ROBUST:: A Hardware Solution to Real-Time Overload

Sanjoy Baruah*

Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

Abstract

No on-line scheduling algorithm operating in a unipro-
cessor environment can guarantee to obtain an effective
processor utilization greater than 256% under conditions
of overload. This result holds in the most general case,
where incoming tasks may have arbitrary slack times.
We address here the issue of improving overload perfor-

mance in environments where the slack-time character-
sitics of all incoming tasks satisfy certain constraints.

In particular, we present a new scheduling algorithm,
ROBUST, that efficiently takes advantage of these task
slack constraints to provide improved overload perfor-
mance and is asymptotically optimal.

1 Introduction

The designers of safety-critical real-time systems typ-
ically attempt to anticipate every eventuality and in-
corporate it into the design of the system. Such a sys-
tem would, under ideal circumstances, never become
overloaded, and its behavior would be as expected by
the system designers. In reality, however, unanticipated
emergency conditions may occur and it may so hap-
pen that the amount of required processor time exceeds
the system capacity. The system is then said to be in

*Supportedin part by a research grant from the Office of Naval

Research under contract number N00014-89-J-1472
tSupported in part by a Systems Research Center Post-

Doctoral Fellowship

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

1993 ACM SIGMETRICS-5/93/CA,USA

© 1993 ACM 0-89791-581-X/93/0005/0207...$1.50

207

Jayant R. Haritsa'
Systems Research Center
University of Maryland
College Park, Maryland 20742

overload. If this happens, it is important that the per-
formance of the system degrade gracefully (if at all).
A system that panics and suffers a drastic fall in per-
formance in an emergency is likely to contribute to the
emergency, rather than help solve it.

Under overload conditions in uniprocessor real-time
systems, a natural measure of system performance is the
effective processor utilization (EPU) of the sys-
tem. Informally speaking, the EPU of a system over

an interval of time measures the fraction of time within
the interval that the processor spends on executing tasks

that eventually do meet their deadlines. This notion is
clearly illustrated in the following example.

Example 1. Consider a situation where task 77 makes
a request at time 0 for 3 units of processor time by a
deadline of 4, and task T, makes a request at time 1 for
8 units of processor time by a deadline of 10. Clearly, no
scheduler can schedule both T} and T3 to completion. A
scheduler that schedules T; first to completion and then
schedules T3 has an EPU of 0.3 over [0, 10), while one
that executes task 77 during [0,2), and then schedules
T to completion by executing it during [2,10) has an
EPU of 0.8 over [0, 10).

]

It has recently been shown [1, 2] that no uniproces-
sor on-line scheduling algorithm can guarantee a “com-
petitive ratio” larger than 1/4 under overload. (An on-
line algorithm of competitive ratio r, 0 < r < 1, is
guaranteed to achieve a cumulative value at least r times
the cumulative value achievable by any clairvoyant algo-
rithm on any sequence of requests, where a task’s value
is equal to its execution time.) With minor modifica-
tions, the proof of this result can be extended to show
that no uniprocessor on-line scheduling algorithm can

guarantee an EPU greater than 1/4 under overload.
Taken in conjunction with the classical theorem which
proves that the Earliest Deadline scheduling algorithm
guarantees 100 percent EPU under non-overload con-
ditions (see, for example, [3]), this result implies that
the onset of an emergency may force a deterioration
in system performance by a factor of four. This holds
in the most general case where the tasks in the work-
load may have arbitrary slack factors (slack factor is

the ratio between a task’s deadline and its execution
time, and is indicative of how “tightly” a task needs

to be scheduled). The research described in this pa-
per investigates to what extent degradation in overload
performance can be reduced in environments where all
tasks are guaranteed to have a minimum slack factor.
In particular, we study the effect of slack factor on the
EPU performance of scheduling algorithms under over-
load. We present ROBUST (Resistance to Overload
By Using Slack Time), an on-line uniprocessor schedul-
ing algorithm that performs efficiently under overload
over a large range of slack factors, and is in fact asymp-
totically optimal with increasing slack factor.

