
On the Stability of Plan Costs and
the Costs of Plan Stability

M. Abhirama, Sourjya Bhaumik, Atreyee Dey, Harsh Shrimal, Jayant R. Haritsa∗

Database Systems Lab, SERC/CSA
Indian Institute of Science, Bangalore 560012, INDIA

ABSTRACT
Predicate selectivity estimates are subject to considerable run-time
variation relative to their compile-time estimates, oftenleading to
poor plan choices that cause inflated response times. We present
here a parametrized family of plan generation and selectionalgo-
rithms that replace, whenever feasible, the optimizer’s solely cost-
conscious choice with an alternative plan that is (a) guaranteed to
be near-optimal in the absence of selectivity estimation errors, and
(b) likely to deliver comparatively stable performance in the pres-
ence of arbitrary errors. These algorithms have been implemented
within the PostgreSQL optimizer, and their performance evaluated
on a rich spectrum of TPC-H and TPC-DS-based query templates
in a variety of database environments. Our experimental results
indicate that it is indeed possible to identify robust plan choices
that substantially curtail the adverse effects of erroneous selectiv-
ity estimates. In fact, the plan selection quality providedby our
algorithms is often competitive with those obtained through apriori
knowledge of the plan search and optimality spaces. The additional
computational overheads incurred by the replacement approach are
miniscule in comparison to the expected savings in query execu-
tion times. We also demonstrate that with appropriate parameter
choices, it is feasible to directly produce anorexic plan diagrams, a
potent objective in query optimizer design.

1. INTRODUCTION
Most modern database query optimizers choose their execution

plans on a cost-minimization basis. In this process, estimates of
predicate selectivities are critical inputs to modeling the costs of
query execution plans. Unfortunately, in practice, these estimates
are often significantly in error with respect to the actual values
encountered during query execution. Such errors arise due to a
variety of reasons, including outdated statistics, attribute-value-
independence (AVI) assumptions, and coarse summaries [14]. An
adverse fallout of the estimation errors is that they often lead to
poor choices of execution plans, resulting in grossly inflated query
response times.

∗Contact Author: haritsa@dsl.serc.iisc.ernet.in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment,Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09...$ 10.00.

Robust Plans. A variety of compile-time (i.e. optimization-time)
strategies and run-time techniques have been proposed in the liter-
ature to mitigate the estimation problem. The particular approach
we explore here is to identify, at compile-time,robust planswhose
costs are relatively less sensitive to selectivity errors.In a nut-
shell, we “aim for resistance, rather than cure”. Specifically, our
goal is to identify plans that are (a) guaranteed to benear-optimal
in the absence of errors, and (b) likely to be comparativelystable
when faced with errors locatedanywherein the selectivity space.
If the optimizer’s standard cost-optimal plan choice itself is robust,
it is retained without substitution. Otherwise, where feasible, this
choice is replaced with an alternative plan that is locally marginally
costlier but expected to provide better global performance.

Our notion of stability is the following: Given an estimated
compile-time locationqe with optimal planPoe, and a run-time
error locationqa with optimal planPoa, stability is measured by
the extent to which the replacement planPre bridges the gap be-
tween the costs ofPoe andPoa at qa. Note that stability is defined
relative toPoe, and not in absolute comparison toPoa– while the
latter is obviously more desirable, achieving it appears tobe only
feasible by resorting to query re-optimizations and plan switching
at run-time. Further, the compile-time techniques presented in this
paper can be used in isolation, or in synergistic conjunction with
run-time approaches [6].

The EXPAND Family of Algorithms. We propose here a family
of algorithms, collectively called EXPAND, that cover a spectrum
of tradeoffs between the goals oflocal near-optimality, global sta-
bility andcomputational efficiency. Expand is based on judiciously
expanding the candidate set of plan choices that are retained dur-
ing the core dynamic-programming (DP) exercise, employingboth
cost and robustness criteria. That is, instead of merely forwarding
the cheapest sub-plan from each node in the DP lattice, atrain of
sub-plans is sent, with the cheapest being the “engine”, andstabler
alternative choices being the “wagons”. The final plan selection is
made at the root of the DP lattice from amongst the set of complete
plans available at this terminal node, subject to user-specified cost
and stability criteria.

From the spectrum of algorithmic possibilities in the EXPAND
family, we examine a few choices that cover a range of tradeoffs
between the number and diversity of the expanded set of plans, and
the computational overheads incurred in generating and processing
these additional plans. Specifically, we consider (i)RootExpand,
wherein stability criteria are invoked only at the terminalroot node
of the DP lattice, representing the minimal change to the existing
optimizer structure; and (ii)NodeExpand, wherein a limited ex-
pansion is carried out at select internal nodes in the DP lattice. In
particular, we consider an expansion subject to the same cost and
stability constraints as those applied at the root node of the lattice.

To place the performance of these algorithms in perspective, we
also evaluate: (i)SkylineUniversal, an extreme version of Node-
Expand whereinunlimitedexpansion is undertaken at the internal
nodes, and the resultant wagons are filtered through a multidimen-
sional cost-and-stability-basedskyline [4]. The end result is that
the root node of the DP lattice essentially receives theentire plan
search space, modulo our wagon propagation heuristics; and (ii)
SEER [8], our recently-proposedoffline algorithm for determin-
ing robust plans, wherein apriori knowledge of the parametric op-
timal set of plans (POSP) covering the selectivity space is utilized
to make the replacements. This scheme operates from outsidethe
optimizer, treating it as a black box that supplies plan-related infor-
mation through its API.

Experimental Results. Our new techniques have been imple-
mented inside the PostgreSQL optimizer kernel, and their per-
formance evaluated on a rich set of TPC-H and TPC-DS-based
parametrized query templates in a variety of database environments
with diverse logical and physical designs. The experimental re-
sults indicate that it is often possible to make plan choicesthat sub-
stantially curtail the adverse effects of selectivity estimation errors.
Specifically, while incurring additional time overheads within 100
milliseconds, and memory overheads within100MB, RootExpand
and NodeExpand often deliver plan choices that eliminate more
than two-thirds of the performance gap (betweenPoe andPoa)
for a non-trivial number of error instances. Equally importantly, the
replacement is almost never materially worse than the optimizer’s
original choice. In a nutshell, our replacement plans“often help
substantially, but never seriously hurt”the query performance.

The robustness of our intra-optimizer online algorithms turns out
to be competitive with regard to the “exo-optimizer/offline” SEER.
Further, their performance is often close to that of SkylineUniver-
sal itself. In short, RootExpand and NodeExpand are capableof
achieving comparable performance to those obtained with in-depth
knowledge of the plan search and optimality spaces.

Finally, while NodeExpand incurs more overheads than RootEx-
pand, it deliversanorexic plan diagrams[7] in return. A plan dia-
gram is a color-coded pictorial enumeration of the optimizer’s plan
choices over the selectivity space, and anorexic diagrams are gross
simplifications that feature only a small number of plans without
materially degrading the processing quality of any individual query.
The anorexic feature, while not mandatory for stability purposes,
has several database-related benefits, enumerated in detail in [7] –
for example, it enhances the feasibility of parametric query opti-
mization (PQO) techniques [9].

Another novel feature of NodeExpand is that, due to applyingse-
lection criteria at the internal levels of the plan generation process,
it ensures that all thesub-plansof a chosen replacement are near-
optimal and stable with regard to the corresponding cost-optimal
sub-plan. This is in marked contrast to SEER, where only the com-
plete plan offers such performance guarantees but the quality of the
sub-plans is not assured upfront.

A valid question at this point would be whether in practice the
optimizer’s cost-optimal plan is usually the preferred robust choice
as well – that is, are current industrial-strength optimizers inher-
ently robust? Our experiments with PostgreSQL clearly demon-
strate that this may not be the case. Concretely, improving stability
typically required replacing the plans for30-50% of the queries in
the selectivity space, while additionally obtaining anorexic plan di-
agrams with NodeExpand required in excess of80% replacements.

To our knowledge, this is the first work to investigate the efficient
identification of stable query execution plans with guaranteed local
near-optimality and enhanced global stability.

2. PROBLEM FORMULATION
Consider the situation where the user has submitted a query and

desires stability with regard to selectivity errors on one or more of
the base relations that feature in the query. The choice of the re-
lations could be based on user preferences and/or the optimizer’s
expectation of relations on which selectivity errors couldhave a
substantial adverse impact due to incorrect plan choices. Let there
be d such “error-sensitive relations” – treating each of these rela-
tions as a dimension, we obtain ad-dimensional selectivity spaceS.
For example, consider the sample queryQ̂10 shown in Figure 1(a),
an SPJ version of Query 10 from the TPC-H benchmark. This
query has four base relations (NATION (N), CUSTOMER (C), OR-
DERS(O), LINEITEM (L)), two of which –O andL – are deemed to
be error-sensitive relations. For this query, the associated 2D error
selectivity spaceS is shown in Figure 1(b).

