
11

Plan Bouquets: A Fragrant Approach to Robust Query Processing

ANSHUMAN DUTT and JAYANT R. HARITSA, Indian Institute of Science

Identifying efficient execution plans for declarative OLAP queries typically entails estimation of several
predicate selectivities. In practice, these estimates often differ significantly from the values actually encoun-
tered during query execution, leading to poor plan choices and grossly inflated response times. We propose
here a conceptually new approach to address this classical problem, wherein the compile-time estimation
process is completely eschewed for error-prone selectivities. Instead, from the set of optimal plans in the
query’s selectivity error space, a limited subset, called the “plan bouquet,” is selected such that at least one of
the bouquet plans is 2-optimal at each location in the space. Then, at run time, a sequence of cost-budgeted
executions from the plan bouquet is carried out, eventually finding a plan that executes to completion within
its assigned budget. The duration and switching of these executions is controlled by a graded progression
of isosurfaces projected onto the optimal performance profile. We prove that this construction results, for
the first time, in guarantees on worst-case performance sub-optimality. Moreover, it ensures repeatable
execution strategies across different invocations of a query.

We then present a suite of enhancements to the basic plan bouquet algorithm, including randomized
variants, that result in significantly stronger performance guarantees. An efficient isosurface identification
algorithm is also introduced to curtail the bouquet construction overheads.

The plan bouquet approach has been empirically evaluated on both PostgreSQL and a commercial DBMS,
over the TPC-H and TPC-DS benchmark environments. Our experimental results indicate that it delivers
substantial improvements in the worst-case behavior, without impairing the average-case performance, as
compared to the native optimizers of these systems. Moreover, it can be implemented using existing optimizer
infrastructure, making it relatively easy to incorporate in current database engines.

Overall, the plan bouquet approach provides novel performance guarantees that open up new possibilities
for robust query processing.

CCS Concepts: � Information systems → Query optimization;

Additional Key Words and Phrases: Selectivity estimation, plan bouquets, robust query processing

ACM Reference Format:
Anshuman Dutt and Jayant R. Haritsa. 2016. Plan bouquets: A fragrant approach to robust query processing.
ACM Trans. Database Syst. 41, 2, Article 11 (May 2016), 37 pages.
DOI: http://dx.doi.org/10.1145/2901738

1. INTRODUCTION

Cost-based database query optimizers estimate a host of selectivities while constructing
efficient execution plans for declarative online analytical processing (OLAP) queries.
For example, consider EQ, the simple select-project-join (SPJ) query shown in Figure 1
for enumerating orders of cheap parts—here, the optimizer estimates the selectivities
of a selection predicate (p retailprice < 1000) and two join predicates (part �� lineitem,
orders �� lineitem). In practice, these estimates are often significantly in error with

A preliminary version of this article was published in the ACM SIGMOD 2014 conference.
Authors’ addresses: A. Dutt and J. R. Haritsa, Database Systems Lab, SERC/CSA, Indian Institute of Science,
Bangalore 560012, India; emails: {anshuman, haritsa}@dsl.serc.iisc.ernet.in.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 0362-5915/2016/05-ART11 $15.00
DOI: http://dx.doi.org/10.1145/2901738

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

http://dx.doi.org/10.1145/2901738
http://dx.doi.org/10.1145/2901738

11:2 A. Dutt and J. R. Haritsa

Fig. 1. Example Query (EQ).

Fig. 2. POSP plans on p_retailprice dimension.

respect to the actual values subsequently encountered during query execution. Such
errors, which can even be in orders of magnitude in real database environments [Markl
et al. 2004; Lohman 2014], arise due to a variety of well-documented reasons [Stillger
et al. 2001; Lohman 2014], including outdated statistics, coarse summaries, attribute-
value independence (AVI) assumptions, complex user-defined predicates, and error
propagation in the query execution operator tree [Ioannidis and Christodoulakis 1991].
Moreover, in environments such as ETL workflows, the statistics may actually be
unavailable due to data source constraints, forcing the optimizer to resort to “magic
numbers” for the values (e.g., 1/10 for equality selections [Selinger et al. 1979]). The
net outcome of these erroneous estimates is that the execution plans recommended by
the query optimizer may turn out to be poor choices at runtime, resulting in grossly
inflated query response times.

A considerable body of literature exists on proposals to tackle this classical prob-
lem. For instance, techniques for improving the statistical quality of the metadata in-
clude improved summary structures [Aboulnaga and Chaudhuri 1999; Moerkotte et al.
2009], feedback-based adjustments [Stillger et al. 2001], and on-the-fly re-optimization
of queries [Kabra and DeWitt 1998; Babu et al. 2005; Neumann and Galindo-Legaria
2013]. A complementary approach is to identify robust plans that are relatively less
sensitive to estimation errors [Chu et al. 2002; Babcock and Chaudhuri 2005; Babu
et al. 2005; Harish et al. 2008]. While these prior techniques provide novel and in-
novative formulations, a common limitation is their inability to furnish performance
guarantees.

Plan Bouquet Approach

In this article, we investigate a conceptually new approach, wherein the compile-time
estimation process is completely eschewed for error-prone selectivities. Instead, these
selectivities are systematically discovered at runtime through a calibrated sequence of
cost-limited plan executions. That is, we attempt to sidestep the selectivity estimation
problem, rather than address it head-on, by adopting a “seeing is believing” perspective
on these values.

One-Dimensional Example. We introduce the new approach through a restricted one-
dimensional (1D) version of the EQ example query wherein only the p retailprice <
1000 selection predicate is error-prone. First, through repeated invocations of the opti-
mizer, we identify the “parametric optimal set of plans” (POSP) that covers the entire
selectivity range of the predicate. A sample outcome of this process is shown in Fig-
ure 2, wherein the POSP set is comprised of plans P1 through P5. Further, each plan
is annotated with the selectivity range over which it is optimal, for instance, plan P3 is

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

Plan Bouquets: A Fragrant Approach to Robust Query Processing 11:3

Fig. 3. POSP performance (log-log scale).

optimal in the (1.0%, 7.5%] interval. (In Figure 2, P = Part, L = Lineitem, O = Order,
NL = Nested Loops Join, MJ = Sort Merge Join, and HJ = Hash Join.)

The optimizer-computed costs of these POSP plans over the selectivity range are
shown (on a log-log scale) in Figure 3. On this figure, we first construct the “POSP
infimum curve” (PIC), defined as the trajectory of the minimum cost from among the
POSP plans—this curve represents the ideal performance. The next step, which is
a distinctive feature of our approach, is to discretize the PIC by projecting a graded
progression of isocost (IC) steps onto the curve. For example, in Figure 3, the dotted
horizontal lines represent a geometric progression of isocost steps, IC1 through IC7,
with each step being double the preceding value. The intersection of each IC with the
PIC (indicated by �) provides an associated selectivity, along with the identity of the
best POSP plan for this selectivity. For example, in Figure 3, the intersection of IC5
with the PIC corresponds to a selectivity of 0.65% with associated POSP plan P2. We
term the subset of POSP plans that are associated with the intersections as the “plan
bouquet” for the given query—in Figure 3, the bouquet consists of {P1, P2, P3, P5}.

The above exercise is carried out at query compilation time. Subsequently, at runtime,
the correct query selectivities are implicitly discovered through a sequence of cost-
limited executions of bouquet plans. Specifically, beginning with the cheapest cost step,
we iteratively execute the bouquet plan assigned to each step until either:

(1) The partial execution overheads exceed the step’s cost value—in this case, we know
that the actual selectivity location lies beyond the current step, motivating a switch
to the next step in the sequence; or

(2) The current plan completes execution within the budget—in this case, we know
that the actual selectivity location has been reached, and a plan that is at least
2-optimal wrt the ideal choice was used for the final execution.

Example. To make the above process concrete, consider the case where the selectivity
of p_retailprice is 5%. Here, we begin by partially executing plan P1 until the execution
overheads reach IC1 (1.2E4 | 0.015%). Then, we extend our cost horizon to IC2 and
continue executing P1 until the overheads reach IC2 (2.4E4| 0.03%), and so on, until
the overheads reach IC4 (9.6E4 | 0.2%). At this juncture, there is a change of plan to P2
as we look ahead to IC5 (1.9E5 | 0.65%), and during this switching all the intermediate

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

11:4 A. Dutt and J. R. Haritsa

results (if any) produced thus far by P1 are discarded. The new plan P2 is executed
until the associated overhead limit (1.9E5) is reached. The cost horizon is now extended
to IC6 (3.8E5 | 6.5%), in the process discarding P2’s intermediate results and executing
P3 instead. The execution in this case will complete before the cost limit is reached
since the actual location, 5%, is less than the selectivity limit of IC6. Viewed in toto, the
net sub-optimality turns out to be 1.78 since the exploratory overheads are 0.78 times
the optimal cost, and the optimal plan itself was (coincidentally) employed for the final
execution.

