The Building of BODHI, a Bio-diversity
Database System

Srikanta J. Bedathur Jayant R. Haritsa Uday S. Sen

Database Systems Lab, SERC
Indian Institute of Science
Bangalore 560012, India

Abstract

We have built a database system called BODHI, intended to store plant bio-
diversity information. It is based on an object-oriented modeling approach and is
developed completely around public-domain software. The unique feature of BODHI
is that it seamlessly integrates diverse types of data, including tazonomic charac-
teristics, spatial distributions, and genetic sequences, thereby spanning the entire
range from molecular to organism-level information. A variety of sophisticated in-
dexing strategies are incorporated to efficiently access the various types of data,
and a rule-based query processor is employed for optimizing query execution. In
this paper, we report on our experiences in building BODHI and on its performance
characteristics for a representative set of queries.

1 Introduction

Over the last decade, there has been a revolutionary change in the way biology
has come to be studied. Computer assisted experimentation and data manage-
ment have become commonplace in the biological sciences and the branch of
Bio-Informatics is drawing the attention of more and more researchers from
a variety of disciplines. A key area of interest here is the study of the bio-
diversity of our planet. The database research community has also realized
the exciting opportunities for novel data management techniques in this do-
main — in fact, bio-diversity was featured as the theme topic at the Very Large
DataBase (VLDB) 2000 Conference [27].

Over the last three years, we have built a database system, called BODHI
(Bio-diversity Object Database arcHItecture) ', that is specifically designed

! Gautama Buddha gained enlightenment under the Bodhi tree.

Preprint submitted to Elsevier Science 11 April 2002

to cater to the special needs of biodiversity applications. While BODHI cur-
rently hosts purely plant-related data, it can be easily extended to supporting
animal-related information as well. In this paper, we report on our experiences
in building BODHI, and also present its performance profile with regard to a
representative set of user queries.

Background

The study of bio-diversity, as outlined by the WCMC (World Conservation
Monitoring Center) [44], is an integrated study of Species, Ecosystem and Ge-
netic diversity. The data associated with these domains vary greatly in the
scale of their structural complexity, their query processing cost, and also their
storage volume. For example, while the taxonomy information of species di-
versity has complex hierarchical structure, spatial data and spatial operators
associated with ecosystem diversity are inherently voluminous and computa-
tionally expensive. On the other hand, genetic diversity is based on specialized
pattern recognition and similarity identification algorithms over DNA or Pro-
tein sequences of the species. Thus, supporting such diverse domains under a
single integrated platform is a challenge to the data management tools cur-
rently used by the ecologists. More often than not, these scientists make use
of different tools for managing and querying over each of the domains, leading
to difficulties in performing cross-domain queries.

To illustrate the above point, consider the following target query, which is
of interest to modern evolutionary biologists and similar to those that have
appeared in the ecological literature(for example [31]):

Query 1 Retrieve names of all fruit-bearing shrubs that share a part of their
habitats and have a chromosomal DNA sequence score of over 70 with Mag-
nolia champa.

The above query is typical in the new age of bio-diversity studies, where
researchers are simultaneously studying the macro-level and micro-level re-
lationships between various target species. Answering the query requires the
ability to perform integrated queries over taxonomy hierarchies (“fruit-bearing
shrubs”), recorded spatial distribution of species (“common habitat”), and the
genome sequence databases (“Chromosomal DNA sequence score above 707).
Unfortunately, however, due to the lack of holistic database systems, biologists
are usually forced to split the query into component queries, each of which can
be processed separately over independent databases, and then either manually
or through a customized tool perform the join of the results obtained from the
component queries.

For example, a typical “experience story” for answering the above query, as

gathered from domain experts, would be:

(1) Locate all fruit-bearing shrubs by performing a selection query over the
taxonomy database, stored in MS-Access [42], a ubiquitous PC-based
relational database, and retrieve the keys for their habitats.

(2) For all the keys output in Step 1, access the associated habitat data,
stored as polygons in ArcView [3], a popular spatial database product.
Then, for each qualifying polygon, find all the habitats in the spatial
database that intersect this polygon. Finally, compute an intersection
between the original set of polygons and the newly-derived set of polygons
in order to prune away the habitats of organisms other than fruit-bearing
shrubs.

(3) From the output of Step 2, identify the names of the species of the target
shrubs, and then perform repeated BLAST [1] searches over the EMBL
GenBank [16] DNA sequence database to identify the sequences (and,
thereby the species), that have a score of more than 70. Note that this final
score-based pruning has to be performed externally by the researcher.

Long procedures, such as the above, for answering standard queries are not
only cumbersome but can also lead to delays in understanding various micro-
level and macro-level bio-diversity patterns. Even worse, the patterns may not
be found at all due to limited human capabilities (an example of this problem
was reported in the molecular biology study of [38], where comparison of
sequences “by hand” missed out some of the significant alignments thereby
leading to erroneous conclusions about the functional similarity of the proteins
examined in the study).

The BODHI System

Based on the above discussion, there appears to be a clear need for building an
integrated database system that can be productively used by the bio-diversity
community. To address this need, we have built the BODHI database system
in association with the ecologists and biologists at our institute. The project
has been funded by the Dept. of Biotechnology, Ministry of Science and Tech-
nology, Government of India.

BODHI is a native object-oriented system that naturally models the complex
objects ranging from hierarchies to geometries to sequences that are intrinsic
to the bio-diversity domain. In particular, it seamlessly integrates taxonomic
characteristics, spatial distributions, and genomic sequences, thereby spanning
the range from molecular to organism-level information. To the best of our
knowledge, BODHI is the first system to provide such an integrated view.

BODAHI is fully built around publicly available database components and sys-

tem software, and is therefore completely free. In particular, the SHORE
micro-kernel [10] from the University of Wisconsin (Madison) forms the back-
end of our software, while the A-DB extensible rule-based query optimizer [15]
from the University of Texas (Arlington) is utilized for production of efficient
execution plans. The system is currently operational on a Pentium-III-based
PC hosting the Linux operating system.

A variety of sophisticated access structures, drawing on the recent research
literature, have been implemented to provide efficient access to the various
data types. For example, the Path-Dictionary [28] and Multi-key Type in-
dexes [33] accelerate access to inheritance and aggregation hierarchies, while
the R*-tree [4] and Hilbert R-tree [25] are used for negotiating spatial queries.

The BODHI server is compliant with the ODMG standard [11], supporting an
OQL/ODL query and data modeling interface. To enable biologists to interface
with the system in a more intuitive manner, BODHI also supports access
through the Web client-server model wherein clients submit requests through
the HTTP protocol and CGI-bin scripts, and the results are provided through
the browser interface. Further, the server is “XML-friendly”, outputting the
result objects in XML format, enabling clients to visualize the results in their
favorite metaphor.

We view BODHI’s role as not merely that of a database system in isolation,
but as a central repository that provides a common information exchange
platform for all the tools used in a biologist’s “data workbench” such as de-
cision support systems, visualization packages, etc. That is, BODHI occupies
a role similar to that played by the Management Information Base (MIB) in
tele-communication network management.

Algorithms proposed in the research literature typically tend to be evaluated
in isolation and it is never clear whether their claimed benefits really carry
through in practice with regard to end-user metrics in complete systems. We
suggest that researchers may find it possible to address this deficiency by using
BODHI as a “test-bed” on which new ideas can be evaluated in a real-world
kind of setting. As reported later in this paper, we have ourselves carried out
this exercise with regard to spatial indexes.

Finally, BODHI is living proof that developing a viable biological DBMS does
not necessarily entail expensive hardware or software but can be cobbled to-
gether using commodity components.

In this paper, we report on our experiences in building BODHI, and also
present its performance profile with regard to a representative set of biological
queries (including Query 1 mentioned above)?. Since, as mentioned earlier,

2 A preliminary position paper focusing solely on the BODHI architectural design

there are no comparable systems that we are aware of, for the most part our
results can be placed only in an absolute perspective. However, specifically for
queries restricted solely to spatial data, we were able to utilize the well-known
Sequoia 2000 benchmark [40], and additional spatial aggregate operators such
as Closest introduced in the [13]. Here our numbers are competitive with
those obtained by the Paradise GIS system [13], that was highly optimized for
handling only spatial queries.