The d-dimensional selectivity space is represented by a finite
dense grid of points wherein each pointq(x1, x2, . . . , xd) corre-
sponds to a query instance with fractional selectivityxj in thej-th
dimension. We usec(Pi, q) to represent the optimizer’s estimated
cost of executing a query instanceq with planPi. The corners of
the selectivity space are referred to asVk, with k being the binary
representation of the location coordinates – e.g. the bottom-right
corner(1, 0), in Figure 1(b) isV2.

Given a planPi, the region ofS in which it is optimal is referred
to as itsendo-optimalregion; the region in which it is not optimal
but its cost is within a factor(1 + λ) of the optimal plan as its
λ-optimal region (whereλ is a positive constant); and the remain-
ing space as itsexo-optimalregion. These disjoint regions together
coverS and are pictorially shown in Figure 1(b). We will hereafter
use the notationendoi, λ-opti andexoi to refer to these various re-
gions associated withPi. The endo-optimal andλ-optimal regions
are collectively referred to, for reasons explained later,as the plan’s
SafeRegion, denoted bysafei.

select C.custkey, C.name, C.acctbal, N.name, C.address, C.phone
from Customer C, Orders O, Lineitem L, Nation N
where C.custkey = O.custkey and L.orderkey = O.orderkey and

C.nationkey = N.nationkey and
O.totalprice < 2833andL.extendedprice< 28520

(a) Query InstanceQ̂10

(b) Selectivity Space

Figure 1: Example Query and Selectivity Space

2.1 Cost Constraints on Plan Replacement
Consider a specific query instance whose optimizer-estimated lo-

cation inS is qe and run-time location isqa, with Poe andPoa the
optimal plans at these locations, respectively. Now, ifPoe were to
be replaced by a more expensive planPre, clearly there is a price
to be paid when there are no errors (i.e.qa ≡ qe). Further, even

with errors, if it so happens thatc(Pre, qa) > c(Poe, qa). We as-
sume that the user is willing to accept these cost increases if they
are boundedwithin a pre-specified local cost thresholdλl and a
global stability thresholdλg (λl, λg > 0). Specifically, the user is
willing to permit replacement ofPoe with Pre, iff:

Local Constraint: At the estimated query locationqe,

c(Pre, qe)

c(Poe, qe)
≤ (1 + λl) (1)

For example, settingλl = 20% stipulates that the local cost
of a query instance subject to plan replacement is guaranteed
to be within1.2 times its original value. We will hereafter
refer to this constraint aslocal-optimality.

Global Constraint: In the presence of selectivity errors,

∀qa ∈ S such thatqa 6= qe,
c(Pre, qa)

c(Poe, qa)
≤ (1 + λg) (2)

For example, settingλg = 100% stipulates that the cost of
a query instance subject to plan replacement is guaranteed to
be within twice its original value at all error locations in the
selectivity space. We will hereafter refer to this constraint as
global-safety.

Essentially, the above requirements guarantee that no material harm
(as perceived by the user) can arise out of the replacement,irrespec-
tive of the selectivity error.

2.2 Motivational Scenario
We now present a sample scenario to motivate how plan replace-

ment could help to improve robustness to selectivity errors. Here,
the example querŷQ10 is input to the PostgreSQL optimizer; its
cost-optimal choice at the estimated location(1%, 40%) is plan
P1, and the suggested replacement (by our NodeExpand algorithm
with λl, λg = 20%) is planP2. When the costs of these plans are
evaluated at a set of error locationsqa – for instance, along the
principal diagonal ofS, we obtain the graph shown in Figure 2(a).
The results indicate thatP2 provides very substantial performance
improvements, bordering on error “immunity”, with respectto P1.

To explicitly assess the compile-time predicted performance im-
provements, weexecutedthe P1, P2 andPoa plans at these var-
ious locations – the corresponding response-time graph is shown
in Figure 2(b). As can be seen, the broad qualitative behavior is in
keeping with the optimizer’s predictions, with substantial response-
time improvements across the board. The somewhat decreasedim-
munity in a few locations is attributable to weaknesses in the op-
timizer’s cost model rather than our selection policies – this is an
orthogonal research issue that has to be tackled separately.

(a) Compile-Time (b) Run-Time

Figure 2: Benefits of Plan Replacement (̂Q10, λl, λg = 20%)

2.3 Error Resistance Metrics
Our quantification of the stability delivered through plan replace-

ments is based on theSERF error resistance metric introduced in
[8]. Specifically, for an error instance (qe,qa), theSelectivity Error
Resistance Factor(SERF) of a replacementPre wrt Poe is com-
puted as

SERF (qe, qa) = 1 −
c(Pre, qa) − c(Poa, qa)

c(Poe, qa) − c(Poa, qa)
(3)

Intuitively, SERF captures thefraction of the performance gapbe-
tweenPoe andPoa at qa that is closed byPre. In principle, SERF
values can range over(−∞, 1], with the following interpretations:
SERF in the range(0, 1], indicates that the replacement is bene-
ficial, with values close to 1 implying immunity to the selectivity
error. For SERF in the range[−λg, 0], the replacement is indiffer-
ent in that it neither helps nor hurts, while SERF values noticeably
below−λg highlight a harmful replacement that materially wors-
ens the performance.

To capture theaggregateimpact of plan replacements on im-
proving the resistance to selectivity errors in the entire spaceS, we
computeAggSERFas:1

AggSERF =

P

qe∈rep(S)

P

qa∈exooe(S) SERF (qe, qa)
P

qe∈S

P

qa∈exooe(S) 1
(4)

whererep(S) is the set of query instances inS whose plans were
replaced, and the normalization is with respect to the number of
error instances that could benefit from improved robustness.

Apart from AggSERF, we also computeMinSERF and
MaxSERF, metrics representing the minimum and maximum val-
ues of SERF over all replacement instances. MaxSERF values
close to the upper bound of 1 indicate that some replacementspro-
vided immunity to specific instances of selectivity errors.On the
other hand, large negative values for MinSERF indicate thatsome
replacements were harmful.

2.4 Problem Definition
With the above background, our stable plan selection problem

can now be more precisely stated as:

Stable Plan Selection Problem.Given a query locationqe in a
selectivity spaceS and a (user-defined) local-optimality threshold
λl and global-safety thresholdλg, implement a plan replacement
strategy such that:

1.
c(Pre, qe)

c(Poe, qe)
≤ (1 + λl)

2. ∀qa ∈ S s.t.qa 6= qe,
c(Pre, qa)

c(Poe, qa)
≤ (1 + λg)

or equivalently, MinSERF≥ −λg.

3. The contribution to the AggSERF metric is maximized.

In the above formulation, Condition 1 guarantees local-optimality;
Condition 2 assures global-safety; and Condition 3 captures the
stability-improvement objective.

1In [8], the aggregate impact was evaluated based on the locations
where replacements were made, whereas our current formulation is
based on the locations where robustness is desired.

3. STABLE OPTIMIZATION
In this section, we present the generic process followed in our

EXPAND family of algorithms to address the Stable Plan Selection
problem. There are two aspects to the algorithms: First, a proce-
dure for expanding the set of plans retained in the optimization ex-
ercise, and second, a selection strategy to pick a stable replacement
from among the retained plans.

For ease of presentation, we will assume that there are no “in-
teresting order” plans [12] present in the search space, andthat the
plan operator-trees do not have any “stems” – that is, the root join
node, which represents the combination of all the base relations in
the query, terminates the DP lattice. The algorithmic extensions for
handling these scenarios are described in Appendix B.

3.1 Plan Expansion
We now explain how the classical DP procedure, wherein only

the cheapest plan identified at each lattice node is forwarded to the
upper levels, is modified in our EXPAND family of algorithms –
the detailed pseudocode listing is given in Appendix A. For ease
of understanding, we will use the term “train” to refer to theex-
panded array of sub-plans that are propagated from one node to
another, with the “engine” being the cost-optimal sub-plan(i.e. the
one that DP would normally have chosen), and the “wagons” being
the additional sub-plans. The engine is denoted bype, while pw is
generically used to denote the wagons (the lower-casep indicates
a sub-plan as opposed to complete plans which are identified with
P). Finally,x is used to indicate a generic node in the DP lattice.

3.1.1 Leaves and Internal Nodes
Given a query instanceqe, at each error-sensitive leaf (i.e. base

relation) or internal nodex in the DP lattice, the following four-
stage retention procedure is used on the set of candidate wagons
generated by the standard exhaustive plan enumeration process.