The remainder of this paper is organized in the fol-
lowing fashion: In Section 2, we precisely define our
model and the notions of EPU and overload. We
present our new algorithm, ROBUST, in Section 3 and
prove that it guarantees a worst-case EPU of one-half
under conditions of overload when all incoming tasks
have a slack factor of at least 2. In Section 4, we at-
tempt to determine if this algorithm is also optimal.
That is, are there on-line algorithms that can guarantee
an EPU greater than one-half under such conditions?
Although we do not yet have a conclusive answer to
this question, we do succeed in proving an upper bound
of 5/8’ths on the performance of any on-line algorithm
in the above situation. In Section 5, we generalize the
results of Sections 3 and 4 to the case where the mini-
mumm task slack factor is an arbitrary number and prove
that ROBUST is asymptotically optimal. We explore
methods by which desired slack factors can be achieved
in Section 6, and discuss other related issues (including
the rationale for the title of this paper). We conclude in
Section 7 with a summary of the results presented here,
and outline future research directions.

2 System Model and Definitions

We focus our attention in this paper on the study of
uniprocessor systems. In our task model, each task T
is completely characterized by three parameters: T.a
(the request time), T.e (the execution require-
ment), and T'.d (the relative deadline, often simply
called the deadline), where T.a is the time at which
task T makes a request for T.e units of processor time
by a deadline of T.a + T.d. Tasks must complete exe-
cution by their deadlines in order to be of any value to
the system; that is, all deadlines are hard [6]. We as-
sume that nothing is known about a task until it makes
its request, at which time all three parameters become
known. In addition, there is no a prior: bound on the
number of tasks that will be encountered. Our schedul-
ing model is preemptive;i.e., a task executing on the
processor may be interrupted at any instant in time,
and its execution resumed later. There is no penalty
associated with such preemption.

The slack factor of task T is defined to be the
ratio T.d/T.e. Clearly, for a task T to complete by its

deadline, it is necessary that T.d be at least as large as
T.e; the slack factor of any non-degenerate task (i.e.,
a task that has any chance at all of completing by its
deadline) must therefore be at least one.

A system is said to be in overload if no scheduling
algorithm can satisfy all task requests that are made on
the system. As mentioned in the Introduction, the Ear-
liest Deadline algorithm is optimal in the sense that it
will successfully schedule any set of task requests which
are in fact schedulable. Given this optimality of the
Earliest Deadline algorithm, it follows that a system is
in overload if the Earliest Deadline algorithm fails to
meet the deadline of some task in the system.

A task T is said to be active at time-instant ¢
if i) T.a < t; ie., the task arrives by time ¢, and
(ii) T.er > 0, where T.e, is the remaining amount of
processor time that needs to be allocated to task T be-
fore its deadline, and (iii) 7.d > t; i.e. the deadline has
not been reached. Active task T is degenerate at time
tif T.e, > (T.a +T.d — t), i.e., its remaining execution
requirement is strictly greater than the amount of time
remaining until its deadline.

A processor is said to be idle at time-instant tg if all

208

active tasks in the system at time g have their request-
times equal to 5. That is, we do not consider tasks that
arrive at time to in determining whether the processor
is idle at ¢o; this is a technical detail that facilitates the
definitions of the start and finish of overload, described
below.

A system is said to be in an overloaded state at
time t if the Earliest Deadline algorithm when executed
on the system fails to meet the deadline of some task at

time ¢t. The start time of the overloaded interval is the
latest time instant t,, t, < t, at which the processor

would be idle if the Earliest Deadline algorithin were
executed on the system. The finish time of the over-
loaded interval is the earliest time instant 2y, t; > ¢, at
which the processor is idle.

While the start time of an overloaded interval is
independent of the scheduling algorithm actually used

in the system, the above definition makes the finish
time necessarily dependent upon the scheduling deci-
sions made during the overloaded period. Consider, as
an example, the situation in Example 1. If a scheduler
executes task T} to completion, then the overloaded in-
terval terminates at time-instant 10; if, on the other
hand, it executes T to completion over the interval
[1,9), then the overloaded interval terminates at time
9, since task T3 is not active after this time.

