On the Stability of Plan Costs and
the Costs of Plan Stability

M. Abhirama, Sourjya Bhaumik, Atreyee Dey, Harsh Shrimal, Jayant R. Haritsa*
Database Systems Lab, SERC/CSA
Indian Institute of Science, Bangalore 560012, INDIA

ABSTRACT

Predicate selectivity estimates are subject to consitierab-time
variation relative to their compile-time estimates, ofteading to

poor plan choices that cause inflated response times. Werntres

here a parametrized family of plan generation and selectigo-
rithms that replace, whenever feasible, the optimizerfslga@ost-
conscious choice with an alternative plan that is (a) guashto
be near-optimal in the absence of selectivity estimatioorsy and
(b) likely to deliver comparatively stable performance lie pres-
ence of arbitrary errors. These algorithms have been imgrhéeal
within the PostgreSQL optimizer, and their performancéduatad

on a rich spectrum of TPC-H and TPC-DS-based query templates

in a variety of database environments. Our experimentailltses
indicate that it is indeed possible to identify robust pldmices
that substantially curtail the adverse effects of erroseslectiv-
ity estimates. In fact, the plan selection quality providsdour
algorithms is often competitive with those obtained thitoagriori
knowledge of the plan search and optimality spaces. Theiaddi
computational overheads incurred by the replacement apprare
miniscule in comparison to the expected savings in quergiexe
tion times. We also demonstrate that with appropriate patam
choices, it is feasible to directly produce anorexic plagdams, a
potent objective in query optimizer design.

1. INTRODUCTION

Most modern database query optimizers choose their executi
plans on a cost-minimization basis. In this process, estisnaf
predicate selectivities are critical inputs to modeling tdosts of
query execution plans. Unfortunately, in practice, thesterates
are often significantly in error with respect to the actuduga
encountered during query execution. Such errors arise a@wze t
variety of reasons, including outdated statistics, aitgbvalue-
independence (AVI) assumptions, and coarse summaries At¥]
adverse fallout of the estimation errors is that they ofesd|to
poor choices of execution plans, resulting in grossly ieflajuery
response times.

*Contact Author: haritsa@dsl.serc.iisc.ernet.in

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee. Articles from this volume were @nésd at The
36th International Conference on Very Large Data Basege8dyer 13-17,
2010, Singapore.

Proceedings of the VLDB Endowmevio). 3, No. 1

Copyright 2010 VLDB Endowment 2150-8097/10/095.10.00.

Robust Plans. A variety of compile-time (i.e. optimization-time)
strategies and run-time techniques have been proposed liteth
ature to mitigate the estimation problem. The particulgraach
we explore here is to identify, at compile-tintepust plansvhose
costs are relatively less sensitive to selectivity errohs.a nut-
shell, we “aim for resistance, rather than cure”. Specifjcalur
goal is to identify plans that are (a) guaranteed tméar-optimal
in the absence of errors, and (b) likely to be comparatistdple
when faced with errors locateahywherein the selectivity space.
If the optimizer’s standard cost-optimal plan choice ftgeftobust,
it is retained without substitution. Otherwise, where fikes this
choice is replaced with an alternative plan that is localsrginally
costlier but expected to provide better global performance

Our notion of stability is the following: Given an estimated
compile-time locationg. with optimal planP,., and a run-time
error locationg, with optimal planP,., stability is measured by
the extent to which the replacement plBn. bridges the gap be-
tween the costs aP,. and P, atq,. Note that stability is defined
relative toP,., and not in absolute comparison B,— while the
latter is obviously more desirable, achieving it appearsa@nly
feasible by resorting to query re-optimizations and plaitching
at run-time. Further, the compile-time techniques preseit this
paper can be used in isolation, or in synergistic conjunctiith
run-time approaches [6].

The EXPAND Family of Algorithms. We propose here a family
of algorithms, collectively called EXPAND, that cover a sppeam
of tradeoffs between the goalslotal near-optimality global sta-
bility andcomputational efficiencyexpand is based on judiciously
expanding the candidate set of plan choices that are retaine
ing the core dynamic-programming (DP) exercise, employioii
cost and robustness criteria. That is, instead of merelydnting
the cheapest sub-plan from each node in the DP lattit@jraof
sub-plans is sent, with the cheapest being the “engine”statder
alternative choices being the “wagons”. The final plan s&lads
made at the root of the DP lattice from amongst the set of cetapl
plans available at this terminal node, subject to useriipd@ost
and stability criteria.

From the spectrum of algorithmic possibilities in the EXHAN
family, we examine a few choices that cover a range of trdgdeof
between the number and diversity of the expanded set of ,daas
the computational overheads incurred in generating ancegeing
these additional plans. Specifically, we consideR@otExpand,
wherein stability criteria are invoked only at the termir@dt node
of the DP lattice, representing the minimal change to thetimg
optimizer structure; and (iilNodeExpand wherein a limited ex-
pansion is carried out at select internal nodes in the DRédattn
particular, we consider an expansion subject to the santeacds
stability constraints as those applied at the root nodeefdttice.

To place the performance of these algorithms in perspectige
also evaluate: (ipkylineUniversal, an extreme version of Node-
Expand whereirunlimited expansion is undertaken at the internal
nodes, and the resultant wagons are filtered through a rimétic
sional cost-and-stability-baseskyline[4]. The end result is that
the root node of the DP lattice essentially receivesethiire plan
search spacemodulo our wagon propagation heuristics; and (ii)
SEER [8], our recently-proposedffline algorithm for determin-
ing robust plans, wherein apriori knowledge of the paraimetp-
timal set of plans (POSP) covering the selectivity spacdilized
to make the replacements. This scheme operates from otigide
optimizer, treating it as a black box that supplies plamates infor-
mation through its API.

Experimental Results. Our new techniques have been imple-
mentedinside the PostgreSQL optimizer kernel, and their per-

2. PROBLEM FORMULATION

Consider the situation where the user has submitted a query a
desires stability with regard to selectivity errors on onenore of
the base relations that feature in the query. The choiceeofeh
lations could be based on user preferences and/or the aptimi
expectation of relations on which selectivity errors coblle a
substantial adverse impact due to incorrect plan choicesthere
be d such “error-sensitive relations” — treating each of thesda-r
tions as a dimension, we obtaidalimensional selectivity spac
For example, consider the sample quéxi0 shown in Figure 1(a),
an SPJ version of Query 10 from the TPC-H benchmark. This
query has four base relationsAtioN (N), CUSTOMER(C), OR-
DERS(0), LINEITEM (L)), two of which —o0 andL — are deemed to
be error-sensitive relations. For this query, the assediaD error
selectivity spacé is shown in Figure 1(b).

formance evaluated on a rich set of TPC-H and TPC-DS-based 'he d-dimensional selectivity space is represented by a finite

parametrized query templates in a variety of database@mmients
with diverse logical and physical designs. The experimernga
sults indicate that it is often possible to make plan choibessub-
stantially curtail the adverse effects of selectivity estiion errors.
Specifically, while incurring additional time overheadghim 100
milliseconds and memory overheads withi®OMB, RootExpand
and NodeExpand often deliver plan choices that eliminateemo
thantwo-thirds of the performance gap (betweenP,. and P,,)
for a non-trivial number of error instances. Equally impoity, the
replacement is almost never materially worse than the dapgirs
original choice. In a nutshell, our replacement pléofien help
substantially, but never seriously hurttie query performance.

The robustness of our intra-optimizer online algorithmaslout
to be competitive with regard to the “exo-optimizer/offlirkEER.
Further, their performance is often close to that of Skylinizer-
sal itself. In short, RootExpand and NodeExpand are capzble
achieving comparable performance to those obtained wittejth
knowledge of the plan search and optimality spaces.

Finally, while NodeExpand incurs more overheads than RootE
pand, it deliveraanorexic plan diagram§7] in return. A plan dia-
gram is a color-coded pictorial enumeration of the optimiszglan
choices over the selectivity space, and anorexic diagraengrass
simplifications that feature only a small number of plansheit
materially degrading the processing quality of any indinbquery.
The anorexic feature, while not mandatory for stability pmses,
has several database-related benefits, enumerated ihidgTai—
for example, it enhances the feasibility of parametric yuepti-
mization (PQO) techniques [9].

Another novel feature of NodeExpand is that, due to applg&g
lection criteria at the internal levels of the plan genemfrocess,
it ensures that all theub-plansof a chosen replacement are near-
optimal and stable with regard to the corresponding costva
sub-plan. This is in marked contrast to SEER, where only tine-c
plete plan offers such performance guarantees but thetyjothe
sub-plans is not assured upfront.

A valid question at this point would be whether in practice th
optimizer’s cost-optimal plan is usually the preferredustchoice
as well — that is, are current industrial-strength optimszeher-
ently robus? Our experiments with PostgreSQL clearly demon-
strate that this may not be the case. Concretely, improadyjlgy
typically required replacing the plans f80-50% of the queries in
the selectivity space, while additionally obtaining amxicelan di-
agrams with NodeExpand required in exces8@ replacements.

