XGRIND: A Query-friendly XML Compressor

Pankaj M. Tolani

Jayant R. Haritsa*

Dept. of Computer Science & Automation
Indian Institute of Science, Bangalore 560012, INDIA

Abstract

XML documents are extremely verbose since the
“schema” is repeated for every “record” in the document.
While a variety of compressors are available to address this
problem, they are not designed to support direct querying of
the compressed document, a useful feature from a database
perspective. In this paper, we propose a new compression
tool called XGrind, that directly supports queries in the
compressed domain. A special feature of XGrind is that
the compressed document retains the structure of the orig-
inal document, permitting reuse of the standard XML tech-
niques for processing the compressed document. Perfor-
mance evaluation over a variety of XML documents and
user queries indicates that XGrind simultaneously deliv-
ers improved query processing times and reasonable com-
pression ratios.

1. Introduction

The XML language [1], by virtue of its self-describing
and textual nature, has become extremely popular as a
medium of data exchange and storage, especially on the
Internet. To support this functionality, XML resorts to, in
database terms, storing the “schema” with each and every
“record” in the document. This is in marked contrast to the
traditional database approach of storing the meta-data once
for the whole database. A consequence of XML’s repeating-
schema characteristic is that documents are extremely ver-
bose as compared to their intrinsic information content. In
fact, according to a recent industry white-paper [19], the
typical size increase is estimated to be as much as 400 per-
cent!

One approach to address the verbosity problem is to uti-
lize a standard text compressor, for example, gzip [17],
and thereby reduce the size of the document. An alternative
is to design an XML-specific compressor — this approach
resulted in the XMil1l tool, proposed recently by Liefke

*Contact Author: haritsa @dsl.serc.iisc.ernet.in

and Suciu [10]. XMi11 achieves compression ratios typi-
cally in excess of 80 percent on large XML documents by
grouping semantically related data items into “containers”,
separately compressing each container with a specialized
compressor ideal for that container, followed by a gzip on
each container. For example, the meta-data (in the form
of XML tags and attributes) and the data (element/attribute
values) are compressed separately. A performance study
[10] showed XM111 to consistently provide better compres-
sion ratios than gzip.

Since XMi11 is designed to minimize the size of the
compressed XML document, it is attractive in terms of re-
ducing the network bandwidth required for transmission,
and the disk space required for storage, of the original doc-
ument. However, its compression approach is not intended
for directly supporting querying or updating of the com-
pressed document. In fact, accomplishing such operations
on XMill-compressed documents would typically entail a
complete decompression of the file.!

The ability to perform direct querying is important for
a variety of applications, especially for those hosted on
resource-limited computing devices such as Palm Tops. For
example, consider a vendor who travels around with a de-
tailed list of her customers and orders, in compressed XML
format, on her PDA. She could be reasonably expected to
frequently query this database in order to check customer
contact information, order status, delivery schedules, etc.,
as well as enter information about new customers or orders,
status updates, etc. If she would need to decompress the en-
tire document every time she wanted an answer or needed
to make an update, it could be quite time-consuming and
tiresome. Worse, it may even turn out to be impossible to
perform the decompression since her device may run out of
space to hold the uncompressed document!

At the other extreme of the resource spectrum, data ware-
houses storing XML documents may find that, even if de-
compressing were available for free, directly supporting

ISince XMill compresses in “chunks” of 8MB size, in principle it is
possible to separately decompress and query each chunk — however, there
are significant design and implementation complexities involved in this
process, as mentioned in [11].

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 18th International Conference on Data Engineering (ICDE’02)
1063-6382/02 $17.00 © 2002 IEEE



data-intensive decision support queries on the compressed
data may result in a significant improvement in query re-
sponse times as compared to querying the uncompressed
version. This is because compression, as highlighted in
[5, 6, 9, 13], provides many other benefits apart from the
obvious utility of reduced space: disk seek times are re-
duced since the compressed data fits into a smaller physical
disk area; disk bandwidth is effectively increased due to the
increased information density of the transferred data; and,
the memory buffer hit ratio increases since a larger fraction
of the document now fits in the buffer pool.

1.1. The XGRIND Compressor

Based on the above observations, we propose in this pa-
per a new XML compression tool, called XGrind, that di-
rectly supports queries in the compressed domain. It com-
presses at the granularity of individual element/attribute
values using a simple context-free compression scheme
based on Huffman coding [8]. This means that exact-match
and prefix-match user queries can be entirely executed di-
rectly on the compressed document, with decompression
restricted to only the final results provided to the user.? Fur-
ther, range or partial-match queries require on-the-fly de-
compression of only those element/attribute values that fea-
ture in the query predicates, not the entire document.

A novel and especially useful feature of XGrind is that
it retains the structure of the original XML document in the
compressed format also. This means that the compressed
document can be parsed using exactly the same techniques
that are used for parsing the original XML document. A
related major benefit is that XML indexes [12] can be cre-
ated on the compressed document. Further, updates to the
XML document can be directly executed on the compressed
version. Lastly, a compressed document can be checked for
validity against the compressed version of its DTD. We ex-
pect that these properties would be of considerable utility
in practical settings, especially those hosting large numbers
of XML documents. For example, major repositories of ge-
nomic data such as the European Bioinformatics Institute
(EBI) [16], allow registered users to upload new genetic in-
formation to their archives. It would be extremely useful if
such information could be compressed by the user and then
uploaded, checked for validity, and integrated with the ex-
isting archives, all operations taking place completely in the
compressed domain.