Notice that our definitions specify that a task which
becomes degenerate remains active until its deadline ex-
pires; i.e., no task — degenerate or otherwise ~ is dis-
carded before its deadline. In the scenario of Example
1, the scheduler that first executes 7 to completion is
not permitted to discard T3 until time 10, even though
it is clear after time 2+ ¢ that this task will fail to meet
its deadline (where € is any arbitrarily small positive
number). This has implications upon the definition of
an overloaded interval: in the above scenario, the over-
loaded interval terminates at time 10, and not 2 + ¢.
We believe this to be quite reasonable, and a reflection
of the fact that the “effect” of a task on a system re-
mains until the task has either completed execution or
its deadline has expired. A definition of overload that
permits one to lessen the size of the overloaded interval
by simply choosing to discard certain tasks would, in
our opinion, not reflect the reality of very many actual
applications.

In the introduction, we presented an intuitive de-

scription of EPU. We now provide a more precise defi-

nition: Given an overloaded time interval that starts at
time ¢, and finishes at time ¢y, the EPU over this time

interval is computed by

Z zi[ts, 1)
EPU='€__
ty — 1,
where C denotes the set of tasks that successfully com-
plete during [t,,t;), and z;[t,,t;) represents the service
received by task ¢ during [t,,1;).

The EPU of a system is the lowest EPU measured
over any overloaded interval and it is this metric that
we will be referring to in the remainder of this paper.

3 The ROBUST Algorithm.

In this section, we present ROBUST (Resistance to
Overload By Using Slack Time), an on-line scheduling
algorithm that guarantees a worst-case EPU of one-half
under conditions of overload when all incoming tasks
have a slack factor of at least 2. The ROBUST algo-
rithm operates in the following manner during an over-

loaded interval: It divides the interval into an even num-
ber of phases, Phase-1, Phase-2, ..., Phase-2n, with the

length of Phase-(2i — 1) equal to the length of Phase-
2i for all i, 1 < ¢ < n. (That is, the length of every
even-numbered phase is equal to that of the preceding
odd-numbered phase.) The length of each phase is de-
termined as discussed below.

Suppose that the overloaded interval begins at time
t. Let tasks Tl(l),Tél), . .,T,ﬂ) be the set of tasks that

are active and non-degenerate at this time, and let task
T8 € {TO,1TV,..., TV} be such that Ts.e >
1}(1).6 for all 4, 1 < ¢ < ny; (i.e, T,(nla)x is the most

. “valuable” task in Phase-1). Also, let egl) represent the

209

remaining amount of processor time that is required
by task T,(,.Qx at time t. Then, Phase-1 is defined to
be the interval [t,t + ep)), and Phase-2 the interval
t+ egl), t+ 2(35.1)).

During Phase-1, the scheduler non-preemptively ex-

ecutes task T,S,Qx to completion. Suppose a task Thew

makes a request during this phase. Since its slack fac-
tor is at least 2, it is guaranteed that this task’s dead-
line is at least twice its execution requirement, i.e.,
Thew.d > 2Tnew.e. Let Thew.€ be greater than T,g,la)x.e.
Since the length of Phase-1 is egl), the scheduler can
delay the execution of task Thew to after the end of the
phase and still meet its deadline. For every task that
becomes makes a request during Phase-1, therefore, it
is the case that either

¢ its execution requirement is less than that of task

T,(,}Qx, (i.e., it is less “valuable” than T.S,Qx), or

e it can be successfully scheduled to completion after

task T,Slla,x has completed execution.

There is therefore no danger of discarding too “valu-
able” a task during Phase-1.

At the start of Phase-2 (and indeed, every subse-
quent even-numbered phase), the currently active non-
degenerate task with the largest execution requirement
is scheduled. For the duration of this phase, whenever
a new task makes a request, the scheduler compares the
execution requirement of the new task and the execution
requirement of the currently executing task; if the exe-
cution requirement of the new task is greater, the sched-
uler preempts the current task and begins executing the
new one, otherwise the current task continues execution.
If the currently executing task completes execution, the
currently most valuable active non-degenerate task is
scheduled. At the end of each even-numbered phase
Phase-(2j — 2), therefore, the processor is executing the
currently active non-degenerate task with the largest
remaining execution requirement. Let ¢’ be the time
when Phase-(2j — 2) ends. If the processor is idle at
this point in time, then we can conclude that the over-

loaded interval has terminated. Otherwise, let T,(,,Qx be

the task executing at this instant. Let e represent the
remaining amount of processor time that is required by

task 7). Then, Phase-(2j — 1) is defined to be the
interval [t',¢' + egj)), and Phase-2j to be the interval
[t + ¥, ¢ + 268y,

