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Robust Query Processing: A Survey

Jayant R. Haritsa
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ABSTRACT

The primordial function of a database system is to efficiently
compute correct answers to user queries. Therefore, robust
query processing (RQP), where strong numerical guarantees
are provided on query performance, has been a long-standing
core objective in the design of industrial-strength database
engines. Unfortunately, however, RQP has proved to be a
largely intractable and elusive challenge, despite sustained
efforts spanning several decades. This problematic situation
has arisen from a variety of knotty technical hurdles, in-
cluding complex query representations, limited metadata
coverage, coarse statistical models, and hypersensitive opera-
tor behaviors. Its impact is felt acutely since the performance
degradation faced by database queries can be huge, reaching
orders of magnitude as compared to an oracular ideal.

Notwithstanding this daunting history, the good news is that
in recent times, there have been a host of exciting technical
advances that collectively promise to materially address the
robustness objective. The new approaches have been con-
structed at different levels in the database architecture, and
tackle robustness in cost models, database operators, query
execution plans and query processing strategies. Although
most of this literature is based on statistical and geometric
formulations, a significant corpus of machine learning-based
techniques is also now available.
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In this monograph, we present an overview of these novel
research paradigms, and highlight their strengths and lim-
itations. Further, we enumerate a suite of open technical
problems that remain to be solved to make RQP a contem-
porary reality.
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Introduction

An organic reason for the ubiquitous popularity of database management
systems is their support for declarative user queries, typically expressed
in SQL. In this framework, the user only specifies the end objectives,
leaving it to the database system to first identify and then execute the
most efficient means, called “plan”, to achieve these objectives. The
identification and execution steps are performed by the query optimizer
and query executor components, respectively, within the core of the
database engine. Over the past half century, research on the design and
implementation of these components has been a foundational topic for
both the academic and industrial database communities.

A de facto global consensus exists on the technologies underlying
most of the core database engine modules — for instance, two-phase
locking (2PL) for concurrency control, write-ahead logging (WAL) for
database recovery, least recently used (LRU-K) for memory manage-
ment, and a combination of Bitmaps and B-trees for indexing database
columns. Therefore, one might expect that a similar situation holds
for query processing as well. However, despite the decades of research
mentioned above, the unfortunate reality is that the proposed solutions
have largely remained a “black art”. This is due to the well-documented
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complexities and challenges of database query processing (Chaudhuri,
1998; Chaudhuri, 2009), which include complex query representations,
limited metadata coverage, coarse statistical models, and hypersensitive
operator behavior.

In fact, the prevalent situation is dire enough that a highly respected
industry veteran was provoked to lament (Lohman, 2014): The wonder
isn’t “Why did the optimizer pick a bad plan?” Rather, the wonder is
“Why would the optimizer ever pick a decent plan?”! He ended with
the following exhortation to the research community: “Let’s attack
problems that really matter, those that account for optimizer disasters,
and stop polishing the round ball.” Similar sentiments have also been
expressed by other academic and industrial database experts, including;:
“Query optimizers do a terrible job of producing reliable, good plans
(for complex queries) without a lot of hand tuning” (Winslett, 2002),
and “Almost all of us who have worked on query optimization find
the current state of the art unsatisfactory with known big gaps in the
technology” (Parameswaran, 2012).

What makes this parlous state of affairs particularly problematic
is that the performance degradation faced by database queries can
be huge — often in orders of magnitude, as compared to an oracular
ideal that magically knows the correct inputs required for optimal
query processing. As a case in point, when Query 19 of the TPC-DS
benchmark (Transaction Processing Council, 2024a) is executed on a
popular industrial-strength database system, the worst-case slowdown,
relative to the hypothetical oracle, can exceed a million! (Dutt and
Haritsa, 2016). Moreover, apart from the obvious detrimental impacts
on user productivity and satisfaction, there are also adverse financial
implications: the total cost of ownership is significantly increased due to
over-provisioning, lost efficiency, and increased human administrative
costs (Wiener et al., 2009).

In the midst of this gloom and doom, the positive news is that in
recent times there have been a host of exciting research advances, which
collectively promise to provide strong foundations for designing the
next generation of query processing engines. The new approaches have
been constructed at different levels in the database architecture, and
tackle robustness in cost models, database operators, query execution
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plans and query processing strategies. Although most of this literature
is based on statistical and geometric formulations, a significant corpus
of machine learning-based techniques has also now become visible.

The expectation is that these advances will eventually organically
support robust query processing (RQP) with strong performance
guarantees, relegating to the past the above-mentioned cynicism on
this bedrock objective. Many of the new ideas owe their genesis to a
series of influential and well-attended Dagstuhl Seminars on the topic
of RQP over the past decade (Graefe et al., 2010; Graefe et al., 2012;
Borovica-Gajic et al., 2017; Béhm et al., 2021). Further, they have
arisen from research teams located at diverse locations across the world,
including North America, Europe and Asia.

In this survey, we provide a holistic coverage of the RQP innovations,
and highlight their strengths and limitations. Further, we enumerate a
set of open technical problems and research directions that need to be
studied to make RQP a contemporary reality.

1.1 Overview of Contents

The definition of robustness has itself been a subject of intense debate for
a long time, and a consensus view has been difficult to achieve (Graefe
et al., 2010). For instance, if worst-case performance is improved at
the expense of average-case performance, is that an acceptable notion
of robustness? Or, would graceful degradation, as opposed to “perfor-
mance cliffs”, be the right perspective? Alternatively, is it the ability to
seamlessly scale with workload complexity, database size and distribu-
tional skew? As yet another option, could we settle for providing strong
theoretical guarantees relative to the oracular ideal? Perhaps, the real
answer is that robustness encompasses all of these scenarios and more,
with the specific choice being application-dependent.

The above semantic tangle is further complicated by the different
levels at which notions of robustness can be introduced — for instance,
at the granularity of individual operators (e.g. Borovica-Gajic et al.,
2018), or through entire query plans (e.g. Chu et al., 1999), or over
end-to-end query ezecutions (e.g. Dutt and Haritsa, 2016). Moreover,
one can take algorithmic (e.g. Tzoumas et al., 2013), statistical (e.g. Wu



6 Introduction

et al., 2013b) or learning-based (e.g. Malik et al., 2007) approaches to
incorporate the robustness features at individual levels.

In this monograph, we cover representative techniques along these
various dimensions. Specifically, the survey is organized in the following
sequence of sections:

Section 2: Background to Robust Query Processing We begin
with an overview of declarative query optimization and processing.
Then, we motivate the need for RQP and the systemic challenges
faced in addressing this need. In particular, we focus on the two
statistical models that fundamentally underlie the optimization
process, namely, operator cardinality estimation and operator
cost estimation. These models address orthogonal aspects of the
data processing environment — the cardinality model captures the
distributions and correlations present in the data, whereas the
cost model reflects the behavior of the underlying hardware and
physical operator implementations.

Section 3: Robust Operators Here, we consider robustness at the
granularity of individual operators, with primary focus on the
Scan and Join operations which carry out much of the heavy lifting
in answering user queries. The basic idea is to design adaptive
or unified operators that provide close to the best performance
under all execution scenarios. Such an operator would make it
unnecessary for the optimizer to choose between alternatives,
thereby, by definition, eliminating erroneous choices.

Section 4: Robust Plans The next stage covers entire query plans,
where we consider both strategies that are robust in expectation
over a workload, and those that provide robustness on an individ-
ual query basis. The latter techniques leverage simple geometric
assumptions on the behavior of plan cost functions — for instance,
monotonicity with respect to predicate selectivity. We also look
into how robustness can be effectively achieved by replacing the
supposedly optimal plan with a mildly sub-optimal but stable
alternative.
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Section 5: Robust Query Execution We then move up from opti-
mization to robust execution of entire queries. A key feature here
is that the performance metrics are in comparison with the (of-
fline) ideal — that is, the lower bound. This is a major conceptual
shift from the norm in the earlier literature, where the comparison
was always with the “upper bound”, that is, the best among the
alternative competing strategies available at the time.

Section 6: Structural Robustness Bounds The bounds in the pre-
vious section are dependent on the behavior of the database query
optimizer over the parameter space. Here, we provide bounds that
only depend on the structure of the parameter space, and not its
contents. This quantum jump in robustness is achieved through
the use of “spilling”, wherein the outputs of intermediate operators
in the plan tree are dropped on the ground, and not forwarded to
the downstream nodes. The techniques presented here continue
to leverage geometric assumptions on plan cost function behavior
— specifically, in addition to monotonicity, both concavity and axis
alignment are considered.

Section 7: Robust Cost Models While the operator cardinality
model is the primary culprit for poor query performance, ro-
bustness can also be adversely impacted by errors in the operator
cost model — we discuss mechanisms for addressing this problem in
this section. In particular, we focus on how statistical approaches,
augmented with careful calibration and focused sampling, can per-
form as well or even better than learning-based approaches, while
being significantly more efficient wrt both training and inference.

Section 8: Machine Learning-based Techniques Learning-based
approaches to RQP, which have been hotly pursued in recent years,
are discussed here, covering both query-based and data-based
techniques. The former is an example of supervised learning,
with models constructed by training on a large set of queries and
leveraging the actual cardinalities observed during execution as
the labels. On the other hand, the data-based techniques fall
under unsupervised learning, and model the joint probability
density functions of the underlying data to capture distributions
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and correlations. Finally, there are hybrid models that leverage
both queries and data in their learning process.

Section 9: Holistic Robustness Here, we show how the techniques
discussed in the previous sections, which are at different layers in
the database architecture, could be cohesively brought together
in a complementary manner to maximize the overall system ro-
bustness.

Section 10: Future Research Directions Finally, we conclude with
a suite of open research problems and future directions. The issues
we pose include the impact of join-graph structure on robustness,
creation of robustness benchmarks, and invoking ML techniques
to determine when to use robust alternatives as opposed to their
current avatars in database engines.

Overall, the big picture is that a rich variety of possibilities are
currently available, and a judicious selection among them could lead to
the desired robustness. Moreover, with the advent of the so-called Big
Data world, wherein data is the engine driving virtually all aspects of
human endeavor, the role of RQP assumes critical proportions.

1.2 Target Audience

Robust support for declarative query processing has been a long-standing
concern for the database community, so we expect this monograph
to be of broad relevance. In particular, the target audience for this
monograph includes researchers, developers and students with an interest
in the internals of database engines. The background expected is that
of an introductory database systems course covering relational data
models, declarative query languages, and basic query optimization and
processing techniques.

Database researchers can expect the survey to provide fresh and
radical perspectives on a classical research topic, serving to stimulate
work on the further development of stable and efficient database engines.
From the perspective of system developers and practitioners, the con-
cepts and techniques presented in the monograph can serve as potent
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mechanisms for the redesign of their systems. Finally, for database
instructors and students, the coverage will help in comprehending and
appreciating the complexities and subtleties of industrial-strength query
processing, going far beyond the toy examples typically covered in a
classroom setting.

In particular, it may influence nascent PhD students looking for
challenging research topics to cast their net beyond the middleware
topics occupying center stage today — this is particularly important
since the benefits of new engine technologies are automatically bestowed
on all applications running on these platforms.

The primary source material for the monograph consists of the
papers discussed in the various sections, complemented by supporting
inputs from the rich corpus of literature on query optimization and
processing. A sampling of relevant publications is given in the reference
list, with emphasis on recent contributions to the field.



2

Background to Robust Query Processing

A distinctive USP of SQL, which accounts for its enormous popularity,
is its declarative nature. That is, the user or programmer only has to
specify the end goals and not the means to achieve these goals. For
instance, the SQL query shown below produces, on a university database,
the list of students and the courses for which they are registered:

select S.Name, C.Title

from STUDENT S, COURSE C, REGISTER R

where S.RolINo = R.RolINo and R.CourseNo = C.CourseNo
What is left unspecified in this formulation is the order in which the joins
(S R) and (R < C) should be executed. The combined result of these
joins would be the same regardless of the order, since the Join operator
is both commutative and associative. However, the computation times
could be vastly different for alternative sequences. Further, even if the
appropriate sequence is known apriori, what is still left unspecified is
the physical implementation of these logical joins, for which a variety
of alternatives — Nested Loops, Sort Merge, Hash Join, Index Join, etc.
— are available (Silberschatz et al., 2020). Finally, apart from Join, there
are a host of other operators, such as filter-predicate evaluation, for
which similar decisions need to be made in enterprise queries. It is the

10
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responsibility of the query optimizer module, located within the database
engine, to make these decisions and come up with a recommended query
execution plan.

2.1 Query Execution Plans

An execution plan is typically a tree of operators with data flowing from
the leaves, representing the user tables, to the root, where the final result
is materialized. A sample plan is shown in Figure 2.1 — here, a B-tree
index on CourseNo is used to scan the COURSE table, producing output
that is sorted on this attribute. Concurrently, there is a sequential scan
of the REGISTER table, which is then explicitly sorted on CourseNo,
leading to a merge join between the COURSE and REGISTER tables. The
next step is a hash join between the STUDENT table and the outcome of
the first join. So, the join sequence is (S >y (C >apry R)). And then
the final step is to return the results to the user.
2raTO000

RETURN
Cost: 286868

ard: 10000
HASH JOIN
Cost: 286868

Card: 10000
MERGE JOIN
Cost: 278751

Card: 10000
SORT
Card: 100 Cost: 225103
INDEX SCAN
Cost: 6745 ard: 10000
TABLE SCAN

Cost: 209760
REGISTER

Figure 2.1: Query Execution Plan Example.

Card: 1000
TABLE SCAN
Cost: 6834

Each of the plan operators is annotated with two numbers — Card,
shown in green, and Cost, shown in red. Card, which is short for
cardinality, represents the estimated number of output rows from this
operator. Essentially, it captures the volume of data flowing downstream
from one operator to the next in the plan tree. For instance, the output
of the index scan on COURSE is 100, which means that we expect 100
rows from this table to be piped into the upcoming join with REGISTER.
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On the other hand, Cost is the estimated time (in abstract units)
that an operator would take to complete the processing of its inputs.
The costs are usually shown in an aggregate fashion, capturing the total
cost of the subtree rooted at the operator. So, as we go up the tree,
the numbers keep increasing in magnitude. As a case in point, the cost
of the complete subtree rooted at the hash join is estimated to take
286868 time units. This is also the time to complete the query since the
hash-join is the final computing step.

2.2 Plan Selection Process

Given a query, there is usually an exponential number of alternative
plans to execute the query. For instance, just taking join ordering into
account, a query with N relations has, in principle, N! alternative join
sequences that could be considered for evaluation. When additional
choices such as join algorithms and table scan mechanisms are added,
the search space explodes rapidly. So, how does the query optimizer
figure out the optimal (i.e. minimum total Cost) plan in this ocean of
possibilities?