To our knowledge, this is the first work to investigate thecidfit
identification of stable query execution plans with guagedtlocal
near-optimality and enhanced global stability.

dense grid of points wherein each poittc1, z2, ..., zq) corre-
sponds to a query instance with fractional selectivifyin the j-th
dimension. We use(FP;, ¢) to represent the optimizer’s estimated
cost of executing a query instangevith plan P;. The corners of
the selectivity space are referred tolas with k& being the binary
representation of the location coordinates — e.g. the tetight
corner(1,0), in Figure 1(b) isV%.

Given a planp;, the region ofS in which it is optimal is referred
to as itsendo-optimakegion; the region in which it is not optimal
but its cost is within a factofl +) of the optimal plan as its
A-optimalregion (where\ is a positive constant); and the remain-
ing space as itexo-optimaregion. These disjoint regions together
coverS and are pictorially shown in Figure 1(b). We will hereafter
use the notatioando;, A-opt; andexo; to refer to these various re-
gions associated witR;. The endo-optimal and-optimal regions
are collectively referred to, for reasons explained latethe plan’s
SafeRegiondenoted bya fe;.

select C.custkey, C.name, C.acctbal, N.name, C.address, C.phone
from Customer C, Orders O, Lineitem L, Nation N
where C.custkey = O.custkey and L.orderkey = O.orderkey and
C.nationkey = N.nationkey and
O.totalprice < 2833andL.extendedprice < 28520

(a) Query Instance Q10

vl -v3
@
°
5
3
H
;
®
w~
V,
Y O.totalprice ——w v!

(b) Selectivity Space
Figure 1: Example Query and Selectivity Space

2.1 Cost Constraints on Plan Replacement

Consider a specific query instance whose optimizer-estidiat
cation inS is ¢. and run-time location ig,, with P,. and P, the
optimal plans at these locations, respectively. Now,if were to
be replaced by a more expensive plan, clearly there is a price
to be paid when there are no errors (ig. = ¢.). Further, even

with errors, if it so happens thatPr., ga) > ¢(Poe,qa). We as-
sume that the user is willing to accept these cost incredsksyi
are boundedwithin a pre-specified local cost threshold and a
global stability thresholdh, (A;, Ay > 0). Specifically, the user is
willing to permit replacement oP,. with P.., iff:

Local Constraint: At the estimated query locatiap,

(Pre, ge)

<
Poerge) = 1T

@)

For example, setting; = 20% stipulates that the local cost
of a query instance subject to plan replacement is guardntee
to be within1.2 times its original value. We will hereafter
refer to this constraint decal-optimality.

Global Constraint: In the presence of selectivity errors,

C(PT'€7 qa)

Vq. € S such thay, # g, (Poerda)

<S(1+2X) (@

For example, setting, = 100% stipulates that the cost of

a query instance subject to plan replacement is guaranteed t
be within twice its original value at all error locations met
selectivity space. We will hereafter refer to this constrais
global-safety

Essentially, the above requirements guarantee that noialdtarm
(as perceived by the user) can arise out of the replacemespec-
tive of the selectivity error

2.2 Motivational Scenario

We now present a sample scenario to motivate how plan replace
ment could help to improve robustness to selectivity errbfare,
the example query)10 is input to the PostgreSQL optimizer; its
cost-optimal choice at the estimated locatid¥%, 40%) is plan
Py, and the suggested replacement (by our NodeExpand algorith
with Az, Ay = 20%) is planP-. When the costs of these plans are
evaluated at a set of error locatiogs — for instance, along the
principal diagonal o5, we obtain the graph shown in Figure 2(a).
The results indicate thd®, provides very substantial performance
improvements, bordering on error “immunity”, with respezt; .

To explicitly assess the compile-time predicted perforoeaim-
provements, wexecutedhe P, P> and P,, plans at these var-
ious locations — the corresponding response-time graphawrs
in Figure 2(b). As can be seen, the broad qualitative beh&vin
keeping with the optimizer’s predictions, with substansponse-
time improvements across the board. The somewhat decreased
munity in a few locations is attributable to weaknesses adh-
timizer's cost model rather than our selection policiesis th an
orthogonal research issue that has to be tackled separately

160

=
S

—o-Foe®)
—— Pre (Pz)
A FPoa

2
>

=
3

@
=)

a
=

-
>
Execution Time (secs)

02

=]
wn
=)

Estimated Plan Cost (< 10%)

4
0

00 20,20 4040 60,50 80,80 100,100
Actal Selectivity Location q, (xa,ya)

0
0,0
Actual Selectivity Location q, (xﬂ,yﬂ)

20,20 4040 6060 80,80 100,L00

(a) Compile-Time (b) Run-Time

Figure 2: Benefits of Plan Replacement@10, \;, Ag = 20%)

2.3 Error Resistance Metrics

Our quantification of the stability delivered through plaplace-
ments is based on tH®ERF error resistance metric introduced in
[8]. Specifically, for an error instanced,q.), the Selectivity Error
Resistance FactoSERF) of a replacemen®,. wrt P,. is com-
puted as

C(Pr-e7 qa) — C(Poru qa)
¢(Poc; qa) — ¢(Poa, qa)

Intuitively, SERF captures thigaction of the performance gape-
tweenP,. and P,, atq, that is closed byP,.. In principle, SERF
values can range ovéroco, 1], with the following interpretations:
SERF in the rang€0, 1], indicates that the replacement is bene-
ficial, with values close to 1 implying immunity to the selgity
error. For SERF in the rande-)y, 0], the replacement is indiffer-
ent in that it neither helps nor hurts, while SERF valuesagatbly
below —), highlight a harmful replacement that materially wors-
ens the performance.

To capture theaggregateimpact of plan replacements on im-
proving the resistance to selectivity errors in the enfir&cgS, we
computeAggSERFas!

quETep(S) an Eexope(S) SERF(q67 qa)
ques aneewooe(s) 1

whererep(S) is the set of query instances $whose plans were
replaced, and the normalization is with respect to the nurobe
error instances that could benefit from improved robustness

Apart from AggSERF, we also computMinSERF and
MaxSERF, metrics representing the minimum and maximum val-
ues of SERF over all replacement instances. MaxSERF values
close to the upper bound of 1 indicate that some replacerpenits
vided immunity to specific instances of selectivity erro€n the
other hand, large negative values for MinSERF indicate sbate
replacements were harmful.

SERF(ge;qa) =1 —

®)

AggSERF = (4)

2.4 Problem Definition

With the above background, our stable plan selection prnoble
can now be more precisely stated as:

Stable Plan Selection Problem.Given a query locatiom. in a
selectivity spacé& and a (user-defined) local-optimality threshold
A and global-safety threshold,, implement a plan replacement
strategy such that:

c(Pre, ge)
1. Snresde) <14)
(Poe, ¢c) s+
c(Pre, qa)
2. Vg €SStqa # ge, ——222Y < (14 A
q da # ¢ “(Pocr o) ()

or equivalently, MInNSERE> —).
3. The contribution to the AggSERF metric is maximized.

In the above formulation, Condition 1 guarantees locairoglity;
Condition 2 assures global-safety; and Condition 3 capttine
stability-improvement objective.

'In [8], the aggregate impact was evaluated based on thdédasat
where replacements were made, whereas our current foiomiat
based on the locations where robustness is desired.

3. STABLE OPTIMIZATION

In this section, we present the generic process followecduin o
EXPAND family of algorithms to address the Stable Plan S&ac
problem. There are two aspects to the algorithms: Firstpaepr
dure for expanding the set of plans retained in the optiritnatx-
ercise, and second, a selection strategy to pick a staldbcerpent
from among the retained plans.

For ease of presentation, we will assume that there are ro “in
teresting order” plans [12] present in the search spacetradhe
plan operator-trees do not have any “stems” — that is, thejodo
node, which represents the combination of all the baseaaktin
the query, terminates the DP lattice. The algorithmic esitars for
handling these scenarios are described in Appendix B.

3.1 Plan Expansion

We now explain how the classical DP procedure, wherein only
the cheapest plan identified at each lattice node is forwiaimléhe
upper levels, is modified in our EXPAND family of algorithms —
the detailed pseudocode listing is given in Appendix A. Fases
of understanding, we will use the term “train” to refer to tie
panded array of sub-plans that are propagated from one w@ode t
another, with the “engine” being the cost-optimal sub-gian the
one that DP would normally have chosen), and the “wagonsigei
the additional sub-plans. The engine is denoteghywhile p,, is
generically used to denote the wagons (the lower-gaselicates
a sub-plan as opposed to complete plans which are identifteéd w
P). Finally, z is used to indicate a generic node in the DP lattice.