Extension to Multiple Dimensions. When the above 1D approach is generalized to a
multi-dimensional selectivity environment, the IC steps and the PIC curve become sur-
faces, and their intersections represent selectivity surfaces on which multiple bouquet
plans may be present. For example, in the 2D case, the IC steps are horizontal planes
cutting through a hollow three-dimensional PIC surface, typically resulting in hyper-
bolic intersection contours featuring a multitude of plans covering disjoint segments of
the contours—an instance of this scenario is shown in Figure 6.

Notwithstanding these changes, the basic mechanics of the bouquet algorithm re-
main virtually identical. The primary difference is that we jump from one isosurface to
the next only after it is determined that none of the bouquet plans present on the current
isosurface can completely execute the given query within the associated cost budget.

Performance Characteristics

At first glance, the plan bouquet approach, as described above, may appear to be utterly
absurd and self-defeating because: (a) At compile time, considerable preprocessing may
be required to identify the POSP plan set and the associated PIC, and (b) at runtime,
the overheads may be hugely expensive since there are multiple plan executions for a
single query—in the worst scenario, as many plans as are present in the bouquet.

However, we will attempt to make the case, in the remainder of this article, that it
is indeed possible, through careful design, to have plan bouquets efficiently provide ro-
bustness profiles that are markedly superior to the native optimizer’s profile. Specifically,
we define robustness to be “the worst-case sub-optimality in plan performance that can
arise due to selectivity errors,” denoted as MSO (maximum sub-optimality). With re-
spect to this MSO metric, the bouquet mechanism delivers substantial improvements
over current optimizers. Moreover, it does so while providing comparable or improved
average-case performance.

For instance, the runtime performance of the bouquet technique on EQ is profiled in
Figure 4 (dark blue curve). We observe that its performance is much closer to the PIC
(dark green) as compared to the worst-case profile for the native optimizer (dark red),
which is comprised of the supremum of the individual plan profiles. In fact, the MSO for
the bouquet is only 3.6 (at 6.5%), whereas the native optimizer suffers a sub-optimality
of around 100 when P5 (which is optimal for large selectivities) is mistakenly chosen
to execute a query with a small selectivity of 0.01%. The average sub-optimality of
the bouquet, computed over all possible errors, is 2.4, somewhat worse than the 1.8
obtained with the native optimizer. However, when the enhancements described later
in this article are incorporated, the enhanced bouquet’s performance (dashed blue)
improves to 3.1 (worst case) and 1.7 (average case), thereby dominating the native
optimizer on both metrics.

Performance Guarantees and Enhancements

Our motivation for the cost-based discretization of the PIC is that it leads to guar-
anteed bounds on MSO. For instance, we prove that the cost-doubling strategy used
in the 1D example results in an MSO upper-bound of 4—this bound is inclusive of

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

Plan Bouquets: A Fragrant Approach to Robust Query Processing 11:5

Fig. 4. Bouquet performance (log-log scale).

all exploratory overheads incurred by the partial executions and is irrespective of the
query’s actual selectivity. In fact, we can go further to show that 4 is the best competi-
tive factor achievable by any deterministic algorithm. For the multi-dimensional case,
the MSO bound becomes 4 times the bouquet cardinality (more accurately, the plan
cardinality of the densest isosurface). To our knowledge, these robustness bounds are
the first such guarantees to be presented in the database literature (although similar
characterizations are well established in the algorithms community [Chrobak et al.
2008]).

We also propose a suite of enhancements to the basic plan bouquet algorithm that
result in significantly stronger performance guarantees. Specifically, compile-time en-
hancements that help to reduce the effective isosurface plan densities, and random-
ization strategies that improve on the maximum expected sub-optimality. Moreover,
an efficient isosurface identification algorithm is introduced to curtail the bouquet
construction overheads. Finally, with regard to implementation, these techniques can
be largely constructed using only API features (e.g., abstract plan costing) that have
already found expression in modern DB engines, as explained later in Section 7.

Experimental Evaluation

In order to empirically validate its utility, we have evaluated the bouquet approach on
PostgreSQL and a popular commercial DBMS. Our experiments utilize a rich set of
complex decision support queries sourced from the TPC-H and TPC-DS benchmarks.
The query workload includes selectivity spaces with as many as five error-prone di-
mensions, thereby capturing environments that are extremely challenging from a ro-
bustness perspective. Our performance results indicate that the bouquet approach
typically provides orders of magnitude improvements, as compared to the optimizer’s
native choices. As a case in point, for Query 19 of the TPC-DS benchmark with 5 error
prone join selectivities, the MSO plummeted from about 106 to just 10! The potency
of the approach is also indicated by its providing an MSO guarantee of less than 20
over our entire query workload, while the average sub-optimality was typically within
a factor of 4 wrt to the optimal.

What is even more gratifying is that the above performance profiles are conservative
since we assume that, at every plan switch, all previous intermediate results are
completely thrown away—in practice, it is conceivable that some of these prior results
could be retained and reused in the execution of a future plan.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

11:6 A. Dutt and J. R. Haritsa

Apart from improving robustness, the bouquet mechanism has another major benefit:
On a given database, the execution strategy for a particular query instance, that is, the
sequence of plan executions, is repeatable across different invocations of the query
instance—this is in marked contrast to prior approaches wherein plan choices are
influenced by the current state of the database statistics and the query construction.
Such stability of performance is especially important for industrial applications, where
considerable value is attributed to reproducible performance characteristics [Babcock
and Chaudhuri 2005].

In our presentation thus far, we had tacitly assumed the optimizer’s cost model to be
perfect—that is, only optimizer costs were used in the evaluations. While this assump-
tion is certainly not valid in practice, improving the model quality is, in principle, an
orthogonal problem to that of estimation. This issue was recently investigated in Wu
et al. [2013], where a cost model tuning mechanism was proposed that enabled pre-
diction of execution times within an error threshold δ of around 40%. Given such a
bounded δ, it is proved in Dutt and Haritsa [2014b] that the MSO guarantees of the
plan bouquet approach continue to hold after inflation by a (1 + δ)2 factor.

In closing, we wish to highlight that, from a deployment perspective, the bouquet
technique is intended to complementarily co-exist with the classical optimizer setup
and not to replace it. It is left to the user or DBA to make the choice of which system
to use for a specific query instance—essential factors that are likely to influence this
choice are discussed in Section 10.

Organization. The remainder of the article is organized as follows: In Section 2, a
precise description of the robust execution problem is provided, along with associated
notations. Theoretical bounds on the MSO provided by the bouquet technique are pre-
sented in Section 3. Corresponding bounds on the maximum expected sub-optimality
with randomized variants of the algorithm are derived in Section 4. A variety of compile-
time enhancements that result in significantly stronger MSO guarantees are described
in Section 5. An efficient mechanism to achieve pragmatic overheads for bouquet iden-
tification is outlined in Section 6, followed by other implementation details of the plan
bouquet architecture in Section 7. The experimental framework and performance re-
sults are reported in Section 8. Related work is reviewed in Section 9, while Section 10
presents a critical review of the bouquet approach. Finally, we conclude in Section 11.

2. PROBLEM FRAMEWORK

In this section, we present our robustness model, the associated performance metrics,
and the notations used in the sequel. Robustness can be defined in many different
ways and there is no universally accepted metric [Graefe et al. 2012]—here, we use the
notion of performance sub-optimality to characterize robustness.

Error-Prone Selectivity Space

In our framework, each user query Q is associated with a set of selectivity predicates
SP, a subset of which are error-prone wrt their estimation. Next, we define a query
space QS for Q to be {Q, AKP, EPP}, where AKP is the set of predicates with accurately
known selectivities, and EPP is comprised of the remaining error-prone predicates (i.e.,
AKP ∪ EPP = SP). From the EPP, we construct an error-prone selectivity space, called
ESS, wherein each error-prone predicate maps to an independent [0, 1] selectivity
dimension in the space. That is, ESS is a [0, 1]D hypercube with D = |EPP|, where
each D-dimensional point q(s1, s2, . . . , sD) represents a possible location of the query Q,
as determined by its selectivities on each of these dimensions. The assignment of an
independent dimension to each EPP is in conformity with the selectivity independence
assumption that is prevalent in modern query optimizer frameworks.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

Plan Bouquets: A Fragrant Approach to Robust Query Processing 11:7

In the ESS defined as above, the cost of an execution plan Pi at a query location q in
the ESS is denoted by c(Pi, q). Also, we denote the query optimizer’s estimated location
of Q in the ESS by qe and the actual location at runtime by qa. The optimal plan at qe, as
determined by the native optimizer, is denoted by Popt(qe), and, similarly, the optimal
plan at qa by Popt(qa). Further, we assume that the query locations and the associated
estimation errors range over the entire ESS, that is, all (qe, qa) error combinations are
possible.