The plan selection methodology is captured in Figure 2.2. We see here
that a dynamic-programming (DP) technique is invoked to efficiently
navigate through the search space. While the inherent exponential
complexity remains, the DP approach reduces the search overheads
to the extent that queries with up to about a dozen relations can be
exhaustively evaluated on contemporary hardware, and typical decision-
support queries are usually within this table cardinality threshold. For
queries that exceed this table cardinality, there are heuristic techniques
based on simulated annealing or machine learning that can be leveraged
to identify a reasonably good plan (e.g. Swami, 1989a). The full details
of the optimization process are available in standard database textbooks
(e.g. Silberschatz et al., 2020), so we will not repeat them here. Finally,
given our assumption that Cost refers to response time, the output
of the optimizer is the fastest plan to execute the user query — we
assume this objective in the rest of the monograph. Of course, there
are alternative metrics, such as latency or resource consumption, that
could instead be used as the selection criterion.
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Declarative Query Optimizer Optimal  [Min Cost]
Query (Q) (Dynamic Programming) Plan P(Q)

I

Operator Execution Cost | Operator Output Cardinality
Estimation Model | Estimation Model

Function of Function of
Hardware and DB Engine Data Distributions and Correlations

Figure 2.2: Query Optimization Framework.

There are a pair of models that serve as estimators to guide the
database query optimizer in its comparison of alternative plans. The first
is the execution cost estimation model, which estimates the red Cost
numbers. Its predictions are primarily a function of: (a) The quality
of the hardware platform on which the database engine is hosted — for
example, whether the persistent data is stored on a mechanical hard
disk, or a SCSI disk, or a solid-state disk, and so on; and (b) how well
the software has been written within the database engine.

The second model is cardinality estimation, which computes the
green Card numbers for the plan operators. These numbers are log-
ical values that are essentially a function of the data distributions —
specifically, how the data is distributed within a column, as well as the
correlations across columns within a table or between tables.

2.3 Optimization Woes

At first glance, the above methodology looks perfect for producing
high-quality plans for user queries. However, in practice, the reality
is markedly different — the supposedly optimal plan choice at compile
time may actually turn out to be highly suboptimal at runtime, even
extending to orders of magnitude degradation!

The reason for this adverse and unexpected situation is that there
are substantive errors in both estimation models. For the Card model,
the errors arise due to a variety of well-documented technical reasons,
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including coarse statistics, outdated metadata, attribute value indepen-
dence (AVI) assumptions, multiplicative error propagation through the
plan tree, and the query construction format. Whereas, for the Cost
model, the errors arise due to simplistic linear models, operator-agnostic
features, global “one-size-fits-all” model coeflicients, and system dynam-
ics. We will not describe these error-generating triggers in detail here
since our goal in RQP is to work around them — suffice it to state that
they are commonplace in contemporary systems, and we therefore need
to devise robust solutions that circumvent these persistent hurdles.

To forestall the obvious question as to why the triggers themselves
have not been fixed, here is an admittedly contrived but pedagogically
useful instance of the hard challenges involved in designing accurate
models. Consider the EMPLOYEE and MANAGER tables shown in Fig-
ure 2.3, which capture the names and ages of (a billion) employees
and (a million) managers. All employees are 25 years old whereas all
managers are 50 years old.

EMPLOYEE MANAGER
mm- = el
1 DeWitt Musk

2 Chaudhuri 25 2 Bezos 50

3 Franklin 25 3 Ellison 50

4 loannidis 25 4 Nadella 50

5 Lohman 25 50

25 106 Altman 50

10° Whang 25

()

10°+1 Jayant 50
Figure 2.3: Volatility of Join Outputs.

Observe that the output of the query “List names of all employee-
manager pairs with a common age” — i.e. computing the join (F.Age >
M.Age) — would be zero since there are no common ages between
managers and employees. However, if we added just a single employee
(Jayant) with age 50 to the EMPLOYEE table, the join output would
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immediately jump to a million rows! It is virtually impossible for any
summarization mechanism, whether based on statistical techniques or
learning methods, to capture such “nanoscopic” changes. The essential
problem here is that cardinality estimation can be hypersensitive to
data distributions — that is, even miniscule changes in the inputs may
result in huge impacts on the output.

2.4 Prior Approaches to RQP

We saw above that RQP is a hard problem from both design and
implementation perspectives. Given its long-standing existence and
high relevance to operational behavior, a rich body of literature has
developed on addressing these challenges (for instance, see Harmouch
and Naumann, 2017, for a survey on cardinality estimation). A sampling
of representative techniques from this prior corpus is summarized below.
In this discussion and the rest of the monograph, we will use both the
terms cardinality and selectivity, which are used interchangeably in the
literature. Selectivity is the normalized [0,1] version of cardinality, the
normalization being done with respect to the maximum possible output
cardinality.

2.4.1 Mathematical Frameworks

An intellectually appealing approach is to come up with more sophis-
ticated estimation frameworks — for instance, instead of the simple
single-column equi-depth histograms used in current systems to model
data distributions, to build wavelet-based histograms (Matias et al.,
1998), or self-tuning histograms (Aboulnaga and Chaudhuri, 1999),
or multidimensional histograms (Muralikrishna and DeWitt, 1988).
However, creating and maintaining such structures incurs considerable
storage and computational overheads, and they therefore have not
achieved viability.

2.4.2 Stable Plans

A more practical alternative approach is to identify stable plans that
work well over large parts of the parameter space. Here, instead of
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trying to make a better estimate, the goal is to preferentially pick plans
expected to be robust (in terms of their performance relative to the
optimal) to the estimation errors for the given scenario.

For example, in the Least Expected Cost (LEC) approach (Chu
et al., 1999; Chu et al., 2002), it is assumed that the distribution of
predicate selectivities is apriori available, and the plan with the least-
expected-cost over the distribution is chosen for execution. While this
approach is good for improving the average case, it may still suffer poor
performance in the worst-case. Further, it assumes prior knowledge
of query distributions, which may be difficult to obtain in practice,
especially in dynamic environments.

An alternative Robust Cardinality Estimation (RCE) strategy pro-
posed in Babcock and Chaudhuri (2005) is to model the cardinality
dependency of the cost functions of the various competing plan choices.
Then, given a user-specified “confidence threshold” T', the plan that
is expected to have the least upper bound with respect to cost in T
percentile of the queries, is selected as the preferred choice. The choice
of T' determines the level of risk that the user is willing to accept with
regard to worst-case behavior. Like the LEC approach, this strategy
can also be arbitrarily poor for a specific query, as compared to the
optimizer’s choice.

The above techniques minimize the expected cost. In contrast, the
variance of the plan quality was used as the optimization metric in
Chaudhuri et al. (2010), and low-variance plans were preferentially
chosen for execution.

2.4.3 Plan Switching

Another approach is to use the classical optimization technique as is at
compile-time, but then, as the query progresses in its execution, to keep
comparing what was expected with what is actually encountered. If the
two values are in the same ballpark, the execution is continued. However,
if a big discrepancy arises — for example, the join is estimated to produce
10 tuples, but the output turns out to be 100000 rows instead, or the
other way around — we return to the optimization drawing board, and
redo the optimization process. The difference this time around, however,
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is that some of the estimated values are replaced with those that have
been observed during the partial execution. The updated plan based
on these inputs is taken up for execution, and monitored again for any
subsequent deviations. This “trial-and-error” movement towards a good
plan continues until the query completes its full processing.

Techniques based on the above paradigm are termed plan-switching
approaches, as they involve run-time switching among complete query
plans. Well-known exemplars include Dynamic Re-optimization (Kabra
and DeWitt, 1998b), POP (Markl et al., 2004) and Rio (Babu et al.,
2005). However, these techniques also employ heuristics that do not
lend to quantifiable robustness guarantees. For instance, POP may
get stuck with a poor plan since its selectivity validity ranges are
defined using structure-equivalent plans only. Similarly, Rio’s sampling-
based operators for monitoring selectivities may not work well for
join-selectivities. Further, it assumes that if the plans chosen by the
optimizer at the corners of the principal diagonal of an axis-parallel box
in the multi-dimensional selectivity space are the same as those chosen at
a point estimate within the box, then this plan is robust throughout the
box. However, this assumption is often violated in practice, especially
for large boxes.

2.4.4 Multi-plan Execution

A radically different query execution approach was proposed in Ed-
dies (Avnur and Hellerstein, 2000), wherein, in principle, each tuple
within a query could have a distinct plan — that is, multiple concurrent
plans, as opposed to the sequential execution in the plan-switching
approach. Leveraging this idea, dynamic routing of individual tuples
was advocated for robustness in Neumann and Galindo-Legaria (2013).
Here, multiple plans proceed in parallel, and through a system of “back
pressure”, tuples are preferentially led away from inefficient plans to-
wards efficient alternatives. Further, the execution is always progressing
forward. On the flip side, this approach poses considerable difficulties
from both implementation and repeatability perspectives.



18 Background to Robust Query Processing

2.4.5 Execution Feedback

Another unique twist to achieve robustness was presented in Zhu et al.
(2017) for the restricted context of pipelined left-deep hash-join trees
operating on in-memory star schema data warehouses. The core idea
here is to neutralize the impact of poor join-order permutations through
appropriate query exrecution strategies at run-time. That is, to drastically
reduce the inherent variance in plan costs such that the optimizer’s plan
selection becomes effectively immaterial. This cost conflation is achieved
through “Lookahead Information Passing” (LIP), where information
about downstream joins is propagated to the earlier joins. The advance
information helps reduce the redundant hash probes for tuples destined
to be filtered out by later joins, and thereby minimizes their adverse
impact on performance. An additional benefit of LIP is that its conflated
costs may be even lower than that of the native optimal join order!
Finally, the implementation is minimally invasive wrt to code changes
in the optimizer and execution modules. However, extending these ideas
from their highly limited context to generic database environments —
for instance, bushy plan trees or other relational operators — remains a
challenging open problem.

2.4.6 Multi-relation Joins

An article of faith in the database community, especially among practi-
tioners, is that joins are binary operators, combining a pair of relations
at a time. However, this established canon was recently overturned in
the so-called “worst-case optimal joins” (WCOJ) stream of work (Ngo,
2018). The core idea, as exemplified by Generic Join (Ngo et al., 2014),
is that the join processes one attribute at a time but simultaneously
combines all relations sharing that attribute. The WCOJ approach leads
to algorithms whose run-times provably match the worst-case output
size of a given join query. So, they are asymptotically faster than binary
joins and, therefore, more robust to sub-optimal plan choices. However,
they can be arbitrarily worse than binary joins for specific database and
query instances. Finally, there have also been hybrid proposals, such as
Free Join (Wang et al., 2023), that aim to integrate WCOJ and binary
joins in a synergistic manner that combines their individual benefits.
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2.4.7 Multi-resource Execution

A common source of large performance cliffs is execution spilling over
from a primary hardware resource to a secondary device — for instance,
from in-memory processing to disk-resident processing. The impact of
the cliff can be reduced by overlapping different parts of the computation
across these platform hierarchies. A recent example of this strategy
is a dynamic hybrid hash join that smoothly adapts its policies and
parameters to relational inputs that are uncertain with regard to size and
distribution, as well as record lengths and storage technologies (Jahangiri
et al., 2022).

2.5 Summary

The above-mentioned techniques feature a variety of novel ideas and
formulations. However, and here lies the crux of the problem, they are all
essentially heuristic techniques — while potentially working well in some
scenarios (typically the average case), they are unable to promise strong
numerical robustness guarantees in a universal sense (typically failing in
the worst case), and individual queries may suffer arbitrary degradation.
This is particularly problematic given that, unlike most computing
applications, where the average case is typically weighted towards the
best case, the unfortunate situation in database environments is that
the average case is often closer to the worst case, as highlighted in
Figure 2.4.

Best Average Worst
Case Case Case

Figure 2.4: Typical Performance in Database Environments.

However, as mentioned in the Introduction, there have been recent
research advances that collectively promise to provide robust foundations
for designing the next generation of query processing engines. These
new techniques are presented in the remainder of this monograph.

Our focus here is exclusively on exact query processing since many
applications require precise results. However, there is also a significant
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body of work that aims to provide performance robustness via approxi-
mate query processing — a recent survey on these techniques, covering
both sampling-based and learning-based strategies, is available in Li
and Li (2018).



3

Robust Operators

We begin our study of robustness at the operator granularity. The
core idea here is simple — design operator implementations that are
the best, or close to the best, under all query scenarios. Achieving
this objective automatically eliminates the possibility of making an
incorrect choice between alternative competing implementations. The
challenge, of course, is to design such “universal” techniques which
provide the best of all worlds. We cover two such exemplars here —
SmoothScan (Borovica-Gajic et al., 2018), which adaptively switches
between sequential and index scans, and G-Join (Graefe, 2012), which
unifies the design of index nested-loops, sort-merge and hash joins.

3.1 Smooth Scan

The design methodology underlying SmoothScan is to dynamically
morph between sequential full scan (FS) and index scan (IS), based
on the observed statistical properties of the input data. Specifically,
at small selectivity values, it behaves similar to IS, whereas for larger
selectivities, it progressively changes its behavior towards F'S.

To motivate this design, consider the performance graph shown in
Figure 3.1. The X-axis refers to the TPC-H benchmark (Transaction

21
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Figure 3.1: Impact of Index Tuning (Borovica-Gajic et al., 2018).

Processing Council, 2024b) queries, Q1 through Q22, on a scale factor
10 database. The queries were run on a commercial database system,
referred to as COM, in two environments — the first with the default
configuration, and the second populated with indexes proposed by the
tuning tool of COM. On the Y-axis is the response time of the tuned
version normalized to the default, on a log-scale.

What we see in the figure is that although the performance of some
queries does get significantly improved (e.g. Q2) thanks to the index
tuning, there are also quite a few where the performance markedly
deteriorates. As a particularly egregious example, the execution of Q12
slows down by a factor of 400! This surprising degradation is due to the
query optimizer choosing the wrong scan — IS over F'S, an outcome of
severely underestimating the underlying predicate selectivity.

More fundamentally, in conventional databases, the choice between
IS and FS is a hard-wired binary decision, committed to at the beginning
of the scan. Further, the cost function of IS is essentially linear in the
selectivity, whereas that of F'S is a constant, independent of selectivity,
as shown in Figure 3.2. Now, even if we did realize along the way
that a mistake had been made in the choice of scan, switching to
the right choice could entail a substantial transition cost, since the
earlier work may have to be discarded. This is because it is not feasible,
without considerable bookkeeping, to on-the-fly switch from IS to FS
or vice versa. Therefore, a runtime change of strategy can result in a
performance cliff when the prior investment is lost.

Ideally, we desire a scan that smoothly transitions between IS and F'S
based on the underlying data, as shown by the green line in Figure 3.2.
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Figure 3.2: Performance Profiles of Scan Operators (Borovica-Gajic et al., 2018).

And, to do so based on the encountered data characteristics, and not
on hardwired estimation formulas. In essence, a data-driven approach
instead of estimation-driven choices.