1.1 Contributions

To summarize, the main contributions of this paper are the following:

First, we present the architecture and implementation of a high-performing ob-
ject database system tuned specially for the needs of the bio-diversity research
community. To the best of our knowledge, this is the first such system sup-
porting diverse data domains ranging from genomic sequences to geographical
features, and allowing queries that span across these domains.

Second, we show that BODHI is comparable in performance to other special
purpose data management systems by evaluating its spatial data handling,
involving computationally expensive operations, against Paradise, a high per-
formance spatial data management system.

Finally, through a detailed performance study we show that genomic sequenc-
ing queries are extremely expensive to compute, even more so than spatial
operations, highlighting the urgent need for developing efficient sequence in-
dexing strategies.

1.2 Organization

The remainder of the paper is organized as follows: Desirable design goals for
bio-diversity DBMS are laid out in Section 2. The BODHI system architecture
and its implementation are covered in Section 3 and 4, respectively. Then in
Section 5, we present our experiences in building BODHI, and followup with
a detailed performance evaluation in Section 6. Related work is reviewed in
Section 7. Finally, in Section 8, we present our conclusions and future research
avenues.

was presented in [5].

2 Design Goals

In this section, we highlight the main features that would be desirable in a bio-
diversity information system. These include efficient handling of complex data
types, facilities for molecular pattern discovery, and user-friendly interfaces,
described in more detail below.

2.1 Handling of Complex Data Types

Plant bio-diversity data can be broadly classified into the following three cat-
egories:

Taxonomy Data This is data about the relationships between species based
on their characteristics. This includes phenetic relationships (based on com-
parison of physical characteristics) and phylogenetic relationships (based on
evolutionary theory)[35]. The various characteristics on which these rela-
tionships depend may vary in time due to discovery of a new class of char-
acteristics, corrections to previously recorded characteristics, etc.

Geo-spatial Data The study of ecology of species involves recording the
geographical and geological features of their habitats, water-bodies, artificial
structures such as highways which might affect the ecology, etc. These are
represented on a map of the region and have to be handled as spatial data
by the database.

Bio-molecular Data The genetic makeup of species is becoming increas-
ingly important with a large number of genome sequencing projects working
on organisms and plants. For example, “bio-prospectors” look for indigenous
sources of medicines, pesticides and other useful extracts. Such data can be
discovered from the biomolecular and genetic composition of species.

The above data-types have complex and deeply-nested relationships within
and between themselves. Further, they may involve sophisticated structures
such as sequences and sets.

2.2 Molecular Pattern Discovery

The molecules that are of interest in bio-diversity are DNA and Proteins. DNA
is represented as a long sequence based on a four nucleotide alphabet. There
are regions in the DNA sequence, called ezons, which contain the genetic code
for the synthesis of Proteins. The proteins are long chains of 20 amino acids.
Each protein is characterized by the amino acid patterns it has, and is respon-
sible for various functionalities in a cell which determine the characteristics of

the organism or plant.

The similarity between two genetic sequences is a measure of their functional
similarity. Analysis of DNA and Protein sequences from different sources gives
important clues about the structure and function of proteins, evolutionary
relationships between organisms, and helps in discovering drug targets.

There are a number of popular algorithms, such as Dynamic Programming,
BLAST [1], FastA [29] etc., for performing the similarity search over genetic se-
quences. Researchers and bio-prospectors frequently search the database using
these algorithms to locate gene sequences of interest. However, the implemen-
tation of these algorithms is typically external to the database, making them
relatively slow. It therefore appears attractive to consider the possibility of in-
tegrating these algorithms in the database engine (this observation is gaining
currency in the commercial database arena as well, as exemplified by IBM’s
provision of homology searching through UDFs in DB2 [22]).

2.8 Usage Interface

As with all other scientific communities, the bio-diversity community relies
on timely knowledge dissemination. Therefore, supporting access through the
Internet is vital for maximizing the utility of the information stored in the
database.

Typically, bio-diversity data is autonomously collected and managed by in-
dividual research institutions and commercial enterprises. In order to im-
prove data availability, it is necessary that such localized and autonomous
data repositories be able to exchange data. The current state of information
exchange amongst various bio-diversity data repositories is not very satis-
factory [36]. However, with the advent of XML, many research groups are
proposing DTDs in individual fields of ecology and genetics [2,8] . The bio-
diversity information system should support these DTDs for handling data
over heterogenous set of repositories.

It is imperative to have a good visualization interface for the results produced
by the system since (a) the end-users are biologists, not computer scientists
and (b) the results could range from simple text to multidimensional spatial
objects.

Finally, most of the research in bio-diversity is done by small teams of re-
searchers who work within low budgets and are unable to afford high-cost
data repository systems. Therefore, solutions that are completely or largely
based on public-domain freeware which can be hosted on commodity hard-
ware, with total cost not exceeding $1000, are essential for these groups.

3 Architectural Overview of BODHI

As mentioned earlier, bio-diversity data is inherently hierarchical and has com-
plex relationships. In order to enable natural modeling of these entities and
their relationships, BODHI is designed as an object oriented database server,
with OQL/ODL query and data modeling interfaces. While we consciously
adopted this technology from the very beginning of our project in 1998, it is
gratifying to note that the same approach is now being taken by large-scale
biological repositories such as EMBL (European Molecular Biology Labora-
tory) — in a recent report, they have indicated their intention in moving from
their current Oracle-based relational database system to an object-based data
management and distribution scheme for their massive genomic databases [43].

The overall architecture of BODHI is shown in Figure 1. At the base is the
storage manager, which provides the fundamental needs of a database server
such as device and storage management, transaction processing, logging and
recovery management. The application-specific modules, which supply the tax-
onomic, spatial and genomic services, are built over this storage manager and
form the functional core of the system. The query processor interfaces with
the functional modules and performs query processing and optimization using
statistics exported by these modules. Finally, the client interface framework
receives query forms over the Internet from clients and returns results in the
desired format. In the remainder of this section, we describe the core database
components in more detail.

3.1 Service Modules

The three service modules: Object Services, Spatial Services and Sequence
Services, provide the functionalities for each of the bio-diversity data domains
mentioned in the Introduction, and are described in more detail below.

Object Services

While the storage manager handles basic object management, it is necessary to
support specialized access methods for efficient processing of queries over the
object schema and its instantiation. The Object Services component bundles
together these access methods.

In querying over object oriented data models, it is common for predicates to
follow arbitrarily long (sometimes recursive) relationship paths, or be eval-
uated over an inheritance hierarchy rooted at a chosen base type. As illus-
trations, consider the following query types over a typical bio-diversity data

The Internet

Client Interface Framework

Query Processor
I A A A
\ 4 \ 4

Spatial Object Sequence
Services Services Services

\ 4 \ 4

STORAGE MANAGER

Fig. 1. Schematic of Architecture of BODHI

model such as that given in Figure 2, which captures the taxonomic, spatial
and genomic components:

(1) Identify the PlantSpecies based on one or more of its IdentCharac-
teristics.

(2) Retrieve all IdentCharacteristics of a given PlantSpecies.

(3) List the names of all PlantSpecies associated with o GeoRegion.

The above queries illustrate the fact that queries over relationship graphs
of bio-diversity data models may have either an ancestor class or a nested
class as the predicate, and might need to be evaluated over an inheritance
hierarchy. These queries may involve joins between extents of objects in the
traversal paths, or scanning over multiple extents for the predicate in the case
of queries over type hierarchies. Therefore, access methods for both inheritance
and aggregation hierarchies are included in this module.

Spatial Services

Spatial (or geographic) data, in both vector (object) and raster (bitmap) for-
mats, constitutes the bulk of the bio-diversity information. Due to the inherent
complexity of spatial operations (such as overlap, closest, etc.), combined with
large volumes of data, spatial query processing is considered to be a major bot-
tleneck in the expeditious processing of a cross-domain query (such as Query 1
in the Introduction).

The Spatial Services module provides efficient implementations of access meth-
ods and spatial operations.

To ensure that the access methods have efficient disk allocations, and thereby
alleviate the performance bottleneck mentioned above, these methods are built
within the storage manager. While this choice makes it cumbersome to replace
or upgrade the storage manager, we felt that the resulting performance benefits
would outweigh the disadvantages.