Sub-Optimality-Based Robustness Metrics

With the above query model, the sub-optimality incurred due to using plan Popt(qe) at
location qa is simply defined as the ratio:

SubOpt(qe, qa) = c(Popt(qe), qa)
c(Popt(qa), qa)

∀qe, qa ∈ ESS (1)

with SubOpt ranging over [1, ∞). The worst-case SubOpt for a given qa is defined to
be wrt the qe that results in the maximum sub-optimality, that is, where selectivity
inaccuracies have the maximum adverse performance impact:

SubOptworst(qa) = max
qe∈ESS

(SubOpt(qe, qa)) ∀qa ∈ ESS. (2)

With the above, the global worst case is simply defined as the (qe, qa) error combination
that results in the maximum value of SubOpt over the entire ESS, that is:

MSO = max
qa∈ESS

(SubOptworst(qa)). (3)

The above definitions are appropriate for the manner in which modern optimizers
operate, wherein selectivity estimates are made at compile time, and a single plan is
executed at runtime. However, in the plan bouquet technique, neither of these char-
acteristics is true—error-prone selectivities are not estimated at compile time, and
multiple plans may be invoked at runtime. Notwithstanding, we can still compute the
corresponding statistics by: (a) substituting qe with a “don’t care” ∗ and (b) having
the cost of the bouquet, denoted by c(B, qa), include the overheads incurred by the
exploratory partial executions. That is,

SubOpt(∗, qa) = c(B, qa)
c(Popt(qa), qa)

∀qa ∈ ESS (4)

and

MSO = max
qa∈ESS

(SubOpt(∗, qa)). (5)

Finally, the bouquet technique also furnishes a guarantee on its MSO performance,
which is denoted by MSOg.

Analogously to the above, the randomized variants of the bouquet algorithm are
evaluated for the maximum expected sub-optimality across the ESS, defined as

MESO = max
qa∈ESS

(E[SubOpt(∗, qa)]),

and the guarantee on maximum expected sub-optimality is denoted by MESOg.

Ancillary Performance Metrics

In addition to the above primary metrics, we also evaluate the bouquet technique over
a related set of performance metrics. Specifically, if we assume that all query locations
and error combinations are equally likely, that is, the estimated query locations and

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

11:8 A. Dutt and J. R. Haritsa

Table I. Reference Table for Notations

Notation Description
Q User query

ESS Error-prone Selectivity Space
D Number of ESS dimensions

q(s1, s2, . . . , sD) Query Location in ESS
qe Optimizer estimated selectivity location in ESS
qa ESS location corresponding to actual runtime selectivities

Popt(q) Optimal plan at location q
copt(q) Cost of optimal plan at location q
cB(q) Cost incurred by plan bouquet for location q

c(Pi, q) Cost of plan Pi at location q
SubOptworst(qa) Worst-case native sub-optimality for location qa

SubOpt(∗, qa) Sub-optimality of location qa for plan bouquet qa

MSO Worst-case sub-optimality across ESS
ASO Average sub-optimality across ESS
MH Maximum harm across ESS

MSOg Compile-time guarantee on worst-case sub-optimality
MESOg Compile-time guarantee on maximum expected sub-optimality

ICk kth isosurface (isocost surface) in the ESS
cost(ICk) Cost-budget corresponding to isosurface ICk

the actual query locations are uniformly and independently distributed over the entire
ESS, the average sub-optimality over ESS is defined as:

ASO =
∑

qe∈ESS
∑

qa∈ESS SubOpt(qe, qa)∑
qe∈ESS

∑
qa∈ESS 1

. (6)

The corresponding version for the bouquet technique is

ASO =
∑

qa∈ESS SubOpt(∗, qa)∑
qa∈ESS 1

. (7)

These definitions can easily be extended to the general case where the estimated and
actual locations have idiosyncratic probability distributions.

An important point to note is that even when the bouquet algorithm performs well
on the MSO and ASO metrics, it is possible that for some specific locations qa ∈ ESS,
its performance is poorer than the worst performance of the native optimizer—that is,
the bouquet is harmful for the queries associated with these locations. This possibility
is captured using the following MaxHarm metric:

MH = max
qa∈ESS

(
SubOpt(∗, qa)

SubOptworst(qa)
− 1

)
. (8)

Note that MH values lie in the range (−1,MSOg −1] and harm occurs whenever MH is
positive.

For notational convenience, we will hereafter represent the optimal cost and the
bouquet cost for a given location q with copt(q) and cB(q), respectively. Inclusive of
these, the common notations used in the article are enumerated in Table I for quick
reference.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

Plan Bouquets: A Fragrant Approach to Robust Query Processing 11:9

Fig. 5. 1D selectivity space.

Plan Cost Functions

An assumption that fundamentally underlies the entire bouquet mechanism is that
of Plan Cost Monotonicity (PCM)—that is, the costs of the POSP plans increase
monotonically with increasing selectivity values. It captures the intuitive observation
that when more data are processed by a plan, signified by larger selectivities, the cost
of processing also increases. This assumption has often been made in the literature
[Bizarro et al. 2009; Chaudhuri et al. 2010; Harish et al. 2007] and generally holds for
the plans generated by current database systems on decision-support queries [Reddy
and Haritsa 2005]. The only exception that we have found is for queries featuring
existential operators, where the POSP plans may exhibit decreasing monotonicity with
selectivity. Even in such scenarios, the basic bouquet technique can be utilized by
the simple expedient of plotting the ESS with (1 − s) instead of s on the selectivity
axes. Thus, only queries having optimal cost surfaces with a maxima or minima in the
interior of the error space are not amenable to our approach.

Apart from monotonicity, we also assume the cost functions to be continuous (smooth)
throughout the ESS, again, a commonplace feature in practice.

3. ROBUSTNESS BOUNDS

We begin our presentation of the plan bouquet approach by characterizing its MSO
performance bounds for the 1D scenario. Subsequently, we extend the analysis to the
general multi-dimensional case.

3.1. 1D Selectivity Space

By virtue of our assumptions on plan cost behavior, the PIC is a monotonically increas-
ing and continuous function throughout the ESS; its minimum and maximum costs
are denoted by Cmin and Cmax, respectively. As described in the Introduction, this PIC
is discretized by projecting a graded progression of cost steps onto the curve. Specif-
ically, consider the case wherein the steps are organized in a geometric progression
with initial value a (a > 0) and common ratio r (r > 1), such that the PIC is sliced
with m =
logr

Cmax
Cmin

+ 1� cuts, IC1, IC2, . . . , ICm, satisfying the boundary conditions
a/r < Cmin ≤ cost(IC1) = a and cost(ICm−1) < Cmax = cost(ICm), as shown in Figure 5.

For 1 ≤ k ≤ m, denote the selectivity location where the kth cost step (ICk) intersects
the PIC by qk and the corresponding bouquet plan as Pk. All the qk locations are unique,

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

11:10 A. Dutt and J. R. Haritsa

ALGORITHM 1: 1D Bouquet Algorithm
// for each cost step ICk
for k = 1 to m do

start executing bouquet plan Pk
// perform cost-limited execution
while run cost(Pk) ≤ cost(ICk) do

execute Pk
if Pk completes execution then

return query result
end

end
terminate Pk and discard partial results

end

by definition, due to the monotonicity and continuity features of the PIC. However, it is
possible that some of the Pk plans may be common to multiple intersection points (e.g.,
in Figure 3, plan P1 was common to steps IC1 through IC4). Finally, for mathematical
convenience, assign q0 to be 0.

With this framework, the bouquet execution algorithm, outlined in Algorithm 1,
operates as follows in the most general case, where a different plan is associated with
each step: We start with plan P1 and budget cost(IC1), progressively working our way
up through the successive bouquet plans P2, P3, . . . , until we reach the first plan Pk
that is able to fully execute the query within its assigned budget cost(ICk). It is easy to
see that the following lemma holds:

LEMMA 3.1. If qa resides in the range (qk−1, qk], 1 ≤ k ≤ m, then plan Pk executes it to
completion in the bouquet algorithm.

PROOF. We prove by contradiction: If qa was located in the region (qk, qk+1], then
Pk could not have completed the query due to the PCM restriction. Conversely, if qa
was located in (qk−2, qk−1], Pk−1 itself would have successfully executed the query to
completion. With similar reasoning, we can prove the same for the remaining regions
that are beyond qk+1 or before qk−2.