Another feature of XGrind is that, for XML documents
adhering to a DTD, it attempts to utilize the information in
the DTD to enhance the compression ratio. For example,
attribute values that are of enumerated-type are recognized

Note that this decompression is the minimum which will have to be
performed by any compression scheme.

from the DTD and are encoded differently from other at-
tribute values.

1.2. Performance Results

We have conducted a detailed performance evaluation
of XGrind over a representative set of real and syn-
thetic XML documents, including some generated from
Xmark [24], the recently announced XML benchmark, for a
variety of XML search queries. Our study considers a vari-
ety of metrics including the compression ratio, the compres-
sion time, and the query processing times. To our knowl-
edge, there do not exist any prior queryable XML compres-
sors. Therefore, we have attempted to place the XGrind
performance results in perspective as follows: (a) For the
compression ratio and compression time metrics, we com-
pare with the XMil1l compressor; (b) For the query pro-
cessing time metric, we compare against a query proces-
sor, hereafter referred to as Nat ive, which is built around
XMill’s XML parser and operates directly on the original
uncompressed document.

Our experimental results show that XGrind simultane-
ously and efficiently achieves a reasonably good compres-
sion ratio compared to XMi11 and substantially improved
query processing times with regard to Nat ive.

2. Background Material

In this section, we overview background material on text
compression techniques, and on the XMi11 compressor,
which represents the state-of-the-art in XML compression.

Most lossless® data compression techniques are based on
one of two models: statistical or pattern.* With statistical
modeling, each distinct character of the input data is en-
coded, with the code assignment based on the probability of
the character’s appearance in the data. In contrast, pattern-
based compression schemes recognize duplicate strings in
the input data, and these duplicates are replaced either by
pointers to the first appearance of the string, or by an index
into a dictionary that maps strings to codes.

Another dimension of lossless compression algorithms
is that they may be adaptive or non-adaptive. In adaptive
schemes no prior knowledge about the input data is assumed
and statistics are dynamically gathered and updated during
the encoding phase itself. On the other hand, non-adaptive
schemes are essentially “two-pass” over the input data: dur-
ing the first pass, statistics are gathered, and in the second
pass, these values are used for encoding.

Most of the popular compression tools are based on one
of the following algorithms: Huffman, Arithmetic, LZ77

30nly lossless techniques are considered viable for XML compression
since the documents contain textual information.
4An exception is the classical run-length encoding scheme.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 18th International Conference on Data Engineering (ICDE’02)
1063-6382/02 $17.00 © 2002 IEEE



or LZ78. The Huffman and Arithmetic coding techniques
implement the statistical model, while LZ77 and LZ78 are
pattern-based. For Huffman and Arithmetic, both adaptive
and non-adaptive flavors are available, whereas both the LZ
encoders are adaptive. The compressors evaluated in this
paper utilize the Huffman and LZ77 techniques, whose de-
tails are described next.

2.1. Huffman Coding

In Huffman coding [8], the most frequent characters in
the input data are assigned shorter codes and the less fre-
quent characters are assigned longer codes. The longer
codes are constructed such that the shorter codes do not ap-
pear as prefixes. In particular, a tree is constructed with the
characters of the input alphabet forming the leaves of the
tree. The links in the tree are labeled with either 0 or 1 and
the code for a character is the label sequence that is obtained
by traversing, in the Huffman tree, the path from the root to
the leaf node corresponding to that character.

In non-adaptive Huffman coding, the Huffman tree is
completely built before encoding starts, and remains un-
changed during the encoding process. Adaptive Huffman
coding, on the other hand, starts off with a Huffman tree that
is built using an assumed frequency distribution of the char-
acters in the data. As the encoding process proceeds and
more data is scanned, the Huffman tree is modified based
on the data seen up to that point. Thus the same charac-
ter can have different codes depending on its location in the
data being compressed (unlike non-adaptive Huffman).

2.2. LZ77 Coding

The LZ77 coding scheme [18] is used in popular com-
pression tools such as gzip. Here, the input data is scanned
sequentially and the longest recognized input string (that is,
a string which already exists in the string table) is parsed off
each time. The recognized string is then replaced by its as-
sociated code. Each parsed input string, when extended by
its next input character, gives a string that is not yet present
in the string table. This new string is added to the string ta-
ble and is assigned a unique code value. In this manner, the
string table is built incrementally during the compression
process. For decompression, the decoder logically uses the
same string table as the encoder and constructs it incremen-
tally in a similar manner.

2.3. The XMill Compressor

The XMi11 [10] compressor, as mentioned earlier, rep-
resents the state-of-the-art in XML compression. In XMill’s
document model, each XML document is composed of
three kinds of tokens: rags, attributes, and data values.

