
ROBUST: A Hardware Solution to Real-Time Overload

Sanjoy Baruah*

Department of Computer Sciences

The University of m

Austin, Texas

Abstract

,A, .
Lexas at ~ustm

78712-1188

No on-line scheduling algorithm operating in a unipro-

cessor environment can guarantee to obtain an effective

processor utilization greater than 25% under conditions

of overload. This result holds in the most generad case,

where incoming tasks may have arbitrary slack times.

We address here the issue of improving overload lperfor-

mance in environments where the slack-time character-

sitics of all incoming tasks satisfy certain constraints.

In particular, we present a new scheduling algorithm,

ROBUST, that efficiently takes advantage of these task

slack constraints to provide improved overload lperfor-

mance and is asymptotical y optimal.

1 Introduction

The designers of safety-critical real-time systems typ-

ically attempt to anticipate every eventuality and in-

corporate it into the design of the system. Such a sys-

tem would, under ideal circumstances, never become

overloaded, and its behavior would be as expec~ed by

the system designers. In reality, however, unanticipated

emergency conditions may occur and it may so hap-

pen that the amount of required processor time exceeds

the system capacity. The system is then said tcl be in

*Support ed in part by a research grant from the Office of Naval

Research under contract number NOO014-89-J-1 472

t Supported in part by a Systems Research Center Post-

Doctoral Fellowship

Permission to copy without fee all or part of this material is

granted provided that the oopies are not made or distributed for

dirsct commercial advantage, the ACM copyright notice and the

titls of ths publication and its date appaar, and notice is given

that copying is by permission of the Association for Computing

Mechinery. To copy otherwise, or to republish, requires a fes

and/or specific permission.

1993 ACM SlGMETRlCS-5/93 /CA, USA

e 1993 ACM O-89791 -581 -X/93 /0005 /0207 ... $l .50

Jayant R. Haritsat

Systems Research Center

University of Maryland

College Park, Maryland 20742

overload. If this happens, it is important that the per-

formance of the system degrade gracefully (if at all).

A system that panics and suffers a drastic fall in per-

formance in an emergency is likely to contribute to the

emergency, rather than help solve it.

Under overload conditions in uniprocessor real-time

systems, a natural measure of system performance is the

effect ive processor ut ilizat ion (EPU) of the sys-

tem. Informally speaking, the EP U of a system over

an interval of time measures the fraction of time within

the interval that the processor spends on executing tasks

that eventually do meet their deadlines. This notion is

clearly illustrated in the following example,

Example 1. Consider a situation where task T1 makes

a request at time O for 3 units of processor time by a

deadline of 4, and task T2 makes a request at time 1 for

8 units of processor time by a deadline of 10. Clearly, no

scheduler can schedule both T1 and T2 to completion. A

scheduler that schedules T1 first to completion and then

schedules T2 has an EPU of 0.3 over [0, 10), while one

that executes task T1 during [0, 2), and then schedules

T2 to completion by executing it during [2, 10) has an

EPU of 0.8 over [0, 10).

•1

It has recently been shown [1, 2] that no uniproces-

sor on-line scheduling algorithm can guarantee a “com-

petitive ratio” larger than 1/4 under overload. (An on-

line algorithm of competitive ratio r, O ~ r < 1, is

guaranteed to achieve a cumulative value at least r times

the cumulative value achievable by any clairvoyant alge

rithm on any sequence of requests, where a t ask’s value

is equal to its execution time.) With minor modifica-

tions, the proof of this result can be extended to show

that no uniprocessor on-line scheduling algorithm can

207

guarantee an EP U greater than 1/4 under overload.

Taken in conjunction with the classical theorem which

proves that the Earliest Deadline scheduling algorithm

guarantees 100 percent EPU under non-overload con-

ditions (see, for example, [3]), this result implies that

the onset of an emergency may force a deterioration

in system performance by a factor of four. This holds

in the most general case where the tssks in the work-

load may have arbitrary slack factors (slack factor is

the ratio between a task’s deadline and its execution

time, and is indicative of how “tightly” a task needs

to be scheduled). The research described in this pa-

per investigates to what extent degradation in overload

performance can be reduced in environments where all

tasks are guaranteed to have a minimum slack factor.