3.1.1 Morphing Modes

SmoothScan achieves adaptivity by morphing between the three modes
of access shown in Figure 3.3. The first is Mode 1, corresponding to the
traditional index access. The second, Mode 2, leverages the fact that
although the traditional index is used to access a specific tuple in a
page, it brings the entire page into memory. Therefore, all other tuples
in the page can be proactively checked for a “free” predicate match.
The last mode, Mode 3, takes this piggy-backing idea even further — it
probes not just the current page, but also its close neighbors, which are
cheap to retrieve since the disk head is already close to their location,
essentially “flattening” the scan.

The move from one morphing mode to another is achieved through
a simple feedback-based elastic process. That is, when there is a selec-
tivity increase, the mode level is increased since the desirable choice is
towards FS. Analogously, when there is a selectivity decrease, the mode
level is decreased, reverting towards IS. Further, in Mode 3, the size
of the neighborhood is progressively increased or decreased based on
the fraction of productive pages (i.e. pages where one or more results
are available) retrieved in the latest flattening access, as compared to
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Figure 3.3: SmoothScan Modes of Operation (Borovica-Gajic et al., 2018).

the overall productivity evaluated over the entire index. The expan-
sion/reduction function is a doubling algorithm, which allows for quick
adaptation to distributional changes without becoming unduly reactive
to temporary spikes.

3.1.2 Performance Profile

How does SmoothScan work in practice? Sample results on PostgreSQL
for the motivating experiment described earlier are shown in Figure 3.4.
We observe here that for large selectivities, PostgreSQL usually makes
the right choice. On the other hand SmoothScan, despite starting with
IS, quickly adjusts to Mode 3 and is only marginally worse. And when we
consider low selectivity values, since they are on large tables (specifically,
LINEITEM which has 10M tuples), the absolute number of tuples re-
trieved is still large enough that F'S is preferable. However, PostgreSQL
chooses IS due to underestimating the selectivity by about two orders of
magnitude, resulting in poor performance. Whereas SmoothScan again
provides adaptive performance that is about an order of magnitude
better.

Robustness Guarantees

More importantly from a robustness perspective, it was shown in
Borovica-Gajic et al. (2018) that SmoothScan lends itself to provid-
ing quantitative guarantees wrt the optimal — specifically,

SmoothScan rand__io__cost

Ideal - seq_to__cost



3.1. Smooth Scan 25

Setting: TPC-H, SF10, PostgreSQL with Smooth Scan
1400 7 Hijgh selectivity Low selectivity

1200 + 10x

1000
800
600

Execution time (sec)

400
200

0

Q1 (Sort Scan) Q4 (Full Scan) Q6 (Index Scan) Q7 (Index Scan) Q14 (Index Scan)
M PostgreSQL  E PostgreSQL with Smooth Scan

Figure 3.4: Performance of SmoothScan (Borovica-Gajic et al., 2018).

where rand__io__cost and seq__i0__cost are the relative costs of random
disk access and sequential transfer. Here, the Ideal is represented by
an oracular algorithm where only the relevant pages of the table are
sequentially read from disk. For representative contemporary HDD
parameters, the sub-optimality factor of SmoothScan is around 11,
whereas for SSD disks, it comes down to 6.

3.1.3 Book-keeping Structures

While the basic idea of dynamic morphing is attractive, it comes at a
considerable price in maintenance. Specifically, to ensure that the result
semantics, such as duplicates and ordering, are maintained despite the
dynamic mode switches, additional book-keeping data structures are
required. These include a Page ID cache to ensure a given data page is
not processed multiple times, a Tuple ID cache to ensure a given result
tuple is not produced multiple times, and a Result Cache to ensure
ordered output. Further, since the sizes of these caches are variable,
memory management techniques need to be incorporated to handle
changing demands.

Overall, SmoothScan provides robust behavior without requiring
accurate prior statistics. It brings significant gains when the original
system makes a wrong decision, and incurs only marginal overheads
when a correct decision is made. However, on the down side, it requires
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a significantly invasive change of the system internals to support its
implementation.

3.2 Generalized Join

A second unified operator is G-Join (Graefe, 2012), which fuses the
popular join algorithms (Index Nested Loops, Sort Merge and Hash) into
a common framework. Note that unlike SmoothScan which dynamically
morphs between modes, G-Join is an umbrella algorithm.

We begin by showing how Sort Merge can be implemented using
concepts from Hash Join. If the inputs are already sorted, then just
execute the standard Sort Merge which is optimal for such scenarios.
On the other hand, if they are not presorted, create internally sorted
runs, using replacement selection, for both inputs — however, do not
carry out the merging steps. Instead, similar to hash partitions, store
“key-covering pages” from the smaller input (R) in a buffer pool, and
assign a single buffer page for the larger input (S). What is meant by
key-covering is the set of pages in R containing tuples that cover the
key-range of the tuples in the buffer page of S. The intention here is that
each page of S should be brought into memory only once. Therefore,
the R buffer pool is dynamically expanded until it key-covers the buffer
page of S, and then these memory-resident pages are joined. After this
operation is completed, the next S page is brought into memory, and
the process repeats. The R buffer pool is dynamically shrunk if any
page goes outside the key coverage range.

The above algorithm is shown in graphical form in Figures 3.5
and 3.6. In the first “build” phase, similar to Hybrid Hash Join, hash
partition Ry is constructed in memory. The difference is that instead of
using the remaining memory as partition output buffers, they are used
for sorted run generation — Ry, ..., Rg — which are written out to disk.
A cut point is used to partition the input so that tuples with join keys
less than the cut point are used to construct Ry, while the others are
assigned to run generation.

In the second “probe” phase, some of the runs of R are read, with
the choice guided by the priority queue A, which keeps track of the
range of values covered by the pages of each run. The priority queue
B keeps track of which pages can be dropped from R’s buffer pool.
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And finally, the priority queue C is used to access the pages of S, one
at a time, from its runs. In the above, the choice of sort algorithm,
replacement selection, is deliberate since it allows creating runs that are
on average double the size of memory, whereas standard algorithms such
as quicksort only provide runs that are commensurate with memory
size.

While the fusion of Sort Merge and Hash Join was discussed above,
we now consider the correspondence to Index Nested Loops join. Here,
the expectation is that there is an index on the large inner input (S)
and that there are relatively small number of distinct join key values
in the outer input (R), which means that reading useless inner pages
should be avoided. For this scenario, G-Join sorts the small input, and
then performs a zigzag merge join of the two inputs — that is, the merge
attempts to skip over useless input records and applies this logic in both
directions between the join inputs. If the number of distinct join key
values in the outer table is small, then many of the pages in the inner
input are never needed for join processing. This is, of course, precisely
the effect and performance advantage of Index Nested Loops join.

3.2.1 Performance Profile

A sample scaling performance with database size of the G-Join (GJ)
algorithm, relative to Hash Join (HJ) and Merge Join (MJ), is shown in
Figures 3.7 and 3.8 for sorted and unsorted inputs, respectively. We see
here that with presorted inputs, G-Join is only marginally worse than
the optimal, Merge Join. And with unsorted inputs, it is only marginally
worse than Hash Join, the de facto leader in these environments. So,
again, we essentially have the best of both worlds. And, what is more
important, the possibility of optimizer errors in making algorithmic
choices has now disappeared due to the unified implementation.

While G-Join may work well in general, it may encounter difficulties
if there is a heavy skew in either the sizes of the runs or the key value
ranges. For instance, if a given page of S has a very wide key range,
then the entire R has to be brought sequentially into memory in order
to complete the join.

Finally, similar unifications have been developed for the grouping,
aggregation and duplicate elimination operators as well in Graefe (2012).
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Robust Plans

We next consider techniques that aim to provide robustness at the gran-
ularity of entire plans. Contemporary optimizers typically approximate
the distributions of run-time parameters with representative values —
for example, the mean or mode — and then choose the corresponding
plan to execute all instances of the query. But this will obviously not
work well if the actual values encountered at run-time are significantly
different from the representative values. Therefore, as previously in-
troduced in Section 2, an alternative strategy proposed in Chu et al.
(1999) is instead to optimize for the “least expected cost” (LEC) plan,
where the expectation is computed over the full distribution of the input
parameters.

However, there are practical limitations with this approach: First,
determining the LEC plan involves substantial computational overheads
when the number of plans over the parameter space is large. Second, it
assumes that the candidate plans have all been modeled at the same
level of accuracy, rarely true in practice. Third, and most importantly,
the robustness here is with respect to entire workloads, and not with
regard to individual queries, which is what we would ideally like to
have.

30
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In this section, we present two techniques, CostGreedy (Doraiswamy
et al., 2007) and SEER (Doraiswamy et al., 2008), that provide robustness
at individual query granularity. To set the stage for their description,
we begin by describing the concept of “plan diagrams” introduced in
Reddy and Haritsa (2005).

4.1 Plan Diagrams

A plan diagram is a color-coded pictorial enumeration of the plan choices
of the optimizer for a parameterized query template over its relational
selectivity space. As an exemplar, consider the query template shown
in Figure 4.1, based on TPCH Q8, whose goal is to determine how
the market share of Brazil has changed over a two-year period in the
America region for a certain type of steel part. There are two additional
filter predicates — the account balance of the supplier should be less
than some constant C1, and the extended price of the lineitem entry
should be less than another constant C2. So, we can view C1 and C2 as
parameters that control the selectivity of the SUPPLIER and LINEITEM
tables, respectively. These selectivities form a 2D space, with each point
in the space representing a distinct query corresponding to a unique
combination of C1 and C2. The set of queries in the space, corresponding
to a given resolution, are individually presented to the database query
optimizer and the recommended plans are obtained. Plans that have the
same “skeleton” — that is, identical query operator trees — are assigned
a common color, whereas plans with different skeletons have distinct
colors.
select o_year, sum(case when nation ='BRAZIL' then volume else 0 end) / sum(volume)
from (select YEAR(o_orderdate)as o_year,
|_extendedprice * (1 - |_discount) as volume, n2.n_name as nation
from part, supplier, lineitem, orders, customer, nation n1, nation n2, region
where  p_partkey = |_partkey and s_suppkey = |_suppkey and

|_orderkey = o_orderkey and o_custkey = c_custkey and

c_nationkey = n1.n_nationkey and n1.n_regionkey = r_regionkey and

r_name = 'AMERICA' and s_nationkey = n2.n_nationkey and

o_orderdate between '1995-01-01' and '1996-12-31" and
p_type ='ECONOMY ANODIZED STEEL'

and s_acctbal < C1 and |_extendedprice < C2
) as all_nations
group by o_year
order by o_year

Figure 4.1: TPCH Q8 template.
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Figure 4.2: Plan Diagram for TPCH Q8 template (Doraiswamy et al., 2007).

With the above procedure, the plan diagram obtained for the Q8
template, at a resolution of 100 in each dimension, is shown in Figure 4.2.
Here, each colored region corresponds to a unique plan, and we see
a large number of plans covering the space — 76 in alll Moreover, the
geometries of the plan boundaries are highly irregular. In the legend
on the right side of the diagram, the various plans, P1 through P76,
are organized in descending order of area coverage. We find plan P1
occupying about 30% of the space, whereas the smallest plans occupy less
than 0.1% of the space. Collectively, the plans featured in the diagram
are known as the parametric optimal set of plans (POSP) (Hulgeri and
Sudarshan, 2002).

4.2 Cost Greedy Reduction

In the CostGreedy algorithm (Doraiswamy et al., 2007), the core idea
is to compute the POSP over the parameter space, and then reduce
it to a low-cardinality approximation, where the number of plans is
much smaller. The expectation is that these retained plans are relatively
stable plans with respect to estimation errors.

Specifically, the following Plan Diagram Reduction problem is ad-
dressed: Recolor the plan diagram with the smallest set of colors (i.e.
some plans are “swallowed” by others), such that no query point in the



4.2. Cost Greedy Reduction 33

original diagram has its estimated cost increased, post-swallowing, by
more than \ percent.
Here, X\ is a user-specified parameter capturing the acceptable sub-
optimality. That is, each query point in the original diagram either (a)
retains its original plan, or (b) has it substituted with a replacement
plan whose sub-optimality, relative to this original choice, is bounded
by A. If A is kept small, say 10%, then there is really no material perfor-
mance deterioration — this is especially so given that the suboptimalities
experienced in contemporary scenarios are often in orders of magnitude.
Based on a reduction from the Set Cover problem (Garey and
Johnson, 1979), it can be shown that finding the optimal reduction,
wrt to the number of retained plans, is computationally hard. However,
a greedy approximation that usually turns out to be close to optimal
is incorporated in the CostGreedy algorithm. The only assumption
made in its design is a simple geometric property, called Plan Cost
Monotonicity, defined as follows on the plan cost function (PCF) of the
POSP plans:

Plan Cost Monotonicity (PCM): The PCF of each POSP plan
featured in the plan diagram is monotonically increasing over the
entire selectivity space.

What this means is that given any plan P, and a location g2 in the
selectivity space, as shown in Figure 4.3, then at any location ¢; in the
hypercube subtended by go wrt the origin, the cost of executing ¢; with
P will be less than that at g;. That is,

Cost(P,q;) < Cost(P,q2) if ¢ < q2 (4.1)

In a nutshell, “spatial domination implies cost domination”.
Intuitively, the PCM condition captures the expectation that the
cost of a plan is expected to increase with the base relation selectivities.
For most query templates, this is the case since an increase in selectivity
corresponds to processing a larger amount of input data. As a conse-
quence, when considering the recoloring possibilities for a query point
@i, only those plan colors that appear in the first quadrant, relative to ¢;
as the origin, are considered. This restriction is because only a vacuous
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Figure 4.3: Plan Cost Monotonicity (PCM).

statement can be made about the costs of plans from other quadrants,
namely that they lie in the interval [Cost(P,g;), 00).

For the plan diagram in Figure 4.2, the CostGreedy algorithm first
casts the diagram into a 2D grid, matching the picture’s resolution. It
then scans the grid from right to left, beginning with the top row of
the grid, and then working its way down, row by row. This directional
movement is essential since the PCM assumption can now be easily
leveraged to decide when an entire plan can be swallowed by another —
the details are given in Doraiswamy et al. (2007).

4.2.1 Anorexic Reduction

A surprising and potent outcome from an empirical evaluation of
CostGreedy over a large number of benchmark templates, was the
following: Irrespective of the number of plans in the original plan dia-
gram, which was often in the hundreds, the final number post-reduction,
even with very modest A thresholds of 20 percent or less, came down to
a single digit! In short, that plan diagrams can be reduced to “anorexic”
cardinalities while retaining acceptable query processing performance.
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As a case in point, the reduced picture for Q8 with A = 10% is
shown in Figure 4.4 — the original 76 plans are now drastically reduced
to just 5 plans. Further, the geometries of the plan boundaries, which
were previously highly irregular, have become smooth hyperbolic curves.
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Figure 4.4: Reduced Plan Diagram for TPCH Q8 template (Doraiswamy et al.,
2007).