Performance Bounds. Consider the generic case where qa lies in the range (qk−1, qk].
Based on Lemma 1, the associated worst-case cost of the bouquet execution algorithm
is given by the following expression:

cB(qa) = cost(IC1) + cost(IC2) + · · · + cost(ICk)

cB(qa) = a + ar + ar2 + · · · + ark−1 = a(rk − 1)
r − 1

. (9)

The corresponding cost for an “oracle” algorithm that magically a priori knows the
correct location of qa is lower bounded by ark−2, due to the PCM restriction. Therefore,
we have

SubOpt(∗, qa) ≤
a(rk−1)

r−1

ark−2 = r2

r − 1
− r2−k

r − 1
<

r2

r − 1
. (10)

Note that the final expression is independent of k and hence of the specific location of
qa. Therefore, we can state for the entire selectivity space that:

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

Plan Bouquets: A Fragrant Approach to Robust Query Processing 11:11

THEOREM 3.2. Given a query Q with a 1D ESS, and the associated PIC discretized
with a geometric progression having common ratio r, the bouquet execution algorithm
ensures that MSOg = r2

r−1 .

Further, the choice of r can be optimized to minimize this value—the right-hand side
reaches its minima at r = 2, at which the value of MSOg is 4. The following theo-
rem shows that this is the best performance achievable by any deterministic online
algorithm—leading us to conclude that the doubling-based discretization is the ideal
solution.

THEOREM 3.3. Given a universe of cost-limited executions of POSP plans, no deter-
ministic online algorithm can ensure MSOg lower than 4 in the 1D scenario.

PROOF. We prove by contradiction, assuming there exists an optimal online robust
algorithm, R* with a MSOg of f , f < 4.

The proof is divided into two parts: First, we show that R* must be a monotonically in-
creasing sequence of plan execution costs, [a1, a2, . . . , am], and, second, we demonstrate
that achieving an MSO of less than 4 requires the ratio of cumulative costs for consec-
utive steps in the sequence to be strictly decreasing; however, this is fundamentally
impossible and hence the contradiction.

(a) (a) Assume that R* has cost sequence [a1, . . . , ai, aj, . . . , am+1] that is sorted in
increasing order except for the inversion caused by aj < ai.

Now, let us define a plan execution to be useful if its execution covers a hitherto
uncovered region of the selectivity space. With this definition, an execution of
aj after ai is clearly useless since no fresh selectivity ground is covered by this
cheaper execution. A sample instance with reference to Figure 5 is executing P2,
which covers the selectivity region (0, q2), after P3, which covers the region (0, q3);
this does not add any value since the latter subsumes the former.

In summary, an out-of-order execution sequence cannot provide any improve-
ment over an ordered sequence, which is why aj can be safely discarded to give a
completely sorted sequence [a1, . . . , ai, . . . , am].

(b) For the sorted execution sequence R*, denote the cumulative cost at each step with
Aj = ∑ j

i=1 ai and the ratio between the cumulative costs for consecutive steps as
Yj = Aj+1

Aj
. Note that, by definition, Aj+1 > Aj .

Now, since R* has MSOg of f , the sub-optimality caused by each and every step
should be at most f , that is,

Aj+1

aj
≤ f ∀ j ∈ [1, m)

and therefore
Aj+1 ≤ f aj ⇒ Aj+1 ≤ f (Aj − Aj−1)

⇒ Yj Aj ≤ f (Aj − Aj−1).
After dividing both sides with Aj , we get

Yj ≤ f
(

1 − 1
Yj−1

)
.

Through elementary algebra, it is known that ∀z > 0, (1 − 1
z) ≤ z

4 . Therefore, we get

Yj ≤
(

f
4

)
Yj−1.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

11:12 A. Dutt and J. R. Haritsa

Fig. 6. 2D selectivity space: (a) isocost contours and (b) space coverage by plans on ICk.

Since f < 4, it implies that the sequence Yj is strictly decreasing with multiplicative
factor < 1. With repeated application of the same inequality, we obtain

Yj ≤
(

f
4

) j−1

Y1.

For sufficiently large j, this results in

Yj < 1 ⇒ Aj+1 < Aj,

which is a contradiction to our earlier observation that Aj+1 > Aj .

3.2. Multi-Dimensional Selectivity Space

We now move on to the general case of multi-dimensional selectivity error spaces. A
sample 2D scenario is shown in Figure 6(a), wherein the isosurfaces ICk are represented
by contours that represent a continuous sequence of selectivity locations (in contrast to
the single location in the 1D case). Further, multiple bouquet plans may be present on
each individual contour, as shown for ICk, wherein four plans, Pk

1 , Pk
2 , Pk

3 , Pk
4 , are the

optimizer’s choices over disjoint (x, y) selectivity ranges on the contour. Now, to decide
whether qa lies below or beyond ICk, in principle, every plan on the ICk contour has to
be executed—only if none complete do we know that the actual location definitely lies
beyond the contour.

This need for exhaustive execution is highlighted in Figure 6(b), where, for the four
plans lying on ICk, the regions in the selectivity space on which each of these plans
is guaranteed to complete within the budget cost(ICk) are enumerated (the contour
superscripts are omitted in the figure for visual clarity). Note that while several regions
are “covered” by multiple plans, each plan also has a region that it alone covers—the
hashed regions in Figure 6(b). For queries located in such regions, only the execution
of the associated unique plan would result in confirming that the query is within the
contour.

The basic bouquet algorithm for the generic multi-dimensional case is shown in
Algorithm 2, using the notation nk to represent the number of plans on isosurface ICk.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

Plan Bouquets: A Fragrant Approach to Robust Query Processing 11:13

ALGORITHM 2: Multi-Dimensional Bouquet Algorithm
// for each isosurface ICk
for k = 1 to m do

// for each plan on isosurface ICk
for i = 1 to nk do

start executing bouquet plan Pk
i

// perform cost-limited execution
while run cost(Pk

i) ≤ cost(ICk) do
execute Pk

i

if Pk
i completes execution then
return query result

end
end
terminate Pk

i and discard partial results
end

end

Performance Bounds. Given a query Q with qa located in the range (ICk−1, ICk], the
worst-case total execution cost for the multi-D bouquet algorithm is given by

cB(qa) =
k∑

i=1

[ni × cost(ICi)]. (11)

Using ρ to denote the number of plans on the densest isosurface, and upper-bounding
the values of the ni with ρ, we get the following performance guarantee:

cB(qa) ≤ ρ ×
k∑

i=1

cost(ICi). (12)

Now, following a similar derivation as for the 1D case, we arrive at the following
theorem:

THEOREM 3.4. Given a query Q with a multidimensional ESS, and the associated
PIC discretized with a geometric progression having common ratio r and maximum
isosurface plan density ρ, the bouquet execution algorithm ensures that MSOg = ρr2

r−1 .

Setting r = 2 in this expression ensures that MSOg = 4ρ.
To the best of our knowledge, the above MSO bounds are the first such guarantees in

the literature. Further, from these formulations, we can trivially infer that the ancillary
metrics, ASO and MH, are bounded by MSOg and (MSOg − 1), respectively.

4. BOUNDS ON MAXIMUM EXPECTED SUB-OPTIMALITY

Thus far, we focused on deterministic guarantees for the worst-case sub-optimality
across query locations in the entire ESS. We now move on to exploring how random-
ization can be introduced in the plan bouquet algorithm, leading to guarantees on the
maximum expected sub-optimality, that is, MESOg. While our randomized algorithms
work for arbitrary number of dimensions, for ease of presentation, we restrict our dis-
cussion here, and in the following section, to 2D ESS—hence, we will use the term
contour to represent the isosurfaces.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

11:14 A. Dutt and J. R. Haritsa

Fig. 7. Worst-case and best-case (intra-contour) plan sequences for qa.

4.1. Randomized Intra-Contour Plan Sequence

The basic plan bouquet algorithm executes nk plans on the kth contour but does not
impose any order on these executions. In fact, the ordering of executions has no impact
on the worst-case analysis, as every plan on the contour has a region that it alone
covers, suggesting exactly the same worst-case performance for any execution order.

Notwithstanding the above, the sub-optimality for a particular query instance could
vary with the execution order of the contour plans. To analyze this, we split the bouquet
overheads into two components: (a) the overheads suffered at the finishing contour
and (b) the overheads accumulated from the earlier contours (denoted as TB). While
TB remains the same for all query instances that lie between a consecutive pair of
contours, the former is dependent on the execution order. Consider, for instance, the qa
located as shown in Figure 7(a). With the default execution order, Pk

1 through Pk
4 , qa is

completed by the terminal Pk
4 execution, resulting in overheads of TB + 4 ∗ cost(ICk).