3.1.1 Leaves and Internal Nodes

Given a query instance., at each error-sensitive leaf (i.e. base
relation) or internal node: in the DP lattice, the following four-
stage retention procedure is used on the set of candidatensag
generated by the standard exhaustive plan enumeratioagsoc

1. Local Cost Check: In this first step, we remove all wagons
whose local cost significantly exceeds that of the enginet Eh

c(pw,ge) > (1 + A7) c(pe, qe) (5)

where A} is an algorithmic cost-bounding parameter that can, in
principle, be set independently of, the user’s local-optimality
constraint (which is always applied at the final root node).

2. Global Safety Check: In the next step, we evaluate the be-
haviour of the “safety function”, defined as

f(ga) = c(Pw,qa) — (1 +)‘;)C(pev qa) (6)

This function captures the difference between the cosjs,cdnd
ag-inflated version op. at locationg,. If f(q.) < 0 throughout
the selectivity spac8, we are guaranteed that, if the cheapest sub-
plan were to be (eventually) replaced by the candidate $am-p
the adverse impact (if any) of this replacement is boundedjy
—that is, in this sense, it safe Here,)\y is again an algorithmic
parameter that can be set independently\pf(which is always
applied at the final root node). As a practical matter, we woul
expect the choice to be such thidt > A7

Evaluating the safety function requires the ability to cpsery
plans atarbitrary locations in the selectivity space. This feature,
called “Foreign Plan Costing” (FPC) in [8], is available iane-
mercial optimizers such as DB2 (Optimization Profile), S@n&r
(XML Plan) and Sybase (Abstract Plan). For PostgreSQL, vee ha
to implement it ourselves (details in Appendix G).

The safety check can be verified by exhaustively invoking the
FPC function asll locations inS, but the overheads become un-
viably large. We have recently developed ternerCube-SEER

(CC-SEER) [13] algorithm to address this problem. CC-SEER
guarantees global safety by merely evaluating the safettion at
theunit hyper-cubesocated at theornersof the selectivity space.
That is, given ai-dimensional space, FPC costing is carried out at
only 4¢ points. The intuition here is that, given the nature of plan
cost behavior in modern optimizers, if a replacement is kntmbe
safe at the corner regions of the selectivity space, theraiso safe
throughout the interior regioifsee [13, 8] for the formal details).

We have also found that an extremely simple heuristic, dalle
LiteSEER [8], which simply evaluates whether all theorner
pointsare safe, that is,

Y qa € Corners(S), f(¢a) <0)

works almost as well as CC-SEER in practice, although not pro
viding formal safety guarantees. In Figure 1(b), this cgponds to
requiring that the replacement be saféd/atVi, V> andVs, and in
general, requires FPC evaluation only2&tpoints.

3. Global Benefit Check: While the safety check ensures that
there is no material harm, it does not really address theeisu
whether there is angenefitto be expected if. were to be (even-
tually) replaced by a given wagam,. To assess this aspect, we
compute the benefit index of a wagon relative to its engine as

E(pey qa)
&(Pw; qa)

That is, we use €ornerAvgheuristic wherein the arithmetic mean
of the costs at theornersof S is used as an indicator of the as-
sistance that will be provided throughdsit Benefit indices greater
than 1 are taken to indicate beneficial replacements whéreas
values imply superfluous replacements. Accordingly, ordgens
with £ > 1 are retained and the remainder are eliminated.

Our choice of the CornerAvg heuristic is motivated by the fol
lowing observation: The arithmetic mean favors sub-plaas per-
form well in thetop-right regionof the selectivity space since the
largest cost magnitudes are usually seen there. We alresmly k
that POSP plans in this region tend to have large endo-optima
space coverage [7]. Therefore, they are more likely to pi@giood
stability since,by definition any P,. provides stability in its own
endo-optimal region, as its cost has to be less than th&,ofn
this subspace (a more detailed analysis is given in Appe@lix
The CornerAvg heuristic projects that this observatiordadtue
for the sub-plansof near-optimal plans as well.

4. Cost-Safety-Benefit Skyline Check:After the above three
checks, it is possible that some wagons are “dominated” tigha
their local cost is higher, their corner costs are indivijulaigher,
and their expected global benefit is lower, as compared teesom
other wagon in the candidate set. Specifically, consideriragba
wagons,p,1 and pw2, with p,,1 dominatingp.,2 at the current
node. As these wagons move up the DP lattice, their costs and
benefit indices comelosertogether, since onlgdditive constants
are incorporated at each level — that is, the “cost-couplan
the “benefit-coupling” between a pair of wagons becostesnger
with increasing levels. However, and this is the key poim,dom-
ination propertycontinues to holdright until the lattice root, since
the same constants are added to both wagons.

Given the above, it is sufficient to simply useskylineset [4]
of the wagons based on local cost, global safety and globad-be
fit considerations. Specifically, for 2D error spaces, thdisé is
comprised of five dimensions — the local cost and the four temo
corner costs (the benefit dimension, when defined with the Cor
nerAvg heuristic, becomes redundant since it is impliednftbe
corner dimensions). A formal proof that the skyline-basedjon

E(pw, pe) = ga € Corners(S) (8)

NCOL(1): 322890 [1.00] NCOL(1): 322890 [1.001 NCOL(1): 322890 [1.00]

NCoL(: 320080 [1:23]
NcoL NCOL(9) : 334801[1.26]
NCO(1): 25428 [1.00] COL(1): 322729 [1.00]
NCO(1): 25428 COL(1): 322729 NCO(2): 31347 [2.67] COL(2): 328648 [1.4] COL(1): 322729 [1.00]
i NCO(5): 65877 [2.66] COL(10): 365012 [1.29] NCO(1): 25428 [1.00] COL(2): 328929 [1.24]
[xo] (o]
CO(1): 25323 [1.00] OL(1): 313924 [1.00]
CO(2): 31243 [3.24] OL(2): 321245 [1.08]
NC(): 7199 CO(1): 25323 OL(): 313924 NC(1): 7199 CO(3): 60005 [3.07] OL(3); 350007 [1.06] [NC(1):7199 CO(1): 25323 [1 00] OL(1): 31392411.00]

=) \\ j=) (/e B [\ | [/lcon\ umn\\

oM 168107 ML(1): 212 /\ \ /\

0O(2): 45572 L(2): 193584
N(1) 1 c<1) 5135 0%10 La: 212 g : 1 cy: 5135 0(). 69537 L(5): 9700974 N(1):1 ;5135 O(1): 16810 L(1): 212
o IILIIIN| <] o] [0 [v]1 [<] VAL\I_lo]

(a) RootExpand (b) SkylineUniversal (c) NodeExpand

Figure 3: Plan Expansion Algorithms (Q10: A;, Ag = 20%, 04 = 1)

selection technique is equivalent to having retained thieseset of 4. REPLACEMENT ALGORITHMS

wagons is given in Appendix D. Given the generic process described above, we can obtaista ho
After the above multi-stage pruning procedure completes, t of replacement algorithms by making different choices far Xy
surviving wagons are bundled together with theengine, and this and)\j settings in the lattice interior. For example, we could cleoo

train is then propagated to the higher levels of the DP kattic to keep them constant throughout. Alternatively, high galoould
be used at the leaves, progressively becoming smaller asowe m
3.1.2 Root Node up the lattice. Or, we could try exactly the opposite, with ksaves
When the final root node of the DP lattice is reached, all the having low values and more relaxed thresholds going up tiesa
above-mentioned pruning checldst, Safety, Benefit, Skyljree In essence, a rich design space opens up when stabilitydeoasi
again made, with the only difference being that bathand A2 tions are mgorporated into classical cost.-bas.ed optirpize
are nowmandatorilyset equal to the user's requiremenis,and We consider here a few representative m;tanc_es that cover a
Ay, respectively. Further, we also incorporate a benefit Hules range of tradeoffs between the number anq diversity of tlmelllea
84(8, > 1), which determines the minimum benefit for which re- ~ date replacement plans, and the computational overheadséd
placement is considered a worthwhile option. Ideallyshould be ~ in generating and processing these candidates. The foigiof
set so as to ensure maximum stability without falling preguper- ~ the algorithms is pictorially shown in Figure 3 for the exdenp

fluous replacements. However, there is a secondary congimter ~ query Q10 with A, A, = 20% (andd, = 1). In these figures,
— using a lower value and thereby going ahead with some of the nodes that contain one or more error-sensitive relatiorDERS

stability-superfluous replacements may help to achiverexic LINEITEM) in their sub-trees, are represented with double boxes.
plan diagrams, a potent objective in query optimizer carusion. RootExpand. The RootExpand algorithm is obtained by setting
The appropriate setting 6}, is discussed in our experimental study oth A7 and AZ to 0 at all leaves and internal nodes, while at the
(Section 5). root node, these parameters are set to the user’s constkaint,,

. respectively. This is a simple variant of the classical Détpdure,
3.2 Plan Selectlon. wherein DP is used as-is starting from the leaves until tra fot
At the end of the expansion process, a set of complete plans ar node is reached. At this point, the competing (complete)pthat

available at the root node. There are two possible scenarios are evaluated at the root node are filtered based on the fiekc
1) The only plan remaining is the standard cost-optimal gan sequence, and a final plan selection is made from the susva®r
in which case this plan is output as the final selection; or per the procedure described in Section 3.2.