We hasten to add that anorexic reduction is not just a cosmetic
exercise of reducing complex plan diagrams to simpler versions, but has
several performance benefits, as outlined in Doraiswamy et al. (2007).
Specifically, from the RQP perspective, the utility is that the retained
plans are highly resistant to selectivity errors, since they are robust
choices over large areas of the selectivity space. For instance, the dark
blue plan in Figure 4.4 is a good choice over almost 90% of the space,
therefore accounting for most of the selectivity errors that may be
encountered at runtime.

Notwithstanding the above, it is still possible that CostGreedy
may cause arbitrarily poor performance if the selectivity error is large
enough that the actual location of the query falls outside the swallowing
region of the estimated location. This scenario is captured in Figure 4.5,
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Figure 4.5: Error Location Regions wrt Plan Replacement (Doraiswamy et al.,
2008).

where ¢, is the estimated selectivity location, g, is the actual run-time
location, P,. is the optimal plan for ¢. and P,, is the optimal plan
for q,. Further, P,. is the replacement plan for P,.. Here, if g, falls
in the (blue) optimality region of P,., then it is in the “endo-optimal”
region of P,., making it inherently robust. Whereas if it is in the brown
region, where P,. can swallow within the A constraint, then again it is
inherently robust. However, if g, is outside these colored regions, its
performance could be arbitrarily worse depending on the behavior of
Pre at qq.

4.2.2 Robustness via Reduction

We now present example scenarios to motivate (a) the error-resistance
utility of plan diagram reduction, and (b) the need for ensuring safety
in this process.

Performance Enhancement

The first scenario, shown in Figure 4.6 demonstrates how the replacement
plan P,. can provide huge improvements throughout the selectivity
space. Specifically, reduction was carried out with A = 10% on a plan
diagram for a query template based on TPC-H Q5, with selectivity
variations on the CUSTOMER and SUPPLIER relations. On this diagram,
for ¢¢ = (0.36,0.05), a sample set of actual locations (g,) along the
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Figure 4.6: Beneficial Impact of Plan Replacement.

principal diagonal of the selectivity space were considered. For this
instance, the costs of P,. (P45), P, (P17) and P,, (the optimal plan
at each ¢, location) are shown in Figure 4.6(a) — note that the costs
are on a log scale.

It is clear from Figure 4.6(a) that the replacement plan P17 provides
orders-of-magnitude benefit w.r.t. P45. In fact, the error-resistance is
to the extent that it virtually provides “immunity” to the error since
the performance of P17 is close to that of the locally optimal plan P,,
throughout the space. Moreover, this sustained improvement is obtained
despite the endo-optimal region of P,. constituting only a very small
fraction of this space.

Moreover, the benefits expected from the compile-time analysis do
translate to corresponding improvements at runtime. This is shown in
Figure 4.6(b), where the query response times (again measured on a
log scale) of P45, P17 and P,, at the same g, locations are presented.
It is vividly clear in this picture that huge savings in processing time
are obtained by using the replacement plan instead of the optimizer’s
original choice, and that the replacement’s performance is virtually
indistinguishable from the optimal choices.
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Performance Degradation

While performance improvements are usually the order of the day,
there are also occasional situations wherein P,. performs worse than
P,e at q,. A particularly egregious example, arising from the same
plan diagram, is shown in Figure 4.7(a) for ¢. = (0.03,0.14) — we see
here that it is now the replacement plan P,. (P34), which is orders-of-
magnitude worse than P, (P26) in the presence of selectivity errors.
This compile-time assessment is corroborated in Figure 4.7(b) which
shows the corresponding query response times.
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Figure 4.7: Adverse Impact of Plan Replacement.

From the above, it is clear that we would like to have a mechanism
through which one could assess whether a replacement is globally safe
over the entire parameter space. While global safety could, in principle,
be ensured by explicitly checking every location in the exo-optimal
region, it would be computationally impractical. Therefore, we present
below the SEER algorithm (Doraiswamy et al., 2008), which efficiently
ensures that the sub-optimality guarantees are maintained irrespective
of the location, including the exo-optimal space.
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4.3 Global Safety with SEER Reduction

Global safety is mandated by extending CostGreedy’s swallowing crite-
rion of

V points q in endo-optimality region of P,
cost(Pre,q) < (14 N)cost(Poe, q) (4.2)

to the stricter constraint that

V points q in selectivity space S,
cost(Pre,q) < (1 + X)cost(Poe, q) (4.3)

In SEER, anorexic plan diagram reduction is augmented with a
generalized mathematical characterization of PCF behavior over the
parameter space. As an example, for a 2D selectivity space with x and
y dimensions, the PCF is expressed as

cost(P, (x,y)) = arx+asy+aszry+aszlogz+asylogy+asxylogzy+ar (4.4)

where the a; are coefficients. The choice of terms is based on the
operators typically found in query execution plans — for instance, Join is
captured by the xy term, Sort by xlogx, Table Scan with the constant
ary, ete.

The fitting of these template functions to the specific plan functions
can be carried out using standard techniques such as Linear Least
Squares method (Kreyszig et al., 2011). An example 2D fit is shown in
Figure 4.8, where the actual cost function is on the left and the fitted
function is on the right. The algebraic version of the fitted function is
also shown in the figure, and it is visually evident that the fit is very
good.

A “safety function” is defined in SEER as

safety(x,y) = cost(Pre, (x,y)) — (1 + N)cost(Pye, (z,y)) (4.5)

which captures the differences between the costs of P,. and a A-inflated
version of P, in the selectivity space. A variety of safety-related checks
can be constructed based on the behavior of the safety function and its
first and second derivatives in this space.
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Figure 4.8: Plan Cost Functions: Actual and Fitted (Doraiswamy et al., 2008).

The main result in Doraiswamy et al. (2008) is that passing the
above safety-related checks in the perimeter of the selectivity space
automatically implies safety in the interior as well — therefore, it is
only required to check for safety at the border, a computationally much
simpler task. In fact, it was shown that analyzing the safety function
behavior at just the corners of the space was often sufficient to make
the safety determination over the entire region.

Equally importantly, it was shown that despite having to meet
a stricter replacement constraint, the reduction cardinality of SEER
retained the anorexic profile achieved by CostGreedy, thereby simulta-
neously providing global safety and robustness.

4.3.1 Limitations

As discussed above, SEER essentially assures, at the granularity of
individual queries, performance that is either much better than the
native optimizer, or at worst, marginally suboptimal (bounded by A
percent) in comparison. Despite this strong guarantee, SEER still has a
serious limitation — the robustness guarantees are with respect to P,
the optimal plan at the estimated location — i.e. the native optimizer’s
plan. That is, we are again comparing with the upper bound represented
by the contemporary optimizers. Ideally, we would like the guarantees
to be wrt P,,, the optimal plan at the actual location, representing the
lower bound. We address this issue in the next section.
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Robust Query Execution

We now turn our attention from optimization to the robust execution
of entire queries wrt the optimal. The specific performance metric used
here is Maximum Sub-Optimality (MSO). This metric is defined as
the worst-case execution slowdown, evaluated over the entire selectivity
space, relative to an oracular ideal that magically knows the correct
selectivities.

5.1 Bounded Impact

An early work that attempted to provide MSO guarantees with regard
to query performance was described in Moerkotte et al. (2009). A subtle
but critical point they highlighted was with regard to the metric used to
measure cardinality estimation errors. The standard metrics are either
the Lo norm, which is the Euclidean distance between the estimated
and actual selectivities, or the Lo, norm, which captures the worst-
case discrepancy over all dimensions. However, the surprising result of
Moerkotte et al. (2009) was that minimizing these error metrics could
lead to arbitrarily bad plans from a general perspective.

41
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Instead, they proposed an alternative metric called Q-error (where
Q stands for Quotient), defined as follows:

EstCard TrueCard) (5.1)
TrueCard’ FEstCard '

So, for instance, if the cardinality estimate for a particular relational
expression is 1000 and the actual turns out to be 100, then the Q-error
is 10. On the other hand, if the estimate is 1000 and the actual turns out
to be 100, the Q-error continues to be 10, unlike the earlier formulas.

q = max(

The Q-error metric has become the de facto standard in the query
processing literature over the past decade because of the following
reasons: (1) It treats underestimates and overestimates symmetrically;
(2) It can be unbounded in value, whereas notions such as relative error
can be upper-bounded by 1, independent of the estimated value; and (3)
It matches well with the multiplicative error propagation encountered
from the successive estimates made while ascending the plan tree.

The interesting outcome of the above metric is that, under certain
restricted settings, bounds on Q-error translate to guaranteed limits on
MSO! Specifically, the following theorem was proved in Moerkotte et al.
(2009):

Theorem 5.1. Let all joins be Sort-Merge or all be Grace-Hash. Then
MSO < ¢* where ¢ is the maximum Q-error taken over all intermediate
results.

This guarantee provided the first quantitative bound wrt the ideal.
However, an acute limitation is that the high-degree quartic dependency
makes the guarantee impractically large when the Q-error is significant,
as is often the case. Moreover, it is often not possible to apriori know the
error value, making it infeasible to provide a bound to the user at query
submission time. Second, the stringent requirement on the types of joins
— all only Sort-Merge, or only Hash-Join — is an unrealistic assumption
since query execution plans typically feature a mix of these joins, as
well as others such as Nested Loops and Index Nested Loops. Finally,
additional problematic issues related to how well Q-error minimization
translates to actual query performance improvement, are detailed in
Han et al. (2021).
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5.2 Plan Bouquet

A radically different approach to bounding MSO was taken in the
PlanBouquet algorithm (Dutt and Haritsa, 2016). The core idea here,
similar to Smooth Scan, is to completely abandon the brittle selectivity
estimation process. Instead, to carry out a runtime discovery of the
selectivities, using a compile-time selected bouquet of plans. This tech-
nique lends itself to provable MSO guarantees even in situations where
state-of-the-art systems may suffer arbitrarily poor execution. And what
is even more attractive is that the guarantees are conservative, meaning
that the empirical performance is well within these bounds even on
industrial-strength environments. Similar to CostGreedy, PlanBouquet
is also predicated on the PCM assumption.

We introduce the new approach through the example query of
Section 2, augmented with a COURSE.Fees < $1 selection predicate, as
shown in Figure 5.1. Here, $1 is a parameter and modulating its value
controls the selectivity of the COURSE table. Assume, for starters, that
only the selectivity of this filter predicate is error-prone, whereas the
join predicates are estimated correctly.

( Parametric version of Example Query)

select *

from STUDENT, COURSE, REGISTER 6.1E+06 | —Optimal

where S.RolINo = R.RolINo and
C.CourseNo = R.CourseNo and
C.fees < $1

1.5E+06 |

3.8E+05

9.6E+04

Estimated Costs log-scale

2.4E+04

S: Student NL: Nested Loop Join
C: Course MJ: Merge Join 6.0E+03
R: Register HJ: Hash Join

5] 5]

Selectivity COURSE log-scale

0.01%
04
0.16%
64
2.60%
10.40% -|
41.60%
100.00%

Figure 5.1: POSP Profile on 1D Selectivity Space (Dutt and Haritsa, 2016).

By assigning different values to the Fees parameter, and through
repeated invocations of the optimizer, the POSP plans that cover the
entire selectivity range of the COURSE table are identified. A sample
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outcome of this process is shown in Figure 5.1, where the X-axis is the
selectivity of COURSE (on a log scale) and the Y-axis is the optimal
cost, as determined by the query optimizer, for executing the query
(also on a log scale). Here, we find that the POSP set comprises plans
P1 through P5, with each plan being optimal over a certain disjoint
range. For instance, plan P3 is optimal in the (1.0%, 7.5%) selectivity
interval. The join orders and implementations for each of these plans are
also shown in the picture. Specifically, P1, which is close to the origin,
computes a nested-loop join between COURSE and REGISTER, followed
by another nested-loop join with the STUDENT table. This choice of
plan is to be expected because it corresponds to the low selectivity
region where the amount of data is small. As we go rightwards in the
picture, the amount of data increases until a stage is reached where the
optimizer recommends a switch to plan P2. In this plan, the second join
with STUDENT becomes a merge-join and the left-deep tree structure
morphs to a right-deep structure. And so on, until plan P5, where both
the joins are hash-joins (again, this is to be expected due to the large
amount of data at this high selectivity range). Further, the join sequence
itself has changed to ((R < S) > C) from the ((C > R) 1 S) of plan
P1.

5.2.1 Robustness Profile of Native Optimizer

When the performance of each of the region-specific optimal plans in
the above example is extended over the entire selectivity space, the
picture shown in Figure 5.2 is obtained.

Now, let us consider the worst-case behavior that could occur for
the native optimizer over the selectivity space, and compare it with the
ideal behavior. This comparison is reflected in the green (ideal) and red
(worst) lines shown in Figure 5.3. Given the log-scale, the gap between
these two lines is clearly quite large.

To explain how the red line was computed, for each point in the
selectivity space, the POSP plan that is expected to suffer the slowest
response time is identified. So, for instance, say the actual selectivity
was 99% at runtime, but it was grossly mis-estimated to be 1%, then
P1 would be used instead of the optimal P5, and the performance of
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Figure 5.2: Extended POSP Cost Profile (Dutt and Haritsa, 2016).
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Figure 5.3: Sub-optimality Profile of Native Optimizer (Dutt and Haritsa, 2016).

P1 is 20 times worse than that of P5. On the flip side, if the actual
selectivity was only 0.01%, but hugely over-estimated to be 80%, then
P5 would be used instead of the optimal P1. Here, the performance of
P5 is 100 times worse than P1. The red line shows such computations
over the full selectivity space, and the maximum sub-optimality (MSO)
is 100, near the origin.
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5.2.2 Bouquet ldentification

We now turn our attention to how PlanBouquet operates over the same
selectivity space — this is visually shown in Figure 5.4. Given the ideal
POSP cost profile from Figure 5.1, a series of horizontal lines are drawn
parallel to the X-axis — essentially, the profile is discretized. Each of
these lines is called an iso-cost (IC) line since it corresponds to a fixed
cost. The lines are drawn such that each line has double the cost of the
previous line and span the spectrum from the lowest cost (close to the
origin) to the highest cost (at the maximum selectivity) — from this
exercise, the iso-cost lines IC1 through IC7 are obtained. The points
at which the iso-cost lines cut the POSP profile are marked by black
squares, and the optimal plan at each of these locations is identified. As
shown in Figure 5.4, the plans are P1, P2, P3 and P5, and they form
the “plan bouquet”. Note that plan P4 from the POSP profile is missing
because its optimality interval falls between 1C6 and 1CT.

6.1E+06 -

1.5E+06 -
IC7
1C6
IC5
Ica
IC3
IC2
C1

3.8E+05

9.6E+04

Estimated Costs (log-scale)

2.4E+04

6.0E+03

0.01%
0.04% -
0.16% -
0.64% -
2.60% -
10.40%
41.60% -

100.00%

Selectivity COURSE (log-scale)

Figure 5.4: Bouquet Identification (Dutt and Haritsa, 2016).