These tokens are organized as a tree, with internal nodes be-
ing labeled with tags or attributes, and leaves labeled with
data values. The path to a data value is the sequence of tags,
(and, possibly one attribute) from the root to the data value
node.

With the above model, XM111 operates in the follow-
ing manner: First, meta-data in the form of XML tags and
attributes is compressed separately from the data, which is
the set of strings formed from element and attribute val-
ues. Second, semantically related data items are grouped
into “containers”. For example, all <name> data items
form one container, while all <phone> items form a sec-
ond container. This is an extension to the semi-structured
domain of the notion of column-wise or domain-wise com-
pression that is well-known in relational DBMS (e.g. [9,
13]). The motivation for such semantic grouping is that data
belonging to the same group will usually have similar char-
acteristics and can therefore be compressed better than data
sequences that have only syntactic proximity. Third, each
container is compressed separately with a specialized com-
pressor that is ideal for that container. For example, a delta
(difference) compressor may be used for a container host-
ing integers that typically have moderate changes from one
value to the next, while a run-length encoder may be used
for domains with a very limited set of values (e.g., “Male”
or “Female” for a gender element). Finally, the outputs
of all containers are individually compressed using gzip,
which as mentioned above, is based on LZ77, and the re-
sults are concatenated into a single XML file.

A performance study over a wide variety of XML doc-
uments showed XMill to consistently provide improved
compression ratios as compared to plain gz ip, which treats
the entire file as a continuous stream of bytes and does not
associate any semantics with the contents.

3. The XGRIND Query-friendly Compressor

In this section, we first describe the features of XGrind,
our new XML compressor. These features are intended
to ensure both good query performance and reasonable
compression ratios. We conclude with a presentation of
XGrind’s architectural and implementation details.

3.1. Compression Techniques

XGrind uses different techniques for compressing
meta-data, enumerated-type attribute values, and (general)
element/attribute values, respectively. These techniques are
described below:

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 18th International Conference on Data Engineering (ICDE’02)
1063-6382/02 $17.00 © 2002 IEEE



3.1.1 Meta-Data Compression

XGrind follows the XMi1ll compression approach of sep-
arating structure from content. The method to encode meta-
data is similar to that in XM111, and is as follows: Each
start-tag of an element is encoded by a ‘T’ followed by a
uniquely assigned element-ID. All end-tags are encoded by
‘/’s. Attribute names are similarly encoded by the character
‘A’ followed by a uniquely assigned attribute-ID.

3.1.2 Enumerated-type Attribute Value Compression

Enumerated-type attribute values are a common occurrence
in XML documents. For example, the states of a country, or
the set of departments in a company, or the set of zip-codes,
are all instances of frequently occurring enumerated-type
attribute values. This knowledge is often captured in the
DTD itself. XGrind identifies such enumerated-type at-
tributes by examining the DTD of the document and en-
codes their values using a simple log2 K encoding scheme
to represent an enumerated domain of K values.

3.1.3 General Element/Attribute Value Compression

While the above schemes cater to meta-data and
enumerated-type attribute values, we now move on to the
compression technique for general element/attribute values,
which typically form the bulk of the XML document.

Given XGrind’s goal of efficiently querying com-
pressed XML documents, a context-free compression
scheme is required. That is, a compression scheme in which
the code assigned to a string in the document is independent
of its location in the document. This feature allows us, given
an arbitrary string, to locate occurrences of that string in
the compressed document directly, without decompressing
it. This is done by first compressing the query string (ex-
pressed as a path expression) and then searching for occur-
rences of its corresponding encoded sequence in the com-
pressed document.

Context-free compression is not possible with adaptive
algorithms such as LZ77, since the code assigned to a data
item is dependent on the entire contents of the document
prior to the occurrence of the data item. That is, only with a
complete decompression of the prior contents is it possible
to match a sequence. On the other hand, context-free coding
of strings is possible with the non-adaptive versions of com-
pression algorithms such as Huffman coding and Arithmetic
coding. We have currently implemented the non-adaptive
Huffman compression algorithm in XGrind. To support
the non-adaptive feature, two passes have to be made over
the XML document: the first to collect the statistics and the
second to do the actual encoding.

In principle, we could use a single character-frequency
distribution for the entire document. However, in XGrind,

we compute a separate frequency distribution table for
each element and non-enumerated attribute. The motiva-
tion for this approach is that data belonging to the same
element/attribute is usually semantically related and is ex-
pected to have similar distribution. For example, data such
as telephone numbers or zip-codes will be composed exclu-
sively of digits. Therefore, the characteristics of each ele-
ment/attribute are reflected more accurately and the smooth-
ing out of the peculiarities of a particular element/attribute
(which may happen in the case of a single document-wide
frequency distribution) is prevented.” Since we expect
that queries will typically have predicates related to ele-
ment/attribute values, we compress at the granularity of in-
dividual element/attribute values. This is done during the
second pass using the set of frequency tables generated dur-
ing the first pass.