2) In addition to the cost-optimal plan, there are a set otittate The functioning of RootExpand is pictorially shown in Fig-
replacement plans available that are all expected to be robust ure 3(a), wherein the value above each node signifies thettst

than P (i.e. their{ > dy). To make the final plan choice from gptimal sub-plan to compute the relational expressionesspited
among this set, our current strategy is to simply uséaxBenefit by the node — for example, the cheapest method of joiniRgERS
heuristic — that is, select the plan with the highgst (O) andLINEITEM (L) has an estimated cost of 313924. At the
Constant Ranking Property. An important property of the above 00t node, the second-cheapest pRA,OL(2), with cost 329089,
selection procedure, borne out by the definitiort pfs that it al- is chosen in preferenc_e _to the standard DP chdiG©L(1), due
ways gives thesame rankingbetween a given pair of potential re- to chally belnglwell within 20% of the lowest cost (32289and
placement plangrespective of the specific quety in S that is having the maximum Benefitindex 6f= 1.23.

currently being optimizedThis is exactly how it should be since SkylineUniversal. The SkylineUniversal algorithm is obtained by
the stability of a plan vis-a-vis another plan should be ueieed setting bothA? and \? to oo at the error-sensitive nodes in the
by its global behavior over the entire space. lattice interior, while the standard DP procedure is useithatre-
maining nodes. It represents the other end of the spectritnat

A full-blown example of the plan replacement procedure & pr Expand in that it propagates, beginning with the leas#isyagons

sented in Appendix E.

evaluated at an error-sensitive node to the levels abovet ih which plan diagrams have been previously computed.

modulo the Skyline Check, which only eliminates redundaagw (ii) Unlike SEER, our choice of replacement plans is notrietetd
ons, there is absolutely no other pruning anywhere in thedat to be only from the parametric optimal set of plans (POSR)riim-
interior. This implies that the root node effectively preses the ciple, it could beany other plarfrom the optimizer’s search space
entire set of complete plamgesent in the optimizer's search space that satisfies the user’s cost constraints. For exampleryagoed

for the query. plan that is always second-best by a small margin over thesent

The pictorial representation of SkylineUniversal is shawRig- selectivity space. In this case, SEER would, by definitiast, e
ure 3(b). The labels above the error-sensitive nodes itedittee able to utilize this plan, whereas it would certainly falltiin our
surviving wagons, along with their local costs and benefitdes. ambit.

For exampleCO(2) has a cost of 31243 arid= 3.24. The number (i) Finally, as previously mentioned, an attractive i@&t of Node-
of plans enumerated at the root ndd€OL is 1099, and 9 of them Expand is that it ensures performance fidelity of the reptend
successfully pass the four-stage check. The plan finallgeds throughout its operator tree.

NCOL(2) which has a cost of 328820 (about 2% more expensive

than the cost-optimallCOL(1)) and provides the maximum Ben- 5. EXPERIMENTAL RESULTS

efitindex of§ = 1.38. . . .
We implemented the above plan replacement algorithms it Pos

NodeExpand. The NodeExpand algorithm strikes the middle greSQL 8.3.6[15], operating on a Sun Ultra 24 workstatioming

ground between the replacement richness of Universal a&nbti- Ubuntu Linux 9.10. The user-specified cost-increase tialdstin
putational simplicity of RootExpand, by “opening the submp all our experiments was;, A, = 20%, a practical value as per our
pipe” to a limited extent. Specifically, the version of NodeBnd discussions with industrial development teams.

that we evaluate here seX§ = \;, \; = A, at all error-sensitive)

nodes — that is, the root node’s cost constraintdrareritedat the Query Templates and Plan Diagrams. To assess performance

lower levels as well. These settings are chosen to ensurehina ~ OVer the entire selectivity space, we took recourse to paazed
sub-plansalso provide the same local-optimality and global-safety duery templates- for example, by treating the constants associ-
guarantees as the complete plan, a feature we expect wad pr ated withO.totalprice and L.extendedprlce in Q10 as parame-
useful in real-world environments with aspects such agimg-re- ters. These templates, enumerated in [1], are all based enequ
source consumption. Further, as a useful byproduct, thimget appearing in thé’P_CTH andTPC-DSbenchmarks, and cover both
also help to keep the expansion overheads under control. 2D and 3D selectivity spaces. For each of the query templates

An example of NodeExpand is shown in Figure 3(c), where 3 We produced plan diagrams (at a uniform grid resolution &40
plans survive the four-stage check at the root, B@DL(3) whose each dimension) with the Picasso visualization tool [16].

Benefitindex of 1.26 is the highest, is chosen as the finattete A variety of performance metrics are used to characteriee th
behavior of the various replacement algorithms:

The constraints imposed by the three expansion algorithms p
sented above are summarized in Table 1 — standard DP is also in
cluded for comparative purposes.

1. Plan Stability and Safety. The effect of plan replacements on
stability is measured with the AQgSERF and MaxSERF stasisti
Further, we traclREP%, the percentage of query locations where

Optimization | Leaf Node | Internal Node | Root Node the optimizer's original choice is replaced; ahietlp%, the per-
Algorithm AP XE AP NE AXE | g centage of error instances wherein replacement plans eddhe
Standard DP 0 0 0 — performance gap substantially — specifically, by atléastthirds
RootExpand 0 0 AAg | 21 Replacement safety is evaluated through the MinSERF titatis
NodeExpand AlAg ALAg AAg | 21 and the percentage of error instances with MinSERF belowy is

SkylineUniversal 00 00 AAg | 21 tabulated aglarm%% .
Table 1: Constraints of Plan Replacement Algorithms 2. Plan Diagram Cardinality. This metric tallies the number of
unique plans present in the plan diagram, with cardinalitéss
Inheriting Engine Costs for Wagons. A crucial optimization than or arounden indicating anorexic diagramg7, 8]. We also
incorporated in the above algorithms for reducing overkéathe tabulate the number ofon-POSP plans selected by our techniques.

following: When two plan-trains arrive and are combined at a
node, the cost of combining the engines of the two trains with
particular method is exactly the same cost as that of comdpamy
other pair from the two trains. This is because the engines and
wagons in any train all represent the same input data. Toreref Query Template Descriptors. We useQTx andDSQTx to label
we need to only combine the two engines in all possible wayst, j query templates based on Queryf the TPC-H benchmark and the
like in standard DP, and then simply reuse these associagts © TPC-DS benchmark, respectively. By default, the query tatep

3. Computational Overheads. This metric computes the over-
heads incurred, with regard to both time and space, relatitrose
experienced with the standard DP-based query optimization

evaluate the total costs for all other pairings betweenvioettains. is 2D, while a label prefix 08D indicates a 3D template. The de-
Further, this cost reuse strategy can be used not just fdotad fault physical design is a clustered index on each relaiprimary
costs, but for the remote FPC-based corner costs as well. key. Additional results obtained on an “index-rich” sitioat, de-

i i noted with label prefiAl, where indices exist on all query-related
4.1 Comparison with SEER schema attributes, are given in Appendix F.1.

Our earlier SEER approach [8] identified robust plans thioug -
the anorexic reduction of plan diagramsThere are fundamen- 9-1 Plan Stability Performance

tal differences between that “offline/exo-optimizer/retion” ap- The stability performance results of the RootExpand, NodeE
proach and our current “online/intra-optimizer/prodanti work: pand, SkylineUniversal and SEER algorithms are enumeriated
(i) Our techniques are applicable #m-hoc individual queries Table 2 for a representative set of query templates from twatys

whereas SEER is useable only on form-based query templates f which covered a spectrum of error dimensionalities, berachm

Query RootExpand NodeExpand SkylineUniversal SEER DP
Temp- REP Agg Help| #of Non- | REP Agg Help| #of Non- | REP Agg Help| #of Non- | REP Agg Help| #of # of
late % SERF % | PlansPOSP| % SERF % | PlansPOSP| % SERF % | Plans POSP| % SERF % | Plans | Plans
QT5 84 054 55 3 0 85 0.54 55 3 0 85 0.54 55 3 0 47 0.61 64 2 11
QT10 32 0.20 19 7 1 98 0.21 20 3 0 98 0.21 20 3 0 37 0.21 20 2 15
3DQT8 47 0.17 8 22 17 69 0.18 10 3 0 - - - - - 59 0.17 9 2 43
3DQT10 15 0.37 41 12 2 99 0.39 44 5 1 99 0.39 44 5 1 24 0.38 41 3 30
DSQT7 93 0.28 28 3 1 93 0.28 28 2 1 93 0.28 28 2 1 46 0.28 28 2 12
DSQT26 | 30 0.48 50 9 7 30 0.49 50 2 1 30 049 50 2 1 29 049 49 2 13

Table 2: Plan Stability and Plan Diagram Performance

databases, physical designs and query complexities (tihelete
set of results is available in [1]).