At the start of Phase-(2j — 1) for all j, 1 < j < n,

the scheduler commits to executing task T,(,,jzzx to com-
pletion, and proceeds to do so for the entire phase. If a

new task makes a request during this phase, the condi-
tion on its slack factor ensures that either

e its execution requirement is less than that of task
T, or

e 1t can be successfully scheduled to completion after

task T,ﬁ,’Qx has completed execution.

Once again, therefore, there is no danger of discarding
too “valuable” a task as a result of committing to non-

preemptively execute task T,E,’Qx during Phase-(2j — 1).

(A point to note here is that if at any time there are
no more non-degenerate tasks available, the algorithm
executes tasks at random from among the degenerate
tasks until either a new active non-degenerate task ar-
rives to the system or all the degenerate tasks have been
discarded. We leave it to the reader to verify that de-
generate tasks can be executed only in an even phase
and, given the requirement on task slack factors, that
the deadlines of all the existing degenerate tasks will
expire within that phase.)

Theorem 1 The ROBUST algorithm achieves an EPU
of at least one-half during conditions of overload.

Proof. Suppose that the ROBUST algorithm divides
the overloaded interval into 2n phases numbered 1
through 2n. Notice that the processor is guaranteed
to be “useful”, (i.e., executing tasks that do complete
by their deadlines) during all the odd-numbered phases.
Furthermore, the length of each odd-numbered phase
is exactly equal to the length of the succeeding even-
numbered phase. The EPU over the entire overloaded
interval is therefore

S0, [length of Phase-(2i — 1))

>
= Y2 [length of Phase-j]

[SR

4 An Upper Bound on EPU

In an environment where all incoming tasks are guar-
anteed to have a slack-factor no less than two, the RO-

BUST scheduling algorithm obtains an EPU of at least

one-half even under overloaded conditions. We now ad-
dress the issue of optimality: Is the ROBUST algorithm

optimal? That is, is it the case that no on-line schedul-
ing algorithm can obtain an EPU greater than one-half
in such an environment? We do not yet have a conclu-
sive answer to this question. However, we prove in this
section that no on-line scheduling algorithm can guaran-
tee an EPU greater than five-eighths under conditions
of overload in the above framework. This means that
even if the bound of 5/8 were to be tight, the ROBUST
algorithm is at most 20 percent worse than the optimal,

since %% =0.8.

Theorem 2 No on-line scheduling algorithm can guar-
antee an EPU greater than five-eighths under conditions
of overload in an environment where all incoming tasks
have slack-factor of at least two.

Proof. The proof is by means of an adversary ar-
gument that consists of pitting any on-line algorithm
against a (hypothetical) malicious adversary that gen-
erates a sequence of tasks, observes the behavior of the
on-line algorithm on these tasks, and then extends the
sequence with the explicit purpose of minimizing the
EPU of the on-line algorithm. At time ¢t = 0, the ad-
versary generates two identical tasks 7, and R, with
T,.e = Ro.e = z,, and T,.d = R,.d = 2z,. Just be-
fore the deadline of these tasks (i.e., just before time
T,.d) the adversary generates identical tasks 77 and R;
with Ty.e = Ri.e = #; and T}.d = Ry.d = 2z;. The
“best” situation for the on-line algorithm to be in is for
it to have completed the execution of task T,, and to
be currently engaged in executing R,. In general, the
on-line algorithm will have executed task T}, and be ex-
ecuting R;; just before the deadline of R;, the adversary
generates two new identical tasks T;4+; and R;y; with
T,~+1.e = R,-+1.e = Ti41, and T,‘+1.d = R{+1.d = 22),'+1.
The on-line algorithm now has a choice

¢ discard R; and begin executing T;41, in which case
the adversary again generates two tasks T;42 and
R;,» just before the deadline of task R;41 (by
which time the on-line algorithm would have com-
pleted the execution of task T;41, and will be exe-
cuting R;41), or

e continue the execution of task R;, in which case no
further tasks are generated by the adversary; the
on-line algorithm will get to complete the execution
of R; and exactly one of T;41 or Riyi.