In particular, we study the effect of slack factor on the

EPU performance of scheduling algorithms under over-

load. We present ROBUST (Resistance to Overload

By Using Slack Time), an on-line uniprocessor schedul-

ing algorithm that performs efficiently under overload

over a large range of slack factors, and is in fact asymp-

totically optimal with increasing slack factor.

The remainder of this paper is organized in the fol-

lowing fashion: In Section 2, we precisely define our

model and the notions of EP U and overload, We

present our new algorithm, ROBUST, in Section 3 and

prove that it guarantees a worst-case EPU of one-half

under conditions of overload when all incoming tasks

have a slack factor of at least 2. In Section 4, we at-

tempt to determine if this algorithm is also optimal.

That is, are there on-line algorithms that can guarantee

an EP U greater than one-half under such conditions?

Although we do not yet have a conclusive answer to

this question, we do succeed in proving an upper bound

of 5/8’ths on the performance of any on-line algorithm

in the above situation. In Section 5, we generalize the

results of Sections 3 and 4 to the case where the mini-

mum task slack factor is an arbitrary number and prove

that ROBUST is asymptotically optimal. We explore

methods by which desired slack factors can be achieved

in Section 6, and discuss other related issues (including

the rationale for the title of this paper). We conclude in

Section 7 with a summary of the results presented here,

and outline future research directions.

2 System Model and Definitions

We focus our attention in this paper on the study of

uniprocessor systems. In our task model, each task T

is completely characterized by three parameters: T.a

(the request time), T.e (the execution require-

ment), and T.d (the relative deadline, often simply

called the deadline), where T.a is the time at which

task T makes a request for T.e units of processor time

by a deadline of T.a + T.d. Tasks U complete exe-

cution by their deadlines in order to be of any value to

the system; that is, all deadlines are ~ard [6]. We as-

sume that nothing is known about a task until it makes

its request, at which time all three parameters become

known. In addition, there is no a priori bound on the

number of tasks that will be encountered. Our schedul-

ing model is preemptive; i.e., a task executing on the

processor may be interrupted at any instant in time,

and its execution resumed later. There is no penalty

associated with such preemption.

The slack factor of task T is defined to be the

ratio T.d/T.e. Clearly, for a task T to complete by its

deadline, it is necessary that T.d be at least as large as

T.e; the slack factor of any non-degenerate task (i.e.,

a tssk that has any chance at all of completing by its

deadline) must therefore be at least one.

A system is said to be in overload if no scheduling

algorithm can satisfy all task requests that are made on

the system. As mentioned in the Introduction, the Ear-

liest Deadline algorithm is optimal in the sense that it

will successfully schedule any set of task requests which

are in fact schedulable. Given this optimality of the

Earliest Deadline algorithm, it follows that a system is

in overload if the Earliest Deadline algorithm fails to

meet the deadline of some task in the system.

A task T is said to be active at time-instant t

if (i) T,a < i?; i.e., the task arrives by time t, and

(ii) T,er >0, where T.er is the remaining amount of

processor time that needs to be allocated to task T be-

fore its deadline, and (iii) T.d ~ t; i.e. the deadline has

not been reached. Active task T is degenerate at time

t if T.er > (T.a + T.d – t), i.e., its remaining execution

requirement is strictly greater than the amount of time

remaining until its deadline.

A processor is said to be idle at time-instant to if all

208

active tasks in the system at time to have their request-

times equal to to.That is, we do not consider tasks that

arrive at time to in determining whether the processor

is idle at to; this is a technical detail that facilitates the

definitions of the start and finish of overload, described

below.

A system is said to be in an overloaded state at

time t if the Earliest Deadline algorithm when executed

on the system fails to meet the deadline of some task at

time t. The start time of the overloaded interval is the

latest time instant tg, t, s t,at which the processor

would be idle if the Earliest Deadline algorithm were

executed on the system, The finish time of the over-

loaded interval is the earliest time instant tf, tj ~ t,at

which the processor is idle.