1. Local Cost Check: In this first step, we remove all wagons
whose local cost significantly exceeds that of the engine. That is,

c(pw, qe) > (1 + λ
x
l) c(pe, qe) (5)

whereλx
l is an algorithmic cost-bounding parameter that can, in

principle, be set independently ofλl, the user’s local-optimality
constraint (which is always applied at the final root node).

2. Global Safety Check: In the next step, we evaluate the be-
haviour of the “safety function”, defined as

f(qa) = c(pw, qa) − (1 + λ
x
g)c(pe, qa) (6)

This function captures the difference between the costs ofpw and
aλx

g -inflated version ofpe at locationqa. If f(qa) ≤ 0 throughout
the selectivity spaceS, we are guaranteed that, if the cheapest sub-
plan were to be (eventually) replaced by the candidate sub-plan,
the adverse impact (if any) of this replacement is bounded byλx

g

– that is, in this sense, it issafe. Here,λx
g is again an algorithmic

parameter that can be set independently ofλg (which is always
applied at the final root node). As a practical matter, we would
expect the choice to be such thatλx

g ≥ λx
l .

Evaluating the safety function requires the ability to costquery
plans atarbitrary locations in the selectivity space. This feature,
called “Foreign Plan Costing” (FPC) in [8], is available in com-
mercial optimizers such as DB2 (Optimization Profile), SQL Server
(XML Plan) and Sybase (Abstract Plan). For PostgreSQL, we had
to implement it ourselves (details in Appendix G).

The safety check can be verified by exhaustively invoking the
FPC function atall locations inS, but the overheads become un-
viably large. We have recently developed theCornerCube-SEER

(CC-SEER) [13] algorithm to address this problem. CC-SEER
guarantees global safety by merely evaluating the safety function at
theunit hyper-cubeslocated at thecornersof the selectivity space.
That is, given ad-dimensional space, FPC costing is carried out at
only 4d points. The intuition here is that, given the nature of plan
cost behavior in modern optimizers, if a replacement is known to be
safe at the corner regions of the selectivity space, then it is also safe
throughout the interior region(see [13, 8] for the formal details).

We have also found that an extremely simple heuristic, called
LiteSEER [8], which simply evaluates whether all thecorner
pointsare safe, that is,

∀ qa ∈ Corners(S), f(qa) ≤ 0 (7)

works almost as well as CC-SEER in practice, although not pro-
viding formal safety guarantees. In Figure 1(b), this corresponds to
requiring that the replacement be safe atV0, V1, V2 andV3, and in
general, requires FPC evaluation only at2d points.

3. Global Benefit Check: While the safety check ensures that
there is no material harm, it does not really address the issue of
whether there is anybenefitto be expected ifpe were to be (even-
tually) replaced by a given wagonpw. To assess this aspect, we
compute the benefit index of a wagon relative to its engine as

ξ(pw, pe) =
c(pe, qa)

c(pw, qa)
qa ∈ Corners(S) (8)

That is, we use aCornerAvgheuristic wherein the arithmetic mean
of the costs at thecornersof S is used as an indicator of the as-
sistance that will be provided throughoutS. Benefit indices greater
than 1 are taken to indicate beneficial replacements whereaslower
values imply superfluous replacements. Accordingly, only wagons
with ξ > 1 are retained and the remainder are eliminated.

Our choice of the CornerAvg heuristic is motivated by the fol-
lowing observation: The arithmetic mean favors sub-plans that per-
form well in thetop-right regionof the selectivity space since the
largest cost magnitudes are usually seen there. We already know
that POSP plans in this region tend to have large endo-optimal
space coverage [7]. Therefore, they are more likely to provide good
stability since,by definition, anyPre provides stability in its own
endo-optimal region, as its cost has to be less than that ofPoe in
this subspace (a more detailed analysis is given in AppendixC).
The CornerAvg heuristic projects that this observation holds true
for thesub-plansof near-optimal plans as well.

4. Cost-Safety-Benefit Skyline Check:After the above three
checks, it is possible that some wagons are “dominated” – that is,
their local cost is higher, their corner costs are individually higher,
and their expected global benefit is lower, as compared to some
other wagon in the candidate set. Specifically, consider a pair of
wagons,pw1 and pw2, with pw1 dominatingpw2 at the current
node. As these wagons move up the DP lattice, their costs and
benefit indices comecloser together, since onlyadditiveconstants
are incorporated at each level – that is, the “cost-coupling” and
the “benefit-coupling” between a pair of wagons becomesstronger
with increasing levels. However, and this is the key point, the dom-
ination propertycontinues to hold, right until the lattice root, since
the same constants are added to both wagons.

Given the above, it is sufficient to simply use askylineset [4]
of the wagons based on local cost, global safety and global bene-
fit considerations. Specifically, for 2D error spaces, the skyline is
comprised of five dimensions – the local cost and the four remote
corner costs (the benefit dimension, when defined with the Cor-
nerAvg heuristic, becomes redundant since it is implied from the
corner dimensions). A formal proof that the skyline-based wagon

(a) RootExpand (b) SkylineUniversal (c) NodeExpand

Figure 3: Plan Expansion Algorithms (Q̂10: λl, λg = 20%, δg = 1)

selection technique is equivalent to having retained the entire set of
wagons is given in Appendix D.

After the above multi-stage pruning procedure completes, the
surviving wagons are bundled together with thepe engine, and this
train is then propagated to the higher levels of the DP lattice.

3.1.2 Root Node
When the final root node of the DP lattice is reached, all the

above-mentioned pruning checks (Cost, Safety, Benefit, Skyline) are
again made, with the only difference being that bothλx

l andλx
g

are nowmandatorilyset equal to the user’s requirements,λl and
λg, respectively. Further, we also incorporate a benefit threshold,
δg(δg ≥ 1), which determines the minimum benefit for which re-
placement is considered a worthwhile option. Ideally,δg should be
set so as to ensure maximum stability without falling prey tosuper-
fluous replacements. However, there is a secondary consideration
– using a lower value and thereby going ahead with some of the
stability-superfluous replacements may help to achieveanorexic
plan diagrams, a potent objective in query optimizer construction.
The appropriate setting ofδg is discussed in our experimental study
(Section 5).

3.2 Plan Selection
At the end of the expansion process, a set of complete plans are

available at the root node. There are two possible scenarios:
1) The only plan remaining is the standard cost-optimal planPoe,
in which case this plan is output as the final selection; or
2) In addition to the cost-optimal plan, there are a set of candidate
replacement plans available that are all expected to be morerobust
thanPoe (i.e. theirξ > δg). To make the final plan choice from
among this set, our current strategy is to simply use aMaxBenefit
heuristic – that is, select the plan with the highestξ.

Constant Ranking Property. An important property of the above
selection procedure, borne out by the definition ofξ, is that it al-
ways gives thesame rankingbetween a given pair of potential re-
placement plansirrespective of the specific queryqe in S that is
currently being optimized. This is exactly how it should be since
the stability of a plan vis-a-vis another plan should be determined
by itsglobal behavior over the entire space.

A full-blown example of the plan replacement procedure is pre-
sented in Appendix E.

4. REPLACEMENT ALGORITHMS
Given the generic process described above, we can obtain a host

of replacement algorithms by making different choices for theλx
l

andλx
g settings in the lattice interior. For example, we could choose

to keep them constant throughout. Alternatively, high values could
be used at the leaves, progressively becoming smaller as we move
up the lattice. Or, we could try exactly the opposite, with the leaves
having low values and more relaxed thresholds going up the lattice.
In essence, a rich design space opens up when stability considera-
tions are incorporated into classical cost-based optimizers.

We consider here a few representative instances that cover a
range of tradeoffs between the number and diversity of the candi-
date replacement plans, and the computational overheads incurred
in generating and processing these candidates. The functioning of
the algorithms is pictorially shown in Figure 3 for the example
query Q̂10 with λl, λg = 20% (and δg = 1). In these figures,
nodes that contain one or more error-sensitive relations (ORDERS,
LINEITEM) in their sub-trees, are represented with double boxes.

RootExpand. The RootExpand algorithm is obtained by setting
both λx

l andλx
g to 0 at all leaves and internal nodes, while at the

root node, these parameters are set to the user’s constraints λl, λg,
respectively. This is a simple variant of the classical DP procedure,
wherein DP is used as-is starting from the leaves until the final root
node is reached. At this point, the competing (complete) plans that
are evaluated at the root node are filtered based on the four-check
sequence, and a final plan selection is made from the survivors as
per the procedure described in Section 3.2.