Now this process could go on for ever if the on-line al-
gorithm always chooses to discard R; in favor of Tiy,
every time such a choice is offered. However, recall
that in our model, overloaded conditions correspond to
emergencies, and emergencies are assumed to be finite.
There is, therefore, a fixed integer m such that, if the
on-line algorithm is executing task R,,~1 and the adver-
sary generates tasks T, and R,,, then irrespective of the
scheduling decision made by the on-line algorithm, the
adversary will not generate any further tasks.

We leave it to the reader to verify that when the
interaction between the on-line algorithm and the ad-
versary has ceased, the on-line algorithm has completed
the execution of all of the T; tasks that were generated,
and exactly one of the R; tasks.

o If the task R; that was executed to completion is
in fact R,,, then the length of the overloaded in-
terval is i~ (Ti.d), which is equal to Y ;7 2z;.
The EPU over this interval is therefore (z,, +

Y ito)/ (Xilo 22:)-

o If the task R; that was executed to completion
is not T, then the length of the overloaded in-

terval is YU 11 (T;.d), which is equal to Titlog,.
The EPU over this interval is therefore (z; +

Yite)/ (TiEs 22:).

To complete our proof, we need to demonstrate the
existence of a series of numbers z,,z1,...,%i,...,Tm
such that the EPU in both cases above is at most 5/8.
This is done in Lemma 1 in Appendix A. We have thus
shown that, against an adversary that behaves as de-
scribed here, and generates tasks with computation re-
quirements and deadlines as dictated by the sequence
defined in Lemma 1, no on-line scheduling algorithm
can obtain an EPU greater than five-eighths.

211

5 Task Sets With Arbitrary
Minimum Slack Factors

Thus far, our attention was restricted to the study of
environments where all tasks were guaranteed to have a
slack factor of at least two. We now extend our analy-
sis to include arbitrary minimal slack factor guarantees,
and show how such guarantees may be used to reduce
the performance degradation under overload conditions.

5.1 The Generalized ROBUST Algo-
rithm

Consider an environment where all tasks are guaranteed
to have a slack factor of at least f, f > 1. The Gen-
eralized ROBUST algorithm behaves exactly like the
ROBUST algorithm described in Section 2, except that
the length of every even-numbered phase Phase-2i is
set to 1/(f — 1) times the length of the preceding odd-
numbered phase Phase-(2i—1). We leave it to the reader
to verify that, as before, the processor is “useful”, (i.e.,
executing tasks that do complete by their deadlines)
during all the odd-numbered phases, yielding the fol-
lowing theorem:

Theorem 3 The Generalized ROBUST algorithm

f

achieves an EPU of at least f during conditions

of overload.

Henceforth, when we refer to the ROBUST algorithm,
we will mean the generalized algorithm described here.

5.2 Upper Bound on EPU

The following theorem establishes an upper bound on
the EPU that is attainable for task sets with arbitrary
minimum slack factor.

Theorem 4 No on-line scheduling algorithm can guar-

[
[f1+1
of overload in an environment where all incoming tasks
have a slack-factor of at least f.

antee an EPU greater than under conditions

Proof. Construct a set of 2[f] tasks such that [f] of
them have ¢ = 0, e = 1, and d = f, and the remain-
ing [f] tasks are identical except that they have their
request times ¢ = 1 — ¢ where 0 < ¢ < 1. It is simple
to see that while it is straightforward to schedule [f]
tasks to completion, no on-line scheduler can success-
fully schedule [f] + 1 tasks. For ¢ — 0, therefore, an

[
EPU greater than Fl+1

overloaded interval [0, [f] + 1 —¢)

cannot be obtained on the

]

An important point to note here is that the above theo-
rem establishes a “quick-and-dirty” upper bound on the
best EPU obtainable. This bound is clearly not tight
— compare the bounds established by Theorem 2 and
the above Theorem for f = 2. However, it does estab-
lish that the Generalized ROBUST algorithm provides
a performance that is at most