The Spatial module provides a spatial type system based on the ROSE Alge-
bra [20]. These types, whose hierarchy is shown in Figure 2, consist of Simple
primitives: Point, Polyline, and Polygon; and Compound primitives: Layer and
Network, which are collections of related Polygons and Polylines, respectively.

Sequence Services

In modern bio-diversity studies, genetic data plays an important role [31]. The
Sequence Services module interfaces with the storage manager to provide ef-
ficient storage of genetic sequences and sequence retrieval algorithms such as
BLAST, FasTa, etc. These algorithms are expensive to compute since there
are currently no obvious ways of caching or indexing to speed up their com-
putation, and a full scan of the sequence database is therefore entailed each
time. The Sequence Services module uses appropriate storage structures for
efficient execution of the genetic algorithms.

This module supports two primitive types: DNA and Protein. The DNA al-
phabet of 4 nucleotides is encoded using two bits and similarly the Protein
sequence alphabet of 20 is encoded in five bits. The functions for transla-
tion of DNA sequences into and from Protein sequences for complementary
DNA strand generation, and for substring operations are also included in this
module. Finally, the alignment-based sequence similarity algorithms such as
BLAST (using standard scoring matrices like BLAST or BLOSUM) are also
part of the module.

10

18pI0

U Jeypopu| surensaseasiq
0 "
X wo A0
Jeyouniy
'
Anwes | reyoredas [
! T TeyDlamol4 sjue|d[euldipsiy
SIENET)
v ,
saadsiueld [T uoibay0sD
[oASTIUSp| U T urT| onsusisereydusp| H_H
Vi -
saouanbas Anuz1gn3a
Buis : swenns
|ona1Awouoxe |
()aouanbagaiois,,
wNa

0 0 Jake
>omisN
o
T
uobAjod aur uiod uonos|jo)eneds
13lqoreneds
()aouanbasaiois,
uiel0id

v

198[qO@ouanbas

t Model

ity Objec

1versl

Fig. 2. Bio-d

11

3.2 Query System

The data modeling and query language for BODHI is based on the ODL and
OQL languages, respectively, from the ODMG standard [11]. These languages
have been enhanced with support for both the typesystems over spatial and
genetic data, and the operators over these typesystems.

The query processor contains, in addition to the techniques available in generic
database systems, specialized optimization schemes for:

e Spatial operators, when spatial indexes are available on predicate attributes.
e Relationship path traversals.
e (Queries over a type hierarchy of the data model.

The presence of user defined methods in the synthesized object types (for
example, Print method on objects, Area over polygons, etc.), form a serious
obstacle for optimal plan generation, since their costs are not directly available
to the query optimizer. A variety of strategies for handling this situation have
been proposed in the literature [26,17]. In BODHI, we have extended the ODL
language to allow optional definition of cost functions, and functionally equiv-
alent methods. These extensions enable the cost-based optimizer to compute
the cost associated with each of the equivalent methods, before choosing the
best execution strategy.

Client Interface Framework

The client interfacing is an important layer in the query interface of BODHI.
We have developed a simple framework to transform the objects of the query
results into formats amenable for transportation to end-clients. With clients
following different needs for their visualization and query capabilities, we feel
this becomes an important part of the query interface. Using this framework,
users can easily implement their transformation rules which are then applied
to the appropriate objects in the query results. The transformed results are
then shipped to the clients.

4 Implementation Choices

In this section we highlight the important software choices that we had to con-
sider in BODHI, and provide the rationale for the decisions that we made. We
discuss these choices under the following heads: (i) selection of storage man-
ager and query processor, (ii) selection of access methods, and (iii) positioning

12

of implementation components.

4.1 Selection of Storage Manager and Query Processor

For the back-end storage manager, we selected the SHORE system [10] devel-
oped at the University of Wisconsin (Madison) which, at the time we began
the project in late 1998, had a major release the previous year that was oper-
ational on both Solaris and Linux platforms. We were drawn towards SHORE
due to its attractive array of features, including:

e Well-implemented support for basic database functionalities such as trans-
actions, logging and recovery management, device and storage management,
etc. Recovery is implemented through the ARIES algorithm [32] which has
become the de-facto industry standard, while multi-granularity locking is
provided for enhanced concurrency.

o Integrated file-system interface with DBMS functionality. This can be ex-
tremely useful in handling genomics data which is available largely as flat-
files.

e First-class support for user defined types.

e Availability of a framework for writing Value Added Servers (VAS) — to
provide additional features to the storage manager.

e Presence of R*-Tree [4], a spatial indexing structure built within the SHORE
kernel (in addition to the standard B*-Tree index).

e Availability of source code, which enabled us to enhance many of the fea-
tures of SHORE (the version we have used is Version 1.1.1, which was the
latest at the time we began our project).

e Successfully tested under at least two large scale research prototypes [13,37].

e Intrinsic support for parallelism on a multiprocessor or network of worksta-
tions.

After we had been into development for about a year, we had reached the stage
wherein we were thinking about the implementation of the query processor. In
particular, we were considering the possibility of building our own query pro-
cessor, using either a Volcano-style framework or a Tigukat-style framework.
We dropped this idea, however, when news broke (on the dbworld [12] mail-
ing list) of the first release of A-DB [15], an extensible rule-based optimizer
from the University of Texas (Arlington), which, serendipitously enough, had
been implemented on Shore! This vastly reduced our design time on the query
processor front. Further, A-DB came with an attractive set of features in-
cluding query transformation and optimization rules for OQL (specified using
the OPTL optimization specification language), and a functional design that
made it easy to enhance and specify additional rules. Finally, it had a firm
mathematical foundation in monoid comprehension calculus that permitted

13

optimizations similar to those found in relational query rewriting engines.

4.2 Selection of Access Methods

As discussed earlier, BODHI includes indexes for inheritance hierarchies, ag-
gregation hierarchies, and spatial data that are implemented in the Object
and Spatial Services modules. For each of these indexing categories, there
have been numerous proposals in the research literature, requiring us to make
a carefully selected choice.

We had intended to add indexes for sequence data as well. Unfortunately,
however, until this issue was addressed very recently in [24,21], no practical
solutions for indexing the sequences were available, rendering it impossible to
realize our objective. We are now investigating the incorporation of these new
methods in the BODHI system.

Inheritance Hierarchies

For indexing inheritance hierarchies, we have chosen the Multi-key Type In-
dezxing[33]: The basic idea behind MT-index is a mapping algorithm that maps
type hierarchies to linearly ordered attribute domains in such a way that each
sub-hierarchy is represented by an interval of this domain. Using this algo-
rithm, MT-index incorporates the type hierarchy structure into a standard
multi-attribute search structure, with the hierarchy mapped onto one of the
attribute domains (type domain). This scheme supports queries over a single
extent as well as over extents of classes under a subtree. This can also be
extended to support the multi-attribute queries.

Apart from its simple transformation of the tree into a linear path, a ma-
jor attraction of the MT-index is that it can be implemented using any of
the multi-dimensional indexing schemes. In particular, since SHORE natively
supports R*-trees, the MT-index could be directly implemented using this
structure, resulting in considerably reduced programming and integration ef-
fort.

Containment Hierarchies

For indexing aggregation hierarchies, we have chosen the Path-Dictionary
(PD) indez [28]. The PD-Index consists of three parts: the Path-Dictionary
which supports the efficient traversal of the path, and the identity indexr and
the attribute index which support associative search. The identity index and
attribute index are built on top of the Path-Dictionary.

14

Conceptually, the Path-Dictionary extracts the compound objects, without
the primitive attributes, to represent the connections between these objects
in the aggregation graph. Since attribute values are not stored in the Path-
Dictionary, it is much faster to traverse the nodes in the extracted Path-
Dictionary. In order to support associative search based on attribute values,
PD-Index provides attribute indexes which are built for each attribute on
which there are frequent queries. When the identifier of an object is given,
the path information is obtained using the identity index built over the path
dictionary.

On the positive side, the PD-index supports both forward and backward
traversals of the hierarchy with equal ease; further, its performance evaluation
indicated significantly improved access times in [28]. A limitation, however, is
that it only handles 1:1 and 1:N relationships. Since typical schemas of bio-
diversity databases include aggregations of N:M cardinality, and structures
such as sets, bags and sequences in the aggregation path, we had to extend
the implementation of the PD-index to handle these constructs as well.