While the start time of an overloaded interval is

independent of the scheduling algorithm actually used

in the system, the above definition makes the finish

time necessarily dependent upon the scheduling deci-

sions made during the overloaded period, Consider, as

an example, the situation in Example 1. If a scheduler

executes task T’l to completion, then the overloaded in-

terval terminates at time-instant 10; if, on the other

hand, it executes T2 to completion over the interval

[1, 9), then the overloaded interval terminates Ztt time

9, since task T1 is not active after this time.

Notice that our definitions specify that a task which

becomes degenerate remains active until its deadline ex-

pires; i.e., no task – degenerate or otherwise – is dis-

carded before its deadline. In the scenario of Example

1, the scheduler that first executes T1 to completion is

not permitted to discard T2 until time 10, even though

it is clear after time 2 + c that this task will fail to meet

its deadline (where c is any arbitrarily small positive

number). This has implications upon the definition of

an overloaded interval: in the above scenario, the over-

loaded interval terminates at time 10, and not 2 + c.

We believe this to be quite reasonable, and a reflection

of the fact that the “effect” of a task on a system re-

mains until the task has either completed execution or

its deadline has expired. A definition of overload that

permits one to lessen the size of the overloaded interval

by simply choosing to discard certain tasks would, in

our opinion, not reflect the reality of very many actual

applications,

In the introduction, we presented an intuitive de-

scription of EPU. We now provide a more precise defi-

nition: Given an overloaded time interval that starts at

time t.and finishes at time tf,the EPU over this time

interval is computed by

~xi[ts,tt)
EPU = ‘Gc

tj – t,

where C denotes the set of tasks that successfully com-

plete during [t,, t j), and xi [t,, tf) represents the service

received by task i during [t,, tj).

The EPU of a system is the lowest EPU measured

over any overloaded interval and it is this metric that

we will be referring to in the remainder of this paper.

3 The ROBUST Algorithm.

In this section, we present ROBUST (Resistance to

Overload By Using Slack Time), an on-line scheduling

algorithm that guarantees a worst-case EP U of one-half

under conditions of overload when all incoming tasks

have a slack factor of at least 2. The ROBUST algo-

rithm operates in the following manner during an over-

loaded interval: It divides the interval into an even num-

ber of phases, Phase-l, Phase-2,..., Phase-2n, with the

length of Phase-(2i - 1) equal to the length of Phase-

2i for all i, 1 < i < n. (That is, the length of every

even-numbered phase is equal to that of the preceding

odd-numbered phase.) The length of each phase is de-

termined as discussed below.

Suppose that the overloaded interval begins at time

~. Let twks Tfl) T(l)
T(l) be the set of tasks that~ 2 P...? nl

are active and non-degenerate at this time, and let task

(1) T(l)
TA~)} be such that TA~, .e ~T~tix e {2”1 , z ,...,

0 (i.e., TL!x is the mostT(l).e for all i, 1 < i < nl,
i

(1)
“valuable” task in Phase-1). Also, let e~ represent the

remaining amount of processor time that is required

by tssk T~~x at time t. Then, Phase-1 is defined to

be the interval [t, t + e!l)), and Phase-2 the interval

[t+ ef’), i + 2e$1)).

During Phase-1, the scheduler non-preemptively ex-

ecutes task TCL to completion. Suppose a task Tnew

209

makes a request during this phase. Since its slack fac-

tor is at least 2, it is guaranteed that this task’s dead-

line is at least twice its execution requirement, i.e.,

Tnew .d ~ 2Tnew .e. Let Tnew .e be greater than T~~x .e.

Since the length of Phase-1 is e:), the scheduler can

delay the execution of task Tnew to& the end of the

phase and still meet its deadline. For every task that

becomes makes a request during Phsse-1, therefore, it

is the case that either

●

●

its execution requirement is less than that of task

T~~X, (i.e., it is less
(1)

“valuable” than TmaX), or

it can be successfully scheduled to completion w

task T~l& has completed execution.

There is therefore no danger of discarding too ‘(valu-

able” a task during Phase-1.

