, and that OPT-WAIT is the best
overall. Tt may secin in Figure 2e that, at high loads, S2PL
15 wore fair thau QOPT-WAIT. Note, however, that this is
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really a “virtual fairness” since it arises out of S2PL, due to
its non-real-time nature, missing a large fraction of the Pub-
lic transactions, rather than out of meeting the deadlines of
more Secret transactions.

In summary, for the workload and system configuration
considered in this experiment, OPT-WAIT provides the low-
est miss percentage, both on an overall basis and on a per-
level basis, and the best overall fairness.

6.3 Experiment 2: Pure Data Contention

The goal of our next experiment was to isolate the influence
of data contention on the performance of the concurrency
control protocols. For this experiment, therefore, the re-
sources were made “infinite”, that is, there is no queueing
for these resources [1]. The remaining parameter values are
the same as those used in the baseline experiment. The per-
formance results for this system configuration are presented
in Figures 3a through 3c. We observe in these figures that
the differences in the relative performance of the various pro-
tocols increases as compared to those seen in the previous



experiment. The overall (Figure 3a) as well as the per-level
(Figure 3b) wmiss percentages of OPT-WAIT are consider-
ablv betrer than those of 2PL-HP. Here, OPT-WAIT does
heeter thau 2PL-HP tor two reasons: First, the basic wasted
vestarts problem of 2PL-HP occurs here too and is magni-
tiedd due to the higher level of data contention. Second, the
blockimg component of 2PL-HP reduces the number of trans-
actionis that are waking progress in their execution.
blocking causes an increase in the average number of trans-
actious in the system, thus generating more conflicts and
a greater nunber of restarts. With OPT-WAIT, however,
wransactions are never blocked for data access.

Moving on to the performance of OPT-SACRIFICE, we
observe that its performance becomes even closer to that of
OPT-WAIT as compared to the previous experiment. The
reason for thisis that the wasted utilization arising out of its
wasted sacrifices problem has no impact here since resource
contention IS not an issue.

Finally. e Figure 3¢, which profiles the fairness factors
ol the protocols, OPT-WAIT and OPT-SACRIFICE are al-
tmost deally fair over most of the loading range since they
ss very few deadlines overall. In contrast, 2PL-HP and
S21°LLare noticeably unfair with increasing loading levels.

Mhto
1 111S

6.4 Experiment 3: Increased Security Levels

A two-security-level system was modeled in the previous
experiments. In our next experiment, we investigated the
performance behavior for a five-security-level system, where
the levels are TopSecret, Secret, Confidential, Classified and
Public. The remaining parameter values are the same as
those used in Experiment 1. The results for this experiment
are shown in Figures 4a through 4e (for graph clarity, the
results tor only 2PL-HP and OPT-WAIT are presented).

In Figure 4a, we see that there is a greater difference
hetween the performance of the secure algorithms and their
DIRECT counterparts at normal loads, as compared to the
cquivalent two-level experiment (Experiment 1). This is be-
cause i a iive-level system, priority is much more level-based
than deadline-based, thereby denying Earliest Deadline its
ability to complete most transactions in a feasible set under
uoriial loads. Under heavy loads, however, the smaller sizes
of the transaction sets in each level results in Earliest Dead-
line performing well for the low security transactions. (This
fearure of Earliest: Deadline was used in the Adaptive Ear-
hest Deadiine scheduling algorithim described in [10] where
trausactions are split up into prioritized groups with the size
of the highest priority group set equal to an estimate of the
waximnm nber of transactions that could be successfully
completed by Earliest Deadline.)

In Figures 4b and 4c¢, we plot the miss percentage on a
per-security-level basis for OPT-WAIT and 2PL-HP, respec-
tivelv. These graphs clearly show the extent to which the
s~ percentages are skewed among the various transaction
security levels, with Top Secret transactions having the most
nuber of missed deadlines and Public transactions having
thie least. The graphs also show that OPT-WAIT’s perfor-
mance is better than that of 2PL-HP for every transaction
secnrity level.

[n Figures 4d and 4e, the fairness factors for the top four
security levels (Top Secret, Secret, Confidential and Classi-
ficd) are plotted on a per-security-level basis for OPT-WAIT
and 2PL-HP. respectively. These figures clearly show that
as the loading factor increases, progressively more and more
security classes become discriminated against by the lowest
security class (Public). We also find that OPT-WAIT’s per-
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formance is more fair than that of 2PL-HP for every trans-
action security level.