Access Methods for Spatial Data

For spatial data, SHORE natively supports the R*-Tree [4], which is the most
popular spatial access method since it achieves better packing of nodes and
requires fewer disk accesses than most of the alternatives. However, a problem
with the R*-Tree is that even though it has tight packing to begin with, its
structure may subsequently degrade in the presence of dynamic data. To tackle
this, we implemented the Hilbert R-Tree[25], which is designed for handling the
dynamic spatial data while maintaining good packing of the index structure.
It makes use of a Hilbert space-filling curve over the data-space to linearize
(i.e. obtain a total ordering of) the objects in the multi-dimensional domain
space. A performance evaluation in [25] shows this structure to provide better
packing in the presence of dynamic spatial data and thus better performance.
However, the evaluation was considered in isolation and therefore one of the
goals of our study was to investigate how well these performance improvements
carried over to a real system.

4.8 Positioning of Implementation Components

In addition to selection of software and the indexing methods, another impor-
tant decision that determines the system performance and extensibility is the
placement of functionality in the implementation. One option is to achieve
performance improvements by supporting every feature of the system at the
lowest level — for example, by implementing at the SHORE storage manager

15

RUNTIME ENVIRONMENT

\I/ aggregation paths

; type
GeneStore raw enome gl f i PD Index
1N ormatlog
\Value Added g@ S 2 Value Added
Server S S Server
Type System L ay
SHORE Type Layer
B+-Tree R*-Tree Iriler
Index Index RETIGR
Index

SHORE Storage Manager

LI NUX

Fig. 3. Positions of Implementation Components

level. However, this becomes a huge effort to extend and improve the system
by addition of new basic types, new access structures, etc. At the same time, if
we provide all the additional features at layers external to the storage manager
then the overall performance could suffer. Therefore, we considered these two
competing requirements of the system carefully while placing the implemen-
tation of the services, and aimed to optimize extensibility while minimizing
the performance overhead on the system.

Object Services As mentioned previously, this module bundles the Path-
Dictionary and Multi-key Type indexes over object aggregation and type
hierarchies, respectively. The Path-Dictionary structure is implemented as
a VAS, which maintains the path-dictionary on a data repository — with its
own recovery and logging facilities — independent from the main database.
This gives the query processor an opportunity to scan the path-dictionary
repository in parallel to the other data scans active at the same time. Fur-
ther, the locking overheads are distributed over different storage manage-
ment threads.

The Multi-key Type index, on the other hand, is instantiated as an R*-
Tree, which is available for spatial indexing, with linearized type system as
a dimension and each object treated as a “point” in the spatial sense.

Spatial Services In addition to the R*-Tree provided by the Shore storage
manager, the spatial services module provides the Hilbert R-Tree which is
intended for use with highly dynamic spatial workloads. This index could
be implemented as a VAS external to the database, utilizing the Shore

16

SM interface which allows introducing new logical index structures. With
this approach, however, no page-level storage control is provided, thereby
making it infeasible to implement index structures such as Hilbert R-Tree
that rely on physical packing of data for performance benefits. We were thus
forced to implement the Hilbert R-Tree by refactoring the existing R*-Tree
implementation.

We had the option of implementing the spatial type system, illustrated
in Figure 2, either as part of the basic type system (similar to the support
of types like integers, strings, references, etc.) or at the same level as a
user defined type system. In the former approach, we do gain the storage
efficiency and low object creation overhead, but we lack the extensibility
and ease of implementation available in the latter approach. The final choice
was to go for an extensible type system, that is, to provide the spatial type
system (along with sequence type system — discussed below), as a user level
library which can be modified and extended by the database administrator
without having to work on the storage manager layers.

Sequence Services The type system of the Sequence Services, consisting of
DNA and Protein types, are provided in the same way as the spatial types,
which we have described above. In addition, the DNA sequence type has
extra requirements for its storage. The DNA sequences are usually very long
(1000-10000 basepairs), and consists of only 4 alphabets. Instead of storing
them as character strings, we store them in a compressed form and perform
queries over the compressed records rather than on the character strings.
The efficient storage of the raw sequences is implemented as a separate
VAS which provides advantages similar to those mentioned in the Path-
Dictionary implementation.

4.4 Implementation of User Interface

The user interface allows users to graphically construct OQL queries, and post
them to the query processor through the web-server. These OQL queries are
validated at the browser end, by javascripts associated with the query forms.
The queries are received by the web-server through CGI extensions, which
enable interaction between web-server and the BODHI query-processor.

The query-processor generates the output in XML[45], using semantic tags
associated with each object in the result set. This representation can be visu-
alized using a tool written on top of the browser, and enables users to visualize
the results in their favorite metaphor.

A sample query input form and a sample tagged output are shown in the
Appendix.

17

5 Experiences

In the previous sections we have described the architectural design of BODHI
and the specific choices that we made for the various components of the design.
We move on now to discussing the experiences and lessons that we learned
during the course of implementing these choices in our prototype system. Some
of the issues that we raise here with regard to SHORE and A\-DB have been
addressed in subsequent releases of these code-bases — we are constrained,
however, to continue to use version 1.1.1 of Shore and version 0.3 of A-DB,
the versions that were current at the time we began the project three years
ago, since we have made significant alterations and enhancements to these
software.

The overall detailed implementation of the system is illustrated in Figure 4. As
illustrated, the schema declarations in ODL are first converted into SDL (the
definition language provided on top of the SHORE storage manager), by A\-DB.
The implementations of the schema declarations are stored in a separate source
file that is compiled into a linkable library for the applications. Similarly, the
query in the OQL format is typechecked, optimized and converted into an
implementation of the optimal physical plan by A-DB.

5.1 Index Key Formats

A-DB generates the query implementation making use of its runtime interface
to the SDL layer of SHORE. The query is evaluated in a streaming fashion,
avoiding the materialization of the sub-queries as much as possible. Indexing
over object extents is achieved by maintaining a separate extent of indexes. In
SHORE, the index objects have to reside within a “user level” object. Now,
while \-DB uses an EztentIndez type to hold the indexes, it also converts all
the index keys into a string format in order to handle them in a generic way.
This turns out be a problem when handling keys that cannot be converted
into character strings (such as in the case of spatial indexes), and in handling
keys which result in a loss of information during the conversion (such as float-
ing point values). Therefore, in order to support the spatial indexes from the
ODL/OQL layers, we were forced to introduce a specialized key type for spa-
tial indexes and also implement a special index holder class. This required a
considerable amount of modification and extensions to the code in the query
Processor.

At the same time, the rule-based optimization scheme of the A-DB simplified

the process of adding new operators into OQL, as well as their optimization
and rewritings into the physical operators based on the statistics. We added

18

ODL Class

declarations
QueryinoQuics{ |ambda-DB
ODL Compiler OQL Parser
Schema oQL
Manager | Optimizer and
Plan Generator
DL declarations
Metadata
C++ Code
Generator
C++ code
Database SHORE
i BODHI
Metadata SDL Compiler Libraries
C++ header file

Metage
adata C++ Compiler

User Datal
SHORE
Librari
Executable -
Results in Interchange Format

Fig. 4. Schema Definition and Query Flow in BODHI

operators such as Qwverlaps, Inside, etc. for spatial operations, and sequence
retrieval operators such as BLAST into the OQL specification supported by
the query processor.

5.2 Index Visibility

The implementation of access structures for spatial data and object hierarchies
raised some of the subtle issues with regard to hosting them on the A-DB and
SHORE combination. One of the most surprising revelations was the lack of
spatial index support at the SDL layer in SHORE — which is still not available
since there have been no further releases of the SDL layer. The R*-Tree is
available only at the storage manager level, but is not exported to the SDL
interface. This also meant that A-DB which uses the SHORE through the SDL
interface also has no knowledge of the spatial indexes. In order to provide the
support at the OQL level we first had to rework the SHORE code, and then
integrate it with the query processor.

19

e] A Indirect Reference
! B
.

AL (BL (CLC2)) AL (BL, (Cl, ©C2,))

A2y (B1;) d - direct ref

A2 (B1(C1C2)) i - indirect ref

(b) (C)

Fig. 5. Representing N:M relationships (a) N:M relationship (b) Equivalent 1:N
relationships with replicated paths (c) Equivalent 1:N relationships with indirect
references.