1 — =0
TA7TATD
—1
> 1- g

- F(f+2)

fractionally off from the optimal. Thus, with increasing
slack factor, the ROBUST algorithm is asymptotically
optimal. As a practical matter, the ROBUST algorithm
is guaranteed to be within ten percent of the optimal for
2
———-—-—-f(f np) < 0.1 for all
f > 4). Furthermore, depending on the looseness of
the above EPU upper bound, the ROBUST algorithm
may turn out to be within ten percent of the optimal at
even lower slack factors. In fact, it is even possible that

all slack factors of at least 4 (i.e.,

the algorithm may itself be optimal — we are currently
studying this issue. In summary, the ROBUST sched-
uler appears to provide a reasonably efficient solution to
address the problem of performance degradation under
overload by using task slack times. While this seems
true in general, we note, however, that it is not the case
for a small range of slack factors, as discussed below.

For f = 4/3, the EPU achieved by the ROBUST al-
gorithm is 1/4. However, the same EPU is guaranteed
by the algorithm described in [1] without making as-
sumptions about task slack time. Therefore, with task

212

slack factor that is no more than 4/3 times as fast as the
original, there is no benefit in using the ROBUST algo-
rithm. When tasks have a slack factor of greater than
4/3, however, the algorithm may be productively used
to improve the performance guarantees of the system.

6 Overload Tolerance

We define a safety-critical system to be overload tol-
erant if the performance of the system under conditions
of overload never degrades to below its maximal perfor-

mance when not overloaded. Overload tolerance seems
a reasonable property to require safety-critical systems

to satisfy. Recall that, in our model, overloaded con-
ditions are brought about by the onset of emergencies.
Ideally, one would like a system to enhance its perfor-
mance upon the onset of an emergency in order to better
deal with the emergency. If this is not possible, how-
ever, we would nevertheless like the system to continue
to provide the level of performance that was provided
before the emergency occurred.

The 1/4 bound on EPU under conditions of over-
load mentioned in the Introduction implies that no on-
line scheduling algorithm can in itself guarantee over-
load tolerance. One method of achieving overload toler-
ance in uniprocessor systems despite this inherent lim-
itation is to ensure that the processor is not permitted
to become overloaded in the first place. This could be
achieved, for example, by assigning values to all tasks
in the system, and choosing for execution a maximal-
valued subset of tasks (from among the set of all tasks
making requests) which do not overload the processor.
(The problem of determining such a maximum-valued
subset is in fact related to the Knapsack Problem, which
is known to be NP hard [4].) In any event, such an
approach is necessarily application-specific, in that the
assignment of values to individual tasks must be made
based upon the unique characteristics of the particu-
lar application system that is being designed; e g., the
importance of the task to the system.

In contrast, we propose a method here that ab-
stracts away from individual applications and provides
a mechanism for achieving overload tolerance irrespec-
tive of the characteristics of any particular application.
Such an approach has the advantage of being widely

applicable over a large number of systems, and, since
the property of overload tolerance is guaranteed by the
mechanism, requires no additional design effort for each
application system once the mechanism has been de-
signed and proven correct, as described below.

Recall that a task in our model is characterized by
an arrival time T'.a, an execution requirement 7T'.e, and
a (relative) deadline T.d. A task that has any chance at
all of completing by its deadline has its relative deadline
T.d at least as large as its execution requirement T.e;
i.e., it has slack factor T.d/T.e > 1. If this task is
executed on hardware that is f times as fast as the

hardware for which it had been specified, the execution

requirement of the task is reduced to % — its slack

factor is therefore > f . The behavior of a system
whose hardware is upgraded in this fashion changes in
two ways from that exhibited by the original system:

o First, the system is less likely to go into overload,
since its “capacity” is greater. Any load that is
no more than f times the capacity of the original
system will not push the system into overload.

o For larger loads, overload will occur. However, if
the ROBUST algorithm is used to schedule tasks
during the overloaded time periods, the EPU will
always be at least (f—1) times the original system’s
capacity. This is because, by Theorem 3, the per-
formance of the system will not degrade by more
than a factor of (f — 1)/f from its current perfor-
mance level of f times the capacity of the original
system, i.e, to (f — 1) times the original system’s
maximum capacity.