5.2.3 Bouquet Execution

Given the above identification carried out at compile-time, the run-time
execution of PlanBouquet operates in the following manner. Beginning
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with the cheapest iso-cost line (i.e. IC1), the bouquet plan assigned to
each intersection point is successively executed until either:

1. The partial execution overheads exceed the associated line’s cost
value — in this case, due to PCM, we know that the actual selec-
tivity location lies beyond the intersection selectivity, motivating
a switch to the next intersection point in the sequence; or

2. The current plan completes execution within the budget — in this
case, we know that the actual selectivity has been reached, and
that a plan which is at least 2-optimal wrt the ideal choice was
used for the final execution.

To make this process concrete, consider the case where the actual
selectivity of COURSE.Fees is 5%. The algorithm begins by executing
plan P1 until the execution overheads reach IC1 (1.2E4 | 0.015%). By
virtue of PCM, the query will not complete within this allocated budget.
Therefore, the execution is prematurely terminated, and the partial
results (if any) produced thus far are thrown away. Then, the cost
horizon is extended to IC2, which represents a doubling of the budget,
and P1 is again executed until the overheads reach IC2 (2.4E4 | 0.03%).
This process goes on until the overheads reach IC4 (9.6E4 | 0.2%).
At this juncture, there is a change of plan to P2 as we look ahead to
IC5 (1.9E5 | 0.65%). The new plan P2 is executed until the associated
overhead limit (1.9E5) is reached. The cost horizon is now extended to
IC6 (3.8E5 | 6.5%), in the process discarding P2’s intermediate results
and executing P3 instead. The execution with P3 completes before
the cost limit is reached since the actual location, 5%, is less than the
selectivity limit of IC6, namely 6.5%.

The total investment made by PlanBouquet in executing the query
is 7.1 E5, computed as (0.12 E5+0.24E5 + 0.48 E5 + 0.96 E5 + 1.92
E5 + 3.4 E5). Whereas, the ideal algorithm would have only spent
3.4 E5. Therefore, viewed in toto, the net sub-optimality turns out
to be 7.1/3.4 = 2.1 since the exploratory overheads are 1.1 times the
optimal cost, and the optimal plan itself was (coincidentally) employed
for the final execution. Of course, with some obvious optimizations — for
instance, the first four executions of P1 could be clubbed together with
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a combined budget of 0.96E5, instead of going through the intermediate
steps — the sub-optimality could be brought down to 6.3/3.4 = 1.8.

A legitimate concern here could be that although the sub-optimality
was only around 2 in the above example, there may be other selectivity
locations where the sub-optimality is significantly worse. To investigate
this concern, the complete sub-optimality of the PlanBouquet algorithm
over the full selectivity space is shown in Figure 5.5. We see here that
the blue line, which corresponds to PlanBouquet has a maximum sub-
optimality of only 3.1 over the entire length, occurring around the 1%
selectivity mark. Further, while an MSO of 3 may appear significant in
isolation, it is much smaller compared to the 100 incurred by the native

optimizer.
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Figure 5.5: Sub-optimality Profile of PlanBouquet (Dutt and Haritsa, 2016).

5.2.4 MSO Guarantee

The good across-the-board performance of PlanBouquet has been estab-
lished above for a particular query. However, it still begs the question “Is
the performance of PlanBouquet much worse than the native optimizer
for some other query?”. To address this issue, a theoretical analysis of
the PlanBouquet algorithm was presented in Dutt and Haritsa (2016),
which we summarize here. Consider the picture in Figure 5.6, where a
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Figure 5.6: Worst-Case Analysis of PlanBouquet (Dutt and Haritsa, 2016).

generalized version of PlanBouquet is depicted — specifically, instead
of a fixed cost-doubling regime, a generic geometric progression with
initial value ¢ and common ratio r is modeled:

We first mark on the X-axis, the selectivity locations ¢;, correspond-
ing to each of the iso-cost line intersections. Now assume wlog that
the query has an actual (but unknown) selectivity g, which lies in the
range (qx—1,qx]. Given this formulation, the cost incurred by the ideal
algorithm will be between 1C},_1 and IC}, since these iso-cost lines have
been drawn on the ideal POSP profile. The lowest possible value is
1C)_1, which given the geometric progression, corresponds to a(rk”).

Now let us consider the PlanBouquet performance. Here, the cumu-
lative cost would be the costs incurred in moving up the “staircase” from
IC} to ICy. So, the worst-case cost would be a + ar 4+ ar? + ... + ar~1,

which sums to % Therefore, the sub-optimality is upper-bounded
by
a(r*-1) 2 2-k 2
SubOpt (%, qa) < —2 = " U (5.2)

ark=2 " r—1 r—1-"r-1
Note that the dependence on k is removed in this formulation! It is
now a simple matter to show that the RHS of Equation 5.2 reaches its
minimum at r = 2, producing an MSO bound of 4.
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Therefore, for any 1D query, PlanBouquet can guarantee an MSO
bound of 4, and we emphasize again that this bound is wrt the opti-
mal. Further, although the native optimizer may perform better than
PlanBouquet on specific queries, it cannot provide any such inherent
bounds on its worst-case performance.

At this point, another natural question is “Does there exist an alter-
native algorithm that can provide a tighter bound than PlanBouquet”
— specifically, less than 4 for the 1D scenario. The answer is No since it
can be proved that this bound is the best performance achievable by
any deterministic online algorithm (Dutt and Haritsa, 2016). However,
with the use of randomized algorithms, better probabilistic bounds,
slightly less than 3, are achievable — see Dutt and Haritsa (2016) for
details.

5.3 Multi-dimensional PlanBouquet

So far, our design and analysis of PlanBouquet was restricted to a
single dimension. In moving to higher dimensions, both the design and
analysis become more complicated. We discuss the case of 2D spaces
here — the extension to higher dimensions is straightforward.

A sample of a 2D POSP profile is shown in Figure 5.7. We see
here that the POSP profile has gone from being a line to a surface.
And the iso-cost lines have now become horizontal planes that are
parallel to the X-Y axial plane. What is particularly noteworthy is
that the intersections of the iso-cost planes with the POSP surface may
now have multiple plans appearing on the intersection. As an example,
the intersection with one of the planes is shown with dotted lines in
Figure 5.7, and there are 3 plans — colored blue, purple, and maroon —
on the intersection contour.

A “top-down” view of the intersections leads to the generic picture
shown in Figure 5.8 (a). Here, the iso-cost surfaces are represented by
contours that represent a continuous sequence of selectivity locations (in
contrast to the single location in the 1D case). Further, multiple bouquet
plans may be present on each individual contour — as an example, on
ICy, there are four plans, PF, P§, P¥, PF which are the optimizer’s
choices over disjoint (z,y) selectivity ranges on this contour. Here, if
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Figure 5.8: 2D selectivity space: (a) isocost contours, (b) plan prune space (Dutt
and Haritsa, 2016).

PQk is executed with budget I1C} and the query does not complete, then
it provably does not lie in the green hashed area shown in Figure 5.8
(b). However, we cannot jump to the conclusion that it lies beyond the
1C}, contour since it may lie in the remaining unshaded regions below
1Cy.

Therefore, to decide whether ¢, lies below or beyond ICy, every
plan on the IC} contour has to be executed — only if none complete,
then the actual location definitely lies beyond the contour. The need
for exhaustive execution is highlighted in Figure 5.9, where, for the four
plans lying on ICY%, the regions in the selectivity space on which each
of these plans is guaranteed to complete within the budget cost (IC%)
are enumerated (the contour superscripts are omitted in the figure for
visual clarity). Note that while several regions are “covered” by multiple
plans, each plan also has a region that it alone covers, denoted by the
hashed regions in Figure 5.9. For queries located in such regions, only
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origin

Figure 5.9: Prune space coverage by IC) plans (Dutt and Haritsa, 2016).

the execution of the associated unique plan would confirm that the
query is within the contour.

Performance Bounds Given a query Q with ¢, located in the contour
range (ICk_1,1Cy], the worst-case total execution cost for the multi-D
bouquet algorithm is given by

k

Cbouquet(qa) = Z[nl X COSt(IC’i)] (53)
i=1
Using p to denote the number of plans on the densest contour, and
upper-bounding the values of the n; with p, the following performance
guarantee is obtained:

k

Cbouquet(Qa) <pXx ZCOSt(ICi) (54)
i=1

Now, following a similar derivation as for the 1D case, the following
theorem results:
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Theorem 5.2. Given a query Q with a multidimensional error-prone
selectivity space, and the associated PIC discretized with a geometric
progression having common ratio » and maximum contour plan density

r
p, the bouquet execution algorithm ensures that: MSO < P
r —

Setting r = 2 in this expression ensures that M SO < 4 p, providing a
numerical compile-time guarantee.

5.3.1 Handling Large p

A problem in the above formulation is that the value of p could be quite
large, typically in the hundreds, making the bound value impractically
weak. An easy solution is to leverage the plan diagram reduction tech-
niques described earlier in Section 4. Note that such reductions may
mildly (within the A factor) increase the average-case sub-optimality,
but in return, substantially improve the worst-case behavior.

The MSO values, post-reduction, for a variety of TPC-H and TPC-
DS-based query templates (listed in Dutt and Haritsa, 2018), with query
dimensionalities ranging from 3 to 5, are shown in Figure 5.10. We
see here that they are in the range of 10 to 50. While, at first glance,
this may again appear large, note that these values are much lower
than the sub-optimalities seen in practice with the native optimizers.
To characterize it in lighter vein, an “absolutely terrible” situation has
been improved to be “mildly horrible

7|

5.3.2 Runtime Performance

While compile-time bounds were discussed thus far, we now consider how
PlanBouquet actually behaves in run-time environments. In Figure 5.11,
the MSO performance (on a log scale) of both the native PostgreSQL
optimizer (maroon color) and PlanBouquet (green color) are shown
for the query templates of Figure 5.10 on a PostgreSQL platform. The
naming nomenclature for the queries is xD_y_ Qz, where x specifies the
number of dimensions, y the benchmark (H or DS), and z the query
number in the benchmark. So, for example, 3D_H_ Q5 indicates a three-
dimensional error selectivity space on a query derived from Query 5 of

the TPC-H benchmark.
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Query MSO Bound
(dim)
— Q5 (3D) 14.4
Q7 (3D) 144
Qs (4D) 33.6
| Q7(5D) 43.2
— Q15 (3D) 14.4
Q96 (3D) 14.4
we) 192
Q19 (5D) 38.4
Q26 (4D) 24.0
Q91 (4D) 43.2

Figure 5.10: MSO guarantees for benchmark-based templates (Dutt and Haritsa,
2016).
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Figure 5.11: PlanBouquet performance on PostgreSQL (Dutt and Haritsa, 2016).

We observe orders-of-magnitude improvement by PlanBouquet— a
particularly potent example is 3D_DS_Q15, where PostgreSQL has an
MSO exceeding a million, whereas that of PlanBouquet is only around
ten!

A similar experiment was conducted on a commercial database
system. Since the engine’s API does not directly support injection of
selectivities, modified TPC-H queries 3D_H_Q5b and 4D_H_Q8b were
constructed (Dutt and Haritsa, 2018), wherein all error dimensions
correspond to selection predicates on the base relations.
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The performance profile shown in Figure 5.12 was the outcome of
this experiment. We see here that the MSO of the commercial system
goes up to almost 10000, whereas PlanBouquet is in the low double
digits.
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Figure 5.12: PlanBouquet performance on a commercial DBMS (Dutt and Haritsa,
2016).

5.4 Summary

Overall, PlanBouquet achieves, for the first time, bounded performance
sub-optimality. Moreover, as highlighted previously, this is a numerical
guarantee provided at compile-time. Second, it is inherently robust
to changes in data distribution since selectivity estimations are com-
pletely eschewed. So, while the selectivity location may change based
on distribution, the processing trajectory itself does not change since
it is computed over the entire space. Third, it is amenable to non-
invasive deployment, as a layer above the database engine. Finally, there
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is repeatability in execution strategy, irrespective of the state of the
metadata contents, a common source of regressions. This feature is
particularly attractive in industrial settings, where stability, rather than
ideal performance, is of paramount importance.

At first glance, the bouquet approach, with its partial execution of
multiple plans, may appear similar to run-time re-optimization tech-
niques such as POP (Markl et al., 2004) and Rio (Babu et al., 2005).
However, a key difference is that they start with the optimizer’s estimate
as the initial seed, and then conduct a full-scale re-optimization if the
estimate is found to be significantly in error. In contrast, PlanBouquet
always starts from the origin of the selectivity space, and directly chooses
plans from the bouquet for execution without reinvoking the optimizer.

The use of only one active plan (at a time) to process the data
also makes PlanBouquet dissimilar from routing-based approaches — for
example, plan-per-tuple (Avnur and Hellerstein, 2000) and plan-per-
tuple-group (Polyzotis, 2005) — where data segments may be routed to
alternative choices from a suite of concurrently active plans.

PlanBouquet may also superficially look similar to parametric query
optimization (PQO) techniques, (e.g. PPQO Bizarro et al., 2009), since
a set of plans are identified before execution by exploring the selectivity
space. The primary difference is that those techniques are useful for
saving on optimization time for query instances with known parameters
and selectivities. On the other hand, the goal of P1anBouquet is to regu-
late the worst-case performance impact when the computed selectivities
are likely to be erroneous.

Finally, the bouquet technique does not modify plan structures
at run-time. This is a major difference from the “plan-morphing” ap-
proaches, where the execution plan may be substantially modified at
run-time using custom-designed operators, such as chooseplan (Cole
and Graefe, 1994), switch (Babu et al., 2005), and feedback (Chaudhuri
et al., 2008).

5.5 Limitations

While a bound of 4p has been achieved, there are some practical problems
with regard to its identification and usage. First, p can be known only



5.5. Limitations 57

by first constructing the plan diagram for the query template, which
could be a very time-consuming affair, especially for higher-dimensional
selectivity spaces. To some extent, this effort could be mitigated by not
enumerating the whole space, but only the contours — an algorithm
called Nexus for this purpose is provided in Dutt and Haritsa (2016).
However, the inherent exponential nature of plan diagram enumeration
remains. Second, the bound is not portable since the p value depends
on the complexity of the specific plan diagram, which is a function of
the underlying query optimizer, database and hardware system. These
shortcomings are addressed in the SpillBound algorithm, described in
the next section.
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Structural Robustness Bounds

The SpillBound algorithm retains the core idea of PlanBouquet,
namely, a cost-budgeted plan execution sequence guided by geometri-
cally increasing iso-cost profiles over the optimal performance surface.
However, unlike PlanBouquet, where the budgets were applied to plans
in their entirety, the budget here is assigned specifically to maximize
movement towards the (unknown) actual selectivity location within
each plan execution.