At the start of Phase-2 (and indeed, every subse-

quent even-numbered phase), the currently active non-

degenerate task with the largest execution requirement

is scheduled. For the duration of this phase, whenever

a new task makes a request, the scheduler compares the

execution requirement of the new task and the execution

requirement of the currently executing task; if the exe-

cution requirement of the new task is greater, the sched-

uler preempts the current task and begins executing the

new one, otherwise the current task cent inues execution.

If the currently executing task completes execution, the

currently most valuable active non-degenerate task is

scheduled. At the end of each even-numbered phase

Phase-(2j – 2), therefore, the processor is executing the

currently active non-degenerate task with the largest

remaining execution requirement. Let t’ be the time

when Phase-(2j – 2) ends. If the processor is idle at

this point in time, then we can conclude that the over-

loaded interval has terminated. Otherwise, let T$& be

the task executing at this instant. Let e$i) represent the

remaining amount of processor time that is required by

task T~~X. Then, Phase-(2j – 1) is defined to be the

interval [t’, t’ + e~j)), and Phase-2j to be the interval

[t’ + e$j), t’ + 2e\j)).

At the start of Pha.se-(2j – 1) for all j, 1< j < n,

the scheduler commits to executing task T#~X to com-

pletion, and proceeds to do so for the entire phase. If a

new task makes a request during this phase, the condi-

tion on its slack factor ensures that either

● its execution requirement is less than that of task

T~~x, or

. it can be successfully scheduled to completion w

task T~jx has completed execution.

Once again, therefore, there is no danger of discarding

too “valuable” a task as a result of committing to non-

preemptively execute task T~~X during Phase-(2j – 1).

(A point to note here is that if at any time there are

no more non-degenerate tasks available, the algorithm

executes tasks at random from among the degenerate

tasks until either a new active non-degenerate task ar-

rives to the system or all the degenerate tasks have been

discarded. We leave it to the reader to verify that de-

generate tasks can be executed only in an even phase

and, given the requirement on task slack factors, that

the deadlines of all the existing degenerate tasks will

expire within that phase.)

Theorem 1 The ROBUST algorithm achieves an EPU

of at least one-half during conditions of overload.

Proof. Suppose that the ROBUST algorithm divides

the overloaded interval into 2n phases numbered 1

through 2n. Notice that the processor is guaranteed

to be “useful”, (i.e., executing tasks that do complete

by their deadlines) during all the odd-numbered phases.

Furthermore, the length of each odd-numbered phase

is exactly equal to the length of the succeeding even-

numbered phase. The EP U over the entire overloaded

interval is therefore

> ~~=,[length of Phase-(2i - I)]
—

~~1[length of Phase-j]

1
=

5“

c1

4 An Upper Bound on EPU

In an environment where all incoming tasks are guar-

anteed to have a slack-factor no less than two, the RO-

;!10

BUST scheduling algorithm obtains an EPU of at least

one-half even under overloaded conditions. We now ad-

dress the issue of optirnality: Is the ROBUST algorithm

optimal? That is, is it the case that no on-line schedul-

ing algorithm can obtain an EP U greater than one-half

in such an environment? We do not yet have a ,conclu-

sive answer to this question. However, we prove in this

section that no on-line scheduling algorithm can guaran-

tee an EP U greater than five-eighths under conditions

of overload in the above framework. This means that

even if the bound of 5/8 were to be tight, the RC~BUST

algorithm is at most 20 percent worse than the optimal,

Theorem 2 No on-line scheduling algorithm can guar-

antee an EPU greater than flue-eighths under conditions

of overload in an environment where all incoming tasks

have slack-factor of at least two.

Proof. The proof is by means of an adversary ar-

gument that consists of pitting any on-line algorithm

against a (hypothetical) malicious adversary that gen-

erates a sequence of tasks, observes the behavior of the

on-line algorithm on these tasks, and then extends the

sequence with the explicit purpose of minimizing the

EPU of the on-line algorithm. At time t = O, the ad-

versary generates two identical tasks To and Ro with

TO.e = Roe = xO, and To.d = RO.d = 2x.. Just be-

fore the deadline of these tasks (i.e., just before time

TO .d) the adversary generates identical tasks TI and RI

with T1.e = R1.e = xl and T1.d = R1.d = 2x1. The

“best” situation for the on-line algorithm to be in is for

it to have completed the execution of task T., and to

be currently engaged in executing Ro. In general, the

on-line algorithm will have executed task Ti, and be ex-

ecuting &; just before the deadline of Ri, the adversary

generates two new identical tasks Z+l and Ri+I with

Ti+l.e = Ri+l.e = xi+lj and Ti+l.d = fi+l.d = 2xi+1.