5.8 PD Index Implementation

While implementing the Path-Dictionary-based indexing for aggregation path
queries, we found that the index structure as presented in [28] cannot be used
in a stream based query processor such as A-DB, without breaking the pipeline
structure and materializing the query results at that join node. We addressed
this problem by inverting the storage of paths to proceed from the top of
the aggregation tree instead of the suggested bottom-up approach. While this
inversion may partially reduce the effectiveness of the path-dictionary, the
major benefit of avoiding the huge cost of joins over object extents is retained.

We have extended the implementation given in [28] to support the additional
requirements of allowing N:M relationships and presence of bags and sequences
in the aggregation path. The main idea behind our extensions for the of N:M
relationships is to break them into multiple 1:N relationships. But a straight-
forward application of this idea introduces complications in maintenance of
s-expressions.

Supporting N:M relationships: Consider the representative N:M relation-
ship graph shown in Figure 5(a). If we break this into multiple 1:N relation-
ships, the graphs and the corresponding s-expressions look as in Figure 5(b).

20

AL (BL (CL C2) Bl) Al Bl (c 2).)

<d1 <d2> <dl> <d
A2 Bl
A2d (Bli Bli) <d1£ <i2>)

(b) ©

Fig. 6. Representing N:M relationships in presence of (a) Bags (b) Equivalent 1:N
relationships with indirect references (c) Equivalent 1:N relationships with indirect
references as well as replication counts

Note the redundancy in these s-expressions: The children of B; are repli-
cated in both of the s-expressions of A; and A,. This problem can be solved
by using a flag in the entries of s-expression. The flag denotes whether the
entry is a direct reference or an indirect reference. All the descendant entries
of an OID will be stored only in the entry which contains direct reference
to that OID. This modification is shown in form of a graph in Figure 5(c)
with their corresponding s-expressions. Note that the suffix for each entry
denotes whether it is a direct reference or an indirect reference. Though this
modification duplicates (with different flag values) the B; entry, we avoid
duplicating the children of B;, thus saving space.

Extensions to support Bags and Sequences: The previous modification
works fine for storing ordinary references and sets. But in the presence
of bags, further redundancy is possible. The example for this is shown in
Figure 6. The number on the edge from a to b denotes the number of times b
appeared as a reference in the bag of a. The corresponding s-expressions for
this graph using the above implementation are given in Figure 6(b). Note
that the entry of B; is repeated n times in each expression, where n denotes
the number of times B; is referenced in the parent object. This replication
can be eliminated by introducing one more field in the entry of s-expression
which stores this replication count. This reduces the storage overhead for
storing bags since OIDs are not duplicated. The s-expressions with this
modification are shown in Figure 6(c). The implementation also supports
sequences by maintaining the order of the children of a given parent in the
s-expressions.

21

5.4 VAS Feature

In building the PD-index, we exploited the concept of Value Added Server
(VAS), one of the strong features of SHORE. The ability to provide a concur-
rent storage manager with a full set of database features such as transactions,
logging, recovery etc., eased the task of extending the storage manager capa-
bilities tremendously. Although RPC-based interaction between the storage
server instances results in communication delays and reduced type-support
across the storage servers, it enables cleaner separation of services provided
by the storage manager.

We also used the VAS feature to provide genome sequence storage, and re-
trieval algorithms over this storage. An important advantage of this imple-
mentation is that it is easy to extend and optimize the sequence retrieval
algorithms without affecting the rest of the system. A problem, however, was
the following: The storage allocation of the sequences on the VAS is effected
through a specific interface which stores the sequences in a compressed form
on the disk. Ideally, this storage should be handled transparently. However,
due to lack of post-construction hooks for object instantiation in A-DB and
SHORE, this compressed storage of sequences has to be explicitly called dur-
ing database loading.

6 Experimental Results

We have evaluated the performance of BODHI on a test-bed of typical queries
in the bio-diversity domain. These queries make use of a mixture of synthetic
and real datasets and consist of queries over both single-domain (such as
taxonomy, spatial or sequence domains) and multiple domains — i.e., queries
similar to Query 1 in the Introduction. Moreover, since spatial data forms a
large fraction of data and is traditionally considered the main component of
the query processing time, we studied the performance of the spatial compo-
nent in detail. In particular, we evaluated the spatial data handling capabil-
ities of BODHI over the datasets and queries of the Sequoia 2000 regional
benchmark[40], a standard benchmark for spatial databases.

The performance numbers reported were generated on a Pentium-III 700MHz
processor, with 512MB memory and an 18GB 10000-RPM SCSI hard disk
(IBM DDYS-T18350M model), connected with Adaptec AIC-7896/7 Ultra2
SCSI host adapter. In order to reduce the effects of Linux’s aggressive memory
mapping of files, we flushed the benchmark database each time with an I/O
over a large database.

22

Table 1

Parameter Value
Branch Factor at each level of Taxonomy U(1,19)
Mean (height, width) of habitat regions (10,12)
from
Range of distribution of habitat (-100, -100)
regions to
(-1000, -1000)

No. of DNA sequences per species 10

Parameters to Synthetic Data Generator

Table 2

Element No. of Tuples | Overall Size(in KB)
Order 4 0.6

Family 46 7.1

Genera 496 76.0

Species 5155 1153.1

FlowerChar | 5155 564.0

Habitats 5155 607.0

InfloChar) 20.4

EMBLEntry | 51550 2902

Total 9330.2

Statistics of the Synthetic Dataset

In the rest of the section, we first describe the synthetic datasets used in our
queries, and then present BODHI’s performance on these datasets for a variety
of single-domain and multi-domain queries.

6.1 Description of Datasets

The synthetic data used in our experiments conforms to a biodiversity object
model, which is presented in part as an object diagram in Figure 2. Even
though we collaborated closely with the scientists of the ecological sciences
in designing this object model to represent their requirements, we faced diffi-
culties in procuring enough data to be used in the evaluation experiments of

23

the system. This is because the domain experts have the bulk of their data
in legacy formats, often on “herbarium sheets”.® While we await the conver-
sion of this data to electronic format, we have for the interim period created
our datasets by boosting, with synthetic data, the limited real data that is
currently available.

As shown in the object model, the schema is hierarchical in nature and con-
sists of aggregation paths, inheritance structures over object types, spatial
and genome sequence components. The well known taxonomy aggregation
path of Order-Family-Genera-Species forms the backbone of the model. Each
Species has a set of identifying characters (IdentChar), and there are many
sub-characteristics that are inherited from this. The spatial component of the
model consists of a collection of reported habitat areas for each Species. Also
associated with each Species is a collection of DNA sequences that are used to
study the evolutionary pathways amongst the species by locating homologies
(sequences which have a high likelihood of sharing a common ancestor). We
now describe the mechanism of generating synthetic data that complies with
the object model.

Taxonomy Data We generated the object relationships in taxonomy and
characteristics hierarchy by setting a heuristic probability of association at
each optional relationship. In case of collections in the aggregation path,
the branch factor of the collection was uniformly distributed over specified
end-points. The real data available for about fifteen closely studied Plant
species was boosted with this synthetic data.

Spatial Data We used the synthetic data generation method followed in [25].
The data consists of rectangular regions, whose centers are uniformly dis-
tributed over a unit square. The overlap between rectangular regions can be
controlled by specifying the distribution of their height and width values.
It should be noted that this dataset consists of only rectangular regions,
while in reality we have to handle non-convex polygonal regions as well.
The performance of spatial data handling over real dataset (involving non-
convex polygonal regions) will be evaluated separately through the Sequoia
2000 benchmark. Each species object generated above is associated with a
synthetically generated polygon that represents the habitat of the species.

Genome Data In the case of Genome sequence data, we could use the data
that is publicly available through repositories such as GenBank, SwissProt,
etc. In our experiments, we made use of a randomly selected sample of
“expressed sequence tags” (ESTs) of various genomes available from the
BLAST database of EMBL GenBank [16]. We used these sequences to pop-
ulate the DNA information of our synthetically generated species.

We summarize the parameters used for the benchmark dataset in Table 1

3 These are sheets that contain a plant specimen and its details.

24

1d Time

Taxonomy 73 min. (Without Path-Dictionary)
Query-1 0.5 min. (With Path-Dictionary)

Genome Query-1 | 0.2 sec.

Genome Query-2 | 1.5 min.