The focused assignment is achieved, as shown in Figure 6.1, by
leveraging a “spilling” mode of execution. That is, given an error-prone
predicate whose selectivity is to be determined, the output of the corre-
sponding operator is discarded and not forwarded to the downstream
nodes of the execution plan tree. This means that the entire execution
budget is utilized towards selectivity discovery since nothing is frittered
away on processing of downstream nodes. Further, the spilling on the
predicate is continued across successive contours until its selectivity
value is fully known. That is, selectivities are sequentially identified
over the plan tree.

An immediate question that arises is the sequence in which these
error-prone predicates should be chosen for spilling. A bottom-up exe-
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Figure 6.1: Spilling Mode of Execution (Karthik et al., 2019).

cution pattern is followed, whereby the lowest predicate in the tree is
chosen first, and then we progressively traverse up the tree. Specifically,
a total ordering of the predicates is obtained by first partitioning the
plan into a sequence of pipelines, and then ordering the predicates
within each pipeline. An example based on TPC-DS Q26 is shown in
Figure 6.2, where there are four pipelines, L through L4, highlighted
by dotted ovals, executed in this order. The nodes are represented as
N; and in this figure the total ordering is Nig, Ng, N4, N3, and their
selectivities are learned one by one.

This iterative process ensures that whenever a node is chosen for
spilling, the selectivities of all the nodes below it are known correctly,
either because (a) they are not error-prone, or (b) they have been
previously learned fully in the ongoing discovery process.

6.1 Half-space Pruning

With the above spilling mode of execution, a much stronger half-space
pruning is achieved in the selectivity space, as opposed to the hypo-graph
pruning delivered by PlanBouquet — this improvement is visually shown
in Figure 6.3. The extent of selectivity movement depends on the plans
chosen from the contour. To maximize movement, for each dimension,
the contour plan that spills the farthest in that dimension is chosen.
It can be shown that with this approach, crossing a D-dimensional
contour requires at most D plan executions. This is in marked contrast
to PlanBouquet where all plans on the contour had to be executed
before a crossing could be made to the next contour.
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Figure 6.3: Hypograph to Half-Space Pruning (Karthik et al., 2019).

Overall, thanks to the pair of complementary techniques — half-space
pruning and limited contour executions — it can be proved (Karthik
et al., 2016) that:

MSO < D?+3D (6.1)
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This means that the MSO now only depends on the dimensionality
of the space, and not on its contents! That is, in addition to being
data-independent and metadata-independent, which was inherited from
PlanBouquet, platform-independence has been achieved as well (under
the assumption that D remains constant across the platforms). In a
nutshell, there has been a movement from behavioral bounds to structural
bounds.

Although SpillBound appears to provide stronger robustness guar-
antees than PlanBouquet in theory, the question could still be asked
whether, in practice, is it the other way around? This issue is addressed
in Figure 6.4, where over a suite of TPC-DS-based queries, SpillBound
performs substantially better on most of them. For instance, consider
query 5D_Q29 — PlanBouquet has an MSO of 42, whereas SpillBound
is only 15.
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Figure 6.4: Empirical comparison of PlanBouquet and SpillBound (Karthik et al.,
2019).

Finally, a lower-bound that is linear in D for this half-space pruning
class of algorithms is derived in Karthik et al. (2016). This shows that
SpillBound is within an O(D) factor of the ideal, extracting much of
the power of the new approach.

6.2 Ad-hoc Queries

Both P1lanBouquet and SpillBound are predicated on apriori possessing
a plan-diagram, with enumerated iso-cost contours, to identify the plan
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bouquet. Due to the significant computational cost of creating the
diagrams, these algorithms become suitable only for “canned” queries
that are invoked repeatedly. In order to provide robustness for “ad-
hoc” queries as well, a new technique, called FrugalSpillBound, was
presented in Venkatesh et al. (2018). Here, recourse is taken to a stronger
geometric property of plan cost functions. Specifically, in addition
to monotonicity, it is also assumed that PCFs exhibit concave-down
behavior with monotonically non-decreasing slopes. That is, the cost
of processing each additional tuple is less than that of the prior tuples.
Through experimentation with benchmark environments hosted on
contemporary database engines, it was established that such concavity
is the norm.

With the above assumption, instead of computing the precise lo-
cation of the intersections of the iso-cost surfaces with the optimal
cost profile, an approximate proxy iso-cost surface called a bounded
contour-covering set (BCS) is dynamically found. The BCS for a contour
is defined as the set of locations such that:

1. Every location in the contour is spatially dominated by at least
one location in this set; and

2. The cost of each location in BCS is bounded to within an n factor
of the contour cost.

Defining the BCS of contour ZC; by BC'S;, the following condition needs
to be satisfied by BC'S;:

Vq € IC;,3 ¢' € BCS, such that ¢ < ¢'and Cost(Py,q") < nCCs

where CCj; is the cost of isocost contour ZC;. To make this notion concrete,
a candidate BC'S; for the example contour ZC; shown in Figure 6.5,
is {c1, c2, c3} which covers the entire contiguous length of the contour.
As a specific case in point, the covering location co fully covers the
optimality segments of Ps and Py, as well as parts of Py and Py, in ZC;.

Leveraging the concavity property, it is feasible to efficiently identify
the BCS for each contour. Further, it is shown in Venkatesh et al. (2018)
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Figure 6.5: Bounded Contour-covering Set (BCS).

that for an increase by at most 1 in MSO guarantees, the overheads
reduction factor is at least

v =r/log,r D=1
v = Q(TD/(Dlog?7 T)Dfl) D>2 (6.2)

That is, the initial regime of FSB provides an exponential improvement
in « for a linear degradation in 7.

So, when 1 = 2, v can provide two orders of magnitude reduction in
overheads. Beyond this theoretical guarantee, v was empirically found in
Venkatesh et al. (2018) to often reach close to four orders of magnitude.
As a practical matter, for D = 5 and r = 100, the compilation efforts
reduced from a few days to a few minutes on contemporary servers.

6.3 Linear Guarantees

SpillBound provides a robustness guarantee that is quadratic in the
selectivity space dimensionality, D, but the lower bound is linear in
this parameter. Therefore, it is natural to ask whether there exist
environments in which the lower bound can be achieved. To investigate
this issue, a concept called contour alignment was introduced in Karthik
et al. (2019). A contour is said to be aligned if the contour plan that
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is incident on the boundary of the parameter space, has its selectivity
learning dimension (during spill-mode execution) matching with the
incident dimension. For instance, in Figure 6.5, if plan P; and Py provide
selectivity movement along the X and Y dimensions, respectively.

Given the above characterization, the MSO bound can be tightened
to linear if the contour alignment property is satisfied at every contour
in the selectivity space. Specifically, the bound is now 2D + 2. Unfor-
tunately, in practice, the alignment property may not be satisfied at
all contours. Therefore, techniques to force alignment through explicit
induction were also presented in Karthik et al. (2019) — however, such
forcible alignment may sometimes entail a severe performance penalty,
so it can be employed only in select cases where the alignment can be
obtained cheaply.

6.4 Summary

This section showed that by (a) making minimally invasive changes
to the execution engine, and (b) stronger, but practically realistic,
geometric assumptions about plan cost behavior, it is feasible to upfront
provide strong platform-independent performance guarantees for both
canned queries and ad-hoc queries.
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Robust Cost Models

Thus far, our focus has been on incorporating robustness with respect
to the operator cardinality model, which is primarily responsible for the
poor choice of runtime plans. However, robustness can also be adversely
affected by errors in the operator cost model, and this issue has been
the subject of several studies during the past decade. As mentioned
previously, the two models address very different aspects of the data
processing environment — the cardinality model reflects the ability to
capture the distributions and correlations present in the data, whereas
the cost model registers the ability to capture the behavior of the
underlying hardware and physical operator implementations.

There have been two schools of thought on addressing cost modeling
errors — one advocating learning-based mechanisms (e.g. Ganapathi et
al., 2009; Akdere et al., 2012; Sun and Li, 2019), and the other proposing
that fine-tuning of the classical statistical approaches is sufficient to
obtain viable models (e.g. Wu et al., 2013b; Wu et al., 2013a; Wu et al.,
2014).

The claim made by the learning group was that the current cost mod-
els, which are based on direct scaling between the optimizer estimated
costs and the actual running times, are largely unusable. As empirical
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evidence of this shortcoming, they presented sample evaluations, like
the one shown in Figure 7.1. In this figure, obtained on PostgreSQL,
the actual execution time is plotted against the optimizer’s estimate
of this time. It is clear that there is no simple linear fit that can be
interpolated between the two quantities, and in fact, the average error
is well in excess of 100 percent!
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Figure 7.1: Poor Accuracy of Cost Model (Akdere et al., 2012).

However, there was subsequently a pushback to this conclusion from
the statistical community. To understand their argument, consider the
following formula which is the cost model of PostgreSQL:

C = nscs + Ny + Nyt + Nici + NoCo (7.1)

where the ¢, are the unit costs for various disk and CPU operations,
as shown in Table 7.1. The corresponding n, are the number of such
operations. A normalized value of 1.0 is assigned to ¢, (sequential page
access), and the values of the remaining parameters are set relative to
Cs.

The formulation in Equation 7.1 is usually converted to a wall-clock

time prediction, T, in the following manner:
Cr c i c
T:a.C:a(ns—l—nrc——l—ntc—t+nic—l+no—o) (7.2)

s s s Cs

where a is a proportionality constant. Note that this formulation allows
for directly using the scaled values listed in Table 7.1.
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Table 7.1: Cost Parameters.

Parameter Cost Unit Scaled Value
Cs Sequential Page Access 1.0

Cr Random Page Access 4.0

Ct CPU tuple access cost 0.01

G CPU index access cost 0.005

Co CPU operator cost 0.0025

Given this framework, it was mooted that the reason for direct
scaling to fail was not the approach itself, but an artifact of (a) incorrect
ratios between the ¢, values, and (b) incorrect n, values. The proposed
solution to these problems was accurate calibration of these values.

Before we get into the mechanics of calibration, a sample evaluation
of how the calibrated version works against the scaled version is shown
in Figure 7.2. As is evident, unlike the scaled version, the calibrated
version has a strong linear relationship between the actual execution
time and the predicted time. A related benefit of such calibration is
that even if a sub-optimal plan is chosen due to incorrect cardinality
estimates, we can at least accurately estimate the running time of this
chosen plan.
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Figure 7.2: Prediction Quality: Scaling vs Calibration (Wu, 2013).

In order to achieve calibration, we need the correct ¢, values and
this can be done in an offline fashion through the use of appropriate
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profiling queries. And the accurate n, values can be computed after
the plan has been decided through an online sampling exercise. This
system architecture is captured in Figure 7.3.

calibration offline calibrated
queries profiling cost units

Z

A 4
uery time =
qpreci’ictor

DB Server
N/
final query online corrected
plan sampling cardinality
estimation

Figure 7.3: Cost Model Calibration Architecture (Wu et al., 2013b).

7.1 Calibrating Unit Cost Parameters

Obtaining the calibration for the c, values is surprisingly simple. The five
profiling queries on a generic table R shown in Figure 7.4, when executed
in the given sequence, are sufficient to provide these values. The basic
idea here is to isolate the various parameters and progressively solve for
them, one by one. The queries are chosen to achieve completeness — each
¢, should be covered by at least one query; conciseness — set of queries
is incomplete if any query is removed; and most importantly, simplicity
— each query should be as simple as possible, both for efficiency and for
unambiguous measurement.

For instance, the first query captures an in-memory sequential scan,
and therefore establishes the value of ¢; because both the running time
and the number of tuples (n41) can be accurately measured (or, even
simpler, ny is directly available from the metadata catalogs). Then,
armed with this knowledge, we can now execute the second query, where
in addition to the scan, there is an aggregation operator — this leads us
to the ¢, value since we know that n, and ns are both equal to the
known row-cardinality of R. And so on, until we get all five parameters.
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‘ q,: select * from R ‘ m ’ ty :@ N ‘
R in memory

‘ q,: select count(*) from R ‘ — ’ ty = Cp* Npp - Ny ‘

qs: select * from R where R.A<a Rin memory
’ (R.A with an index) \ ts = Ct " Mus +@ Mz + Co * Mo3 ‘
R on disk
‘qA:select*fromR ‘ —’t4 =®.ns4+ct.nt4 ‘
qs: select * from R where R.B<b R on disk ts
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+ ¢ nis + o Nos

Figure 7.4: Calibration Queries for Unit Cost Parameters (Wu et al., 2013b).

7.2 Calibrating Number of Operations

At each operator, the number of operations executed is a function of its
input cardinalities. For instance, as shown in Figure 7.5, the number
for in-memory Sort is n, = 2 x Ny % log(N;), where N; is the input
cardinality to the operator. Similarly, in Nested Loops join, the number
of tuples fetched is proportional to the product of the row-cardinalities
of the input relations.

Example 1 (In-Memory Sort n,
sc GMD o + tc of child

rc =cp - N¢

Example 2 (Nested-Loop Join)
sc = sc of outer child + sc of inner child
rc = ¢ N2 - N+ NP - rec of inner child
il

t
sc: start-cost  rc:run-cost tc = sc + rc: total-cost
N;: # of input tuples

Figure 7.5: Cardinality Calibration for Operators (Wu et al., 2013b).

Now, calibrating the input cardinalities brings us back to the origi-
nal problem of cardinality estimation. And one could take the position
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that this problem should be addressed first. However, that would re-
quire accurate estimations for all the plans in the exploration space,
a daunting task. Instead, we now try to produce accurate estimations
for the (potentially sub-optimal) chosen plan — since only one plan has
to be worked with, we can afford to spend extra time on getting it
right. In particular, instead of the coarse histograms typically used in
cardinality models, the more heavy-duty approach of sampling can now
be employed. A subtle but important point to note here is that modest
cardinality estimation errors are tolerable in plan selection since our
interest is only in the relative ranking among plans, whereas precise
values are required for cost estimation since an absolute time value is
being predicted.

7.2.1 Sampling Estimator

The sampling estimator for a join operator on tables Ry and Ry is shown
in Figure 7.6, leveraging a classical result from Haas et al. (1996). Here,
the tables R; and Ry are first broken up into block-based partitions.
Then, a pair of random partitions from the two tables is picked — in the
picture, these first picks are B1; and Bas. The chosen blocks are brought
into memory and joined. The selectivity for this pair is computed as
the number of joined rows normalized to the product of the partition
sizes. This sampling is carried out repeatedly — in the figure, there are
k such pairs — and their selectivities are computed. Finally, the average
of the partition selectivities is taken as the final estimated selectivity.
It can be shown that the proposed estimator is not only unbiased,
but more importantly, is strongly consistent, meaning that the estimate
only gets better (closer to the true value) with each additional sample.