The functioning of RootExpand is pictorially shown in Fig-
ure 3(a), wherein the value above each node signifies the costof the
optimal sub-plan to compute the relational expression represented
by the node – for example, the cheapest method of joiningORDERS

(O) andLINEITEM (L) has an estimated cost of 313924. At the
root node, the second-cheapest plan,NCOL(2), with cost 329089,
is chosen in preference to the standard DP choiceNCOL(1), due
to locally being well within 20% of the lowest cost (322890),and
having the maximum BenefitIndex ofξ = 1.23.

SkylineUniversal. The SkylineUniversal algorithm is obtained by
setting bothλx

l and λx
g to ∞ at the error-sensitive nodes in the

lattice interior, while the standard DP procedure is used atthe re-
maining nodes. It represents the other end of the spectrum toRoot-
Expand in that it propagates, beginning with the leaves,all wagons

evaluated at an error-sensitive node to the levels above. That is,
modulo the Skyline Check, which only eliminates redundant wag-
ons, there is absolutely no other pruning anywhere in the lattice
interior. This implies that the root node effectively processes the
entire set of complete planspresent in the optimizer’s search space
for the query.

The pictorial representation of SkylineUniversal is shownin Fig-
ure 3(b). The labels above the error-sensitive nodes indicate the
surviving wagons, along with their local costs and benefit indices.
For example,CO(2) has a cost of 31243 andξ = 3.24. The number
of plans enumerated at the root nodeNCOL is 1099, and 9 of them
successfully pass the four-stage check. The plan finally chosen is
NCOL(2) which has a cost of 328820 (about 2% more expensive
than the cost-optimalNCOL(1)) and provides the maximum Ben-
efitIndex ofξ = 1.38.

NodeExpand. The NodeExpand algorithm strikes the middle
ground between the replacement richness of Universal and the com-
putational simplicity of RootExpand, by “opening the sub-plan
pipe” to a limited extent. Specifically, the version of NodeExpand
that we evaluate here setsλx

l = λl, λ
x
g = λg at all error-sensitive

nodes – that is, the root node’s cost constraints areinheritedat the
lower levels as well. These settings are chosen to ensure that the
sub-plansalso provide the same local-optimality and global-safety
guarantees as the complete plan, a feature we expect would prove
useful in real-world environments with aspects such as run-time re-
source consumption. Further, as a useful byproduct, the settings
also help to keep the expansion overheads under control.

An example of NodeExpand is shown in Figure 3(c), where 3
plans survive the four-stage check at the root, andNCOL(3) whose
BenefitIndex of 1.26 is the highest, is chosen as the final selection.

The constraints imposed by the three expansion algorithms pre-
sented above are summarized in Table 1 – standard DP is also in-
cluded for comparative purposes.

Optimization Leaf Node Internal Node Root Node
Algorithm λx

l
, λx

g λx
l
, λx

g λx
l
, λx

g δg

Standard DP 0 0 0 –
RootExpand 0 0 λl,λg ≥ 1
NodeExpand λl,λg λl,λg λl,λg ≥ 1

SkylineUniversal ∞ ∞ λl,λg ≥ 1

Table 1: Constraints of Plan Replacement Algorithms

Inheriting Engine Costs for Wagons. A crucial optimization
incorporated in the above algorithms for reducing overheads is the
following: When two plan-trains arrive and are combined at a
node, the cost of combining the engines of the two trains witha
particular method is exactly the same cost as that of combiningany
other pair from the two trains. This is because the engines and
wagons in any train all represent the same input data. Therefore,
we need to only combine the two engines in all possible ways, just
like in standard DP, and then simply reuse these associated costs to
evaluate the total costs for all other pairings between the two trains.
Further, this cost reuse strategy can be used not just for thelocal
costs, but for the remote FPC-based corner costs as well.

4.1 Comparison with SEER
Our earlier SEER approach [8] identified robust plans through

the anorexic reduction of plan diagrams. There are fundamen-
tal differences between that “offline/exo-optimizer/reduction” ap-
proach and our current “online/intra-optimizer/production” work:
(i) Our techniques are applicable toad-hoc individual queries,
whereas SEER is useable only on form-based query templates for

which plan diagrams have been previously computed.
(ii) Unlike SEER, our choice of replacement plans is not restricted
to be only from the parametric optimal set of plans (POSP). Inprin-
ciple, it could beany other planfrom the optimizer’s search space
that satisfies the user’s cost constraints. For example, a very good
plan that is always second-best by a small margin over the entire
selectivity space. In this case, SEER would, by definition, not be
able to utilize this plan, whereas it would certainly fall within our
ambit.
(iii) Finally, as previously mentioned, an attractive feature of Node-
Expand is that it ensures performance fidelity of the replacement
throughout its operator tree.

5. EXPERIMENTAL RESULTS
We implemented the above plan replacement algorithms in Post-

greSQL 8.3.6 [15], operating on a Sun Ultra 24 workstation running
Ubuntu Linux 9.10. The user-specified cost-increase thresholds in
all our experiments wasλl, λg = 20%, a practical value as per our
discussions with industrial development teams.

Query Templates and Plan Diagrams. To assess performance
over the entire selectivity space, we took recourse to parametrized
query templates– for example, by treating the constants associ-
ated withO.totalprice and L.extendedprice in Q̂10 as parame-
ters. These templates, enumerated in [1], are all based on queries
appearing in theTPC-H andTPC-DSbenchmarks, and cover both
2D and 3D selectivity spaces. For each of the query templates,
we produced plan diagrams (at a uniform grid resolution of 100 on
each dimension) with the Picasso visualization tool [16].

A variety of performance metrics are used to characterize the
behavior of the various replacement algorithms:

1. Plan Stability and Safety. The effect of plan replacements on
stability is measured with the AggSERF and MaxSERF statistics.
Further, we trackREP%, the percentage of query locations where
the optimizer’s original choice is replaced; andHelp% , the per-
centage of error instances wherein replacement plans reduced the
performance gap substantially – specifically, by atleasttwo-thirds.

Replacement safety is evaluated through the MinSERF statistic
and the percentage of error instances with MinSERF below−λg is
tabulated asHarm% .

2. Plan Diagram Cardinality. This metric tallies the number of
unique plans present in the plan diagram, with cardinalities less
than or aroundten indicatinganorexic diagrams[7, 8]. We also
tabulate the number ofnon-POSP plans selected by our techniques.

3. Computational Overheads. This metric computes the over-
heads incurred, with regard to both time and space, relativeto those
experienced with the standard DP-based query optimization.

Query Template Descriptors. We useQTx andDSQTx to label
query templates based on Queryx of the TPC-H benchmark and the
TPC-DS benchmark, respectively. By default, the query template
is 2D, while a label prefix of3D indicates a 3D template. The de-
fault physical design is a clustered index on each relation’s primary
key. Additional results obtained on an “index-rich” situation, de-
noted with label prefixAI , where indices exist on all query-related
schema attributes, are given in Appendix F.1.

5.1 Plan Stability Performance
The stability performance results of the RootExpand, NodeEx-

pand, SkylineUniversal and SEER algorithms are enumeratedin
Table 2 for a representative set of query templates from our study,
which covered a spectrum of error dimensionalities, benchmark

Query RootExpand NodeExpand SkylineUniversal SEER DP
Temp- REP Agg Help # of Non- REP Agg Help # of Non- REP Agg Help # of Non- REP Agg Help # of # of

late % SERF % Plans POSP % SERF % Plans POSP % SERF % Plans POSP % SERF % Plans Plans
QT5 84 0.54 55 3 0 85 0.54 55 3 0 85 0.54 55 3 0 47 0.61 64 2 11
QT10 32 0.20 19 7 1 98 0.21 20 3 0 98 0.21 20 3 0 37 0.21 20 2 15

3DQT8 47 0.17 8 22 17 69 0.18 10 3 0 – – – – – 59 0.17 9 2 43
3DQT10 15 0.37 41 12 2 99 0.39 44 5 1 99 0.39 44 5 1 24 0.38 41 3 30
DSQT7 93 0.28 28 3 1 93 0.28 28 2 1 93 0.28 28 2 1 46 0.28 28 2 12
DSQT26 30 0.48 50 9 7 30 0.49 50 2 1 30 0.49 50 2 1 29 0.49 49 2 13

Table 2: Plan Stability and Plan Diagram Performance

databases, physical designs and query complexities (the complete
set of results is available in [1]).

Our initial objective was to evaluate whether there is really tan-
gible scope for plan replacement, or whether the optimizer’s plan
itself is usually the robust choice. We see in Table 2 that REP%
for both RootExpand and NodeExpand is quite substantial, even
reaching inexcess of 90%for some templates (e.g. DSQT7)! On
average across all the templates, the replacement percentage was
around 40% for RootExpand and 80% for NodeExpand.