On the other hand, the overheads would reduce to TB + cost(ICk) if Pk
4 was chosen as

the first plan in the execution sequence (Figure 7(b)). The implication here is that the
expected sub-optimalities can be improved by randomly choosing plan execution orders
on each contour. However, minimizing this expected value may result in a weakening
of the worst-case guarantee, and the tradeoff is quantified below.

We construct the following variant of the bouquet algorithm—for each contour ICk,
the execution sequence of the nk plans is a permutation chosen uniformly at random
from all possible permutations. For this variant, the performance guarantees are cap-
tured by the following result (proof in Appendix A.1):

LEMMA 4.1. The bouquet algorithm with randomized intra-contour plan sequence
provides MESOg = ρ(r

r−1 + r
2) + r

2 , while retaining MSOg = ρr2

r−1 .

Setting a common ratio of r = 2.4 minimizes MESOg to 2.9ρ + 1.2 – as a side effect,
MSOg marginally increases from 4ρ to 4.1ρ. Moreover, even if we wish to retain MSOg
of 4ρ by setting r = 2, then MESOg is only mildly weakened to 3ρ + 1. Essentially, this
suggests that we can simultaneously obtain excellent performance on both metrics.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

Plan Bouquets: A Fragrant Approach to Robust Query Processing 11:15

Fig. 8. Worst-case and best-case contour placements for qa.

4.2. Randomized Contour Placement

Observe that the worst case sub-optimality instances correspond to qa’s that lie just
beyond a contour (i.e., copt(qa) = cost(ICk−1) + ε) since their execution finishes with
a plan on the next contour, which is r-optimal. On the other hand, qa’s that lie just
below a contour (i.e., copt(qa) = cost(ICk) − ε) complete their execution with an almost-
optimal plan. Such differential treatment of query instances based on their locations
can be ameliorated by randomizing the placement of the contours—this is illustrated in
Figure 8 for the example location qa. With the original contour placement (Figure 8(a)),
Pk

4 completes execution for qa expending cost(ICk), whereas after slightly repositioning
the contours (Figure 8(b)), qa is completed by Pk′

4 with cost(ICk′) ≈ cost(ICk)
r .

To leverage the above, we construct a randomized variant, similar to that proposed in
Lotker et al. [2008], wherein the entire geometric sequence is shifted left by a random
multiplicative factor 1

rX , where X is a uniform random variable ∈ [0, 1). That is, the
cost associated with the first contour is randomized between a

r and a, with the later
contours retaining the default r cost ratio. For this variant, the performance guarantees
are captured by the following result (proof in Appendix A.2):

LEMMA 4.2. The bouquet algorithm with randomized contour placement provides
MESOg = ρ r

ln r , while retaining MSOg = ρr2

r−1 .

Setting a common ratio of r = e ≈ 2.72 minimizes MESOg to ≈2.72ρ—as a side effect,
MSOg slightly increases to 4.3ρ. Moreover, even if we wish to retain the 4ρ MSO
guarantee by setting r = 2, then MESOg is only mildly weakened to 2.89ρ. Again, we
observe simultaneous excellent performance on both metrics.

4.3. Using Both Randomization Strategies

Since the above randomization techniques are orthogonal to each other, we can also
consider employing them simultaneously. For this variant, the performance guarantees
are captured by the following result (proof in Appendix A.3):

THEOREM 4.3. Given a query Q on a multi-dimensional ESS, the bouquet execution al-
gorithm with contour placement randomization followed by intra-contour plan sequence
randomization provides MESOg = ρ (r+1)

2 ln r + (r−1)
2 ln r , while retaining MSOg = ρr2

r−1 .

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

11:16 A. Dutt and J. R. Haritsa

Table II. Performance of Randomized Variants of the Bouquet Algorithm

Variant Cost-ratio(r) MESOg MSOg

No randomization 2 4ρ 4ρ

Randomized Plan Sequence
2 3ρ + 1 4ρ

2.4 2.9ρ + 1.2 4.1ρ

Randomized Contour Placement
2 2.89ρ 4ρ

2.4 2.74ρ 4.1ρ

2.72 2.72ρ 4.3ρ

Randomized Plan Sequence & Contour Placement

2 2.16ρ + 0.72 4ρ

2.4 1.94ρ + 0.8 4.1ρ

2.72 1.86ρ + 0.86 4.3ρ

3.6 1.8ρ + 1 4.98ρ

Setting r = 3.6 minimizes MESOg to as low as 1.8ρ+1, while increasing MSOg to 4.98ρ.
If we wish to retain the 4ρ MSO guarantee, then MESOg increases to 2.16ρ + 0.72.

The above results are summarized in Table II. It is noteworthy that using r = 2
retains MSOg while minimizing MESOg requires different cost ratios for each variant.

With regard to implementation, the intra-contour plan sequence only requires a
simple shuffling algorithm—for instance, the standard Knuth’s shuffle [Knuth 1997].
On the other hand, randomizing the initial contour location is more complicated since,
in principle, for each new starting cost, a complete rescan of the ESS is required to
determine the fresh set of contours. However, even if we restricted ourselves to merely
two instances of contour placement, corresponding to X = 0 and X = 0.5, we achieve
an attractive combination of MESOg = 2.38ρ + 1 and MSOg = 4.1ρ, for r = 2.4.

5. COMPILE-TIME ENHANCEMENTS TO IMPROVE ROBUSTNESS BOUNDS

The bouquet mechanism’s MSOg guarantee of 4 for the 1D case is shown to be inher-
ently strong in Section 3.1. However, the multi-dimensional bounds depend on ρ, the
maximum plan density across the isosurfaces, which can be quite high—for instance, in
excess of 150 for the 5D queries considered in our study. Therefore, to have a practically
useful bound, we need to ensure that the value of ρ is reduced as far as possible.

A potential approach to achieving reduction in the “effective” value of ρ is to somehow
skip some of the cost-limited executions from the original bouquet sequence. At first
glance, such removal of executions may appear contrary to the principle of exhaustive
contour execution described in Section 3. However, as we will show in the remainder
of this section, it can be achieved by ensuring that the roles of skipped executions
are played by carefully identified alternative executions. Specifically, we present two
compile-time enhancements here for implementing such an execution skipping process.

5.1. Reducing Effective ρ with Plan Swallowing

Our first technique leverages the notion of “anorexic reduction” [Harish et al. 2007]
to directly reduce the cardinality of the POSP itself. In this approach, POSP plans
are allowed to “swallow” other plans, that is, occupy their regions in the ESS, if the
sub-optimality introduced due to these swallowings can be bounded to a user-defined
threshold, λ. Through extensive experimentation, it was shown in Harish et al. [2007]
that even for complex OLAP queries with high-dimensional ESS, a λ setting of 20%
was typically sufficient to bring the number of POSP plans down to “anorexic levels,”
that is, a small absolute number within or around 10.

When anorexic reduction is introduced into the plan bouquet setup, it immediately
serves to steeply reduce the effective value of ρ. However, there is also a downside—the

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

Plan Bouquets: A Fragrant Approach to Robust Query Processing 11:17

Table III. Effect of Anorexic Reduction [λ = 20%] on Robustness Guarantees

Error Space ρPOSP MSOg ρANOREXIC MSOg

3D_H_Q5 11 33 3 12.0
3D_H_Q7 13 34 3 9.6
4D_H_Q8 88 213 7 24.0
5D_H_Q7 111 342.5 9 37.2

3D_DS_Q15 7 23.5 3 12.0
3D_DS_Q96 6 22.5 3 13.0
4D_DS_Q7 29 83 4 17.8
4D_DS_Q26 25 76 5 19.8
4D_DS_Q91 94 240 9 35.3
5D_DS_Q19 159 379 8 30.4

constant multiplication factor is increased by a factor (1 + λ) due to the inflation in the
cost budget. Overall, the deterministic guarantee is altered from 4ρPOSP to 4(1+λ)ρANOREXIC.

Empirical evidence that this tradeoff is highly beneficial is shown in Table III, which
compares for a variety of multi-dimensional error spaces, the bounds (using Equa-
tion (11)) under the original configuration and under anorexic reduction (λ = 20%). As
a particularly compelling example, consider 5D_DS_Q19, a five-dimensional selectivity
error space based on Q19 of TPC-DS—we observe here that MSOg plunges by more
than an order of magnitude, going down from 379 to 30.4.

5.2. Reducing Effective ρ with Execution Covering

We now move on to describing an independent and complementary enhancement that
can further reduce the effective ρ. It leverages the observation that even if a particular
execution is skipped, the selectivity region covered by this execution can still be covered
using execution(s) from later contours—of course, at a higher cost. Such skipping clearly
implies an increase in sub-optimality for some individual query instances—however,
from a holistic perspective, it serves to substantively reduce the effective ρ and thereby
deliver much stronger MSOg guarantees.