Table 3
Performance Numbers for Single-domain queries

1d Without Index | Path-Dictionary | Spatial &

Path-Dictionary

MDQ1 | 26.99 sec. 11.13 sec. 2.1 sec.
MDQ2 | 553.66 sec. 542.12 sec. 530.2 sec.
Table 4

Performance Numbers for Multi-domain Queries

and the statistics of the resultant dataset in Table 2. We consider a set of 5
queries over this dataset that conforms to the schema illustrated in Figure 2.
These queries span the domains of taxonomy, spatial and genome data, and
illustrate the capabilities of BODHI in handling these domains. In addition,
the performance numbers of these queries provide an indicator towards overall
expected performance of the system.

6.2 Biodiversity Queries

We now describe the set of queries considered to illustrate the capabilities of
BODHI and present the performance numbers over each of these queries. The
query mix can be split further into 3 categories: Taxonomy queries, Genome
queries and Multi-Domain Queries. We collectively refer to Taxonomy and
Genome Queries as Single-domain queries, since predicates involve either tax-
onomy hierarchy or genetic sequences associated with a species, but not both.
The Multi-domain queries, on the other hand, query across taxonomy hierar-
chy, habitat (spatial) collection and genetic sequences data corresponding to

species. The performance numbers for the queries are summarized in Table 3
and Table 4.

Taxonomy Query-1 Find all species that have the same Inflorescence char-
acteristic in their Flowers as that of “Magnolia-champa”.
With reference to the bio-diversity data model shown in Figure 2, this
query performs a three level path traversal over the aggregation hierarchy of
Species, Flower and Inflorescence Characteristics. The performance results

25

in Table 3 for this query show that without any indexing strategy for ac-
cessing the aggregation paths, the query execution times are unacceptably
high — especially considering the modest size of the dataset. The perfor-
mance of the query execution improves by two orders of magnitude with
the presence of a Path-Dictionary index over the queried path. As discussed
earlier in Section 4, the Path-Dictionary maintains a compact materializa-
tion of joins along the queried path, preventing the repeated computation
of these expensive joins. Interestingly, if we follow the aggregation paths
through the usage of “swizzled pointers” available through C++ interface
of SHORE, this query can be answered in 8.5 seconds, which is much faster
than even using Path-Dictionary based indexing. It has to be noted that
rewritings available in query-processors such as A-DB do not make use of
these features available with the storage managers, thus incurring heavy
cost of joins.

Genome Query-1: Retrieve all DNA sequences of Magnolia-champa.
The DNA sequences are stored encoded, using context-free encoding, in
a separate storage. This encoding increases the disk-memory bandwidth
and enables the sequence similarity algorithms to operate in this encoded
domain itself. At the same time, there is an overhead of decoding them
before presenting to the user. The performance numbers of this query give
estimate of the delay involved in decoding these sequences.

Genome Query-2: List names of all Species that have a DNA sequence
within a BLAST score of 70 with any sequence of Magnolia-champa.
The computation of BLAST scores over a database could be a time consum-
ing task. We don’t have any indexing schemes for speeding these queries,
for reasons mentioned earlier in Section 3, and hence for each query se-
quence we have to make a full scan of the sequence database and compute
the scores, significance of the alignments, etc. The timing for this query —
which results in 10 BLAST computations — is about 1.5 minutes, as men-
tioned in Table 3. When this number is compared against the query ca-
pabilities of BLAST-farms run by organizations such as EMBL, it might
look rather high. However, BLAST-computation farms make use of large-
scale and heavily optimized data handling equipment and keep the entire
database in memory for speeding up the processing times, while BODHI is
aimed to handle varied data, and is running on a general purpose small-scale
machine.

Multi-domain Query-1: Find all Species sharing a common habitat and
having the same Inflorescence characteristic as Magnolia-Champa.
This query, which is common among ecologists, is targeted at the combina-
tion of hierarchical data of Taxonomy domain, and associated Spatial data.
The query evaluates the combined effectiveness of the Path-Dictionary index
and R*-Tree indexes available in BODHI. The performance numbers pro-
vided in Table 4 are for the optimal query plan which performs the spatial
overlap before computing the joins over the aggregation paths. Since spatial
overlap is highly selective in the existing dataset, the number of path ag-

26

gregation traversals are reduced to a very small number. As a result, we see
that even though this query is more complicated than Tazonomy Query-1,
it takes less than 0.6% of time taken for Tazonomy Query-1 even in the
absence of the Path-Dictionary index. The presence of Path-Dictionary re-
duces the execution time further, from 26.99 seconds to 11.13 seconds — a
reduction of 58%. In this case, the execution times are dominated by the
spatial overlap computation. We can see this clearly by looking at the per-
formance of the query when both R*-Tree and Path-Dictionary are present.
The query time is just around 2 seconds, almost an 80% improvement. This
clearly indicates that both indexing strategies are extremely useful for such
queries.

Multi-domain Query-2: Retrieve all Species sharing a common habitat,

having same Inflorescence characteristic and having DNA sequence within
BLAST score of 70 with each other.
This query, which extends the Multi-domain Query-1 by adding an extra
predicate for the BLAST score computation for each of the sequences in the
target species, is similar to the “goal” query that we presented earlier as
Query 1 in the Introduction. The OQL version of this query, which is what
is input to the BODHI system, is given below:

select *

from speciesl in PlantSpecies,
species2 in PlantSpecies,
embll in speciesl.stDNAEntries,
embl2 in species2.stDNAEntries

where
speciesl.flowerchar.inflochar=species2.flowerchar.inflochar
and
speciesl.georegion overlaps species2.georegion
and

embll in embl2.dna.blast(70);

Referring to Table 4, we see that the execution times are much higher
than those of Multi-domain Query-1 — due to the additional 50 BLAST
computations. The reduction in execution times are approximately same as
in Multi-domain Query-1, about 11 seconds in presence of Path-Dictionary
and by a further 10 seconds in presence of both R*-Tree and Path-Dictionary
indices. Hence, this query is clearly dominated by the BLAST computations.
Therefore, it appears that it is imperative to develop indexing strategies to
improve performance of such queries over genome sequence data.

6.3 FEvaluating Spatial Data Handling

The evaluation of queries over spatial data has traditionally been considered
as a highly compute-intensive operation, and many indexing strategies have

27

been proposed to improve the performance of these queries. The SEQUOIA
benchmark has been quite popular for evaluating the performance and capa-
bilities of spatial databases. It consists of a set of 10 queries over a schema
involving the spatial objects (such as polygons, points and graphs) and also
bitmap (raster) objects. As we do not have support for bitmap data formats in
BODHI, we have chosen to ignore the raster dataset and the queries (2),(3),(4)
& (9), which involve these objects. The vector benchmark data consists of
62556 Point objects, 58585 Polygons and 201659 Graph objects. Table 5 sum-
marizes the response times (in seconds) for the queries on this data. We have
compared BODHI’s performance with Paradise [13], a spatial database system
also built on the SHORE storage manager, and Postgres [41], a popular free
object-relational database. The numbers given for these two systems are taken
from those reported in [13].

The SEQUOIA benchmark results in Table 5 show that BODHI is very close
in performance to that of Paradise, which is a specialized and highly optimized
spatial database system. Even though the hardware platform used by the two
systems are difficult to compare, it should be noted that both Paradise and
BODHI use the same underlying storage manager. In addition the following
points regarding numbers reported under BODHI should be noted: (i) We use
file-based storage management instead of using raw-disk as done by Paradise
system; (ii) The optimal physical query plan is generated through a generic
object-oriented query processor; (iii) The type-system is user-defined whereas
in Paradise the basic type system of SHORE has been augmented; and, (iv)
the size of the buffer pool used by SHORE is the default value — 320KB,
whereas Paradise used 16MB.

Id | BODHI BODHI Paradise Postgres
(with R*-Tree) | (with Hil. R-Tree)

1 || 5742.0 4662.0 3613.0 8687.0
(R*-Tree: 1342.0) | (Hil. R-Tree: 262.0)

5 0.12 0.11 0.2 0.9

6 | 8.0 8.0 7.0 36.0

7 | 0.66 0.7 0.6 30.5

8 9.7 9.6 9.4 62.2

10 || 11.0 10.8 Not supported | 327.2

Table 5

SEQUOTIA Benchmark numbers (in seconds)

We now present the chosen set of SEQUOIA queries and their performance
statistics. We also explain a few of these queries and highlight their importance

28

in a typical set of bio-diversity query workloads. For detailed explanation and
analysis of all the queries we refer the reader to [6].