This is illustrated in Figure 1, where performance is
plotted against system load, with both axes labelled
to percentages of the capacity of the original system.
The beaded line profiles the behavior of the orignal sys-
tem, and the solid line the behavior of the system in-
stalled on hardware twice as fast as the initial hardware,
with the ROBUST algorithm used for scheduling dur-
ing overload. Notice that the performance of the new
(doubly fast) system never degrades to below the maz-
imum performance of the ortginal system, even under
ertreme overloads. This implies that, in order to make
a safety-critical system overload-tolerant, it is sufficient

213

200

== O =

—
(=4
(==

mZ00

(Original System)

25 tooc.co..'onot..noonenoonvooc-

100 200
LOAD (%-age of original system capacity)

Figure 1: The effect of load on system behavior

to double the speed of the processor and use the RO-
BUST scheduler.

A word of caution, however: In the above analysis,
it was essential that the use of hardware f times as fast
as the original result in a decrease in execution require-
ments of all tasks by a factor of f. This is clearly not
the case for many actual systems. For example, a task
whose execution time is dependent upon factors exter-
nal to the system would be unaffected by any speedup
in system hardware. And in certain circumstances, even
if the use of hardware f times as fast does result in slack
factors > f for all tasks, it may be that hardware twice
as fast as the original is simply not available. In either
of these cases, this approach to guaranteeing overload
tolerance would, of course, fail, and the other, more ap-
plication specific, method must be attempted.

Ustng faster hardware is not the only source for ob-
taining a larger slack factor. An alternative situation
where the same effect is obtained is when the designer
is willing to relax the deadlines (or scale down the ex-
ecution requirements) of all the tasks. While overload
tolerance can no longer be guaranteed, the ROBUST
algorithm is equally applicable in such scenarios. If, for
example, the user is willing to double all the task dead-
lines, then the ROBUST algorithm guarantees that the
performance of the system will not degrade by more
than a factor of two during overload.

214

(ROBUST)

7 Conclusions.

It has previously been shown [1] that no on-line uni-
processor scheduling algorithm can guarantee an EPU
greater than 25% under conditions of overload for ar-
bitrary task sets. We designed ROBUST (Resistance
to Overload By Using Slack Time), an on-line schedul-
ing algorithm that is not limited by the 25% bound of
(1] (Theorems 1 and 3) for task sets that guarantee a
minimum slack factor for every task. We described how
system designers could use the ROBUST scheduler to
enhance the performance of their systems. In particu-
lar, we demonstrated that, with ROBUST, doubling the
processor speed is sufficient to ensure that the system’s
EPU never falls below the original system’s capacity.

We explored the optimality of the ROBUST algo-
rithm and proved that it is asymptotically optimal with
respect to task slack factor. We also showed that it is
guaranteed to be within ten percent of the optimal for
slack factors greater than 4.

The scheduling algorithms presented in this paper
require the slack factor of all tasks to be greater than
a certain minimum value in order for their performance
guarantees to hold. In practice, the semantics of partic-
ular applications may permit a trade-off between slack
factors of different tasks. We suggest that maximizing
the minimumslack factor in a system of tasks be a major
design goal for the developers of safety-critical real-time
systems.

A number of problems remain open. First, neither
the specific ROBUST algorithm presented in Section 3,
nor its generalization discussed in Section 5, have been
proven optimal. In addition, the systems we considered
here operate with two sets of on-line schedulers — one
for use under normal circumstances, and the other for
use during emergencies. We assumed that an applica-
tion “knows” when an emergency occurs, and switches
schedulers accordingly upon the onset of overload. It is
possible, however, that a system may be unaware that
an emergency is occurring until it is actually well into
the emergency. Therefore, we need one integrated algo-
rithm that combines the optimal behaviors of the two
separate algorithms. Such an integrated algorithm is
presented in [5] for systems that are implemented on
the hardware for which they were designed. The design
of similar integrated algorithms for systems that are im-

plemented on faster hardware appears to be a fruitful
research area.

Acknowledgements.