The on-line algorithm now has a choice

● discard ~ and begin executing Ti+l, in whiclh case

the adversary again generates two tssks Ti+2 and

Ri+2 just before the deadline of task Ri+l (by

which time the on-line algorithm would have com-

pleted the execution of task Ti+l, and will be exe-

cuting Rj+l), or

● continue the execution of task &, in which case no

further tasks are generated by the adversary; the

on-line algorithm will get to complete the execution

of Ri and exactly w of Ti+l or lh+. ~.

Now this process could go on for ever if the on-line al-

gorithm always chooses to discard Ri in favor of Ti+l

every time such a choice is offered. However, recall

that in our model, overloaded conditions correspond to

emergencies, and emergencies are assumed to be finite.

There is, therefore, a fixed integer m such that, if the

on-line algorithm is executing task &_ 1 and the adver-

sary generates tasks Tm and Rm, then irrespective of the

scheduling decision made by the on-line algorithm, the

adversary will not generate any further tasks.

We leave it to the reader to verify that when the

interaction between the on-line algorithm and the ad-

versary has ceased, the on-line algorithm has completed

the execution of all of the ~ tasks that were generated,

and

●

●

exactly one of the Rj tasks.

If the task Rj that was executed to completion is

in fact &, then the

terval is ~~0 (ZI d),

The EPU over this

Z~~ ‘i)/(~~~ z~i).

length of the overloaded in-

which is equal to ~~=0 2xi.

interval is therefore (z~ +

If the task Rj that was executed to completion

is @ Tm, then the length of the overloaded in-

terval is ~{~~ (Ti .d), which is equal to ~{~~ 2X;.

The EPU over this interval is therefore (Xj +

~~lfl ‘i)/(~{~~ 2Xi).

To complete our proof, we need to demonstrate the

existence of a series of numbers XO, *I, ~i, Zm

such that the EPU in both cases above is at most 5/8.

This is done in Lemma 1 in Appendix A. We have thus

shown that, against an adversary that behaves as de-

scribed here, and generates tasks with computation re-

quirements and deadlines as dictated by the sequence

defined in Lemma 1, no on-line scheduling algorithm

can obtain an EP U greater than five-eighths.

c1

211

5 Task Sets With Arbitrary

Minimum Slack Factors

Thus far, our attention was restricted to the study of

environments where all tasks were guaranteed to have a

slack factor of at least two. We now extend our analy-

sis to include arbitrary minimal slack factor guarantees,

and show how such guarantees may be used to reduce

the performance degradation under overload conditions.

5.1 The Generalized ROBUST Algo-

rithm

Consider an environment where all tasks are guaranteed

to have a slack factor of at least ~, ~ > 1. The Gen-

eralized ROBUST algorithm behaves exactly like the

ROBUST algorithm described in Section 2, except that

the length of every even-numbered phase Phase-2i is

set to l/(~ – 1) times the length of the preceding odd-

numbered phase Phase-(2i — 1). We leave it to the reader

to verify that, as before, the processor is “useful”, (i.e.,

executing tasks that do complete by their deadlines)

during all the odd-numbered phases, yielding the fol-

lowing theorem:

Theorem 3 The Generalized ROB UST algorithm

f-1
achieves an EPU of at least — during conditions

f

of overload.

Henceforth, when we refer to the ROBUST algorithm,

we will mean the generalized algorithm described here.

5.2 Upper Bound on EPU

The following theorem establishes an upper bound on

the EPU that is attainable for task sets with arbitrary

minimum slack factor.

Theorem 4 No on-line scheduling algorithm can guar-

rfl
antee an EPU greater than —

rfl + 1
under conditions

of overload in an environment where all incoming tasks

have a slack-factor of at least f.