Sequoia 1 — Dataloading and Index creation. This query populates the
database from a given set of datafiles, and is expected to exercise the bulk-
loading facility in the database. At the time of writing, we still do not have
the bulk-loading feature in BODHI, resulting in a transaction commit for
each object hierarchy. Therefore, the table represents only an upper bound
on the dataload and indexing times for the spatial component. Referring
to Table 5, we see that this is the only benchmark query in which BODHI
is far worse than Paradise which supports bulk-loading facility. However,
we don’t see it as a major bottleneck in BODHI, since the bio-diversity
databases are not expected to have high rates of bulk data updates. Instead,
these databases are highly query-intensive and hence it is important to
have fast query processing speeds. In addition, we expect improvements in
performance when the bulk-loading scheme is put in place for BODHI.

Sequoia 5 — Select a point based on its name.

Sequoia 6 — Select polygons overlapping a specified rectangle. This
is one of the typical spatial queries asked in ecological studies where a
geographic region is split into a set of grids and the researchers would want
to identify the species whose previously recorded habitat boundaries overlap
with the grid being studied. This could be important in identifying species
whose co-existence in a region is to be targeted for study. The performance
of spatial operators such as overlap depend directly on the performance of
implementing these operators on a spatial index such as R*-Tree or Hilbert
R-Tree. Since the R*-Tree implementation of BODHI is the same as that
of Paradise (both use the index provided by the SHORE storage manager),
we don’t see much difference in the query execution performance.

Sequoia 7 — Select polygons greater than specified area, contained
within a circle. We see similar queries occurring in bio-diversity studies
with variations in the area selection clause of the query. The area of a
polygon is provided through a derived attribute — computed based on the
co-ordinates of the polygon. This is extendible to allow for selection over
arbitrary derived attributes over which an index can be built. Thus, in
ecological study databases, we get variations of the query that locate all the
habitats that are near a study center, with a derived attribute value (such
as bio-mass index of the habitat, etc.).

This query reflects the combination of B-Tree and spatial index based
query processing. The order in which this query gets evaluated — whether
the B-Tree lookup or the R*-Tree based overlap selection is made as the first
step — makes a big difference in the query answering times. The usage of
query optimizer which maintains cost statistics and uses it to arrive at the
final evaluation order is also tested in this query. The numbers presented
in Table 5 are for the optimal plan generated by the query processor of
BODHI, which is to perform the R*-Tree based overlap selection first and

29

then the B-Tree-based polygon area selection.

Sequoia 8 — Select polygons overlapping a rectangular region around
a point.

Sequoia 10 — Select points contained in polygons with specific lan-
duse type.

We also executed the above Sequoia benchmark queries with Hilbert R-Tree
in place of R*-Tree. The results obtained are shown in Table 5. The building
times of Hilbert R-Tree were quite low in comparison to that of R*-Tree, and
at the same time provide almost the same performance. The numbers shown
are for Hilbert R-Tree which employs s-to-(s+1) split policy on overflow, with
s = 2. Even though the performance of the Hilbert R-Tree could be improved
by increasing the value of s, the index creation times increase sharply with s.
Hence, the current choice of split policy was chosen to optimize on the index
building time and the performance of the index over benchmark queries.

7 Related Work

Bio-diversity data consists of both macro-level and micro-level information
ranging from ecological information to genetic makeup of organisms and plants.
Apart from our work, we are not aware of any other that attempts to combine
the complete spectrum of information, though the need for it is highlighted
in a recent proposal for GBIF (Global Bio-diversity Information Facility) [36]
by OECD (Organization for Economic Co-operation and Development). This
proposal identifies the domain level challenges in building a global, intercon-
nected data repository of bio-diversity information systems and notes that the
urgent requirement in bio-diversity studies is a suitable information manage-
ment architecture for handling vast amounts of diverse data.

In the area of macro-level bio-diversity data management, there have been
many governmental efforts from various countries such as ERIN [9], INBio [23]
and some global initiatives such as Species 2000 [39], the Tree of Life [30], etc.
And in a recent report sponsored by the National Science Foundation in the
USA [34], a group of computer scientists have outlined research directions in
bio-informatics.

The micro-level bio-diversity data, or genetic information of various species,
has been growing steadily due to the multitude of genome sequencing initia-
tives. The specific data management issues in handling such data [19,18] have
been addressed in quite a few proposals. In all of these proposals, the database
management architecture has been tailored for the specific purposes of the
project. Consider the ACeDB (A C.elegans Database) [14] database system,
originally proposed for the C. elegans genome sequencing project. ACeDB is

30

an object oriented data management tool that has many features, including
the handling of missing data and schema evolution issues, that make it an
extremely popular software in many sequencing projects. However, in spite of
its popularity in the genome sequencing community, it cannot be considered
for the larger requirements of bio-diversity data handling due to the follow-
ing reasons: (1) Its lack of support for geo-spatial data; (2) Weak support for
database updates; and (3) The lack of recovery mechanisms necessary in large
data repositories.

In BODHI, we have provided the key strengths of ACeDB (its sequencing algo-
rithms and object-oriented basis), and augmented it with the strong database
functionalities and the related features that are necessary for a complete bio-
diversity information repository.

8 Conclusions

We have reported in this paper on our experiences in building BODHI, an
object-oriented database system intended for use in bio-diversity applications.
To the best of our knowledge, BODHI is the first system to provide an inte-
grated view from the molecular to the organism-level information, including
taxonomic data, spatial layouts and genomic sequences.

BODHI is operational, completely free and is built around publicly available
software components and commodity hardware. Further, BODHI incorporates
a variety of indexing strategies taken from the recent research literature for ef-
ficient access of different data types. Through a detailed performance study us-
ing a range of biological queries, we showed that these indexes were extremely
effective in reducing the running times of the queries. Our experiments also
showed that while spatial operations are certainly expensive as mentioned in
the literature, it is perhaps the genomic sequencing queries that are really the
“hard nuts” in the biological context. Therefore, the importance of developing
efficient indexing strategies for sequence data cannot be over-emphasized.

We hope that BODHI can be successfully used by biologists as the central
information repository of their workbench, and by computer scientists as a
realistic test-bed for evaluating the efficacy of their algorithms. We are cur-
rently working on adding new indexing mechanisms such as the Pyramid Tech-
nique [7] for indexing high-dimensional data, where each data object has thou-
sands of attributes — such data is especially common in drug-related datasets.

31

References

[1] S. Altschul, W. Gish, W. Miller, E.W. Myers, and D. Lipman. A Basic Local
Alignment Search Tool. Journal of Molecular Biology, (215), 1990.

[2] ANZMETA DTD Versionl.1.
http://www.erin.gov.au/database/metadata/anzmeta/anzmeta-1.1.html.

[3] Getting to know arcview gis for version 3.1, 1999.

[4] N. Beckmann, Hans-Peter Kriegel, R. Schneider, and B. Seeger. The R*-
Tree : An Efficient and Robust Access Method for Points and Rectangles.
In Proceedings of the 1990 ACM SIGMOD International Conference on
Management of Data, 1990.

[6] Srikanta J. Bedathur and Jayant R. Haritsa. Design and Implementation of
a Biodiversity Information Management System. In Proceedings of the Tenth
International Conference on Management of Data, 2000.

[6] Srikanta J. Bedathur, Jayant R. Haritsa, and Uday Sankar Sen. The Building
of BODHI, a Bio-diversity Database System. Technical Report TR-2001-02,
DSL, Indian Institute of Science, 2001.

[7] Stefan Berchtold, Christian Bohm, and Hans-Peter Kriegel. The Pyramid-
technique: Towards breaking the curse of dimensionality. In Proceedings of
the 1998 ACM SIGMOD International Conference on Management of Data,
1998.

[8] Biopolymer Markup Language - BIOML. http://www.bioml.com.

[9] T. Boston and D. Stockwell. Interactive Species Distribution Reporting,
Mapping and Modeling using the World Wide Web. In Second International
WWW Conference, 1994.

[10] Michael J. Carey, David J. DeWitt, Michael J. Franklin, Nancy E. Hall,
Mark L. McAuliffe, Jeffrey F. Naughton, Daniel T. Schuh, Marvin H. Solomon,
C. K. Tan, Odysseas G. Tsatalos, Seth J. White, and Michael J. Zwilling.
Shoring up Persistent Applications. In Proceedings of the 1994 ACM SIGMOD
International Conference on Management of Data, 1994.