We are grateful to the anonymous referees for their very
useful suggestions — an attempt has been made to in-
corporate most of these suggestions into this document.

The proof in Section 4 is similar to a proof that first
appeared in [2], and subsequently in [1].

Appendix

A Lemma for Section 4.

Lemma 1 The series of numbers

z, = 1
ry = 3
r; = 4(zi-1—xio2), 122

satisfies the following two properties:

Property 1. For allj > 0,

Property 2. For some m > 0,

Em +) ino T
27;0 2z; T /

Proof.
Property 1. Using standard techniques of algebraic ma-

nipulation, we first reduce Property 1 to a simpler form:

s+ ¥t b

CODAEY

8 8, 8
[52i + g(z zi) + i+
=0

i
=20} =) + 2z541]

i=0

[Fos = (2= (D=0

1=0

= (2= D)z

J
[zj41 = %gzj - Zwi]

=0

J
[2j41 = 4z; — E:cg]
1=0

We have thus shown that Property 1 above is equivalent
to

Jj
Tiy1 = 41‘]' —_ Z Z;. (1)
i=0

The reader may verify by substitution in Equation (1)

that the recurrence in the statement of the lemma sat-
isfies Property (1) for j = 0.

From Equation (1), it follows that

Jj+1
Tiy2 = 4.'l:j+1 - Z:L‘i. (2)

i=0

Subtracting Equation (1) from Equation (2), we obtain
Tjpz = Tj41 = 42541 — 4%j — Tjq1

Tjy2 = 4Tj41 — 25).

Notice that this is exactly the form of the recur-
rence relation. We have thus proved that, for j > 0,
Property (1) is merely a re-statement of the recurrence
relation. The recurrence therefore satisfies Property (1)
for j > 0 as well.

Property (2). It has been proven elsewhere (see [1]) that

the recurrence in the statement of this lemma satisfies
the following property!:

—

‘m___ < - for somem >0 (3)

(Citozi) ~ 4

1Strictly speaking, this is not true. The RHS of this inequality

should be % + ¢ for ¢ an arbitrarily small positive real number.
As a result, the quantity 5/8 in the RHS of Properties (1) and
(2) should be replaced with 2 + . Since the Lemma is true for ¢
arbitrarily small, we have chosen to keep things simple and gloss

over this minor mathematical detail.

215

We will use this property to prove that the LHS of Prop-
erty (2) is at most 5/8 whenever the LHS of (3) is no
larger than 1/4, therefore proving that the recurrence
satisfies Property (2).

The LHS of Property (2) =

Tm + E:';o T;
2 Z:lo Ti

1ym o o T

< 4 Et:zoggoz:iz:o T (Using Property 3)

_1/4+1

= 2

_ 9

= 38

0

References

(1] S. Baruah, G. Koren, D. Mao, B. Mishra,
A. Raghunathan, L. Rosier, D. Shasha, and
F. Wang. On the competitiveness of on-line
real-time task scheduling. In Proceedings of the
12th Real-Time Systems Symposium, San Antonio,
Texas, December 1991. IEEE Computer Society
Press.

[2] S. Baruah, G. Koren, B. Mishra, A. Raghunathan,
L. Rosier, and D. Shasha. On-line scheduling in
the presence of overload. In Proceedings of the
32nd Annual IEEE Symposium on Foundations of

Computer Science, San Juan, Puerto Rico, October
1991. IEEE Computer Society Press.

[3] M. Dertouzos. Control robotics

control of physical processors. In Proceedings of
the IFIP Congress, pages 807-813, 1974.

: the procedural

[4] M. Garey and D. Johnson. Computers and
intractability: A guide to the theory of NP-
completeness, W. H. Freeman and Company, New
York, 1979.

[6] G. Koren and D. Shasha. D°*": An optimal on-
line scheduling algorithm for overloaded real-time
systems. Technical Report TR 594, Computer Sci-
ence Department, New York University, 1992.

216

[6] A. Mok. Fundamental Design Problems of Dis-
tributed Systems for the Hard Real-Time Environ-
ment. Ph.D. Thesis, Laboratory for Computer Sci-

ence, Massachusetts Institute of Technology, May
1983.