Proof. Construct a set of 2 [fl tasks such that [fl of

them have a = O, e = 1, and d = f, and the remain-

ing ~fl tasks are identical except that they have their

request times a = 1 – c where O < c < 1. It is simple

to see that while it is straightforward to schedule [fl

tasksto completion, no on-line scheduler can success-

fully schedule [fl + 1 tasks. For c ~ O, therefore, an

[fl
EPU greater than —

[fl + 1
cannot be obtained on the

overloaded interval [0, [fl + 1 – c)

•1

An important point to note here is that the above theo-

rem establishes a “quick-and-dirty” upper bound on the

best EPU obtainable. This bound is clearly not tight

— compare the bounds established by Theorem 2 and

the above Theorem for f = 2. However, it does estab-

lish that the Generalized ROBUST algorithm provides

a performance that is at most

(f)/f
– rfl i;fl+l)

~ Lwk

= f(fiz)

fractionally off from the optimal. Thus, with increasing

slack factor, the ROBUST algorithm is asymptotically

optimal. As a practical matter, the ROBUST algorithm

is guaranteed to be within ten percent of the optimal for

2
all slack factors of at least 4 (i.e.,

f(f + 2) <01 for all

f > 4). Furthermore, depending on the looseness of

the above EP U upper bound, the ROBUST algorithm

may turn out to be within ten percent of the optimal at

even lower slack factors. In fact, it is even possible that

the algorithm may itself be optimal — we are currently

studying this issue. In summary, the ROBUST sched-

uler appears to provide a reasonably efficient solution to

address the problem of performance degradation under

overload by using task slack times. While this seems

true in general, we note, however, that it is not the case

for a small range of slack factors, as discussed below.

For f = 4/3, the EPU achieved by the ROBUST al-

gorithm is 1/4. However, the same EP U is guaranteed

by the algorithm described in [1] without making as-

sumptions about task slack time. Therefore, with task

212

slack factor that is no more than 4/3 times as fast as the

original, there is no benefit in using the ROBUST algo-

rithm. When tasks have a slack factor of greater than

4/3, however, the algorithm may be productively used

to improve the performance guarantees of the system.

6 Overload Tolerance

We define a safety-critical system to be overload tol-

erant if the performance of the system under conditions

of overload never degrades to below its maximal)perfor-

mance when not overloaded. Overload tolerance seems

a reasonable property to require safety-critical systems

to satisfy. Recall that, in our model, overloaded con-

ditions are brought about by the onset of emergencies.

Ideally, one would like a system to enhance its perfor-

mance upon the onset of an emergency in order to better

deal with the emergency. If this is not possible, how-

ever, we would nevertheless like the system to continue

to provide the level of performance that was provided

before the emergency occurred.

The 1/4 bound on EP U under conditions of over-

load mentioned in the Introduction implies that no on-

line scheduling algorithm can in itself guarantee over-

load tolerance. One method of achieving overload toler-

ance in uniprocessor systems despite this inherent lim-

itation is to ensure that the processor is not permitted

to become overloaded in the first place. This could be

achieved, for example, by assigning values to all tasks

in the system, and choosing for execution a maximal-

valued subset of tasks (from among the set of all tasks

making requests) which do not overload the processor.

(The problem of determining such a maximum-valued

subset is in fact related to the Knapsack Problem, which

is known to be NP hard [4].) In any event, such an

approach is necessarily application-specific, in that the

assignment of values to individual tasks must be made

based upon the unique characteristics of the particu-

lar application system that is being designed; e g., the

importance of the task to the system.

In contrast, we propose a method here that ab-

stracts away from individual applications and provides

a mechanism for achieving overload tolerance irrespec-

tive of the characteristics of any particular application.

Such an approach hse the advantage of being widely

applicable over a large number of systems, and, since

the property of overload tolerance is guaranteed by the

mechanism, requires no additional design effort for each

application system once the mechanism haa been de-

signed and proven correct, as described below.