We hasten to add that not all of these replacements are required to
achieve stability, and the stability-superfluous replacements could
be eliminated by setting higher values ofδg. For example, with
QT5, settingδg = 1.03 achieves the same stability as the default
δg = 1.0 and brings REP% of NodeExpand down from 85% to
32%. Our analysis has shown that in general, about 30%-50% re-
placements are sufficient to maximize the stability. However, the
additional replacements contribute to producing anorexicplan dia-
grams, as seen later in this section.

Moving on to the stability performance itself, we observe that the
AggSERF values of both RootExpand and NodeExpand are usu-
ally in the range of0.1 to 0.6, with the average being about0.3,
which means that on average aboutone-third of the performance
handicap due to selectivity errors is removed. A deeper analysis
leads to an even more positive view: First, the Help% statistics in-
dicate that, for several templates, a significant fraction of the error
instancesdo receive substantial assistance. For example, QT5 has
the performance gap reduced by more than 2/3 in about 55 percent
cases, and, in fact, most of these receive SERF in excess of 0.9 –
i.e., effectively achieveimmunityfrom the errors. A visualization
of the distribution of SERF values for this template is shownin
Appendix F.3.

Second, the AggSERF performance of (offline) SEER is quite
similar to that of RootExpand and NodeExpand. In our prior study
[8], SEER had produced better results for these same templates –
the difference is that those experiments were carried out ona so-
phisticated commercial optimizer supporting a richer space of qual-
ity replacements than PostgreSQL. Implementing our algorithms
in such high-end optimizers is likely to also significantly increase
their AggSERF and Help% contributions.

Third, the performance of RootExpand and NodeExpand, in
spite of considering a much smaller set of replacement candidates,
is virtually identical to that of SkylineUniversal in the templates
where it was able to successfully complete (the templates for which
SkylineUniversal ran out of memory are shown with –). In fact, as
shown in Appendix F.2, their performance is fairly close to even an
optimal(wrt AggSERF) version of SkylineUniversal!

Finally, MaxSERF was 1 for all the templates, testifying to the
inherent power of the replacement approach.

Taken in toto, these results suggest that the controlled expan-
sion technique is capable of extracting most of the benefits obtain-
able through plan replacement. Further, we have also conducted
an analysis of the characteristics of the replacement plansvis-a-vis

the original choices. Our observations, detailed in [1], indicate that
(a) index-intersection joins are often replaced by scan-based joins;
(b) nested-loop-based plans are frequently replaced with hash-join-
based plans, while merge joins are almost never retained; and (c)
left-deep plans are typically replaced by bushy plans.

Plan Replacement Safety.The MinSERF results with a LiteSEER
implementation (given in Appendix F.5) indicate that this heuristic
works very effectively in providing replacement safety since (a)
only a few templates have negative MinSERF values, with small
magnitudes, and (b) the harmful replacements in these casesoccur
for only a miniscule percentage of error locations. The correspond-
ing CC-SEER results are given in Appendix F.6.

5.2 Plan Diagram Characteristics
We now turn our attention to the characteristics of theplan di-

agramsobtained with the replacement algorithms. The associated
results are also shown in Table 2, and to place them in context, the
statistics for the standard DP-based optimizer are included.

Plan Diagram Cardinality. We see in Table 2 that for templates
such as 3DQT8, where DP generates “dense” diagrams with high
plan cardinalities, RootExpand diagrams may also feature alarge
number of plans. This behavior is more prevalent in index-rich
environments (see Appendix F.1), with the diagram cardinalities
evenexceedingthat of DP for some templates – e.g. DP has 28
plans for AIDSQT18, whereas RootExpand features 31 plans!

NodeExpand, on the other hand, consistently delivers strongly
anorexicplan diagrams for almost all the templates. In fact, its
plan cardinality is often comparable to that of SEER – this isquite
encouraging since it is obtained in spite of having to contend with
(a) a much richer search space from which to choose replacements,
and (b) no prior knowledge of the choices made in the remaining
selectivity space. A sample set of plan diagrams produced byDP,
RootExpand and NodeExpand are shown in [1].

Non-POSP plans. We also see in Table 2 that non-POSP plans
do feature in the replacement plan diagrams, occasionally in sig-
nificant proportions, as in 3DQT8 with RootExpand. Again, this
phenomena is more prevalent in index-rich environments (see Ap-
pendix F.1) – as a case in point, with AI3DQT8, there are 41 non-
POSP plans out of 51 for RootExpand, occupying 78% of the space,
while NodeExpand has 12 on 14, covering more than 90% area.

5.3 Computational Overheads
We now turn our attention to the computational price to be paid

for providing robust plans and anorexic plan diagrams. The time
aspect is captured in Table 3 where the average per-query opti-
mization times (in milliseconds) are shown for DP, RootExpand
and NodeExpand – the increase relative to DP is also shown in
parentheses. These results indicate that the performance of both re-
placement algorithms is well within100 millisecondsof DP for all
the templates.

Query Optimization Time (ms)
Template DP RootExpand NodeExpand

QT5 3.2 11.4 (+8.2) 22.2 (+19.0)
QT10 0.9 2.3 (+1.4) 3.2 (+2.3)

3DQT8 3.5 12.9 (+9.4) 30.6 (+27.1)
3DQT10 0.9 3.4 (+2.5) 4.3 (+3.4)
DSQT7 1.3 4.2 (+2.9) 7.7 (+6.4)
DSQT26 1.4 4.1 (+2.7) 7.0 (+5.6)

Table 3: Time Overheads (in milliseconds)

Query Memory Overhead (MB)
Template DP RootExpand NodeExpand

QT5 2.8 4.0 (+1.2) 7.0 (+4.2)
QT10 2.2 2.6 (+0.4) 3.4 (+1.2)

3DQT8 4.0 5.4 (+1.4) 10.6 (+6.6)
3DQT10 2.2 3.0 (+0.8) 5.1 (+2.9)
DSQT7 2.4 2.9 (+0.5) 3.5 (+1.1)
DSQT26 2.4 3.0 (+0.6) 3.8 (+1.4)

Table 4: Memory Consumption (in MB)

With regard to memory overheads, shown in Table 4, the peak
additional consumption of RootExpand and NodeExpand is com-
fortably less than100MBover all the query templates. These over-
heads appear quite acceptable given the richly-provisioned comput-
ing environments in vogue today. Further, they are incurredonly
for a brief time period (< 0.1s), as per Table 3.

The low overheads are primarily due to the four-stage pruning
mechanism that controls the number of wagons forwarded froma
node – an example scenario is shown in Appendix F.4, where the
initial 446 candidate plans are pruned to just 6 survivors.

6. RELATED WORK
Over the last decade, a variety of compile-time strategies have

been proposed for identifying robust plans, including the Least Ex-
pected Cost [5], Robust Cardinality Estimation [2] and Rio [3] ap-
proaches. These techniques provide novel and elegant formula-
tions, but, as described in detail in [8], are limited on someim-
portant counts: First, they do not all retain a guaranteed level of
local optimality in the absence of errors. That is, at the estimated
query location, the substitute plan chosen may bearbitrarily poor
compared to the optimizer’s original cost-optimal choice.Second,
these techniques have not been shown to provide sustained accept-
able performancethroughoutthe selectivity space, i.e., in the pres-
ence of arbitrary errors. Third, they requirespecializedinforma-
tion about the workload and/or the system which may not always
be easy to obtain or model. Finally, their query capabilities may be
limited compared to the original optimizer – e.g., only SPJ queries
with key-based joins were considered in [2, 3].

Both our previous offline exo-optimizer SEER technique, and
the online intra-optimizer algorithms proposed in this paper, ad-
dress the above limitations through a confluence of (i) mathemat-
ical models sourced from industrial-strength optimizers,(ii) com-
bined local and global constraints, and (iii) generic but effective
heuristics. (The salient differences between SEER and EXPAND
were discussed in Section 4.1).

7. CONCLUSIONS AND FUTURE WORK
We investigated the systematic introduction of global stability

criteria in the cost-based DP optimization process, with a view
to reducing the impact of selectivity errors. Specifically,we pro-
posed the Expand parametrized family of algorithms for striking
the desired balance between the competing demands of enriching

the candidate space for replacement plans, and the associated com-
putational overheads. Our approach expands the set of planssent
from each node in the DP lattice to the higher levels, subjectto
a four-stage checking process that ensures only plausible replace-
ments are forwarded, and overheads are minimized.

We implemented, in the PostgreSQL kernel, a variety of replace-
ment algorithms that covered the spectrum of design tradeoffs, and
evaluated them on benchmark environments. Our results showed
that a significant degree of robustness can be obtained with rela-
tively minor conceptual changes to current optimizers, especially
those supporting a foreign-plan-costing feature. Among the re-
placement algorithms,NodeExpand, which propagates the user’s
cost and stability constraints to the internal nodes of the DP lattice,
proved to be an excellent all-round choice. It simultaneously de-
livered good stability, replacement safety, anorexic plandiagrams,
acceptable computational overheads, and near-optimal sub-plans.
The typical situation was that its plan replacements were often able
to reduce, by more than two-thirds, the adverse impact of selectiv-
ity errors for a significant number of error situations, in return for
investing relatively minor time and memory resources.