Our initial objective was to evaluate whether there is seth-
gible scope for plan replacement, or whether the optinszeian
itself is usually the robust choice. We see in Table 2 that REP
for both RootExpand and NodeExpand is quite substantian ev
reaching inexcess of 90%or some templates (e.g. DSQT7)! On
average across all the templates, the replacement pegeentzs
around 40% for RootExpand and 80% for NodeExpand.

We hasten to add that not all of these replacements are egifoir
achieve stability, and the stability-superfluous replagets could
be eliminated by setting higher values &f. For example, with
QT5, settingd, = 1.03 achieves the same stability as the default
dg = 1.0 and brings REP% of NodeExpand down from 85% to
32%. Our analysis has shown that in general, about 30%-50% re
placements are sufficient to maximize the stability. Howetlee
additional replacements contribute to producing anorplda dia-
grams, as seen later in this section.

Moving on to the stability performance itself, we observat the

AggSERF values of both RootExpand and NodeExpand are usu-

ally in the range of.1 to 0.6, with the average being abo013,
which means that on average abouie-third of the performance
handicap due to selectivity errors is removed. A deeperyaisal
leads to an even more positive view: First, the Help% stesish-
dicate that, for several templates, a significant fractibtihe error
instanceglo receive substantial assistandeor example, QTS has
the performance gap reduced by more than 2/3 in about 55mgerce
cases, and, in fact, most of these receive SERF in exces9 ef 0.
i.e., effectively achievémmunityfrom the errors. A visualization
of the distribution of SERF values for this template is shawn
Appendix F.3.

Second, the AggSERF performance of (offline) SEER is quite
similar to that of RootExpand and NodeExpand. In our priodgt
[8], SEER had produced better results for these same tessplat
the difference is that those experiments were carried ot s0-
phisticated commercial optimizer supporting a richer sgaual-
ity replacements than PostgreSQL. Implementing our dlyms
in such high-end optimizers is likely to also significanthciease
their AggSERF and Help% contributions.

Third, the performance of RootExpand and NodeExpand, in
spite of considering a much smaller set of replacement dates,
is virtually identical to that of SkylineUniversal in themgplates
where it was able to successfully complete (the templatestiach
SkylineUniversal ran out of memory are shown with —). In fact
shown in Appendix F.2, their performance is fairly closeverean
optimal (wrt AQgSERF) version of SkylineUniversal!

Finally, MaxSERF was 1 for all the templates, testifyinghe t
inherent power of the replacement approach.

Taken in toto, these results suggest that the controlledrexp
sion technique is capable of extracting most of the bendiitsin-
able through plan replacement. Further, we have also ceeduc
an analysis of the characteristics of the replacement pligrs-vis

the original choices. Our observations, detailed in [1dj¢ate that
(a) index-intersection joins are often replaced by scasethgoins;
(b) nested-loop-based plans are frequently replaced \agh-foin-
based plans, while merge joins are almost never retainet(@n
left-deep plans are typically replaced by bushy plans.

Plan Replacement SafetyThe MinSERF results with a LiteSEER
implementation (given in Appendix F.5) indicate that théuhistic
works very effectively in providing replacement safetycan(a)
only a few templates have negative MinSERF values, with kmal
magnitudes, and (b) the harmful replacements in these cases
for only a miniscule percentage of error locations. Theespond-
ing CC-SEER results are given in Appendix F.6.

5.2 Plan Diagram Characteristics

We now turn our attention to the characteristics of piten di-
agramsobtained with the replacement algorithms. The associated
results are also shown in Table 2, and to place them in cqritext
statistics for the standard DP-based optimizer are indude

Plan Diagram Cardinality. We see in Table 2 that for templates
such as 3DQT8, where DP generates “dense” diagrams with high
plan cardinalities, RootExpand diagrams may also featuaege
number of plans. This behavior is more prevalent in indek-ri
environments (see Appendix F.1), with the diagram cardieal
evenexceedinghat of DP for some templates — e.g. DP has 28
plans for AIDSQT18, whereas RootExpand features 31 plans!
NodeExpand, on the other hand, consistently delivers glyon
anorexicplan diagrams for almost all the templates. In fact, its
plan cardinality is often comparable to that of SEER - thiglige
encouraging since it is obtained in spite of having to comteith
(a) a much richer search space from which to choose replatsme
and (b) no prior knowledge of the choices made in the remginin
selectivity space. A sample set of plan diagrams producedR)y
RootExpand and NodeExpand are shown in [1].

Non-POSP plans. We also see in Table 2 that non-POSP plans
do feature in the replacement plan diagrams, occasionalsig-
nificant proportions, as in 3DQT8 with RootExpand. Againisth
phenomena is more prevalent in index-rich environments fge
pendix F.1) — as a case in point, with AI3DQT8, there are 41 non
POSP plans out of 51 for RootExpand, occupying 78% of thesspac
while NodeExpand has 12 on 14, covering more than 90% area.

5.3 Computational Overheads

We now turn our attention to the computational price to bel pai
for providing robust plans and anorexic plan diagrams. Tine t
aspect is captured in Table 3 where the average per-query opt
mization times (in milliseconds) are shown for DP, RootEhga
and NodeExpand — the increase relative to DP is also shown in
parentheses. These results indicate that the performabothore-
placement algorithms is well withih00 millisecond®f DP for all
the templates.

Query Optimization Time (ms)
Template | DP | RootExpand | NodeExpand
QT5 3.2 114 (+#8.2)| 222 (+19.0)
QT10 09| 23 (+14)| 32 (+2.3)
3DQT8 | 35| 12.9 (+9.4)| 30.6 (+27.1)
3DQT10 | 0.9 | 3.4 (+25)| 43 (+3.4)
DSQT7 | 1.3 | 42 (+2.9)| 7.7 (+6.4)
DSQT26 | 1.4 | 41 (+2.7)| 7.0 (+5.6)

Table 3: Time Overheads (in milliseconds)

Query Memory Overhead (MB)
Template | DP | RootExpand | NodeExpand
QT5 2840 (+1.2) | 7.0 (+4.2)
QT10 | 22|26 (+0.4)| 34 (+1.2)
3DQT8 | 40| 54 (+1.4) | 106 (+6.6)
3DQT10 | 2.2 | 3.0 (+0.8) | 51 (+2.9)
DSQT7 | 24|29 (+05) | 35 (+1.1)
DSQT26 | 24 | 3.0 (+0.6) | 3.8 (+1.4)

Table 4: Memory Consumption (in MB)

With regard to memory overheads, shown in Table 4, the peak

additional consumption of RootExpand and NodeExpand is-com
fortably less tharlOOMBover all the query templates. These over-
heads appear quite acceptable given the richly-provisicoeput-
ing environments in vogue today. Further, they are incumelg
for a brief time period £ 0.1s), as per Table 3.

The low overheads are primarily due to the four-stage punin
mechanism that controls the number of wagons forwarded &rom

node — an example scenario is shown in Appendix F.4, where the

initial 446 candidate plans are pruned to just 6 survivors.

6. RELATED WORK

Over the last decade, a variety of compile-time strategéa® h
been proposed for identifying robust plans, including teast Ex-
pected Cost [5], Robust Cardinality Estimation [2] and Ripdp-
proaches. These techniques provide novel and elegant fimrmu
tions, but, as described in detail in [8], are limited on same
portant counts: First, they do not all retain a guaranteed! lef
local optimality in the absence of errors. That is, at théested
query location, the substitute plan chosen maytigtrarily poor
compared to the optimizer’s original cost-optimal choiecond,
these techniques have not been shown to provide sustaineptac
able performancehroughoutthe selectivity space, i.e., in the pres-
ence of arbitrary errors. Third, they requispecializednforma-
tion about the workload and/or the system which may not adway
be easy to obtain or model. Finally, their query capabditieay be
limited compared to the original optimizer — e.g., only SPJ queries
with key-based joins were considered in [2, 3].

Both our previous offline exo-optimizer SEER technique, and
the online intra-optimizer algorithms proposed in this ¢raad-
dress the above limitations through a confluence of (i) nratte
ical models sourced from industrial-strength optimiz¢ii¥,com-
bined local and global constraints, and (iii) generic biieaive
heuristics. (The salient differences between SEER and BXPA
were discussed in Section 4.1).

7. CONCLUSIONS AND FUTURE WORK

We investigated the systematic introduction of global ititgb
criteria in the cost-based DP optimization process, witheavv
to reducing the impact of selectivity errors. Specificalg pro-
posed the Expand parametrized family of algorithms fokistg
the desired balance between the competing demands of ielgrich

the candidate space for replacement plans, and the asgbc@n-
putational overheads. Our approach expands the set of ptarts
from each node in the DP lattice to the higher levels, sulject
a four-stage checking process that ensures only plausplaae-
ments are forwarded, and overheads are minimized.