With the above scheme, queries can be carried out over
the compressed document without fully decompressing it.
More precisely, exact-match (the search key is a specific
data value) and prefix-match (the search key is a prefix of the
data values) queries can be completely carried out directly
on the compressed document, while range (the search key
covers a range of data values) or partial-match (the search
key is a substring of the data values) queries require on-the-
fly decompression of only the element/attribute values that
are part of the query predicates.

3.2. Homomorphic Compression

The most novel feature of the XGrind compressor
is that its output, like its input, is semi-structured in
nature. In fact, the compressed XML document can be
viewed as the original XML document with its tags and
element/attribute values replaced by their corresponding
encodings. The advantage of doing so is that the variety of
efficient techniques available for parsing/querying XML
documents can also be used to process the compressed
document. Second, indexes, such as those proposed in [12],
can now be built on the compressed document in similar
manner to those built on regular XML documents. Third,
updates to the XML document can be directly executed on
the compressed version. Finally, a compressed document
can be checked for validity against the compressed version
of its DTD, without having to resort to any decompression,
as shown by the following property.

Given an XML document X which is valid for a DTD
D, let hp be the homomorphism defining the XGrind en-
coding scheme for the meta-data and enumerated-type at-
tribute values. Let hp (D) denote the compressed DTD and
hp(X) denote the compressed XML document. The follow-

SThis is similar to collecting column or domain statistics for compres-
sion in an RDBMS [13].

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 18th International Conference on Data Engineering (ICDE’02)
1063-6382/02 $17.00 © 2002 IEEE



£l>‘ XML-Parser | |DTD ParserK}:

[Frequency Tables] [Symbol Table ]

—>| XGrind Kernel |

{Huffman—Compressor} { Enum—EncoderJ

Compressed
Internal
Representation

CHEN

Semi-Structured
Compressed XML Document

Figure 1. Architecture of XGrind Compressor

ing property is a consequence of the “context freeness” of
the compression scheme and the semi-structured nature of
the output.

X is valid for D < hp(X) is valid for hp(D).

In other words, the XGrind compressed document is
valid with respect to its associated compressed DTD. The
proof for this follows from the closure of regular languages
and context-free languages under homomorphisms and in-
verse homomorphisms [7].

3.3. System Architecture

The architecture of the XGrind compressor, along with
the information flows, is shown in Figure 1. The XGrind
Kernel is the heart of the compressor. It starts off by invok-
ing the DTD Parser, which parses the DTD of the XML
document, initializes frequency tables for each element or
non-enumerated attribute, and populates a symbol table for

attributes having enumerated-type values. The kernel then
invokes the XML Parser, which scans the XML document
and populates the set of frequency tables containing statis-
tics (in the form of frequencies of character occurrences)
for each element and non-enumerated attribute. The XML
Parser is invoked a second time by the kernel to construct a
tokenized form — tag, attribute, or data value — of the XML
document. These tokens are supplied in streaming fashion
to the kernel which calls for each token, based on its type,
one of the following encoders:

Enum-Encoder is used for meta-data and enumerated-
type data items. Each start-tag of an element is en-
coded by a ‘T’ followed by a unique element-ID. All
end-tags are encoded by ‘/’s. Attribute names are
encoded by the character ‘A’ followed by a unique
attribute-ID. Enumerated-type attribute values, on the
other hand, are encoded using the symbol table infor-
mation.

Huffman-Compressor is used for non-enumerated data
items. This module implements the non-adaptive Huff-
man coding compression scheme. It encodes each el-
ement/attribute value with the help of its associated
Huffman tree, which is constructed from its corre-
sponding frequency table. The last byte of the en-
coded sequence is padded to be byte-aligned, and this
encoded sequence is then “escaped” so that the com-
pressed XML document can be parsed without ambi-

guity.

The compressed output of the above encoders, along
with the various frequency and symbol tables, is called the
Compressed Internal Representation (CIR) of the compres-
sor and is fed to XML-Gen, which converts the CIR into
a semi-structured compressed XML document. This con-
version is done on the fly during the second pass while the
document is being compressed.

3.4. Compression Example

Consider an XML document fragment along with its
DTD as shown in Figures 2 and 3, respectively. The doc-
ument represents a student database with five elements:
STUDENT, NAME, YEAR, PROG and DEPT. The STUDENT
element has a rollno attribute, while DEPT has a name
attribute of enumerated-type.

An abstract view of the compressed version of the above
document is shown in Figure 4. Here, the tag STUDENT
is encoded as TO, NAME as T1, YEAR as T2, PROG as T3
and DEPT as T4. All end tags are encoded as ‘/’s. The at-
tributes rol1no and name are encoded as A0 and A1, re-
spectively. The unique element/attribute IDs and the encod-
ings for the attribute name of DEPT element are determined

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 18th International Conference on Data Engineering (ICDE’02)
1063-6382/02 $17.00 © 2002 IEEE



<!- student.xml -->

<STUDENT rollno = "604100418">
<NAME>Pankaj Tolani</NAME>
<YEAR>2000</YEAR>
<PROG>Master of Engineering</PROG>
<DEPT name = "Computer_Science'"s>