In our future work, we plan to investigate automated techniques
for identifying customized assignments to the node-specific cost,
safety and benefit thresholds in the Expand approach. Further, it
would be interesting to extend our study to skewed distributions of
error locations in the selectivity space.

Acknowledgements. This work was partially supported by grants from
Microsoft Research. We thank A. Dutt for implementation contributions.

8. REFERENCES
[1] M. Abhirama et al, “Stability-conscious Query Optimization”, Tech.

Rep. TR-2009-01, DSL/SERC, Indian Inst. of Science, July 2009.
dsl.serc.iisc.ernet.in/publications/report/TR/TR-2009-01.pdf

[2] B. Babcock and S. Chaudhuri, “Towards a Robust Query Optimizer:
A Principled and Practical Approach”, Proc. of SIGMOD 2005.

[3] S. Babu, P. Bizarro and D. DeWitt, “Proactive Re-Optimization”,
Proc. of SIGMOD 2005.

[4] S. Borzsonyi, D. Kossmann and K. Stocker, “The Skyline Operator”,
Proc. of ICDE 2001.

[5] F. Chu, J. Halpern and P. Seshadri, “Least Expected Cost Query
Optimization: An Exercise in Utility”, Proc. of PODS 1999.

[6] A. Deshpande, Z. Ives and V. Raman, “Adaptive Query Processing”,
Foundations and Trends in Databases, Now Publishers, 2007.

[7] Harish D., P. Darera and J. Haritsa, “On the Production ofAnorexic
Plan Diagrams”, Proc. of VLDB 2007.

[8] Harish D., P. Darera and J. Haritsa, “Identifying RobustPlans
through Plan Diagram Reduction”, Proc. of VLDB 2008.

[9] A. Hulgeri and S. Sudarshan, “AniPQO: Almost Non-intrusive
Parametric Query Optimization for Nonlinear Cost Functions”,
Proc. of VLDB 2003.

[10] N. Kabra and D. DeWitt, “Efficient Mid-Query Re-Optimization of
Sub-Optimal Query Execution Plans”, Proc. of SIGMOD 1998.

[11] V. Markl et al, “Robust Query Processing through Progressive
Optimization”, Proc. of SIGMOD 2004.

[12] P. Selinger et al, “Access Path Selection in a Relational Database
System”, Proc. of SIGMOD 1979.

[13] H. Shrimal, “Characterizing Plan Diagram Reduction Quality and
Efficiency”, ME Thesis, Indian Inst. of Science, June 2009.
dsl.serc.iisc.ernet.in/publications/thesis/harsh.pdf

[14] M. Stillger, G. Lohman, V. Markl and M. Kandil, “LEO, DB2’s
LEarning Optimizer”, Proc. of VLDB 2001.

[15] www.postgresql.org/docs/8.3/static/release-8-3-6.html

[16] dsl.serc.iisc.ernet.in/projects/PICASSO/picasso.html

APPENDIX

A. THE EXPAND ALGORITHM
The complete pseudo-code for the EXPAND family of algo-

rithms, including the extensions described in Appendix B, is pre-
sented in Figure 4.

B. QUERY COMPLEXITIES
For ease of presentation, we had assumed in the main paper (Sec-

tion 3) that optimizing the user query did not involve either(a) “in-
teresting orders” (where a sub-plan produces results in a particu-
lar order that could prove useful later in the optimization); or (b)
“stems” (where a linear chain of nodes appears above the joinroot
node of the DP lattice). We now discuss the algorithmic extensions
necessary to handle these features.

B.1 Interesting Orders
Plans corresponding to interesting orders can be handled byhav-

ing each train to be composed of not just a single generic sequence
of wagons, but instead anarray of sub-trains, one for each inter-
esting order. For the sake of uniformity, we treat the set of wagons
corresponding to unordered plans to also be part of a genericresult
order calledNO ORDER.

As discussed earlier, there are two steps to the expansion process
– an exhaustive plan enumeration step followed by the four-stage
plan retention process. We discuss the changes required in each of
the two steps to be able to handle interesting orders.

Plan Enumeration. Let A andB be a pair of lower level nodes
in the lattice that combine together to produce Nodex. Then, the
plan expansion procedure at Nodex involves exhaustively combin-
ing all sub-trains ofA with all sub-trains ofB. Subsequently, the
result order (if any) of each of the newly produced combinations is
determined. Combinations with interesting orders are assigned to
the associated sub-trains, while the unordered combinations are all
placed in theNO ORDERsub-train.

Plan Retention. The plan retention process is handledindepen-
dently for each of the sub-trains and exactly follows the 4-stage
pruning procedure described for single trains in Section 3.

B.2 Stems
A stem in a DP-lattice is the linear chain of nodes that may ap-

pear above the “join root” node (the node corresponding to the join
of all the relations present in the query). The stem usually features
aggregation and grouping operators. A sample, based on the exam-
ple query of Figure 1(a), is shown in Figure 5, where the join root is
NCOL , and the stem is displayed in the shaded box. The handling
of stems is algorithm-specific, as described below.

RootExpand. As explained in Section 4, plan expansion in Root-
Expand takes place only at the terminal node of the DP-lattice. This
is appropriate when the terminal node is the join root and there are
a set of alternative plans, corresponding to different joinorders,
to choose from. However, it becomes meaningless if the termi-
nal node is at the end of a stem since only asingleplan will have
survived at this stage in the normal DP process, and therefore the
replacement space is virtually non-existent.

We therefore modify the RootExpand algorithm to permitall
plans that reach the join root to continue to be considered all the
way until the terminal node of the stem. That is,λx

l andλx
g are set

to ∞ at the join root and all internal stem nodes that lie between
the join root and the terminal node. This procedure is implemented
in Lines 26 and 27 of Figure 4.

Expand (Node x, λx
l , λx

g , δg)

Node x : A node in the DP-lattice

λx
l

: Local-optimality threshold for nodex (set as per Table 1)

λx
g : Global-safety threshold for nodex (set as per Table 1)

δg : Global-benefit threshold (set as per Table 1)

1: x.P lanTrain← φ
2: x.ErrorSensitive← FALSE
3: if SubTree(x) contains at least one error-sensitive relationthen
4: x.ErrorSensitive← TRUE
5: if x.ErrorSensitive = FALSE then
6: /∗ Standard DP∗/
7: x.P lanTrain← {Cheapest plan to computex + cheapest plan to

computex for each interesting orderio}
8: Returnx.P lanTrain
9: else

10: /∗ Expansion Process∗/
11: if x.level = LEAF then
12: x.P lanTrain← All possible access paths for base relationi
13: else
14: for all pairwise node combinations that generate Nodex do
15: Let A andB be the lower level nodes combining to producex
16: Let A.P lanTrain andB.P lanTrain be the plan-trains of

A andB, respectively.
17: for eachpA in A.P lanTrain do
18: for eachpB in B.P lanTrain do
19: x.P lanTrain ← x.P lanTrain ∪ {Plans formed by

joining pA andpB in all possible ways}
20:
21: for each planp with interesting orderio in x.P lanTrain do
22: Movep to sub-trainx.P lanTrainio.
23: Move all remaining plans to sub-trainx.P lanTrainNO ORDER.
24:
25: /∗ Stem handling for RootExpand∗/
26: if (RootExpand)and (isJoinRoot(x) or isInternalStem(x)) then
27: λx

l
←∞; λx

g ←∞
28:
29: for eachx.P lanTrainr of nodex do
30: /∗ 4-stage Pruning Process∗/
31: Let pe be the engine ofx.P lanTrainr

32: /∗ 1. Local Cost Check∗/
33: for each wagon planpw ∈ x.P lanTrainr do
34: if cost(pw, qe) > (1 + λx

l
)cost(pe, qe) then

35: x.P lanTrainr ← x.P lanTrainr − {pw}
36: /∗ 2. Global Safety Check∗/
37: for each wagon planpw ∈ x.P lanTrainr do
38: for each pointqa ∈ Corners(S) do
39: if cost(pw, qa) > (1 + λx

g)cost(pe, qa) then
40: x.P lanTrainr ← x.P lanTrainr − {pw}
41: break
42: /∗ 3. Global Benefit Check∗/
43: for each wagon planpw ∈ x.P lanTrainr do

44: pw.ξ←
Σqa∈Corners(S)cost(pe,qa)

Σqa∈Corners(S)cost(pw,qa)