We implemented, in the PostgreSQL kernel, a variety of m@pla
ment algorithms that covered the spectrum of design tréslenid
evaluated them on benchmark environments. Our resultseshow
that a significant degree of robustness can be obtained wldh r
tively minor conceptual changes to current optimizersgeily
those supporting a foreign-plan-costing feature. Amonrg ré
placement algorithmd\odeExpand which propagates the user’s
cost and stability constraints to the internal nodes of tRdditice,
proved to be an excellent all-round choice. It simultangods-
livered good stability, replacement safety, anorexic pleagrams,
acceptable computational overheads, and near-optimaplsanis.
The typical situation was that its plan replacements wetenaible
to reduce, by more than two-thirds, the adverse impact ettet
ity errors for a significant number of error situations, itura for
investing relatively minor time and memory resources.

In our future work, we plan to investigate automated techesq
for identifying customized assignments to the node-specifist,
safety and benefit thresholds in the Expand approach. Fuithe
would be interesting to extend our study to skewed distidimst of
error locations in the selectivity space.

Acknowledgements. This work was partially supported by grants from
Microsoft Research. We thank A. Dutt for implementation toutions.

8. REFERENCES

[1] M. Abhirama et al, “Stability-conscious Query Optimiza”, Tech.
Rep. TR-2009-01, DSL/SERC, Indian Inst. of Science, Juf20
dsl.serc.iisc.ernet.in/publications/report/ TR/TRI2001.pdf

B. Babcock and S. Chaudhuri, “Towards a Robust Query@igér:
A Principled and Practical Approach”, Proc. of SIGMOD 2005.
S. Babu, P. Bizarro and D. DeWitt, “Proactive Re-Optiatian”,
Proc. of SIGMOD 2005.

S. Borzsonyi, D. Kossmann and K. Stocker, “The Skylines@or”,
Proc. of ICDE 2001.

F. Chu, J. Halpern and P. Seshadri, “Least Expected CostyQ
Optimization: An Exercise in Utility”, Proc. of PODS 1999.

[6] A.Deshpande, Z. Ives and V. Raman, “Adaptive Query Pseitey”,
Foundations and Trends in Databaséfow Publishers, 2007.
Harish D., P. Darera and J. Haritsa, “On the ProductioAmdrexic
Plan Diagrams”, Proc. of VLDB 2007.

Harish D., P. Darera and J. Haritsa, “Identifying RobRkins
through Plan Diagram Reduction”, Proc. of VLDB 2008.

[9] A.Hulgeriand S. Sudarshan, “AniPQO: Almost Non-intikes
Parametric Query Optimization for Nonlinear Cost Functipn
Proc. of VLDB 2003.

N. Kabra and D. DeWitt, “Efficient Mid-Query Re-Optination of
Sub-Optimal Query Execution Plans”, Proc. of SIGMOD 1998.
V. Markl et al, “Robust Query Processing through Pregiee
Optimization”, Proc. of SIGMOD 2004.

P. Selinger et al, “Access Path Selection in a Relati@rzabase
System”, Proc. of SIGMOD 1979.

H. Shrimal, “Characterizing Plan Diagram Reductiona@ty and
Efficiency”, ME Thesis, Indian Inst. of Science, June 2009.
dsl.serc.iisc.ernet.in/publications/thesis/harsti.pd

M. Stillger, G. Lohman, V. Markl and M. Kandil, “LEO, DB&
LEarning Optimizer”, Proc. of VLDB 2001.

[15] www.postgresql.org/docs/8.3/static/release-8-3rblht

[16] dsl.serc.iisc.ernet.in/projects/PICASSO/picassd.htm

(2]
(3]
(4
(5]

(7]
(8]

[20]
[11]
[12]

[13]

[14]

APPENDIX

A. THE EXPAND ALGORITHM

The complete pseudo-code for the EXPAND family of algo-
rithms, including the extensions described in Appendix$Bprie-
sented in Figure 4.

B. QUERY COMPLEXITIES

For ease of presentation, we had assumed in the main pager (Se
tion 3) that optimizing the user query did not involve eitfer “in-
teresting orders” (where a sub-plan produces results irrticpa
lar order that could prove useful later in the optimizatjom) (b)
“stems” (where a linear chain of nodes appears above theqoin
node of the DP lattice). We now discuss the algorithmic esitars
necessary to handle these features.

B.1 Interesting Orders

Plans corresponding to interesting orders can be handlady
ing each train to be composed of not just a single genericesexu
of wagons, but instead aarray of sub-trains, one for each inter-
esting order. For the sake of uniformity, we treat the setafons
corresponding to unordered plans to also be part of a geresudt
order calledNO_ORDER

As discussed earlier, there are two steps to the expansice $s
— an exhaustive plan enumeration step followed by the ftages
plan retention process. We discuss the changes requireatinad
the two steps to be able to handle interesting orders.

Plan Enumeration. Let A andB be a pair of lower level nodes
in the lattice that combine together to produce NadeThen, the
plan expansion procedure at Nadevolves exhaustively combin-
ing all sub-trains ofA with all sub-trains ofB. Subsequently, the
result order (if any) of each of the newly produced combonaiis
determined. Combinations with interesting orders aregassi to
the associated sub-trains, while the unordered combimatice all
placed in theNo_ORDERSuUb-train.

Plan Retention. The plan retention process is handiadepen-
dently for each of the sub-trains and exactly follows the 4-stage
pruning procedure described for single trains in Section 3.

B.2 Stems

A stem in a DP-lattice is the linear chain of nodes that may ap- 3

pear above the “join root” node (the node correspondingeqdim

of all the relations present in the query). The stem usualiyures
aggregation and grouping operators. A sample, based oxane-e
ple query of Figure 1(a), is shown in Figure 5, where the joint is
NCOL, and the stem is displayed in the shaded box. The handling
of stems is algorithm-specific, as described below.

RootExpand. As explained in Section 4, plan expansion in Root-
Expand takes place only at the terminal node of the DP-atlitis

is appropriate when the terminal node is the join root ancethee

a set of alternative plans, corresponding to different jmiders,

to choose from. However, it becomes meaningless if the termi
nal node is at the end of a stem since onliragle plan will have
survived at this stage in the normal DP process, and therdifier
replacement space is virtually non-existent.

We therefore modify the RootExpand algorithm to peratit
plans that reach the join root to continue to be considerethal
way until the terminal node of the stem. Thatg,and\y are set
to oo at the join root and all internal stem nodes that lie between
the join root and the terminal node. This procedure is imgletad
in Lines 26 and 27 of Figure 4.

Expand (Node x, \{, Ay, 6g)

Node z : Anode in the DP-lattice

A7 . Local-optimality threshold for node (set as per Table 1)
Ay : Global-safety threshold for node(set as per Table 1)

d4 : Global-benefit threshold (set as per Table 1)

NoakhwdbR

47:
48:
49:
50:
51:
52:
53:
54:

z.PlanTrain «— ¢

. x.ErrorSensitive +— FALSE
. if SubTree(x) contains at least one error-sensitive reldkien

z.ErrorSensitive — TRUE

: if z. ErrorSensitive = FALSE then

/+ Standard DP x/
z.PlanTrain «— {Cheapest plan to compute+ cheapest plan to
computex for each interesting ordéo}
Returnx. PlanTrain
else
/+ Expansion Process:/
if x.level = LEAF then
z.PlanTrain < All possible access paths for base relation
else
for all pairwise node combinations that generate Nod®
Let A andB be the lower level nodes combining to produce
Let A.PlanTrain and B.PlanTrain be the plan-trains of
A and B, respectively.
for eachp 4 in A.PlanTrain do
for eachpg in B.PlanTrain do
z.PlanTrain «— x.PlanTrain U {Plans formed by
joining p 4 andpz in all possible ways

for each plarp with interesting ordeio in x. PlanTrain do
Move p to sub-traine. PlanTrain;,.
Move all remaining plans to sub-train PlanTrainNo_ o RDER-

/+ Stem handling for RootExpand s/
if (RootExpandpand (isJoinRootg) or isinternalStem¢)) then
)\f «— 00,)\agv — 00

for eachz. PlanTrain, of nodex do
/* 4-stage Pruning Process/
Let p. be the engine of. PlanTrain,
/* 1. Local Cost Checks/
for each wagon plap., € z.PlanTrain, do
if cost(pw,qe) > (1 + AT)cost(pe, ge) then
z.PlanTrain, «— z.PlanTrain, — {pw}
/* 2. Global Safety Checks/
for each wagon plap., € z.PlanTrain, do
for each poinig, € Corners(S) do
if cost(pw,qa) > (1 + A§)cost(pe, ga) then
x.PlanTrain, «— x.PlanTrain, — {pw}
break
/* 3. Global Benefit Checksx/
for each wagon plap,, € z.PlanTrain, do
£ Zgq€Corners(s)c05t(Pe;qa)
Puw- EqQECoTneTs(S)COSt(pwvQG)
if x.level = ROOT and p,.§ < 04 then
z.PlanTrain, «— z.PlanTrain, — {pw}
else ifz.level # ROOT and p,,.£ < 1then
z.PlanTrain, «— z.PlanTrain, — {pw}
/* 4. Skyline Checksx/
z.PlanTrain, «— C-S-B Skyline ¢.PlanTrain,)

if z.level = ROOT then
z.PlanTrain <+ Plan with Maximunm¢ in z. PlanTrain
Returnz. PlanTrain

Figure 4: Node Expansion Procedure

ORDERBY(1): 324018 [1.00]
ORDERBY(2): 330217 [1.21]

ORDERBY

GROUPBY(1): 323164 [1.00]
GROUPBY(2): 329363 [1.21]

NCOL(1): 322890 [1.00]
NCOL(2): 329089 [1.23]

1
=] !