In summary, just as in the two-security-level experiment,
we find that OPT-WAIT provides the lowest miss percent-
age, both on an overall basis and on a per-level basis, and the
maximum fairness (this observation regarding OPT-WAIT
is true also with regard to the OPT-SACRIFICE and S2PL
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6.5 Experiment 4: Dual Approach

As mentioned earlier, we have experimented with a dual ap-
proach to secure real-time concurrency control where inter-
level conflicts are handled by one protocol while intra-level
conflicts are handled by a different protocol. In Figures 5a
through 5¢ we show the performance of three dual systems
for the same environment as that of Experiment 1. The com-
binations (in inter/intra order) are 2PL-HP/OPT-WAIT,
OPT-WAIT/2PL-HP, and S2PL/OPT-WAIT, which we will
refer to as HP-WAIT, WAIT-HP, and S2PL-WAIT, respec-
tively. For the sake of comparison, the performance of a
pure OPT-WAIT protocol is also shown in these graphs.

Focusing our attention on the WAIT-HP and HP-WAIT
dual protocols, we first observe in Figure 5a, which com-
pares the overall miss percentages of the protocols, that the
performance of both these approaches is considerably worse
than that of the pure OPT-WAIT protocol. The reason that
OPT-WAIT remains the best among them is that 2PL-HP
is a wasteful algorithm, as seen in the previous experiments,
and therefore “dilutes” the effect of OPT-WAIT in both the
dual protocols.

We also observe in Figure 5a that that the performance
of WAIT-HP is worse than that of HP-WAIT throughout
the loading range. The reason for this is that, in the secure
system, the number of intra-level conflicts are significantly
more than the number of inter-level conflicts. Therefore, the
algorithm which is used to handle intra-class conflicts has
more effect on the overall miss percentage than the protocol
used to handle inter-class conflicts. In WAIT-HP, it is 2PL-
HP which handles intra-class conflicts and this results in
worse performance than that of HP-WAIT, which uses OPT-
WAIT to handle this category of conflicts.

The miss percentages of the protocols on a per-security-
level basis is provided in Figure 5b and the fairness fac-
tors are shown in Figure 5c. An interesting feature in these
graphs is that at high loads, the fairness of WAIT-HP is
greater than that of OPT-WAIT - this is the first time in
all the experiments discussed so far that a real-time pro-
tocol has improved on OPT-WAIT’s fairness performance.
The reason that this happens is the following: In WAIT-HP,
due to 2PL-HP being used for intra-class conflicts, many of
the Public transactions are so busy “fighting” each other
that they don’t ever reach the end of their execution, which
is when the OPT-WAIT policy of checking for inter-class
conflicts comes into play. Therefore, Secret transactions suf-
fer much less restarts from the Public transactions. This is
clearly seen in Figure 5b where the miss percentage of the
Public transactions for WAIT-HP is quite high as compared
to the corresponding numbers for the other protocols.

Moving on to the S2PL-WAIT dual protocol, we find
that, unlike the other two dual protocols, it performs bet-
ter than OPT-WAIT, especially at lower loading levels. For
example, at an arrival rate of 40 transactions per second,
S2PL-WAIT more than halves the miss percentage suffered
by OPT-WAIT (Figure 5a). The reason that this combina-
tion works well is that Secure 2PL handles inter-class con-
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thets wunthout resorting to restarts unlike in WAIT-HP or
HE-WATT, This mcaus that Secret transactions suffer much
less in this environment (as confirmed in Figures 5b and 5c¢).
At the same time, using OPT-WAIT for handling intra-
cluss conflicts helps to derive the inherent good real-time
performance associated with this protocol. At high loads,
S21’L-WAIT performs almost identically to OPT-WAIT be-
cause. in this region, the primary reason for transactions
missing, thew deadlines is resource contention, rather than
duta coutention  therefore, the virtual commit feature of
S2PL rarely provides the intended benefits.