Recall that a task in our model is characterized by

an arrival time T.a, an execution requirement T.e, and

a (relative) deadline T.d. A task that has any chance at

all of completing by its deadline has its relative deadline

T.d at least as large as its execution requirement T.e;

i.e., it has slack factor T.d/T.e > 1. If this task is

executed on hardware that is f times as fsst as the

hardware for which it had been specified, the execution

requirement of the task is reduced to ~ – its slack

factor is therefore z f . The behavior of a system

whose hardware is upgraded in this fashion changes in

two ways from that exhibited by the original system:

● First, the system is less likely to go into overload,

since its “capacity” is greater. Any load that is

no more than f times the capacity of the original

system will not push the system into overload.

● For larger loads, overload will occur. However, if

the ROBUST algorithm is used to schedule tasks

during the overloaded time periods, the EPU will

always be at least (f – 1) times the original system’s

capacity. This is because, by Theorem 3, the per-

formance of the system will not degrade by more

than a factor of (~ – 1)/ f from its current perfor-

mance level of f times the capacity of the original

system, i.e, to (f – 1) times the original system’s

maximum capacity.

This is illustrated in Figure 1, where performance is

plotted against system load, with both axes labelled

to percentages of the capacity of the original system.

The beaded line profiles the behavior of the orignal sys-

tem, and the solid line the behavior of the system in-

st ailed on hardware twice aa fast as the initial hardware,

with the ROBUST algorithm used for scheduling dur-

ing overload. Notice that the performance of the new

(doubly fast) system never degrades to below the maz-

imum performance of the original system, even under

extreme overloads. This implies that, in order to make

a safety-critical system overload-tolerant, it is sufficient

213

200

w

o
R

K

D 100

0
N
E

25

“loo 200

LOAD (%-age of original system capacity)

Figure 1: The effect of load on system behavior

to double the speed of the processor and use the RO-

BUST scheduler.

A word of caution, however: In the above analysis,

it was essential that the use of hardware f times as fsst

as the original result in a decrease in execution require-

ments of all tasksby a factor of f, This is clearly not

the case for many actual systems. For example, a task

whose execution time is dependent upon factors exter-

nal to the system would be unaffected by any speedup

in system hardware. And in certain circumstances, even

if the use of hardware f times as fast does result in slack

factors ~ f for all tasks, it may be that hardware twice

as fast as the original is simply not available. In either

of these cases, this approach to guaranteeing overload

tolerance would, of course, fail, and the other, more ap-

plication specific, method must be attempted.

Using faster hardware is not the only source for ob-

taining a larger slack factor. An alternative situation

where the same effect is obtained is when the designer

is willing to relax the deadlines (or scale down the ex-

ecution requirements) of all the tasks. While overload

tolerance can no longer be guaranteed, the ROBUST

algorithm is equally applicable in such scenarios. If, for

example, the user is willing to double all the task dead-

lines, then the ROBUST algorithm guarantees that the

performance of the system will not degrade by more

than a factor of two during overload.

7 Conclusions.

It hss previously been shown [1] that no on-line uni-

processor scheduling algorithm can guarantee an EP U

greater than 25% under conditions of overload for ar-

bitrary task sets. We designed ROBUST (Resistance

to Overload By Using Slack Time), an on-line schedul-

ing algorithm that is not limited by the 25% bound of

[1] (Theorems 1 and 3) for task sets that guarantee a

minimum slack factor for every task. We described how

system designers could use the ROBUST scheduler to

enhance the performance of their systems. In particu-

lar, we demonstrated that, with ROBUST, doubling the

processor speed is sufficient to ensure that the system’s

EPU never falls below the original system’s capacity.

We explored the optimality of the ROBUST algo-

rithm and proved that it is asymptotically optimal with

respect to task slack factor. We also showed that it is

guaranteed to be within ten percent of the optimal for

slack factors greater than 4.

The scheduling algorithms presented in this paper

require the slack factor of &l tasks to be greater than

a certain minimum value in order for their performance

guarantees to hold. In practice, the semantics of partic-

ular applications may permit a trade-off between slack

factors of different tasks. We suggest that maximizing

the minimum slack factor in a system of tasks be a major

design goal for the developers of safety-critical real-time

systems.