N

NCO(1): 25428 COL(1): 322729

Stem

co(1): 25323

NC(1): 7199

/
N(1): 1/\0(1): 5135 O(1): 16810 L(1): 212

Figure 5: Plan Stem

NodeExpand and SkylineUniversal. For these algorithms, we
do not need to make any special changes for handling stes sin
they, unlike RootExpand, carry out plan expansion at aklewof
the DP-lattice, and therefore the stem nodes can be treatiw i
same way as the canonical lattice nodes.

C. IMPACT OF PLAN REPLACEMENT

Consider the situation where we are contemplating the idecis
to replace theP,. choice atg. with the P,.. plan. The actual query
point g, can be located in any one of the following disjoint regions
of P,. that together cove® (with reference to Figure 1(b)):

Endo-optimal region of P..: Here, ¢, is located in endoy.,
which also implies thatP,e = P,.. Sincec(Pre,qa) =
¢(Poa, qa), it follows that the cost oFc atqq, ¢(Pre, ¢a) <
¢(Poe, qa) (by definition of a cost-based optimizer). There-
fore, improved resistance to selectivity errors is alwgyar-
anteedin this region. (If the replacement plan happens to
not be from the POSP set, as is possible with our algorithms,
endor. Will be empty.)

A-optimal region of P,..: Here, q, is located in the region that
could be “swallowed” byP.., replacing the optimizer’s cost-
optimal choices without violating,, the local cost-bounding
constraint. By virtue of this constraint, we are assured tha
c(Pre;qa) < (1 4+ Ai)e(Poa;ga), and by implication that
¢(Preyqa) < (1 4+ A)c(Poe,ga). Now, there are two pos-
sibilities: If ¢(Pre,qa) < c(Poe,qa), then the replacement
plan is guaranteed to improve the resistance to selectivity
errors. On the other hand, {Poc,ga) < ¢(Pre,qa) <
(1 + Ai)c(Poe, qa), the replacement is certain to not cause
any real harm, given the small valuesafthat we consider
in this study.

Exo-optimal region of P,..: Here, g, is located outsidea fey.,
and at such locations, we cannot apriori predict’s behav-
ior relative to P,.— it could range from being much better,
substantially reducing the adverse impact of the selégtivi
error, to the other extreme of beimguch worsemaking the
replacement a counter-productive decision.

D. PROOF OF SKYLINE SUFFICIENCY

In Section 3, we described a four-stage wagon pruning proeed
that is invoked at each node. The last check in this procezkles-
tively retains only theskylineset of wagons based on cost-safety-
benefit considerations. We prove here that the final plancelsoi
made by the optimizer using this restricted set of wagonsastéy
equivalent to that obtained by retaining the entire set ajons —
that is, there is no “information loss” due to the pruning.

Theorem 1 A sub-planp,, eliminated by the Skyline check cannot
feature in the final replacement plap.. selected by the optimizer
in the absence of this check.

PROOF We demonstrate this proof by negation. That is, as-
sume in the absence of the Skyline check, the final plandoes
contain a wagorp,,1 eliminated by this check. Let the elimina-
tion have occurred due to domination py. on the dimensionality
space comprised dfocalCost, Cost(V1), Cost(Vz), Cost(V3),
...Cost(Van — 1), BenefitIndex.

We now assess the relationship that develops betweerand
pw2 in the event that both had been retained through the higher
levels of the DP lattice. For example, at the next higher nadbe
costs and benefits of the wagons will be

Wagon | Local Corner Benefit
Cost Costs Index

wl c(pwi, ge) + | c(pw1, Vi) + | c(pwr, Vi) +
Ac Av; > Av,

w2 c(pwi, ge) + | c(pw2, Vi) + | c(pw2, Vi) +
Ac Av; > Av,

where the deltas are the incremental costs, at the local ameic
locations, of computing node. Note that these incremental costs
will be the same for the two wagons since they both repre$ent t
same input data and can therefore use the same strategynfier co
putingz.

From the above, it is clear that the relative values alonglai
line dimensions have indeed come closer together due toréise p
ence of the additive constants — that is, there is a tightargting”.
However, there is no “inversion” on any dimension due to \Whie
domination property could be violated. This is becauses &svi-
ially obvious, given two arbitrary numbets andv; with v; > v;,
and a constant, it is always true that; + a > v; + a.

By induction, the above relationship would continue to hestr
all the way up the lattice to the root node. Now, in the final se-
lection, the MaxBenefit selection heuristic chooses theomagith
the maximum benefit. Therefore, it would still be the cas¢ ttha
plan withp,,» would be preferred over the identical plan with
instead since the benefit of the former is greater than thateof
latter. Hence our original assumption was wrong.l

E. PLAN REPLACEMENT EXAMPLE

To make the plan replacement procedure concrete, consider t
example situation st]own in Table 5, obtained at the root ef th
DP lattice for queryQ10 using the NodeExpand algorithm with
A, Ag = 20%, 6, = 1. We present in this table the enging; §
andseventy threadditional wagons®, through P-4), ordered on
their local costs. The corner costs and benefit indices sktpans
are also provided, and in the last column, the check (if ahgj t
resulted in their pruning. As can be seen, each of the chdicks e
nates some wagons, and finally, only two wagaRs Pi9) survive
all the checks. From among them, the final plan choseR\is
which has the maximurg = 1.26, and whose local cost (334801)
is within 4% of P, (322890).

Plan| Local Vo Vi Vo Vs 3 Pruned
No | Cost Cost Cost Cost Cost by

P1 | 322890|202089| 224599| 846630 1271678| 1.00
P2 | 322901 202101| 224610| 846642 | 1271689| 0.99
P3 | 323026 | 202091| 224593| 905309 | 1247883| 0.98
P4 | 324203 | 202089 224604 | 846636| 1952627 0.78

Benefit
Benefit
Safety
1.23
1.23
0.43

1280663
1280674
4563459

356555
356567
846959

230766
230777
224928

208207
208219
202090

P9 | 329089
P10| 329100
P11| 329229

Skyline
Safety
126 |
0.47
0.25

1204051
4572444
9354574

362417
356884
356886

236628
231095
231097

214078
208208
208218

334801
335428
337838

P19
P20
P21

Safety
Safety
Cost
Cost

0.17
0.06

1866554 12495404
850384 | 38862955

500856
228361

202208|
202096

390748
395288

P32
P33
Cost
Cost

> 10'3
> 10'3

> 10°
> 10°

> 10'2
> 10'2

> 108
> 108

> 102
> 102

P73
P74

<0.1
< 0.1

Table 5: Example Replacement at Root Node(?10)

F. ADDITIONAL RESULTS

Our experimental study covered a spectrum of error dimensio
alities, benchmark databases, physical designs and qoerylex-
ities. We present here additional experimental resulevagit to
the discussion in the main paper. The complete set of remults
available in [1].

F.1 AllIndex Physical Configuration

In addition to the default physical design configuration, we
consideredAllindex (Al) , an “index-rich” situation with (single-
column) indices available on all query-related schemabatis.
Representative results for the Al configuration are preskint Ta-
ble 6 for replacement plan stability, and in Table 7 for plaagdam
characteristics.

Query RootExpand NodeExpand SEER
Template REP Agg Help | REP Agg Help | REP Agg Help
% SERF % % SERF % % SERF %
AIQT5 87 037 36 99 0.37 38 87 0.38 39
AI3DQTS8 30 018 21 98 019 21 55 0.12 15
AIDSQT18 11 003 1 75 0.07 3 68 0.04 3

Table 6: Plan Stability Performance (All Index)

We see in Table 6 that the stability results are, for the most

part, qualititatively similar to those seen in the defauitrary-key-
index scenario (Section 5). A point to observe here is thexethre

templates such as AIDSQT18, where the AQgSERF values are ex-

tremely low. However, this appears to be an artifact of thalse
environment in which the evaluation was done rather thans&cba
flaw in our approach since even the yardstick algorithms, S &ifd
SkylineUniversal, are unable to achieve useful improvememn
these templates. Moreover, as previously mentioned indebt

the SERF values obtained by SEER for the same templates were

significantly higher on a commercial optimizer that offeeedcher
replacement space. Therefore, our expectation is thatimght-
ing the online algorithms in such high-end optimizers waasult
in a larger body of templates receiving significant AQgSERE a
Help% benefits.