45: if x.level = ROOT and pw.ξ ≤ δg then
46: x.P lanTrainr ← x.P lanTrainr − {pw}
47: else ifx.level 6= ROOT and pw.ξ ≤ 1 then
48: x.P lanTrainr ← x.P lanTrainr − {pw}
49: /∗ 4. Skyline Check∗/
50: x.P lanTrainr← C-S-B Skyline (x.P lanTrainr)
51:
52: if x.level = ROOT then
53: x.P lanTrain← Plan with Maximumξ in x.P lanTrain
54: Returnx.P lanTrain

Figure 4: Node Expansion Procedure

NCOL

N C O

NC CO OL

NCO COL

N(1): 1 C(1): 5135

NC(1): 7199
OL(1): 313924

NCO(1): 25428 COL(1): 322729

O(1): 16810 L(1): 212

NCOL(1): 322890 [1 . 0 0]

NCOL(2): 329089 [1 . 2 3]

GROUPBY

ORDERBY

GROUPBY(1): 323164 [1 . 0 0]

GROUPBY(2): 329363 [1 . 2 1]

ORDERBY(1): 324018 [1 . 0 0]

ORDERBY(2): 330217 [1 . 2 1]

CO(1): 25323

S t e m

L

Figure 5: Plan Stem

NodeExpand and SkylineUniversal. For these algorithms, we
do not need to make any special changes for handling stems since
they, unlike RootExpand, carry out plan expansion at all levels of
the DP-lattice, and therefore the stem nodes can be treated in the
same way as the canonical lattice nodes.

C. IMPACT OF PLAN REPLACEMENT
Consider the situation where we are contemplating the decision

to replace thePoe choice atqe with thePre plan. The actual query
point qa can be located in any one of the following disjoint regions
of Pre that together coverS (with reference to Figure 1(b)):

Endo-optimal region of Pre: Here, qa is located in endore,
which also implies thatPre ≡ Poa. Sincec(Pre, qa) =
c(Poa, qa), it follows that the cost ofPre at qa, c(Pre, qa) ≤
c(Poe, qa) (by definition of a cost-based optimizer). There-
fore, improved resistance to selectivity errors is alwaysguar-
anteedin this region. (If the replacement plan happens to
not be from the POSP set, as is possible with our algorithms,
endore will be empty.)

λl-optimal region of Pre: Here, qa is located in the region that
could be “swallowed” byPre, replacing the optimizer’s cost-
optimal choices without violatingλl, the local cost-bounding
constraint. By virtue of this constraint, we are assured that
c(Pre, qa) ≤ (1 + λl)c(Poa, qa), and by implication that
c(Pre, qa) ≤ (1 + λl)c(Poe, qa). Now, there are two pos-
sibilities: If c(Pre, qa) < c(Poe, qa), then the replacement
plan is guaranteed to improve the resistance to selectivity
errors. On the other hand, ifc(Poe, qa) ≤ c(Pre, qa) ≤

(1 + λl)c(Poe, qa), the replacement is certain to not cause
any real harm, given the small values ofλl that we consider
in this study.

Exo-optimal region of Pre: Here, qa is located outsidesafere,
and at such locations, we cannot apriori predictPre’s behav-
ior relative toPoe– it could range from being much better,
substantially reducing the adverse impact of the selectivity
error, to the other extreme of beingmuch worse, making the
replacement a counter-productive decision.

D. PROOF OF SKYLINE SUFFICIENCY
In Section 3, we described a four-stage wagon pruning procedure

that is invoked at each node. The last check in this procedureselec-
tively retains only theskylineset of wagons based on cost-safety-
benefit considerations. We prove here that the final plan choices
made by the optimizer using this restricted set of wagons is exactly
equivalent to that obtained by retaining the entire set of wagons –
that is, there is no “information loss” due to the pruning.

Theorem 1 A sub-planpw eliminated by the Skyline check cannot
feature in the final replacement planPre selected by the optimizer
in the absence of this check.

PROOF. We demonstrate this proof by negation. That is, as-
sume in the absence of the Skyline check, the final planPre does
contain a wagonpw1 eliminated by this check. Let the elimina-
tion have occurred due to domination bypw2 on the dimensionality
space comprised ofLocalCost, Cost(V1), Cost(V2), Cost(V3),
. . . Cost(V2n − 1), BenefitIndex.

We now assess the relationship that develops betweenpw1 and
pw2 in the event that both had been retained through the higher
levels of the DP lattice. For example, at the next higher nodex, the
costs and benefits of the wagons will be

Wagon Local Corner Benefit
Cost Costs Index

w1 c(pw1, qe) + c(pw1, Vi) + c(pw1, Vi) +
∆e ∆Vi

P

∆Vi

w2 c(pw1, qe) + c(pw2, Vi) + c(pw2, Vi) +
∆e ∆Vi

P

∆Vi

where the deltas are the incremental costs, at the local and corner
locations, of computing nodex. Note that these incremental costs
will be the same for the two wagons since they both represent the
same input data and can therefore use the same strategy for com-
putingx.

From the above, it is clear that the relative values along allsky-
line dimensions have indeed come closer together due to the pres-
ence of the additive constants – that is, there is a tighter “coupling”.
However, there is no “inversion” on any dimension due to which the
domination property could be violated. This is because, as is triv-
ially obvious, given two arbitrary numbersvi andvj with vi > vj ,
and a constanta, it is always true thatvi + a > vj + a.

By induction, the above relationship would continue to be true
all the way up the lattice to the root node. Now, in the final se-
lection, the MaxBenefit selection heuristic chooses the wagon with
the maximum benefit. Therefore, it would still be the case that the
plan withpw2 would be preferred over the identical plan withpw1

instead since the benefit of the former is greater than that ofthe
latter. Hence our original assumption was wrong.

E. PLAN REPLACEMENT EXAMPLE
To make the plan replacement procedure concrete, consider the

example situation shown in Table 5, obtained at the root of the
DP lattice for queryQ̂10 using the NodeExpand algorithm with
λl, λg = 20%, δg = 1. We present in this table the engine (P1)
andseventy threeadditional wagons (P2 throughP74), ordered on
their local costs. The corner costs and benefit indices of these plans
are also provided, and in the last column, the check (if any) that
resulted in their pruning. As can be seen, each of the checks elimi-
nates some wagons, and finally, only two wagons (P9, P19) survive
all the checks. From among them, the final plan chosen isP19

which has the maximumξ = 1.26, and whose local cost (334801)
is within 4% ofP1 (322890).

Plan Local V0 V1 V2 V3 ξ Pruned
No Cost Cost Cost Cost Cost by
P1 322890 202089 224599 846630 1271678 1.00
P2 322901 202101 224610 846642 1271689 0.99 Benefit
P3 323026 202091 224593 905309 1247883 0.98 Benefit
P4 324203 202089 224604 846636 1952627 0.78 Safety
. .
P9 329089 208207 230766 356555 1280663 1.23
P10 329100 208219 230777 356567 1280674 1.23 Skyline
P11 329229 202090 224928 846959 4563459 0.43 Safety
. .
P19 334801 214078 236628 362417 1204051 1.26
P20 335428 208208 231095 356884 4572444 0.47 Safety
P21 337838 208218 231097 356886 9354574 0.25 Safety
. .
P32 390748 202208 500856 1866554 12495404 0.17 Cost
P33 395288 202096 228361 850384 38862955 0.06 Cost
. .
P73 > 10

12 > 10
8 > 10

12 > 10
9 > 10

13 < 0.1 Cost
P74 > 10

12 > 10
8 > 10

12 > 10
9 > 10

13 < 0.1 Cost

Table 5: Example Replacement at Root Node (̂Q10)

F. ADDITIONAL RESULTS
Our experimental study covered a spectrum of error dimension-

alities, benchmark databases, physical designs and query complex-
ities. We present here additional experimental results relevant to
the discussion in the main paper. The complete set of resultsis
available in [1].

F.1 All Index Physical Configuration
In addition to the default physical design configuration, we

consideredAllIndex (AI) , an “index-rich” situation with (single-
column) indices available on all query-related schema attributes.
Representative results for the AI configuration are presented in Ta-
ble 6 for replacement plan stability, and in Table 7 for plan diagram
characteristics.