In summary, this experiment shows that by carefully
choosing the night combination of protocols in the dual ap-
proach. we can design hybrid concurrency control algorithms
that provide even better miss percent and fairness perfor-
manee than OPT-WAIT. This highlights the power and flex-
ihility that is provided by the dual approach. In fact, it may
he possible to develop hybrid algorithms that perform even
better thay S2PL-WAIT by appropriately choosing the con-

stitnent protocols
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Figure 5b: Level miss percent
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7 Other Experiments

We conducted several other experiments to explore various
regions of the workload space. In particular, we evaluated
the sensitivity of the results to the database size, number
of security levels, deadline slack factor, etc. In many se-
cure systems, the Bell-LaPadula model of “read below, write
above” is further restricted to allow only “read below”, that
is, blind writes by low security transactions to high security
data are disallowed. We conducted experiments to evaluate
the performance behavior of the concurrency control proto-
cols under this model also.

The complete details and results of the above experi-
ments are available in {7]. Our general observation was that
the relative performance behaviors of the protocols in these
other experiments remained qualitatively similar to those
seen in the experiments described here. That is, OPT-WAIT
performed the best among the individual protocols, while
S2PL-WAIT provided the best overall performance with re-
spect to both the individual protocols and the dual combi-
nation protocols.



8 Conclusions

In this paper. we have quantitatively investigated the per-
toriance implications of maintaining covert-channel-free se-
curnty an a firm-deadline real-time database system. Un-
like previous studies. which used a tradeoff approach be-
tween security and simeliness, we have considered security
ax an “all-or-nothing” issue, that is, as a correctness cri-
terion. Ly comparson, the number of missed deadlines is
a performance issue. Therefore, our study investigates the
problews of how to minimize the number of missed transac-
tion deadlines without compromising security. To the best
ol o knowledge. this s the first detailed study of real-time
database security in the firin-deadline context,.

We hirst identified that, in order to satisfy the require-
ment of nou-interference, only those real-time concurrency
control protocols that are free from priority inversion can be
used 1 a secure RTDBS. This requirement ruled out several
previously proposed real-time CC protocols, including algo-
rithis such as 2PL Wait Promote [3] and WAIT-50 [9].

Then. using a detailed simulation model of a firm-
deadhne RTDBS, we studied the relative performance of the
secure versions of the 2PL-HP, OPT-SACRIFICE and OPT-
WAIT real-time concurrency control algorithms; a non-real-
time secure algorithm, S2PL, was also included in the eval-
uation suite. The performance of these algorithms was also
evaluated for a baseline system where only direct unautho-
rized access, but not covert channels, is prevented.

Our experiments showed that, under normal loads, the
overall miss percent of the secure system is worse than that
of the direct system, whereas under heavy loads, it is the
other way around. Within the secure system, the perfor-
mance of high-security transactions was significantly worse
than that of the low-security transactions. Among the se-
cure conenrreney control protocols, OPT-WAIT performed
hest i miniwizing the wmiss percentages on both an over-
all basis and on a per-level basis. Moreover, it exhibited
the waximum degree of fairness. These results show that
OPT-WAIT. which provided excellent performance in tra-
ditional (unsecure) real-time concurrency control, continues
to perform well even 1 the secure real-time domain.

Finallv, we proposed a novel dual approach to secure
concurrency control wherein different concurrency control
algorithms are used to resolve inter-level conflicts and intra-
level couflicts. A global serialization order was ensured, in
spite of having multiple CC algorithms operating simulta-
ueously, by using the system architecture proposed in [21].
The dual combinations of HP-WAIT and WAIT-HP were
nnplemented and evaluated - they both generally performed
worse than pure OPT-WAIT. However, the dual combina-
tion of S2PL-WAIT performed better than OPT-WAIT, es-
pecially at lower nuss percent levels. This is because S2PL
is a nou-restart-oriented algorithm unlike both OPT-WAIT
and 2PL-HP. and therefore ensures reduction of the harm
done to high-security transactions.

Another advantage of the dual approach, not exploited
liere, is that the separation of security and timeliness con-
cerns akes it possible to use even non-secure real-time
CC algorithms (e.g., Wait-Promote, WAIT-50) for resolving
intra-level conflicts! The dual approach therefore empowers
the use. even in the secure RTDBS domain, of the rich set of
real-tune CC algorithms developed during the last decade.
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