Turning our attention to the plan diagram statistics in &@ahlwe
see that the observations made in Section 5 are more protiyinen
portrayed here. Specifically, RootExpand features large phrdi-
nalities, whereas NodeExpand is comparatively anorexicthEr,
non-POSP plans comprise a significant fraction of the plppsar-
ing in the diagrams of RootExpand and NodeExpand.

Query DP RootExpand | NodeExpand | SEER
Template Plans | Plans Non- | Plans Non- Plans
POSP POSP
AIQT5 29 13 3 7 4 4
AI3DQT8 70 51 41 14 12 7
AIDSQT18 28 31 7 3 1 3

Table 7: Plan Diagram Performance (All Index)

F.2 Efficacy of CornerAvg heuristic

In order to quantify the efficacy of the CornerAvg heuristic
used by the Expand algorithms, we also evaluated the AQgSERF
obtained through a “brute-force” algorithm@ptimalAggSERF-
SkylineUniversal (OAS-SU) OAS-SU explicitly and exhaustively
checks for each query location, the best replacement withrde
to the AQgSERF metric, from the SkylineUniversal set of planh
that location. The performance of OAS-SU is showcased itef@b
against that of NodeExpand and SkylineUniversal for allghery
templates of the main paper where SkylineUniversal wastieas

The results of Table 8 are very encouraging since they itelica
that the AQgSERF achieved through Cornerfagproaches that
obtained with OAS-SUestifying to the potency of the CornerAvg
heuristic. For example, on template 3DQT10, CornerAvg s
an AggSERF of 0.39 as compared to the 0.44 of OAS-SU.

Query NodeExpand | SkyLineUniv OAS-SU
Temp- Rep Agg | Rep Agg | Rep Agg
late % SERF | % SERF | % SERF
QT5 85 0.54 85 0.54 85 0.64
QT10 98 0.21 98 0.21 99 0.26
3DQT10 | 99 0.39 99 0.39 94 0.44
DSQT7 | 93 0.28 93 0.28 99 0.28
DSQT26 | 30 0.49 30 0.49 99 0.49

Table 8: AQgSERF efficacy of CornerAvg

F.3 Distribution of SERF values

A sample frequency distribution of the positive SERF valoles
tained with NodeExpand on QT5, which has a substantial Help%
of over 50%, is shown in Figure 6. What is particularly notettly
is that, by virtue of the plan replacements, a significant inemnof
error instances essentially receive “immunity” (SERF.9) from
the ill-effects of their estimation errors.

08

0.5 -

0.2 4

<oz eoca®e=m

0.0 01 0.2 0.3 04 0.5 0.6 07 0.8 0.9 10
SERF Values

Figure 6: Frequency Distribution of SERF values (QT5)

F.4 Pruning Analysis

As presented in Section 4, our expansion algorithms invalve
four-stage pruning mechanism, comprising of Cost, SaBsmnefit
and Skyline checks. We show in Table 9, a sample instanceeof th
collective ability of these checks to reduce the number ajons
forwarded from a node to a limited viable number. In this¢abb-
tained from the root node of a QT8 instance located at (30%)30
in S, we show the initial number of candidate wagons, and the num-
ber that remain after each check. As can be seen, there apstalm
450 plans at the beginning, but this number is pruned to less t
10 by the completion of the last check.

Initial After
of Local | Global | Global | C-S-B
Wagons | Cost | Safety | Benefit | Skyline
446 214 194 139 6

Table 9: Impact of 4-stage Wagon Pruning (QT8)

F.5 Plan Replacement Safety

We now shift our attention to the MinSERF metric to evaluhte t

safetyaspect of plan replacement. To make sure that the replace-

ments do not end up causing any material harm, MinSERF isi€alc
lated over theentire selectivity spaceThe results are presented in

Table 10 and we see that for both RootExpand and NodeExpand:

(a) only a few templates have negative values belady, (-0.2),

(b) even in these cases, the harmful replacements (showuagihr
Harm%) occur for only a miniscule percentage of error locations
(less than 1% for 2D templates and less than 5% for 3D teng)late
and (c) most importantly, their magnitudes are small — theeki
MIinSERF value is within5.

Query RootExpand | NodeExpand | SkylineUniversal
Tem- Min Harm Min Harm Min Harm
plate SERF % SERF % SERF %
QT5 0 0 0 0 0 0
QT10 -0.24 0.25 | -0.24 0.01 -0.24 0.51

3DQT8 -1.05 0.01 | -2.30 0.01 - -

3DQT10 -1.08 1.93 | -0.78 2.15 -0.78 2.15

DSQT7 0 0 0 0 0 0

DSQT26 0 0 0 0 0 0
AIQT5 0 0 0 0 - -
AI3DQT8 -4.88 043 | -2.80 4.30 - -
AIDSQT18 0 0 0 0 - -

Table 10: Plan Safety Performance

F.6 Performance with CC-SEER

As mentioned in Section 3, the CC-SEER algorithm guarantees
global safety, unlike LiteSEER, which is a heuristic. A sdenp
result where the safety aspect of CC-SEER is clearly evident
shown in Table 11, obtained by executing NodeExpand on query
template 3DQT8. We see here that LiteSEER replacementk-resu
ing in negative MinSERF values, which go up®3, are prevented
by CC-SEER.

Query | NodeExpand (LiteSEER) | NodeExpand (CC-SEER)
Tem- Min Harm Min Harm
plate SERF % SERF %

3DQT8 | -2.30 0.01 0.0 0

Table 11: Guaranteed Safety with CC-SEER

The safety guarantee of CC-SEER is achieved at a price of in-
creased computational overheads, and these overheadsoane s

in Table 12 for a representative set of templates. We seethate
the time overheads of CC-SEER are substantially more thzseth
of LiteSEER, the gap increasing with template dimensidypalihe
space overheads are also higher for CC-SEER since eacHaub-p
has to now carry a larger number of corner costs to the higiver |
els, and this factor increases exponentially with dimemelioy.

Query NodeExpand NodeExpand
(LiteSEER) (CC-SEER)
Template | Time | Memory | Time | Memory
(ms) | (MB) (ms) | (MB)
QT5 22.2 7.0 81.5 15.9
QT10 3.2 34 20.4 5.4
3DQT8 30.6 10.6 2153| 118.1

Table 12: Computational Overheads of CC-SEER

G. IMPLEMENTATION IN POSTGRESQL

We have implemented the various algorithms described in the
previous section inside the PostgreSQL kernel, specifieatision
8.3.6 [15]. We briefly discuss here the issues related torapte-
mentation experience.

Foreign Plan Costing. In order to implement the LiteSEER and
¢ heuristics described in Section 3.2, we need to be able toacos
sub-plan (or plan) at all corners 8f While this feature is presentin
several commercial optimizers, as mentioned before, itiiseatly
not available in PostgreSQL.

Therefore, we have ourselves implemented remote costitigin
PostgreSQL optimizer kernel. Our initial idea was to megayry
out a bottom-up traversal of the operator tree at the forgigation
and at each node appropriately invoke the optimizer’s ngstind
output estimation routines. This approach is reasonabfygstt-
forward to implement, and more importantly, very efficient.

However, this approach failed to work because PostgreSQL
caches certain temporary results during the optimizati@tgss
which have an impact on the final plan costs — these cachedsvalu
are not available to a purely offline costing approach. Tioeee
we had to monitor and retain sufficient additional inforraatdur-
ing the current plan generation process such that the cacthaels
for remote locations could be explicitly calculated.

Optimization Process. The PostgreSQL optimizer usually opti-
mizes for a combination of latency and response-time, éslpei
the access to the output data is through a cursor or a limihen t
number of output tuples is specified. In order to simplify sturdy,
we modified the optimization objective to be solely respetise.

Intrusiveness on Code-baseFrom an industrial perspective, an
obvious question is the extent to which the underlying codse
has to be modified to support the proposed approach. In ot Pos
greSQL implementation, where we have added around 10K dihes
code, the vast majority of the additions have gone towardsidh
ing the FPC feature, which as mentioned before, is alreadi-av
able in most commercial optimizers. Therefore, while wesavare
that these systems are considerably more sophisticatadPibst-
greSQL, our expectation is that incorporating our techesguould
be minimally intrusive on their code-base. This is espécialie
for the RootExpand algorithm, where the behavior of onlyfthal
node in the DP lattice is modified.