Query RootExpand NodeExpand SEER
Template REP Agg Help REP Agg Help REP Agg Help

% SERF % % SERF % % SERF %
AIQT5 87 0.37 36 99 0.37 38 87 0.38 39

AI3DQT8 30 0.18 21 98 0.19 21 55 0.12 15
AIDSQT18 11 0.03 1 75 0.07 3 68 0.04 3

Table 6: Plan Stability Performance (All Index)

We see in Table 6 that the stability results are, for the most
part, qualititatively similar to those seen in the default primary-key-
index scenario (Section 5). A point to observe here is that there are
templates such as AIDSQT18, where the AggSERF values are ex-
tremely low. However, this appears to be an artifact of the database
environment in which the evaluation was done rather than a basic
flaw in our approach since even the yardstick algorithms, SEER and
SkylineUniversal, are unable to achieve useful improvements on
these templates. Moreover, as previously mentioned in Section 5,
the SERF values obtained by SEER for the same templates were
significantly higher on a commercial optimizer that offereda richer
replacement space. Therefore, our expectation is that implement-
ing the online algorithms in such high-end optimizers wouldresult
in a larger body of templates receiving significant AggSERF and
Help% benefits.

Turning our attention to the plan diagram statistics in Table 7, we
see that the observations made in Section 5 are more prominently
portrayed here. Specifically, RootExpand features large plan cardi-
nalities, whereas NodeExpand is comparatively anorexic. Further,
non-POSP plans comprise a significant fraction of the plans appear-
ing in the diagrams of RootExpand and NodeExpand.

Query DP RootExpand NodeExpand SEER
Template Plans Plans Non- Plans Non- Plans

POSP POSP
AIQT5 29 13 3 7 4 4

AI3DQT8 70 51 41 14 12 7
AIDSQT18 28 31 7 3 1 3

Table 7: Plan Diagram Performance (All Index)

F.2 Efficacy of CornerAvg heuristic
In order to quantify the efficacy of the CornerAvg heuristic

used by the Expand algorithms, we also evaluated the AggSERF
obtained through a “brute-force” algorithm,OptimalAggSERF-
SkylineUniversal (OAS-SU). OAS-SU explicitly and exhaustively
checks for each query location, the best replacement with regard
to the AggSERF metric, from the SkylineUniversal set of plans at
that location. The performance of OAS-SU is showcased in Table 8
against that of NodeExpand and SkylineUniversal for all thequery
templates of the main paper where SkylineUniversal was feasible.

The results of Table 8 are very encouraging since they indicate
that the AggSERF achieved through CornerAvgapproaches that
obtained with OAS-SU, testifying to the potency of the CornerAvg
heuristic. For example, on template 3DQT10, CornerAvg achieves
an AggSERF of 0.39 as compared to the 0.44 of OAS-SU.

Query NodeExpand SkyLineUniv OAS-SU
Temp- Rep Agg Rep Agg Rep Agg

late % SERF % SERF % SERF
QT5 85 0.54 85 0.54 85 0.64
QT10 98 0.21 98 0.21 99 0.26

3DQT10 99 0.39 99 0.39 94 0.44
DSQT7 93 0.28 93 0.28 99 0.28
DSQT26 30 0.49 30 0.49 99 0.49

Table 8: AggSERF efficacy of CornerAvg

F.3 Distribution of SERF values
A sample frequency distribution of the positive SERF valuesob-

tained with NodeExpand on QT5, which has a substantial Help%
of over 50%, is shown in Figure 6. What is particularly notetworthy
is that, by virtue of the plan replacements, a significant number of
error instances essentially receive “immunity” (SERF≥ 0.9) from
the ill-effects of their estimation errors.

Figure 6: Frequency Distribution of SERF values (QT5)

F.4 Pruning Analysis
As presented in Section 4, our expansion algorithms involvea

four-stage pruning mechanism, comprising of Cost, Safety,Benefit
and Skyline checks. We show in Table 9, a sample instance of the
collective ability of these checks to reduce the number of wagons
forwarded from a node to a limited viable number. In this table, ob-
tained from the root node of a QT8 instance located at (30%,30%)
in S, we show the initial number of candidate wagons, and the num-
ber that remain after each check. As can be seen, there are almost
450 plans at the beginning, but this number is pruned to less than
10 by the completion of the last check.

Initial After
of Local Global Global C-S-B

Wagons Cost Safety Benefit Skyline
446 214 194 139 6

Table 9: Impact of 4-stage Wagon Pruning (QT8)

F.5 Plan Replacement Safety
We now shift our attention to the MinSERF metric to evaluate the

safetyaspect of plan replacement. To make sure that the replace-
ments do not end up causing any material harm, MinSERF is calcu-
lated over theentire selectivity space. The results are presented in
Table 10 and we see that for both RootExpand and NodeExpand:
(a) only a few templates have negative values below−λg (-0.2),
(b) even in these cases, the harmful replacements (shown through
Harm%) occur for only a miniscule percentage of error locations
(less than 1% for 2D templates and less than 5% for 3D templates),
and (c) most importantly, their magnitudes are small – the lowest
MinSERF value is within-5.

Query RootExpand NodeExpand SkylineUniversal
Tem- Min Harm Min Harm Min Harm
plate SERF % SERF % SERF %
QT5 0 0 0 0 0 0
QT10 -0.24 0.25 -0.24 0.01 -0.24 0.51

3DQT8 -1.05 0.01 -2.30 0.01 – –
3DQT10 -1.08 1.93 -0.78 2.15 -0.78 2.15
DSQT7 0 0 0 0 0 0
DSQT26 0 0 0 0 0 0
AIQT5 0 0 0 0 – –

AI3DQT8 -4.88 0.43 -2.80 4.30 – –
AIDSQT18 0 0 0 0 – –

Table 10: Plan Safety Performance

F.6 Performance with CC-SEER
As mentioned in Section 3, the CC-SEER algorithm guarantees

global safety, unlike LiteSEER, which is a heuristic. A sample
result where the safety aspect of CC-SEER is clearly evidentis
shown in Table 11, obtained by executing NodeExpand on query
template 3DQT8. We see here that LiteSEER replacements result-
ing in negative MinSERF values, which go upto-2.3, are prevented
by CC-SEER.

Query NodeExpand (LiteSEER) NodeExpand (CC-SEER)
Tem- Min Harm Min Harm
plate SERF % SERF %

3DQT8 -2.30 0.01 0.0 0

Table 11: Guaranteed Safety with CC-SEER

The safety guarantee of CC-SEER is achieved at a price of in-
creased computational overheads, and these overheads are shown

in Table 12 for a representative set of templates. We see herethat
the time overheads of CC-SEER are substantially more than those
of LiteSEER, the gap increasing with template dimensionality. The
space overheads are also higher for CC-SEER since each sub-plan
has to now carry a larger number of corner costs to the higher lev-
els, and this factor increases exponentially with dimensionality.

Query NodeExpand NodeExpand
(LiteSEER) (CC-SEER)

Template Time Memory Time Memory
(ms) (MB) (ms) (MB)

QT5 22.2 7.0 81.5 15.9
QT10 3.2 3.4 20.4 5.4

3DQT8 30.6 10.6 215.3 118.1

Table 12: Computational Overheads of CC-SEER

G. IMPLEMENTATION IN POSTGRESQL
We have implemented the various algorithms described in the

previous section inside the PostgreSQL kernel, specifically version
8.3.6 [15]. We briefly discuss here the issues related to our imple-
mentation experience.

Foreign Plan Costing. In order to implement the LiteSEER and
ξ heuristics described in Section 3.2, we need to be able to cost a
sub-plan (or plan) at all corners ofS. While this feature is present in
several commercial optimizers, as mentioned before, it is currently
not available in PostgreSQL.

Therefore, we have ourselves implemented remote costing inthe
PostgreSQL optimizer kernel. Our initial idea was to merelycarry
out a bottom-up traversal of the operator tree at the foreignlocation
and at each node appropriately invoke the optimizer’s costing and
output estimation routines. This approach is reasonably straight-
forward to implement, and more importantly, very efficient.

However, this approach failed to work because PostgreSQL
caches certain temporary results during the optimization process
which have an impact on the final plan costs – these cached values
are not available to a purely offline costing approach. Therefore,
we had to monitor and retain sufficient additional information dur-
ing the current plan generation process such that the cachedvalues
for remote locations could be explicitly calculated.

Optimization Process. The PostgreSQL optimizer usually opti-
mizes for a combination of latency and response-time, especially if
the access to the output data is through a cursor or a limit on the
number of output tuples is specified. In order to simplify ourstudy,
we modified the optimization objective to be solely response-time.

Intrusiveness on Code-base.From an industrial perspective, an
obvious question is the extent to which the underlying code-base
has to be modified to support the proposed approach. In our Post-
greSQL implementation, where we have added around 10K linesof
code, the vast majority of the additions have gone towards includ-
ing the FPC feature, which as mentioned before, is already avail-
able in most commercial optimizers. Therefore, while we areaware
that these systems are considerably more sophisticated than Post-
greSQL, our expectation is that incorporating our techniques would
be minimally intrusive on their code-base. This is especially true
for the RootExpand algorithm, where the behavior of only thefinal
node in the DP lattice is modified.