</STUDENT>

Figure 2. Fragment of the Student DB

<!- DTD for the Student database -->
<!ELEMENT STUDENT (NAME, YEAR, PROG, DEPT) >
<!ATTLIST STUDENT rollno CDATA #REQUIRED>
< !ELEMENT NAME (ﬁPCDATA)>
<!ELEMENT YEAR (ﬁPCDATA)>
<!ELEMENT PROG (§PCDATA) >
<!ELEMENT DEPT EMPTY>
<!ATTLIST DEPT name (Computer_Science
| Electrical.-Engineering

| Physics | Chemistry)

Figure 3. DTD for the Student DB

by the DTD parser in the first pass. nahuff (s) denotes
the output of the Huffman-Compressor for an input data
value s, while enum (s) denotes the output of the Enum-
Encoder for an input data value s, which is an enumerated
attribute. As is evident from Figure 4, the compressed docu-
ment output in the second pass is semi-structured in nature,
and maintains the property of validity with respect to the
compressed DTD.

3.5. Query Processing

The compressed-domain query processing engine con-
sists of a lexical analyzer that emits tokens for encoded
tags, attributes, and data values, and a parser built on top
of this lexical analyzer that does the matching and dump-
ing of the matched “records” (which in the XML world
are semi-structured tree fragments). As all the tokens are
byte-aligned, the lexical analyzer that tokenizes the CIR is
able to operate on a byte-by-byte basis. This means no bit-
by-bit operations are necessary, considerably speeding up
the lexical analysis. The parser, which makes a depth-first-
search traversal of the XML document, maintains informa-
tion about its current location (path) in the XML document
and the contents of the set of XML nodes that it is currently
processing.

For exact-match or prefix-match queries, the query path
and the query predicate are converted to the compressed-
domain equivalent. During parsing of the compressed
XML document, when the parser detects that the current
path matches the query path, and that the compressed data
value matches the compressed query predicate, it outputs

TO A0 nahuff(604100418)
Tl nahuff (Pankaj Tolani) /
T2 nahuff(2000) /
T3 nahuff (Master of Engineering) /
T4 Al enum(Computer_Science) /

Figure 4. Abstract view of XGrind document

the matched XML fragment. Note that the compressed-
domain pattern-match is byte-by-byte and not a bit-by-bit
pattern-match, which would be highly inefficient. In fact,
the matching requires significantly less work in the com-
pressed domain, since the number of bytes to be processed
have considerably decreased.

For range or partial-match queries, only the query path
is compressed. While parsing the compressed XML docu-
ment, when the parser detects that the current path matches
the query path, the associated data value is decompressed
and used for evaluating the match. This decompression is
required since the compression scheme we use is not “order
preserving” (i.e. given two strings s1, s2 and their respec-
tive compressed versions c1, ¢2, then 81 > s2 7 ¢1 > ¢2).
Only the records whose element/attribute values fall in the
range are fully decompressed and returned to the user.

3.6. Implementation

We have implemented the XGrind tool in C/C++. The
SAX API [21] XML Parser provided in [23] was used for
implementing the XML Parser. Lex and Yacc were used
for implementing the DTD Parser as well as the parser for
the semi-structured compressed XML document. Also, we
wrote our own non-adaptive Huffman-Compressor.

4. Experimental Framework

In this section, we describe the experimental setup used
to profile XGrind’s performance. We evaluated XGrind
on a representative set of real and synthetic XML docu-
ments, including one generated from Xmark, the recently
announced XML benchmark [24]. To our knowledge, there
do not exist any prior queryable XML compressors. There-
fore, we have attempted to place the XGrind performance
results in perspective as follows: (a) For the compres-
sion ratio and compression time metrics, we compare with
the XM111 compressor; (b) For the query processing time
metric, we compare against the Native query processor,
which we built around XMill’s XML parser and operates
directly on the original uncompressed document. Our ex-
periments were conducted on a PIII, 700 MHz machine,
running Linux (TurboLinux 6.0), with 64 MB main memory
and 18 GB local IDE disk.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 18th International Conference on Data Engineering (ICDE’02)
1063-6382/02 $17.00 © 2002 IEEE



4.1. XML Documents

Document S R DIEJA[N[M
xmark 1145 1 S 177116 [0 1
conferences 382 1.OAM | 3 [ 25 5 010
journals 294 1T076M [ 3 1 IS5 2 [ O [ 11
shakespeare | 161 740 6221 007122
ham-radio 361 0O70OM [ 41241 0 0 1
student] 960 M 3 6 2 | 1
student4 1408 M 3 7 5 4 1

Table 1. Document Statistics

The details of the XML documents considered in our
study are summarized in Table 1. S (size) refers to the total
disk space occupied by the document in MBs; R (records)
indicates the number of top-level records in the document;
D (depth) indicates the maximum level of nesting; E (ele-
ments), A (attributes) and N (enums) indicate the number of
elements, attributes and enumerated-attributes, respectively,
in the document; M (scale-up) indicates the number of times
the original file has been concatenated.