Refinements

While the above estimator works well wrt quality, there are some
practical problems in its usage. First, accessing the chosen partitions
at runtime involves random IOs and this could be time-consuming.
An easy solution is to take the samples offline and store them as new
tables in the database. Second, query plans contain a tree of operators,
and carrying out the estimation process for each operator from scratch
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Figure 7.6: Sampling-based Cardinality Estimator (Wu et al., 2013b).

could again be time-consuming. This issue can be solved by estimating
multiple operators in a single run by reusing the partial results obtained
from the previous operators. Finally, the estimator is applicable for
selects and joins only, which means that operators such as aggregates
and projections are outside the ambit. However, the good news is that
operators of this type usually appear at the top of the tree, and therefore
if the existing models of the query optimizer are used for their estimation,
the errors are typically limited.

An example of this refined estimator is shown in Figure 7.7. Here,
the original query plan chosen by the optimizer is shown on the left,
computing a left-deep join of Rj, Re and Rj3 in sequence followed by
an aggregation. This plan is rewritten with the sampled versions of the
three tables — R{, R5, R3 — and then executed. The selectivities for the
first and second joins are computed as per the estimator from Haas et al.
(1996). However, note that the output size of the first join is reused
in computing the second join’s selectivity. Essentially, the selectivity
computations are pipelined through the plan tree, and whenever an
operator that is out-of-scope appears — such as the aggregation in
this query — the standard models from the optimizer are used. An
important point to note is that these models now operate on the refined
input estimates from g9, and therefore the aggregation estimator is also
positively impacted by the refinements of the join estimates.
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Figure 7.7: Refinement of Cardinality Estimation (Wu et al., 2013b).

7.3 Performance

To demonstrate that accurate calibration is required prior to use of
cost models, the cost parameters for PostgreSQL were evaluated in
Wu et al. (2013b) for two hardware platforms, PC1: Single-core 2.27
GHz Intel CPU with 2 GB memory, and PC2: 8-core 2.40 GHz Intel
CPU with 16 GB memory. The results are shown in Figure 7.8, and
compared with the default values used by the optimizer. As is evident,
there are substantive differences in these values, even extending to
order-of-magnitude changes — for instance, the ¢; in PP1 is 6E-3 as
compared to the default value of 5E-2! Further, there are also large
differences between the two platforms — for instance, ¢, is 1.2 in PC1
and 9.7 in PC2.

We now look at the performance of this calibrated version over
entire queries. The precision metric used is the Mean Relative Error:

1 o |TpTed o cht|
MRE = MZiZl’LI’T’L
i

Although this metric was used in previous studies as well, a question
that could be raised is about its suitability. Consider a trivial estimation
algorithm that always gives the predicted value as 0, irrespective of the

(7.3)

query. Despite this ridiculous approach, note that the MRE will always
be one. A better error metric would have been, similar to cardinality
estimation, the Q-error metric.
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PC1: Cost Unit Calibrated  Calibrated Default
(ms) (normalized to c,)
C,: seq_page_cost 5.53e-2 1.0 1.0
c,: rand_page_cost 6.50e-2 1.2 4.0
c,: cpu_tuple_cost 1.67e-4 <[0.003 0.0
¢;: cpu_index_tuple_cost | 3.41e-5 0.0006 0.005
C,: cpu_operator_cost 1.12e-4 0.002 0.0025
PC2: Cost Unit Calibrated  Calibrated Default
(ms) (normalized to c,)
c,: seq_page_cost 5.03e-2 1.0 1.0
¢, rand_page_cost 4.89e-1 9.7 4.0
c,: cpu_tuple_cost 1.41e-4 0.0028 0.01
c;: cpu_index_tuple_cost | 3.34e-5 <]0.00066 0.00
C,: cpu_operator_cost 7.10e-5 0.0014 0.0025

Figure 7.8: Calibrated Unit Costs on Platforms PC1 and PC2 (Wu et al., 2013b).

Modulo the above criticism, there are three variants of the calibrated
estimator: First, an idealized E; where the ¢, parameters are calibrated,
and the n, values are the true numbers (obtained through a prior query
execution). Then, E,, where the ¢, parameters are calibrated and the
ng values are obtained from the optimizer. And finally, E{ , where the
¢, parameters are calibrated and the n, values are obtained by the
sampling technique, with f being the sampling ratio at each of the base
tables.

The above variants were evaluated against both scaling-based and
learning-based approaches, and a sample performance is shown in Fig-
ure 7.9 on the baseline TPC-H database, which has uniform and un-
correlated data distributions. Here, Egy s and Erpp are estimators
based on the learning techniques of Support Vector Machines and REP
Trees, while E(’}R is based on simple linear regression corresponding to
the direct scaling approach.

In this figure, we first observe that F,, the native optimizer’s cost
model post-calibration, itself does very well, close to the ideal E;. This
is not surprising given that the optimizer’s assumptions of uniformity
and independence hold on the TPC-H database. Accordingly, the incor-
poration of sampling, represented by E%! and E%3, does not really help
in this case. However, what is really surprising is that the learning-based
techniques do very poorly for some of the queries, as indicated by the
large error bars. In fact, their MRE values over the workload almost
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Figure 7.9: Accuracy on Uniform Data (Wu et al., 2013b).
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Figure 7.10: Accuracy on Skewed Data (Wu et al., 2013b).

reach 2. Now recall the trivial algorithm that we had previously posited,
which would always give a selectivity prediction of 0 — that algorithm
would have fared better than the sophisticated learning approaches
since its MRE is capped at 1! At a meta-level, such results point out
that machine learning is not a panacea for database modeling issues,
and can often turn out to be brittle in the extreme. Finally, considering
the scaling approach EfR, we find its performance is even worse, with
the MRE close to 3.

When the same experiment is carried out with skewed data, the
performance profile shown in Figure 7.10 is obtained. We now see F,
performing poorly compared to E;. Again, this should be expected since
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the optimizer’s distributional assumptions are significantly violated.
However, when sampling is used to reduce the cardinality estimation
errors, as reflected in Eg'l and E2'3 , the prediction accuracy becomes
almost as good as E;. Turning to the learning algorithms, Fgy s and
Erep, we find their performance is worse than even the uniform data
scenario, with the MREs reaching 3 and beyond. Finally, the direct
scaling approach, EOLR, continues to be the worst with an MRE of
around 4.

In summary, the above results illustrate that using careful calibration
in conjunction with statistical models offers visibly superior performance
to learning approaches. Moreover, statistical models are also preferable
from an efficiency perspective because of their negligible computational
overheads at run-time.
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Machine Learning-based Techniques

During the past few years, driven by the amazing success of machine
learning in a variety of domains, a flood of papers advocating machine
learning-based approaches to query processing has appeared in the
research literature (e.g. Dutt et al., 2019; Havenstein et al., 2020; Hayek
and Shmueli, 2020a; Kiefer et al., 2017; Kipf et al., 2019b; Marcus and
Papaemmanouil, 2019; Negi et al., 2020; Sun and Li, 2019; Yang et al.,
2019). The basic idea is to replace the classical coarse parametrized
models with fine-grained learned models. The expectation is that these
deep models are better able to capture the in situ data and system
behavior due to their flexibility, scalability and lack of prior assumptions.

Within this corpus, there are two broad classes — the first is query-
based techniques, a supervised form of learning. Here, the models are
constructed by training on a large set of queries and then using the
observed values for cardinality and/or cost during execution as the labels.
An alternative approach is to use a purely data-based learning technique,
which falls under the unsupervised category. Here, the objective is to
model the joint probability density function of the underlying data so as
to capture the distributions and correlations that are critical to coming
up with precise estimates. Finally, there are also hybrid models that
leverage both queries and data in their learning process.
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In the remainder of this section, we cover a representative technique
from the above classes — MSCN (Kipf et al., 2019b) for query-based
methods and NARU (Yang et al., 2019) for data-based methods.

8.1 Query-based Models

In MSCN (Multiset Convolutional Neural Network), the emphasis is on
modeling cardinalities for correlated joins since they are particularly
difficult to model well and have a critical impact on the overall quality
of the estimation process. For instance, the observation that “French
actors are more likely to feature in romantic movies than actors of other
nationalities” may be found in the IMDB movie database.

The foundation of the MSCN approach is to leverage the Deep Sets
learning framework (Zaheer et al., 2017), which is a neural network
module for operating on sets. The framework is based on the notion of
set convolution, wherein any permutation-invariant function f(.S) on a
set S is decomposable into the form p[}", cq ¢(x)], with p and ¢ being
appropriately chosen functions. In the relational world, this means that
both (A1 B) <1 C and A < (B < C) are represented as {A, B,C}.
The other key idea is to integrate sampling — specifically, the bitmaps of
qualifying base table samples — in the feature set, during both training
and testing.

The advantage of this approach is that the techniques work in a
complementary manner to learn join-crossing correlations. Additionally,
it addresses the “0-tuple” problem often encountered in sampling, where
very few or even zero tuples qualify the selection predicate, risking large
errors in estimation. In essence, the query features can be relied upon
in such low-frequency scenarios.

8.1.1 Training Data

To obtain the training data, synthetic queries are created using schematic
information such as data types and constraints, as well as actual data
values from the application database. Then these queries are executed
and the true cardinalities are obtained via these executions. Further,
the queries are annotated with bitmaps indicating qualifying base table
samples that contributed towards producing the final result.
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8.1.2 Feature Selection and Representation

A query is represented as a collection of a set of tables, a set of joins
and a set of predicates. All logical query features, including tables, filter
predicates and joins, are one-hot encoded. Whereas all numerical values,
including the query literals and the true cardinalities, are normalized
to the [0, 1] range.

An example query and its encoding are shown in Figure 8.1 on the
IMDB database. Here, there is a join between TITLE and MoVIE_ COM-
PANIES on movie_id, as well as filter predicates on production_year
and company_ id. The table identifiers are represented using one-hot
encoding. If we assume that there are three tables in this database, the
encoding is 010 for TITLE and 001 for MOVIE_ COMPANIES.

A bit vector is associated with each sampled base table, indicating
which tuples contributed towards the query result. These bit vectors
are shown adjacent to the table_id — for instance, the first tuple
from TITLE and the last tuple from MOVIE_COMPANIES are both
productive tuples, whereas the last tuple from TITLE and the first tuple
of MoviE__COMPANIES are sterile, as indicated by the 1 and 0 in those
positions, respectively.

SELECT * FROM title t, movie_companies mc WHERE t.id = mc.movie_id

Tableset {[0101...0],[0010...1]}  Joinset {[0010]}

table id samples join id

AND t.production_year > 2010 AND mc.company_id = 5

Predicate set {[100001000.72],[000100100.14]}

column id op. id value

Figure 8.1: MSCN Query Encoding (Kipf et al., 2019b).

Fach edge of the schematic join graph is one-hot encoded, and the
particular join instantiated in the query is encoded as 0010. For filter
predicates, the representation is column__id, operator_id, normalized
_wvalue with the identifiers being one-hot encoded. Accordingly, the
production_year and company_id predicates are assigned column iden-
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tifiers 10000 and 00010, respectively (since there are five columns in
both TITLE and MOVIE_ COMPANIES). The operator = is encoded as
010 and > as 100. Finally, the value 2010 is normalized to 0.72 based
on the minimum and maximum values in production_year, while the
value 5 is normalized to 0.14 based on the corresponding values in
company_id. Finally, the true result cardinality of 665 is normalized to
0.1 since the maximum feasible output size for this query is 6650.

8.1.3 Learning Model

The learning model of MSCN is shown in Figure 8.2. For each of the
different sets in the model space — namely, table set, join set, and
predicate set — a separate module is created, comprising a standard
two-layer neural network per set element with shared parameters and
ReLU activation functions. For each module, its individual element
outputs are averaged to reduce the subsequent computational efforts
and representational complexity. The set-specific averages are then
concatenated and fed into a final output network. This network is also
two-layer but has a final Sigmoid activation function to obtain the
maximum variability for modeling non-linearity.

The optimization metric is Q-error, and the goal is to minimize its
mean value on the training query set. This means that the robustness
is in expectation over the workload, and not on individual queries.

8.1.4 Performance

The MSCN approach has been evaluated on the IMDB dataset which
contains several correlations and is therefore a “tough-nut” for cardi-
nality estimators. A sample performance profile is shown in Figure 8.3
for number of joins going from 0 to 2, along with equality and range
predicates. The comparative baseline is the native PostgreSQL engine.
On the Y-axis is the Q-error (on a log-scale) with overestimations ap-
pearing above the ideal value of 1, and underestimations below 1. This
0-to-2 join regime corresponds to the training data.

If we consider PostgreSQL, it performs quite well for zero or single
join queries, although even in these very simple cases there are a few
outliers. However, when the number of joins is increased to two, the



80 Machine Learning-based Techniques

Concatenate
ﬁ::rri%? output of each
1 __~ setmodule
" [
| Avg. pool | | Avg. pool | | Avg. pool |
f/ Ii/ﬁ [ ,” {/ j“
y
| Rel.U | | RelLU | | RelU |
| Linear | | Linear | | Linear |
| Rel.U | | RelU | | RelU |
| Linear | [ Linear | | Linear |
) Table set Tg Join set Jg Predicate set Py

Figure 8.2: MSCN Learning Model (Kipf et al., 2019b).
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Figure 8.3: MSCN Performance (0 — 2 Joins) (Kipf et al., 2019b).

estimation quality becomes noticeably worse, with large Q-error for a
significant number of queries. On the other hand, with MSCN, the Q-error
is largely concentrated around 1, and even among the few outliers, their
errors are much lower than PostgreSQL.

When we investigate the generalization of this few-join training to
queries with more joins, the profile obtained is shown in Figure 8.4.
The marked deterioration of PostgreSQL is only to be expected given
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Figure 8.4: MSCN Performance (0 — 4 Joins) (Kipf et al., 2019b).

its assumptions of uniformity and independence. However, even MSCN,
although certainly much better than PostgreSQL, shows visible degra-
dation — at 3 joins the 95th percentile Q-error jumps to around 40 and
with 4 joins to around 2400!

Further, it is pertinent to note that when Q-error exceeds a factor
of 10, any estimator becomes practically useless from an absolute per-
spective. Therefore, the ability to successfully generalize to unknown
queries, especially those encountered in industrial-strength settings, is
still an open research question for the learned approaches. And this
drawback continues to be the case even with the considerable follow-up
literature — while they all improve the average-case performance, the
worst-case guarantees still prove to be elusive. In this context, it is
appropriate to recall the pathological example in Section 2, which had
already hinted at the difficulty faced by summary models in capturing
the hyper-sensitive characteristics of database processing.

Turning our attention to training efficiency, the quality versus the
number of training epochs is captured in Figure 8.5. We observe that
there is an exponential improvement with increasing epochs, and the
mean Q-error reaches its steady-state value within 50 epochs.

In summary, while deep learning can certainly help capture complex
correlations and address the low-frequency limitations of sampling, these
benefits accrue only when there is a good match between training and
testing environments. Further, the benefits are in expectation over the
training workload, and not on individual queries.
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Figure 8.5: Training Convergence Time in MSCN (Kipf et al., 2019b).