To formalize this enhancement, we represent the bouquet algorithm as a sequence
of cost-budgeted plan executions BS = {E1, E2, . . . , Eterminal}, where Eterminal is the final
execution that can complete all locations in the ESS. Additionally, we use the function
φ(Ei) to indicate the identity of the executed plan, and ω(Ei) to represent the cost
budget of the execution. So, if Ei corresponds to the execution of Pk

j , then φ(Ei) = Pj

and ω(Ei) = cost(ICk).
Now, for each Ei, denote with R(Ei) the region of the ESS that Ei is a priori known

to certainly complete within its budget, that is, all q s.t. c(φ(Ei), q) ≤ ω(Ei). To make
this notion concrete, visual representations of R(E3) and R(E7) are shown in Figure 9,
highlighted with purple horizontal lines and green slanted lines, respectively. In ad-
dition, the figure also shows that E7 can complete all query locations in R(E3) within
twice the cost budget of E3.

For quick reference, the notations employed hereafter in this section are summarized
in Table IV.

5.2.1. The Cover Relation. We define the ability of an execution to complete the ESS
region of another execution as the Cover Relation over the set of executions. Formally,
an execution Ei can cover execution Ej , denoted as Ei �cover Ej , if R(Ei) ⊇ R(Ej). The
�cover relation imposes a partial order on the set of executions, with Eterminal being the
unique top element since R(Eterminal) = ESS.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

11:18 A. Dutt and J. R. Haritsa

Fig. 9. E7 can complete all locations in R(E3) with cost(IC2) = 2 * cost(IC1).

Table IV. Reference Table for Notations in this Section

Notation Description
�cover Execution “cover” relation

BS Original bouquet execution Sequence
Ei ith execution in the bouquet execution sequence

Eterminal Final execution in the execution sequence
φ(Ei) Identity of plan used in execution Ei

ω(Ei) Cost budget of execution Ei

R(Ei) Region in ESS covered by ith execution
SubOpt(Ei) SubOpt corresponding to ith execution

CS Covering execution Sequence
CSk Covering Sequence that covers the set of original executions from ICk

CSopt Set of Optimal Covering Sequence(s)
CSI Covering Sequence Identification Algorithm

Example. An example 2D ESS is shown in Figure 10, featuring a total of 32 execu-
tions spanning across seven contours. The corresponding Hasse diagram for the cover
relation on the set of executions in the bouquet sequence is shown in Figure 11(a),
where elements of the partial order become nodes, and non-transitive relations among
the elements become edges. Further, the weight of each node is given by the cost budget
of the corresponding execution, that is, ω(Ei). Since the weights are the same for all
executions from a given contour, they are highlighted only once for each contour in
Figure 11(a), for example, 8C for nodes 16 to 22.

5.2.2. Detailed Sub-Optimality Analysis for the Basic Bouquet Sequence. Next, we show in
Figure 11(b) the detailed analysis of the basic bouquet execution sequence wrt ex-
ecution cost and sub-optimality. Here, each node Ei is labeled with the accumulated
overheads until and including Ei, that is

∑i
j=1 ω(Ej). While the accumulated overheads

are monotonically increasing, the sub-optimality variation is not necessarily so and is
given by the following recurrence formula:

SubOpt(Ei) =

⎧⎪⎨
⎪⎩

SubOpt(Ei−1) + r if ω(Ei) = ω(Ei−1)
SubOpt(Ei−1)

r
+ r if ω(Ei) �= ω(Ei−1)

r if i = 1

.

Clearly, the sub-optimality increases while working our way through a contour but may
observe a dip when a contour jump happens.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

Plan Bouquets: A Fragrant Approach to Robust Query Processing 11:19

Fig. 10. Example bouquet sequence.

Fig. 11. (a) Hasse diagram. (b) Execution cost and sub-optimality analysis.

To elaborate further, we define MSOk
g as the maximum sub-optimality encountered

in the region between contours ICk−1 and ICk and can be computed as MSOk
g = rnk +

MSOk−1
g

r , with MSO0
g = 0 for mathematical convenience. These computed values are

marked besides each contour in Figure 11(b) and the overall MSOg = 24.25 that occurs
on the fourth contour is highlighted in boldface. It is noteworthy that, unlike the
absolute bouquet overheads which increase monotonically with each new execution,

MSOk
g increases monotonically with contour k only if nk >

MSOk−1
g

r2 is satisfied for all
k ∈ (1, m].

Motivating Scenario: MSOg Reduction Due to Execution Covering

Consider Figure 11(a), where execution E28 is capable of covering executions E20, E21,
and E22. That is, if E20, E21, E22 are skipped from the bouquet sequence, their
associated regions ∪22

i=20 R(Ei) can still be covered by execution E28. Implementing this
observation, as depicted in Figure 12, the effective plan density of IC4 reduces from 7
to 6—since the cost budget of E28 is equivalent to two executions from IC4. Note that
this execution cover has no impact on sub-optimality performance until E19 but causes
a sub-optimality reduction for all the later executions and hence reduction in MSOk

g
for all the contours beyond IC4. Overall, MSOg marginally reduces from 24.25 to 22.25.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

11:20 A. Dutt and J. R. Haritsa

Fig. 12. Using cover E28 → {E20, E21, E22} improves MSOg from 24.25 to 22.25.

As a general rule, implementing a particular execution covering does not harm MSOg
if the cover’s budget does not exceed the sum of the budgets of the replaced executions.
That is, Ecover �cover {Ec, . . . , Ec′ } can be employed if ω(Ecover) ≤ ω(Ec) + · · · + ω(Ec′).

Covering Sequences

Extending the above single execution cover example, we define a covering sequence
(CS) as an execution sequence that contains a cover for each and every execution in
the original sequence. Since Eterminal cannot be covered by any other execution, it must
be present in every candidate covering sequence, implying a total of 2|BS|−1 candidates.
For each candidate CS, MSOg can be computed as

MSOg(CS) = max
1≤a≤m

[∑a
k=1 �(CSk)

cost(ICa−1)

]
,

where CSk ⊂ CS is the set of execution(s) that cover executions from ICk and �(CSk) =∑
Ei∈CSk ω(Ei).1 Also, cost(IC0) = Cmin = cost(IC1)

2 + ε.

Optimal Covering Sequence. Among all the CS candidates, the covering sequence(s)
corresponding to the minimum value of MSOg are characterized as optimal covering
sequences (CSopt). The CSopt sequences can be identified through a brute force evalu-
ation of all candidates, but the complexity is exponential in the number of executions
in the sequence, and it is therefore impractical. As a viable alternative, we propose a
greedy algorithm, termed the Covering Sequence Identification (CSI), to find a CS with
improved MSOg. Specifically, CSI decomposes the original problem into contourwise
subproblems, each of which is modeled as a red-blue domination problem. The subprob-
lems are then solved efficiently using a greedy approach, and the contourwise solution
nodes are stitched together to form a covering sequence (details in Appendix B.1).

As a concrete outcome of the CSI algorithm, the solution CS for the running example
is shown in Figure 13(a) (the equivalent ESS coverage representation is shown in
Figure 13(b)). Note that the resulting MSOg has come down to only 14.5 as compared
to 24.25 of the original bouquet sequence.

1If an execution is capable of acting as a cover for executions from different contours, then it is counted only
once for the lowest index contour, while calculating MSOg.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

Plan Bouquets: A Fragrant Approach to Robust Query Processing 11:21

Fig. 13. (a) Execution covering sequence. (b) Modified space coverage.

With regard to the above CS solution, a few interesting sidelights emerge:

—In contrast to the original bouquet sequence, the executions are not necessarily
contour-ordered in a covering sequence. For instance, E31 from IC6 is executed before
executions E23 and E24 from IC5.

—The CS uses only 11 of 32 executions in the original sequence.
—The effective contour plan densities decrease from [3, 5, 7, 7, 6, 3, 1] to

[2, 4, 4, 4, 2, 2, 1]. Specifically for IC3, ES uses seven executions from IC3, while CS
covers it employing CS3 = {E11, E15,E17,E21}, which is equivalent to four executions
(since it requires two executions, E17 and E21, from IC4).2

—An increase in execution cost (and hence sub-optimality) occurs only for the three
regions covered by E1(C → 2C), E4(5C → 6C), and E9(17C → 18C). For most
of the remaining regions, the execution cost improves significantly, for example,
E15(41C → 10C) and E31(265C → 58C). This observation suggests that along with
significant reductions in MSOg, concurrent improvements in ASO and MH may also
be expected.