A number of problems remain open. First, neither

the specific ROBUST algorithm presented in Section 3,

nor its generalization discussed in Section 5, have been

proven optimal. In addition, the systems we considered

here operate with two sets of on-line schedulers – one

for use under normal circumstances, and the other for

use during emergencies. We assumed that an applica-

tion “knows” when an emergency occurs, and switches

schedulers according y upon the onset of overload. It is

possible, however, that a system may be unaware that

an emergency is occurring until it is actually well into

the emergency. Therefore, we need one integrated algo-

rithm that combines the optimal behaviors of the two

separate algorithms. Such an integrated algorithm is

presented in [5] for systems that are implemented on

the hardware for which they were designed. The design

of similar integrated algorithms for systems that are im-

214

plemented on faster hardware appears to be a fruitful

research area.

Acknowledgements.

We are grateful to the anonymous referees for their very

useful suggestions — an attempt has been made to in-

corporate most of these suggestions into this document.

The proof in Section 4 is similar to a proof that first

appeared in [2], and subsequently in [1].

Appendix

A Lemma for Section 4.

Lemma 1 The series of numbers

satisjies the following two properties:

Property 1. For all j ~ O,

Property 2. For some m >0,

Proof.

Property 1. Using standard techniques of algebraic ma-

nipulation, we first reduce Property 1 to a simpler form:

●

We have thus shown that Property 1 above is equivalent

to

j

Xj+l =4Xj–~Zi.

i=O
(1)

The reader may verify by substitution in Equation (1)

that the recurrence in the statement of the lemma sat-

isfies Property (1) for j = O.

From Equation (l), it follows that

j+l

E~j+2 =4xj+l – Xi. (2)

ieO

Subtracting Equation (1) from Equation (2), we obtain

~j+2 – Xj+l = 4Zj+l – 4Xj – Xj+l
—
=

xj+2 = q(~j+l – ~j).

Notice that this is exactly the form of the recur-

rence relation. We have thus proved that, for j > 0,

Property (1) is merely a re-statement of the recurrence

relation. The recurrence therefore satisfies Property (1)

for j >0 as well.

Property (2). It has been proven elsewhere (see [1]) that

the recurrence in the statement of this lemma satisfies

the following propertyl:

1Strictly speaking, this is not tree. The RHS of this inequality

should be } + t for c an arbitrarily small positive real number.

As a result, the quantity 5/8 in the RHSof Properties (1) and

(2) should be replaced with ~ + c. Since the Lemma is true for c

arbitrarily small, we have chosen to keep things simple and gloss

over this minor mathematical detail.

215

We will use this property to prove that the LHS of Prop- [6]

erty (2) is at most 5/8 whenever the LHS of (3) is no

larger than 1/4, therefore proving that the recurrence

satisfies Property (2).

The LHS of Property (2) =

(Using Property 3)

•1

References

[1] S. Baruah, G. Koren, D. Mao, B, Mishra,

A. Raghunathan, L. Rosier, D. Shs.sha, and

F’. Wang. On the competitiveness of on-line

real-time task scheduling. In Proceedings of the

12th Real- Time Systems Symposium, San Antonio,

Texas, December 1991. IEEE Computer Society

Press.

[2] S. Baruah, G. Koren, B. Mishra, A. Raghunathan,

L. Rosier, and D. Shasha. On-line scheduling in

the presence of overload. In Proceedings of the

92nd Annual IEEE Symposium on Foundations of

Computer Science, San Juan, Puerto Rico, October

1991. IEEE Computer Society Press.

[3] M. Dertouzos. Control robotics : the procedural

control of physical processors. In Proceedings of

the IFIP Congress, pages 807-813, 1974.

[4] M. Garey and D. Johnson. Compuicr-s and

intractability: A guide to the theory of NP-

completeness, W. H. Freeman and Company, New

York, 1979.

A. Mok. Fundamental Design Problems of Dis-

tributed Systems for the Hard Real-Time Environ-

ment. Ph.D. Thesis, Laboratory for Computer Sci-

ence, Massachusetts Institute of Technology, May

1983.

[5] G. Koren and D. Shasha. D“”e’: An optimal on-

line scheduling algorithm for overloaded real-time

systems. Technical Report TR 594, Computer Sci-

ence Department, New York University, 1992.

216