[11] R.G.G. Cattel, editor. The Object Database Standard: ODMG-93. Morgan-
Kaufmann Publishers, 1994.

[12] Dbworld mailing list. http://www.cs.wisc.edu/dbworld.

[13] David J. DeWitt, Navin Kabra, Jun Luo, Jignesh M. Patel, and Jie-Bing
Yu. Client-server paradise. In VLDB’9/, Proceedings of 20th International
Conference on Very Large Data Bases, 1994.

[14] R. Durbin and J. Thierry-Mieg. A C.elegans Database Documentation.
ftp://ncbi.nlm.nih.gov.

32

[15] Leonidas Fegaras. An Experimental Optimizer for OQL. Technical Report
TR-CSE-97-007, University of Texas at Arlington, 1997.

[16] GenBank. ftp://www.ncbi.nlm.nih.gov/.

[17] G.Graefe, R.L. Cole, D.L. Davison, W.J. McKenna, and R.H. Wolniecwicz.
Extensible query optimization and parallel execution in volcano. In J.C.
Freytag, D. Maier, and G. Vossen, editors, Query Processing for Advanced
Database Applications. Morgan Kaufmann, 1993.

[18] N. Goodman, S. Rozen, and L. Stein.
A Glimpse at the DBMS Challenges Posed by the Human Genome Project.
ftp://genome.wi.mit.edu/pub/papers/Y1994/challenges.ps.Z.

[19] N. Goodman, S. Rozen, and L. Stein. Building a Laboratory Information System
around a C++-based Object oriented DBMS. In VLDB’94, Proceedings of 20th
International Conference on Very Large Data Bases, 1994.

[20] R. H. Giiting. An Introduction to Spatial Database Systems. VLDB Journal,
3(4), 1994.

[21] Ela Hunt, Malcolm P. Atkinson, and Robert W. Irving. A database index to
large biological sequences. In VLDB 2001, Proceedings of 27th International
Conference on Very Large Data Bases, 2001.

[22] Scaleable similarity searching.
http://www.research.ibm.com/compsci/compbio/scaleable.html.

[23] INBioparque. http://www.inbio.ac.cr/en/default.html.

[24] Tamer Kahveci and Ambuj K. Singh. An Efficient Index Structure for String
Databases. In VLDB 2001, Proceedings of 27th International Conference on
Very Large Data Bases, 2001.

[25] I. Kamel and C. Faloutsos. Hilbert R-tree: An Improved R-tree Using Fractals.
In VLDB’94, Proceedings of 20th International Conference on Very Large
Databases, 1994.

[26] A. Kemper, C. Kilger, and G. Moerkotte. Function Materialization in Object
bases. In Proceedings of the 1991 ACM SIGMOD International Conference on
Management of Data, 1991.

[27] Meridith A. Lane, James L. Edwards, and Ebbe Nielsen. Biodiversity
Informatics: The Challenge of Rapid Development, Large Databases, and
Complex Data (keynote). In VLDB 2000, Proceedings of 26th International
Conference on Very Large Data Bases, 2000.

[28] W. Lee and D. L. Lee. Path Dictionary: A New Access Method for Query
Processing in Object-oriented Databases. IEEE Transactions on Knowledge
and Data Engineering, 10(3), May 1998.

[29] D.J. Lipman and W.R Pearson. Rapid and Sensitive Protein Similarity
Searches. Science, (227), 1985.

33

[30] D.R. Maddison and W.P. Maddison. The Tree of Life: A multi-authored,
distributed Internet project containing information about phylogeny and
biodiversity. http://phylogeny.arizona.edu/tree/phylogeny.html, 1998.

[31] T. Mitchellolds. Does Environmental Variation Maintain Genetic Variation - a
Question of Scale. Trends in Ecology € Evolution, 7:397-398, 1992.

[32] C. Mohan, Donald J. Haderle, Bruce G. Lindsay, Hamid Pirahesh, and Peter
Schwarz. ARIES: A Transaction Recovery Method Supporting Fine-Granularity
Locking and Partial Rollbacks Using Write-Ahead Logging. TODS, 21(4), 1992.

[33] Thomas A. Miick and Martin L. Polaschek. A Configurable Type Hierarchy
Index for OODB. VLDB Journal, 6(4), 1997.

[34] Research Directions in Biodiversity and Ecosystem Informatics. Report of
an NSF, USGS, NASA Workshop on Biodiversity and Ecosystem Informatics,
2001.

[35] Richard J. Pankhurst. Practical Tazonomic Computing. Cambridge University
Press, 1991.

[36] H. Saarenmaa. The Global Biodiversity Information Facility: Architectural
and Implementation Issues. Technical Report TR-34, European Environment
Agency, 1999.

[37] Praveen Seshadri and Mark Paskin. PREDATOR: An OR-DBMS with
Enhanced Data Types. In Proceedings of the 1997 ACM SIGMOD International
Conference on Management of Data, 1997.

[38] J.C. Setubal and J. Meidanis. Introduction to Computational Molecular Biology.
PWS Publishing Company, 1997.

[39] Species2000. http://www.species2000.org/.

[40] M. Stonebraker, J. Frew, K. Gardels, and J. Meredith. The SEQUOIA 2000
Storage Benchmark. In Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, 1993.

[41] M. Stonebraker and L.A. Rowe. The Design of Postgres. In Proceedings of the
1986 ACM SIGMOD International Conference on Management of Data, 1986.

[42] John Viescas. Running Microsoft Access 2000. Microsoft Press, 1999.

[43] Lichun Wang, Patricia Rodriguez-Tomé, Nicole Redaschi, Phil McNeil, Alan
Robinson, and Philip Lijnzaad. Accessing and Distributing EMBL data using
CORBA. http://genomebiology.com/2000/1/5 /research/0010, 2000.

[44] World Conservation Monitoring Center. http://www.wcmc.org.uk/.

[45] Extensible markup language. http://www.w3.org/TR/REC-xml.

34

A Typical Tagged Output from BODHI

<?xml version=’1.0’ encoding=’IS0-8859-1’ standalone=’no’7?>

<taxonomy>
<order>
<name>Sapindales</name>
<family>
<name>Aceraceae</name>
<genera>
<name>Acer</name>
</genera>
</family>
<family>
<name>Anacardiaceae</name>
<genera>
<name>Anacardium</name>
</genera>
<genera>
<name>Mangifera</name>
</genera>
<genera>
<name>Pistacia</name>
</genera>
</family>
</order>
<order>
<name>Magnoliales</name>
<family>
<name>Lauraceae</name>
<genera>
<name>Cinnamomum</name>
</genera>
<genera>
<name>Laurus</name>
</genera>
<genera>
<name>Persea</name>
</genera>
</family>
</order>
</taxonomy>

35

B Graphical Query Form of BODHI

File Edit “iew Go

Window

Help

=5
& Characteristics

MSequence

BbDHI"— Query Spe(:ilicaﬁon Form

Check to display dnveport
Order |I =
Farnly I o
Genera I" o
Species I d

FLOWER CHARACTERISTICS

INFLORESCENCE

Inflorescence 1ppyMAL JTERM LAT <1 LATERAL a
Locaton = =
Ferdle Pan <1 GLOBOSE <1 OVOID ELLIP <1 CYLINDRICAL “PANICULATE a
AxisNamre VERECT <CURVED PENDENT a
Axs

=]
A . STOUT SSLENDER
AxisOuline TER_SUBTER <ELAT vANGLED o

LEAF CHARACTERISTICS

Leaf GALT DISTICHOUS wALT SPIRAL wALT CLUSTERED <LFARR_OPPOSITE
AMENZENENT] EAR OPP_DECUS <SUBCPPOSITE <LFAR_WHORLED

“LFTY_SIMPLE ~EIFCLIATE VTRIFCLIATE WDIGITATE
Leaf Type W3ING_PARIFINNATE DJUB_PARIPINNATE WSING_IMPARIPINNATE DOUB_IMPARIPINMATE J
TRIFLY _PINNATE

“LEFGP_MIL ~THRO_LAMINA SCATTERED OVER “MEAR PETICLE

[—

ki