The effectiveness of CSI is further corroborated by its performance on queries based
on the TPC-H and TPC-DS benchmarks—these results are summarized in Table V.
Overall, the MSOg never exceeded 20 even for high-dimensional queries, including
those with high initial values of MSOg. As a particularly compelling example, for a
five-dimensional error-space 5D_H_Q7, the covering sequence used only 10 executions
(of the original 34) and, more importantly, brought MSOg down from 37.2 to only 15.

Computational Effort. Overall, the worst-case complexity for the CSI algorithm is
O(mρ log(mρ)) against O(2mρ) of the brute-force algorithm. Further, to be able to use
this enhancement, it is required to first construct the Hasse diagram, which involves
establishing the cover relation among all pairs of executions from consecutive contours.
For this purpose, we have devised a three-step mechanism, where the proposed checks
in the first two steps are computationally very cheap as compared to the third step.
To elaborate, we first identify true positives by evaluating a simple necessary and
sufficient criteria, then discard true negatives by evaluating another cheap to evaluate

2The underlined executions, E11 and E15, are part of CS3 but their overheads are already counted in CS2.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

11:22 A. Dutt and J. R. Haritsa

Table V. Effect of Execution Covering on Robustness Guarantees

Error MSOg # Executions MSOg # Executions
Space (Anorexic) (Anorexic) (Anorexic+CSI) (Anorexic+CSI)

3D_H_Q5 12 8 8.4 4
3D_H_Q7 9.6 6 7.2 3
4D_H_Q8 24 18 15 7
5D_H_Q7 37.2 34 15 10

3D_DS_Q15 12 16 9.2 9
3D_DS_Q96 13 10 8.8 7
4D_DS_Q7 17.8 14 9.1 7
4D_DS_Q26 19.8 23 8.1 8
4D_DS_Q91 35.3 34 16 14
5D_DS_Q19 30.4 24 15 13

necessary condition, and, finally, if the previous two steps do not prove conclusive,
evaluate the computationally expensive sufficiency criteria. The complete details of
this procedure can be found in Appendix B.2.

Finally, since the computational efforts required in both Hasse diagram construc-
tion and covering sequence identification depend on the number of executions in the
sequence, it is recommended to use CSI only after anorexic reduction has already been
employed.

6. NEXUS: ALGORITHM FOR IDENTIFYING AN ISOSURFACE

The primary inputs to the bouquet identification phase are the isosurfaces (contours
in 2D) drawn on the ESS. Thus far, we had viewed each isosurface as a continuous
region comprised of selectivity locations having identical cost values for their optimal
plans. As a practical matter, however, we have to construct and process approximate
discretized versions of these regions. That is, we need to use a D-dimensional grid with
finite resolution res to approximate the ESS hypercube [0, 1]D.

With this discretized ESS, an isosurface for cost C is constructed as a D-dimensional
set of contiguous grid locations q such that copt(q) lies in the interval [C, (1 + α)C],
where copt(q) is the cost of the optimal plan at location q and α is a tolerance factor.
Since the tolerance factor could occasionally result in “thickening the surface” due to
inter-surface locations also creeping into the surface set, we additionally require that
each point in the surface must have at least one of its lower neighbors violating the
above cost interval requirement. Finally, we assume that the resolution of the ESS grid
is sufficiently high such that we can always find contiguous isocost locations even with
small values of α, say, 0.05.

A straightforward strategy to identify the isosurfaces from the ESS is to first explore
the discretized ESS in a exhaustive manner and then identify the locations that are
acceptable for the required isocost values. But the overheads for such an approach
would increase exponentially with ESS dimensionality and become impractical for
typical OLAP queries. Moreover, the exhaustive enumeration is overkill for isosurface
identification since: (a) we do not need information about the internal regions that lie
between the isosurfaces and take up the vast majority of the space in ESS, and (b) we
do not exploit the potential for overlapping the identification of later isosurfaces with
the execution of the earlier isosurfaces, which could provide a head start in the bouquet
execution process.

Motivated by the above observations, we propose in this section a focused approach
for the identification of isosurfaces. Specifically, it quickly identifies the locations
corresponding to a particular isosurface without wasting much effort on extraneous
locations. For this purpose, we leverage our basic assumptions of monotonicity and

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

Plan Bouquets: A Fragrant Approach to Robust Query Processing 11:23

Table VI. Reference Table for Notations in this Section

Notation Description
C Cost of isosurface

res Resolution of the ESS grid
α Cost tolerance factor in isosurface identification

copt(q) Optimal cost at location q in the ESS
L A generic isosurface location in the ESS

Lx±1 ESS locations in immediate neighborhood of L along dimension x
S Initial seed location for an isosurface in the ESS

smoothness of plan costs—these imply that in each dimension of the discretized ESS,
the optimal costs are in increasing order and do not change abruptly.

We begin by presenting the algorithm for a 2D ESS followed by the extension to
higher-dimensional selectivity spaces. The notations used in this section are summa-
rized in Table VI.

6.1. 2D ESS

Given a location L with coordinates (x, y) in the discretized 2D ESS, we denote its
three immediate “lower” neighbors as follows: (x − 1, y) with Lx−1, (x, y − 1) with Ly−1,
and (x − 1, y − 1) with L−1. With these notations, the location L(x, y) is included in the
contour C if it satisfies the following conditions:

(a) C ≤ copt(L) ≤ (1 + α)C and
(b) if copt(Lx−1) > C and copt(Ly−1) > C then copt(L−1) < C.

The first condition establishes the acceptable cost interval for L, while the second
ensures that at least one of L’s dominated neighbors is outside of the cost interval (to
prevent “surface thickening,” as explained earlier).

With the above setting, the contour identification algorithm works in two phases:

(1) Locating the Initial Seed: Here, the aim is to find the contour location that has
the maximum “y” coordinate and use it as a seed location for the next phase of the
algorithm. This extreme point can only lie on either the left edge or the top edge
of the ESS, that is, (0,0) to (0, res) or (0,res) to (res, res). To determine the correct
edge, we simply cost these three ESS corners and determine which edge includes
C in its range of values. Once the edge has been determined, the exact location S,
to serve as the initial seed, is determined using a binary search on that edge.

(2) Neighborhood EXploration Using Seed (NEXUS): Since the seed has the maximum
“y” location, for locating our next isocost point, we need to only consider the third
and fourth quadrants relative to the seed as origin. However, locations in the third
quadrant are already known to be unacceptable due to PCM. Therefore, the initial
seed location S can be used to recursively generate new seed locations solely in the
fourth quadrant and thus grow the contour.

For a given seed location S(x, y), we denote the location (x + 1, y) with Sx+1 and
the location (x, y−1) with Sy−1. By virtue of PCM, we know that copt(Sx+1) > copt(S)
and copt(Sy−1) < copt(S). We find from the query optimizer the optimal costs for these
candidate seed locations and choose the new seed based on the following simple
criterion:

If copt(Sy−1) < C, then set S = Sx+1 else S = Sy−1.
The end of this recursive routine is marked by the non-existence of both Sx+1 and
Sy−1 in the ESS grid.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

11:24 A. Dutt and J. R. Haritsa

Fig. 14. Example contour exploration in 2D ESS.

A sample working of the above algorithm is visually demonstrated in Figure 14.
First, the identification of the initial seed S using six optimization calls is shown in
Figure 14(a). Then the recursive contour exploration in the fourth quadrant of S is
shown in Figure 14(b); here, the optimized locations are marked with either a red
triangle � or a green dot •. The triangles indicate locations that were explored but re-
jected, whereas the dots constitute the accepted contour locations. Finally, Figure 14(c)
shows the contour exploration completing when S hits the ESS boundary.

Discussion. It is noteworthy that #red� = #green•, that is, the algorithm performs
exactly twice the number of optimizer calls as compared to the optimal algorithm that
finds only acceptable contour locations. This is because, at any point during contour
exploration, there are exactly two candidates for the new seed, Sx+1 and Sy−1, and one
of them will definitely be on the (accepted) contour. In fact, it is easy to see that since
the decision is based solely on Sy−1, the optimization call for Sx+1 should be invoked
only if required and thereby further reduce the number of wasted optimization calls.

6.2. Extension to nD ESS

Next, we show that the neighborhood exploration approach for contour identification
can be easily extended to general multi-dimensional ESS. For this purpose, we start
with the extended algorithm for 3D ESS that systematically invokes different instances
of the 2D algorithm.