The XML documents used in our study cover a variety
of sizes, document characteristics and application domains,
and are listed below:
xmark: This document was generated from Xmark, the
xml-benchmark project, using their xmlgen data genera-
tor [24]. It models an auction database and is deeply-nested
with a large number of elements and attributes. Many of the
element values are long textual passages.
conferences, journals: These documents represent con-
ference and journal entries, respectively, from the
DBLP archive [20].
shakespeare: This document is the publicly available XML
version of the plays of Shakespeare [22]. Similar to xmark
above, many of the element values are long textual pas-
sages.
ham-radio: This document was obtained from the publicly
available Ham Radio database of the US Government’s Fed-
eral Communications Commission [15]. It has the high-
est percentage of meta-data content (approximately 70%)
among the set of XML documents considered here.
studentl: This is a synthetically generated XML document
that represents a database of student information. The DTD
for this document has one attribute — name (of the depart-
ment) — which is an enumerated type.
student4: This is also a synthetically generated document,
similar to studentl, except that the DTD has four enu-
merated attributes — year (of registration), name (of the
course), name (of the department), and name (of the pre-
vious school).

The reason that we have enlarged, by concatenation,
some of the above documents is to ensure that our results
scale to the large XML documents that are expected to be

commonplace in the future, especially in the bioinformat-
ics domain. We also ran our experiments on the original
(unscaled) versions of these documents, and the results are
consistent with those presented here.

4.2. XML Queries

We have evaluated query response times for a variety
of exact-match and range queries, the details of which are
given below (the queries are specified in XML-QL):
Exact-match queries: A sample exact-match query is
shown in Figure 5. This query extracts the name of the
student whose roll number (which is a “key” value) equals
123456789. We evaluated the query performance for ran-
domly positioned records over the entire document and
present here the results for the average case. For these
queries, the parsers used in XGrind and Nat ive were in-
strumented to stop when the desired record was found — that
is, it is assumed that the search keys are unique.

CONSTRUCT <student rollno=$r> {
WHERE
<student rollno=123456789>
<name>$n</name>
<year>Sy</year>
<dept name=$d>
</student> IN "student.xml",
CONSTRUCT <name>$n</name>
} </student>

Figure 5. XML-QL exact-match query

Range queries: A sample range query is shown in Figure 6,
which extracts all students whose date of joining is between
the years 1998 and 2000. We evaluate a wide range of query
selectivities in our experiments.

CONSTRUCT <student rollno=$r> {
WHERE
<student rollno=Sr>
<name>$n</name>
<year>$y</years>
<dept name=s$d>
</student> IN "student.xml",
$y > 1998 and $y < 2000
CONSTRUCT <name>$n</name>
} </student>

Figure 6. XML-QL range query

4.3. Compression Performance Metrics

From the compression perspective, we compare
XGrind’s compression ratios and compression times with
that of XM111. These metrics are defined below:

Compression Ratio (CR): Defined as
CR—1— sizeof (compressed file)

sizeof (original file)

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 18th International Conference on Data Engineering (ICDE’02)
1063-6382/02 $17.00 © 2002 IEEE



Compression Ratio Factor (CRF): Normalizes the com-
pression ratio of XGrind with respect to XMi11, that is,

M

Compression Time (CT): Time taken to compress the

XML file.

Compression Time Factor (CTF): Normalizes the com-

pression time of XGrind with respect to XM111, that is,
CTxc

CTF = %€

CTxn’

4.4. Query Performance Metrics

From the query perspective, we compare XGrind’s
query response times with that of Nat ive. These metrics
are defined below:
Query Response Time (QRT): Total time required to exe-
cute the query.
Query Speedup Factor (QSF): Normalizes the query re-
sponse time of Native with respect to XGrind, that is,
QsF = LEINa

QRTxc

5. Performance Results

In this section, we present the performance results for the
documents and queries described in the previous section.
The results for the compression metrics are described first,
followed by the results for the query metrics.

5.1. Compression Metrics

Document | CRx ¢ | CRxMm | CRF
xmark 55.03 70.95 0.78
conferences 57.44 84.61 0.68
journals 57.85 85.59 0.68

shakespeare 54.96 74.12 0.74
ham-radio 76.85 93.54 0.82

student] 77.13 91.74 0.84
student4 82.12 93.87 0.87
[ Average | | [ 077 ]

Table 2. Comparison of compression ratios

The compression ratio statistics for the seven XML doc-
uments are shown in Table 2. We see here that, as expected,
XGrind has lower compression ratio than XM111, but the
important point is that its compression ratio factor (C RF')
is, on the average, about 77% that of XMi11. Also, the
worst case is within 68% of XM111. These results were also
true for a variety of other documents that we considered in
our experiment evaluation.

Further, the results for student1 and student4 indi-
cate that the compression ratio for XGrind improves with

increase in the number of enumerated attributes. Experi-
ments with other documents also showed similar results.
Since we expect a significant usage of enumerated attributes
in real life XML documents, XGrind’s compression ratios
will probably be better in practice than those shown here,
that is, the values presented here are “conservative”.