8.2 Data-based Models

We now turn our attention to the data-based learning models, specifically
NARU (Neural Relational Understanding). The approach here is to train
for learning the joint data distribution of the underlying database
using a deep auto-regressive (DAR) model. Specifically, as shown in
Figure 8.6, given a source of training tuples, the attributes of each tuple
are individually encoded — in the figure, the attributes are x1, x2, r3. And
then a likelihood model is created that provides probability distributions
at its output. The distributions are such that the first distribution is
for the x1 attribute, whereas the next one is the conditional probability
distribution of x5 given the associated value of z1, i.e. P(z2|z1). And
then there is the conditional probability distribution of x3 given the
values of z; and xg, i.e P(x3|x1,x2), and so on. So, essentially, we have
a vector of conditional probability distributions, each of which looks at
the prior history in the vector sequence to arrive at its own distribution.

Data Likelihood

Encode
Source Madel

> 5'{1”

Tuples SR Selectivit
. L Selectivity
Table | =—=> <o e | Plala) estimates
Y P(13|X1,X1}

unsupervised loss
(maximum likelihood)

Decode

Figure 8.6: Training Phase of NARU (Yang et al., 2019).
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Based on the above, our goal formally is to learn
P(x) = [P, P(x_ifx<) (8.1)

where x is an n-dimensional tuple. This is achieved through a DAR
model, with the convergence for the training leveraging a Maximum
Likelihood Estimator. The data tuples are streamed into the DAR
model, and the outputs are the conditional probability distributions over
columns. The specific choice of DAR is not critical, any of the well-known
models such as MADE (Germain et al., 2015), ResMADE (Durkan and
Nash, 2019), Transformer (Vaswani et al., 2017), WaveNet (Oord et al.,
2016) etc. can be utilized.

Post the training phase, inferencing is carried out as shown in
Figure 8.7 — for point queries, the output of the model is directly
used, whereas for range queries, a Monte Carlo integration procedure is
utilized to estimate the cardinalities.

salary=10k
Polnt query ......... ,..' .........
ézge=30

Sk<=salary<=15k

Range query

' 20<=age<=28

Figure 8.7: Inference Phase of NARU (Yang et al., 2019).

Example

To make the above concrete, consider the simple example shown in
Figure 8.8 with four rows of age and salary information. The joint
probability of age and salary is given by the values in the P(A,S)
derived column.
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Figure 8.8: Modeling Joint Distribution (Yang et al., 2019).

Now consider the following query:

Select * From T Where Age <= 25 and Salary <= 2000
The selectivity of this query is mathematically equivalent to its prob-
ability density, which is obtained by integrating the joint probability
distribution over the predicate validity ranges. Specifically, the selectiv-
ity is:

Sel(Q) = P(25,2000) 4+ P(24,2000) = 1/4 +2/4 = 0.75

These probabilities are computed from the conditional distributions
output in Figure 8.6. Essentially, the computation is

Sel(Q) = Model(25,2000) + M odel(24,2000)

The important point to note here is that these probability distributions
are not materialized because they would be extremely complicated to
represent — instead, they are emitted on demand by the model.

Further, unlike the traditional histogram model, where the proba-
bility of each predicate is considered independent of the others, here
the chain-rule factorization ensures there is no information loss. Essen-
tially, we compute P(A, B,C) = P(B)P(C|B)P(A|C) instead of the
error-prone P(A, B,C) = P(A)P(B)P(C) formulation.
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8.2.1 Range Estimates

The DAR output provides point densities. Therefore, when range pred-
icates are encountered, one obvious way to identify the total range
density is to enumerate the valid set of values in each predicate, then
take the combination of all such values across the predicates, and finally
aggregate the associated point densities. However, this would result in
an exponential number of point densities, proportional to the product
of the valid domains of the predicates. So, range density computation
using this approach is impractical for real-world scenarios. The solution
is to instead compute an approximate numerical integration via a Monte
Carlo approach.

The standard Monte Carlo approach picks random samples uniformly
over the parameter space. However, this is not productive in real-world
situations where there is often uneven density and most of the samples
do not produce results. The workaround is to selectively give primacy to
high point densities and less visibility to low densities. This is achieved
via a progressive sampling technique, as shown in Figure 8.9. Here, a
sample is initially drawn on the valid range of the first dimension, age,
of the parameter space. This is followed by conditioning on this sample,
and then drawing on the valid range of the second dimension, salary, and
so on until the terminal attribute is reached. In the end, appropriate
weights are used to return a global density. Essentially, each dimension’s
sample is used to progressively zoom into the high-density region, and
thereby obtain a more accurate estimate.
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Figure 8.9: Random Sampling vs Progressive Sampling (Yang et al., 2019).
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8.2.2 Wildcard Skipping

A practical problem that arises with joint probability distributions is
how to handle wild-card (i.e. “don’t-care”) attributes in a query. An
obvious option is to sample over the entire domain of the column, but
this would be highly expensive. Instead, Naru takes the approach of
introducing a special token during training, called MASK (similar to the
ALL value introduced in the Data Cube framework, Gray et al., 1996),
which signifies the absence of a column and effectively marginalizes
the variable. Specifically, during training, each tuple has its columns
randomly perturbed so that the input data also contains the special
MASK tokens. The query now has its wildcard columns X; replaced with
X; = MASK;, casting the query into the fully-predicated framework
that is amenable to the above-mentioned progressive sampling technique.

8.2.3 Performance

We now move on to profiling Naru’s performance. The evaluation was
carried out on DMV (State of New York, 2019), a real-world dataset
consisting of vehicle registration information in New York. The query
workload comprised about 2000 queries, each having between 5 to 11
range and equality predicates. The performance metric is the mean Q-
error. A variety of techniques ranging from traditional PostgreSQL and
a commercial DBMS to sampling-based techniques and supervised learn-
ing techniques were compared. The results are presented in Figure 8.10
with the Q-error shown on a log-scale.
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Figure 8.10: Estimation Accuracy of NARU (Yang et al., 2019).
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We observe a clear progression in the improvement offered by these
techniques, with NARU providing the best accuracy. In fact, it improves
on the supervised techniques by almost an order-of-magnitude. However,
even here, the maximum error is close to ten, and therefore the worst-
case scenarios continue to be significantly degraded.

Finally, the training time overheads for unsupervised techniques
such as NARU are significantly lower compared to their supervised coun-
terparts.

8.3 Unified Models

Encouraged by the successes, especially wrt average-case performance, of
query-based and data-based techniques, there have been recent proposals
of “unified models” that leverage learning from both data and queries.
For instance, in Wu and Cong (2021), the gap between data-driven
and query-driven methods is closed through a new unified DAR model,
called UAE (Unified Autoregressive Estimator), which learns the joint
data distribution from both the data and query workload. To enable
incorporating the query workload as supervised information in the DAR
model, the Gumbel-Softmax technique is leveraged to differentiate the
categorically sampled variables. With this enhancement, the DAR can
learn joint data distributions directly from queries. Thanks to this
hybrid approach, single-digit Q-error values are obtained even at the
tail of the error distribution.

8.4 Limitations

Learning certainly does seem a promising and potent approach, es-
pecially for modeling correlated joins and complex filter predicates.
Notwithstanding, we caution that a variety of concerns still need to be
satisfactorily addressed, including;:

Universality: The ability to handle unseen queries has not been clearly
established.

Explainability: An intuitive explainability of the computed estimates
is not provided.
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Guarantees: While the average case may be excellent, the worst-case
behavior could still be arbitrarily poor.

Heavy-weight: The training phase itself may require very significant
computation and collection of data, especially in the supervised
techniques.

Uncertainty Estimation: It is hard to quantify the risk involved in
trusting the model.

As further quantitative evidence of the above limitations, a recently
published paper by Lehmann et al. (2023) titled “Is Your Learned Query
Optimizer Behaving As You Expect: A Machine Learning Perspective”,
concludes after a comprehensive empirical evaluation that even the best
ML approaches available today do not systematically outperform the
classical PostgreSQL optimizer!
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Holistic Robustness

Over the past sections, we have covered a variety of techniques for
infusing robustness into the query optimization and processing frame-
work. However, they have been discussed in isolation, and a natural
question that one could ask is whether the various techniques could be
holistically combined in a complementary manner.

The good news is that we can bring them together, as shown in the
architectural diagram of Figure 9.1, which is at the level of complete
plans. Specifically, at the base, we construct a calibrated cost model,
which is used to identify the isocost contours of the robust plan al-
gorithms. But in this cost model, the calibration is done on Q-error
instead of the relative error used in the original formulation. Second, we
use the progressive sampling technique of Naru to derive higher-quality
estimates. Then, we employ the CostGreedy reduction algorithm to
ensure that the number of plans in each of the contours is limited to
a small number. And finally, we use these contours as inputs to the
SpillBound approach to ensure worst-case performance guarantees on
individual queries.

Within each plan, we use the robust operator techniques that were
discussed in Section 3, as shown in Figure 9.2. Specifically, SmoothScan
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SpillBound for
Performance Guarantees

CostGreedy for
Anorexic Plan Density

Pt
Q-Calibrated + Naru-Sampled
: Cost Model for Contours

Figure 9.1: RQP Architecture Plan-level.

G-Join, FlowJoin for
Data Processing

SmoothScan for
Data Access

Figure 9.2: RQP Architecture Intra-plan.

replaces the sequential scan and index scan for data access, and G-Join
provides a unified join algorithm in centralized databases. Further, al-
though not discussed in this monograph, the FlowJoin algorithm (Rodi-
ger et al., 2016) can be used to handle distributed contexts.

Overall, while absolute robustness may always remain a dream, it
certainly appears feasible to achieve a practical level with the tools and
techniques that are currently under our command.
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Future Research Directions

From the presentation thus far, it should be evident that significant
progress has been achieved over the past decade on providing robust-
ness, with regard to both processing of workloads and individual queries.
Notwithstanding, there still remain a variety of challenging research
problems whose solutions could materially improve the robustness pro-
files.

Join-Graph-Sensitive Robustness Thus far, we have essentially consid-
ered SQL queries as monoliths and not really given heed to their internal
structures. However, in practice, most database queries have join-graphs
with special topologies such as chain, star, cycle, etc. And leveraging
this structure, which is known at compile-time, could potentially provide
improved robustness guarantees.

As a case in point, it has been shown in Kumar (2018) that the
MSO guarantees of SpillBound can be improved from the quadratic
D? 4 3D for general join-graphs to a linear 8D — 6 for chain queries!
The MSO gap between star queries and chain queries is quantitatively
captured in Figure 10.1 as a function of the number of edges in the
query join-graph.
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Figure 10.1: MSO Guarantees based on Query Graph (Kumar, 2018).

It would be interesting to extend the above study and develop MSO
guarantees for other common join-graph topologies.

Graceful Performance Degradation A major problem faced in real
deployments are “performance cliffs”, where the performance suddenly
degrades precipitously although there has only been a minor change in
the operational environment. This is particularly true with regard to
hardware resources, such as memory. So, an important future challenge
is to design algorithms that provably degrade gracefully with regard to
all their performance-related parameters.

In fact, even with PlanBouquet-style query processing strategies,
there are performance jumps every time a contour is crossed. For
instance, in the 1D case with a cost-doubling regime in place, the sub-
optimality falls from 4 to 3 at each contour crossing, and then works its
way back to 4 until just before the next crossing. However, a perhaps
more appropriate view is that these jumps are “walls”, and not cliffs,
since the jump magnitude is both bounded and limited. Nevertheless,
it would be an intellectually appealing exercise to investigate whether,
in principle, a smooth version of PlanBouquet could be designed.

Refined Cost Model Calibration The cost calibration model discussed
in Section 7 took the PostgreSQL basic 5-parameter model as a given
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for the entire suite of operators. And the same calibrated values for these
parameters were used across all operators. However, by incorporating
operator-specific features and operator-specific calibration of the associ-
ated coeflicients, we could potentially reap enhanced accuracy for cost
modeling. That is, to move from a global cost model to locally tuned
cost models, while retaining the benefits of the calibration methodology.

Robustness Benchmarks A pre-requisite for confirming the robustness
offered by new approaches are principled benchmarks that exercise and
push the system to its limits. This is critical since standard benchmarks,
such as TPC-DS, measure performance, not robustness. Some recent
efforts in this direction include OptMark (Li et al., 2016), JOB (Leis
et al., 2018) and OTT (Wu et al., 2016). However, there remain several
aspects of robustness that are yet to be covered. For instance, we would
ideally wish to have non-pathological realistic benchmarks that highlight
issues such as performance cliffs.

Machine Learning Techniques for Component Selection We advocate
the database engine to host a multiplicity of alternative components
for a given task, with the intention of separately but cooperatively
catering to the various query processing environments. For instance, if
the cardinality estimates are expected to be reasonably accurate, then
the native query optimizer is appropriate to choose the execution plan.
On the other hand, if the estimates are expected to be brittle, then
robust techniques can be invoked instead. An obvious question that
arises with such an architecture is determining the specific environment
that is currently operational, and hence the associated component choice.
Machine learning techniques could be used to make this selection, similar
to the exercise recently carried out in Hiiske (2016) in the context of
analytical data flows.

Dimensionality Reduction of the Selectivity Space An important
design question in the RQP framework is to identify the query predicates
that constitute the error-prone selectivity space. A simple conservative
option would be to consider all predicates (filter, join, projection) to
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be potentially uncertain, but this would needlessly increase the MSO
guarantees due to the quadratic dependency on D, the dimensionality of
the space. Therefore, a fruitful exercise would be to use a combination
of domain knowledge, query logs, cost behavior and machine learning
techniques to restrict the dimensions to include only those expected to
suffer error-prone estimations. A preliminary study in this direction is
discussed in Purandare et al. (2018).

Cost Models for Upcoming Architectures In the discussion thus
far, we had assumed a traditional on-premise computational environ-
ment, usually referred to as a shared-nothing architecture, accompanied
by single-threaded execution. However, in recent times, disaggregated
resource architectures have been gaining popularity, especially for Cloud-
resident data warehouses. While the cardinality model, which is logical,
is largely unaffected, there may be greater variance in cost modeling
quality due to the attendant complexity of distributed control. Moreover,
users may leverage the flexibility offered by the Cloud to dynamically
assemble query execution platforms, potentially requiring the operator
cost model to be constructed on-the-fly.

A similar challenge could arise in the context of massively parallel
execution engines as well. While the optimizer’s plan choices are likely
to change — for instance, bushy operator trees are now more likely to find
favour — again it is the cost model that is likely to be primarily affected
by the platform. Therefore, developing accurate and fast methodologies
for cost modeling of these contemporary architectures would be a highly
relevant research study.

10.1 Closing Note

Robustness is a highly relevant but poorly understood aspect of declara-
tive query processing in relational database systems. In this monograph,
we have attempted to shed light on various mechanisms through which
robustness can be incorporated in these systems. It is our hope that
the combination of theoretical and empirical innovations outlined here
will encourage the research community to revisit this classical field with
renewed vigor, eventually leading to “bullet-proof” database engines.



11

Additional Reading

The references include publications, beyond those directly referenced in
the monograph, related to robust query processing.
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