Document | CTx g | CTxm | CTF
xmark 1246 878 1.41
conferences 442 222 1.99
journals 344 170 2.02
shakespeare 183 125 1.46
ham-radio 353 182 1.93
student] 978 471 2.07
studentd 1328 647 2.05
[ Average | | | 133 ]

Table 3. Comparison of compression times

The compression time statistics are shown in Table 3. We
observe here that XGrind’s compression time is always
within about twice the time taken by XMi11. This is not
surprising since the XGrind compression scheme is two-
pass, whereas XMi11 is one-pass. Further, for the xmark
and shakespeare documents, which have longer text pas-
sages, the XGrind compression time is within about one
and a half times the time taken by XMi11. This is because
XMill’s pattern-based compression scheme turns out to
be computationally costlier than the simple character-based
encoding used in XGrind for such long text segments.

5.2. Query Metrics
Document | QRTx g | QRTna | QSF
xmark 80 185 2.00
conferences 27 68 2.51
journals 21 53 2.52
shakespeare 14 31 2.21
ham-radio 20 73 3.65
student] 46 184 4.00
studentd 50 250 5.00
[ Average | | [ 312

Table 4. Exact-Match Query Performance

Document | DTxm | DTgip
xmark 663 488
conferences 151 145
journals 116 107
shakespeare 71 65
ham-radio 125 73
student] 288 336
student4 428 479

Table 5. Decompression Times

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 18th International Conference on Data Engineering (ICDE’02)
1063-6382/02 $17.00 © 2002 IEEE



We now move on to the query performance comparisons.
For exact-match queries the average query response times
are shown in Table 4. The inferences we make from the
results are: First, QRTxq < QRTy, in all the cases, and
this is made explicit in the QSF column, which measures the
relative speed up of XGrind w.r.t. Native. The minimum
QSF for XGrind is about 2 times and is typically much
higher, overall averaging around 3.

Second, QRT x ¢ (as well as QRT'n,) is much less than
the time it takes XMi11 or gzip to decompress the XML
document, shown as DT'x s and DT} ;;,, respectively, in
Table 5. This result has the important implication that
XGrind would perform substantially better than XMi11 or
gzip even if these tools were supplied with an algorithm
that takes zero time to execute exact-match queries over an
uncompressed XML document. Moreover, XGrind would
require less space to process the query than XMill or

gzip.

Document | Sel | QRTx ¢ | QRTNa | QSF
conferences 1 71 136 1.92
10 87 150 1.72

50 153 205 1.34

journals | 54 106 1.96
10 64 117 1.83

50 115 162 1.41

shakespeare 1 27 57 2.11
10 35 606 .89

50 65 88 1.35

ham-radio I 43 139 3.23
10 58 150 2.59

50 125 255 2.04

student] I 138 364 2.64
10 166 390 2.35

50 292 540 1.85

student4 | 140 497 355
10 172 549 3.19

50 319 751 233

Table 6. Range Query Performance

Sel | Average QSF (over all documents)
I 2.56

10 2.26

50 1.72

Table 7. Range Query Average Performance

For range queries, the query response times for a spec-
trum of result selectivities (1%, 10%, and 50%) are shown
in Table 6. The selectivity is evaluated with respect to the
number of top-level nodes,® but it is straightforward to ex-
tend our experiments to lower-level nodes.

The results in Table 6 show that Q RT x ¢ < QRT'n, for
all selectivities over all the documents. This is made explicit

STherefore, this experiment is not meaningful for xmark since it has
only one top-level node.

in the Average QSF values shown in Table 7, which aver-
ages the performance for a selectivity across all documents.
Note that for 1% and 10% selectivity, which are typically
the types of queries seen in practice, the average improve-
ment is above 2.25 times with respect to Nat ive. Further,
even for a selectivity as coarse as 50 %, the improvement is
by over 70 percent.

5.3. Summary and Discussion

Our experimental results indicate that XGrind provides
areasonably good compression ratio — on the average, about
three-quarters that of XMill, and always at least two-
thirds that achieved by XMi11. Further, the compression
time is always within a factor of two of that of XMi11.
These numbers are especially encouraging given that we are
(a) using element/attribute-granularity compression, rather
than document-granularity compression, (b) using a sim-
ple character-based Huffman coding scheme, rather than
a pattern-based approach, and (c) making two passes over
the original XML document to provide context-free com-
pression. Further, note that while compression is a “one-
time” operation, querying is a repeated occurrence — there-
fore, any overheads in document compression time would
be quickly amortized over large query sequences.

On the query processing front, XGrind provides sub-
stantially improved response times over Native. For an
exact-match predicate on a key field, XGrind does better
by a factor of three, on average. Similarly, even for range
queries where a significant portion of the document would
necessarily be decompressed, XGrind’s response time is
about half that of Native, on average.

Finally, while XGrind exhibits a good performance pro-
file in general, it performs particularly well with respect to
all performance metrics when the XML document exhibits
the following characteristics: (a) long textual passages, and
(b) several enumerated-type attributes.

6. Related Work

On the research front, apart from XMill, there are two
other XML compressors that we are aware of: Millau [4],
which is designed for efficient encoding and streaming of
XML structures; and a more recent encoding based on Pre-
diction by Partial Match (PPM), called Multiplexed Hi-
erarchical Modeling (MHM) [2]. Similarly, on the in-
dustrial front, there are quite a few companies — for ex-
ample, www.xmlzip.com, www.lctcompress.com
and www . dbxm1 . com — which supply XML compression
products. However, a common feature of all these tools
is that their focus is primarily on reducing the size of the
compressed document, ignoring the issue of being query-
friendly, which we consider here.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 18th International Conference on Data Engineering (ICDE’02)
1063-6382/02 $17.00 © 2002 IEEE



7. Conclusions and Future Work

In this paper, we have considered, for the first time,
the problem of developing XML compression algorithms
that permit querying to be directly carried out on the com-
pressed document. To this end, we developed an prototype
tool called XGrind, which is built around non-adaptive
Huffman coding that supports context-free decompression
at the token granularity. XGrind also has a special en-
coder for enumerated types, a frequent occurrence in XML
documents. The most novel feature of XGrind, however,
is that the compressed document retains exactly the same
semi-structured layout as the original document. This fa-
cilitates the use of similar parsing techniques for both ver-
sions. More importantly, it permits us to build indexes di-
rectly on the compressed document, which we expect to be a
major value-addition in practice. Finally, an attractive side-
effect of XGrind’s token-granularity, context-free, compres-
sion scheme is that the compressed XML document is more
robust with regard to transmission and disk errors as com-
pared to XMill or gzip.

We evaluated XGrind’s query performance against Na -
tive and the results indicate substantially improved query
response times. These benefits are obtained while simul-
taneously and efficiently achieving compression ratios that
are comparable with that of XMi11. To further improve the
performance and utility of the XGrind tool, we could:

e identify “fixed-schema” elements (i.e. no {*/+/?}
modifiers for the nested elements) from the DTD, and
not repeat their schema in the compressed document.

e use sampling in the statistics gathering phase to reduce
document compression times.

e use the statistics gathering phase to identify the
enumerated-type elements/attributes if the document
happens to not have a DTD.

Acknowledgments

We are very grateful to Aditya Nori for his technical in-
puts and programming support during the early stages of
this work. J. R. Haritsa was supported in part by a research
grant from the Dept. of Bio-technology, Govt. of India.

References

[1] T. Bray, et al. “Extensible Markup Language (XML)
1.0”, October 2000, http://mwww.w3.0rg/TR/REC-xml.

[2] J. Cheney, “Compressing XML with Multiplexed Hi-
erarchical PPM Models”, Proc. of IEEE Data Com-
pression Conf., May 2000.

[3] A. Deutsch, et al. “A Query Language for XML”, June
2001, http://www.w3.org/TR/xquery/ .

[4] G. Girardot and N. Sundaresam, ‘“Millau:
an encoding format for efficient representa-
tion and exchange of XML over the Web”,
http://www9.org/w9cdrom/154/154. html.

[5] G. Graefe, “Options in Physical Database”, ACM SIG-
MOD Record, September 1993.

[6] G. Graefe and L. Shapiro, “Data Compression and
Database Performance”, Proc. of ACM/IEEE CS
Symp. on Applied Computing, April 1991.

[7] J. Hopcroft and J. Ullman, “Introduction to Automata
Theory, Languages, and Computation”, Addison-
Wesley, 1979.

[8] D. Huffman, “A Method for Construction of
Minimum-Redundancy Codes”, Proc. of IRE,
September 1952.

[9] B. Iyer and D. Wilhite, “Data Compression Support in
Databases”, Proc. of VLDB, September 1994.

[10] H. Liefke and D. Suciu, “XMill: An Efficient Com-
pressor for XML Data”, Proc. of ACM SIGMOD, May
2000.

[11] H. Liefke and D. Suciu, “XMill: An Efficient Com-
pressor for XML Data”, Tech. Rep. MS-CIS-99-26,
Dept. of Computer and Information Science, Univ. of
Pennsylvania, October 1999.

[12] J. McHugh, et al. “Indexing Semi-structured Data”,
Technical Report, Computer Science Dept., Stanford
University, January 1998.

[13] G. Ray, J. Haritsa and S. Seshadri, “Database Com-
pression: A Performance Enhancement Tool”, Proc.
of 7th Intl. Conf. on Management of Data (COMAD),
December 1995.

[14] I. Witten, R. Neal and J. Cleary, “Arithmetic Coding
For Data Compression”, Comm. of ACM, June 1987.

[15] ftp://ftp.ictcompress.com/pub/xmiltestfiles

[16] http://www.ebi.ac.uk

[17] http:/fwww.gzip.org

[18] http://www.gzip.org/algorithm.txt

[19] http:/fwww.ictcompress.com/xml.html

[20] http:/fwww.informatik.uni-trier.de/~ley/db

[21] http://www.megginson.com/SAX

[

22] http://www.oasis-open.org/cover/
bosakShakespeare200.html

[23] http://www.research.att.com/sw/tools/xmill

[24] http://www.xml-benchmark.org

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 18th International Conference on Data Engineering (ICDE’02)
1063-6382/02 $17.00 © 2002 IEEE