Locating the Initial 3D Seed. Here, the initial seed S is the isosurface location with
the maximum z coordinate. To find this point, it is first checked whether the seed lies on
the edge (0, 0, 0) to (0, 0, res), which implies that S = (0, 0, z) with z < res. If yes, then
the seed can be determined by using a binary search on this edge—this corresponds to
Case 1 in Figure 15. If no, then the initial seed is located using a procedure similar to
2D ESS for the XY slice with z = res, which is visualized as Case 2 in Figure 15; here,
there are two possibilities: S = (0, y, res) with y < res (Case 2a) or S = (x, res, res) with
x < res (Case 2b).

3D Isosurface Exploration. We first explain the isosurface exploration phase for
Case 2b. To identify all isosurface locations with z = res, we use the 2D exploration
algorithm for the XY slice with z = res and grow the initial seed S as explained previ-
ously. For exploring the locations with lower values of z, the initial seeds for each XY
slice are generated by 2D exploration of the XZ slice corresponding to y = res, using
the initial seed S and candidate locations Sx+1 and Sz−1.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

Plan Bouquets: A Fragrant Approach to Robust Query Processing 11:25

Fig. 15. Example isosurface exploration in 3D ESS.

Similarly, in Case 1, the initial seeds for each lower value of z are generated by
exploring the YZ slice corresponding to x = 0, starting with an initial seed S and
candidate locations Sy+1 and Sz−1. Finally, the algorithm for Case 2a proceeds in two
sub-phases where the first sub-phase is similar to Case 1 until it finds a seed with
y = res (shown as S′ in Case 2a of Figure 15), and thereafter, in the second phase, it
follows an algorithm similar to Case 2b.

Generic nD Algorithm. In D-dimensional space, the initial seed location is of the form
(0s, v, rest) where 0 < v < res and s + t = D − 1. Given such a seed, the dimension pair
(ds+1, ds+1+t) is used to generate more seeds through the 2D algorithm, and for each
such seed, the D − 1-dimensional subproblem over the dimensions (d1, d2, . . . , ds+t) is
recursively solved. The recursion terminates with the completion of 2D exploration of
the dimension pair (ds+1, ds+1+t).

6.3. Impact on Bouquet Identification Overheads

Overall, NEXUS can be used to either: (a) enable an early start for the bouquet exe-
cution phase without invoking CSI or, alternatively, (b) reduce the total effort of iden-
tifying all isosurface plans before using CSI (by ignoring the ESS regions that lie in
between the isosurfaces). In addition, this approach also makes isosurface exploration
a highly parallelizable task since, in principle, a new thread can be created whenever
a seed is generated for a lower-dimensional subspace.

7. IMPLEMENTATION DETAILS

Given a user query Q, the first step is to identify the error-prone selectivity dimensions
in the query. For this, we can leverage the approach proposed in Kabra and DeWitt
[1998], wherein a set of uncertainty modeling rules are outlined to classify selectivity
errors into categories ranging from “no uncertainty” to “very high uncertainty.” Alter-
natively, a log could be maintained of the errors encountered by similar queries in the
workload history. Finally, there is always the fallback option of making all predicates
where selectivities are evaluated to be selectivity dimensions for the query.

The chosen dimensions form the ESS selectivity space. In general, each dimension
ranges over the entire [0,1] selectivity range; however, due to schematic constraints,
the range may be reduced. For instance, the maximum legal value for a PK-FK join is
the reciprocal of the PK relation’s row cardinality.

Once the ESS is finalized, the query execution workflow of the bouquet approach
becomes operational, as shown in Figure 16. For this purpose, the database engine
needs to support the following functionalities: (1) selectivity injection, (2) abstract

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

11:26 A. Dutt and J. R. Haritsa

Fig. 16. Architecture of bouquet mechanism.

plan costing and execution, and (3) cost-limited partial execution of plans. Next, we
elaborate on the usage of each of these features, followed by implementation details of
the bouquet driver layer.

7.1. Selectivity Injection

For isosurface exploration using the algorithm described in Section 6, we need to be able
to systematically generate queries with the desired ESS selectivities. One option is to,
for each new location, suitably modify the query constants and the data distributions,
but this is clearly highly cumbersome and time-consuming. We have therefore taken
an alternative approach in our PostgreSQL implementation, wherein the optimizer
is instrumented to directly support injection of selectivity values in the cost model
computations. Interestingly, some commercial optimizer APIs already support such
selectivity injections to a limited extent (e.g., IBM DB2 [IBM 2003]).

7.2. Abstract Plan Costing and Execution

Once the isosurfaces have been explored, we need to reduce their plan densities us-
ing the anorexic reduction technique, as explained in Section 5.1. This is achieved
through the FPC variant of the Cost Greedy algorithm [Harish et al. 2007], which
requires an abstract plan costing feature for estimating the cost of a plan outside its
optimality region. This feature is already supported by some commercial optimizers
(e.g., SQLSERVER [2010]).

Further, during the bouquet execution phase, we need to be able to instruct the
execution engine to execute a particular bouquet plan. This feature also is currently
provided by a few commercial systems (e.g., SQLSERVER [2010]).

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

Plan Bouquets: A Fragrant Approach to Robust Query Processing 11:27

7.3. Cost-Limited Execution

The bouquet approach requires, in principle, only a simple “timer” that keeps track of
elapsed time and terminates plan executions if they exceed their assigned cost budgets.
No material changes need to be made in the engine internals to support this feature.
The premature termination of plans can be achieved easily using the statement.cancel()
functionality supported by JDBC drivers. Note that, although bouquet identification
provides budgets in terms of abstract optimizer cost units, they can be converted to
equivalent time budgets through the techniques proposed in Wu et al. [2013].

7.4. Bouquet Driver Layer

As highlighted in Figure 16, we have an external program, the “Bouquet Driver,” which
treats the query optimizer and executor as black boxes. First, it interacts with the query
optimizer module to determine the isosurfaces and the plan bouquet. It then performs
executions of the bouquet plans using an execution client and a tracking client. The
execution client selects the plan to be executed next, while the tracking client keeps
track of the time elapsed and terminates the execution if the allotted time budget is
exhausted.

8. EXPERIMENTAL EVALUATION

We now turn our attention towards profiling the performance of the bouquet approach
on a variety of complex OLAP queries, using the MSO, ASO, and MH metrics enu-
merated in Section 2. In addition, we also describe experiments that show: (a) spatial
distribution of robustness in the ESS, (b) low bouquet cardinalities, (c) low sensitivity
of the MSOg to the λ reduction parameter, and (d) extension of the results to commercial
databases. As specified in Section 2, the entire evaluation is carried out using optimizer
costs, while assuming that all combinations of the actual and estimated query locations
are possible in the ESS.

Before going into the evaluation details, we describe the experimental setup and
the rationale behind the choice of comparative techniques. This is followed by a brief
discussion on the compile-time overheads incurred by the bouquet algorithm.

8.1. Experimental Setup

Database Environment. The test queries are chosen from the TPC-H and TPC-DS
benchmarks to cover a spectrum of join-graph geometries, including chain, star, branch,
and so on, with the number of base relations ranging from 4 to 8. The number of error-
prone selectivities range from 3 to 5 in these queries, all corresponding to join-selectivity
errors, for making challenging multi-dimensional ESS spaces. We experiment with the
TPC-H and TPC-DS databases at their default sizes of 1GB and 100GB, respectively. Fi-
nally, the physical schema has indexes on all columns featuring in the queries, thereby
maximizing the cost gradient Cmax

Cmin
and creating “hard-nut” environments for achieving

robustness.
The summary query workload specifications are given in Table VII—the naming

nomenclature for the queries is xD_y_Qz, where x specifies the number of dimensions,
y the benchmark (H or DS), and z the query number in the benchmark. So, for example,
3D_H_Q5 indicates a three-dimensional error selectivity space on Query 5 of the TPC-H
benchmark.

System Environment. For the most part, the database engine used in our experi-
ments is PostgreSQL [2009], equipped with the API features described in Section 7.
Specifically, the first two features were introduced with minimal changes to the source
code. On the other hand, cost-budgeted execution is natively supported by invoking the
following command at the tracking client: “select pg_cancel_backend(process_id).” The

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

11:28 A. Dutt and J. R. Haritsa

Table VII. Query Workload Specifications

Join-graph Cmax Join-graph Cmax

Query (# relations) Cmin Query (# relations) Cmin

3D_H_Q5 chain(6) 16 3D_DS_Q96 star(4) 185
3D_H_Q7 chain(6) 5 4D_DS_Q7 star(5) 283
4D_H_Q8 branch(8) 28 4D_DS_Q26 star(5) 341
5D_H_Q7 chain(6) 50 4D_DS_Q91 branch(7) 149

3D_DS_Q15 chain(4) 668 5D_DS_Q19 branch(6) 183

required process id (of the execution client) can be found in the view pg stat activity,
which is maintained by the engine itself.

The hardware platform is a vanilla Sun Ultra 24 workstation with 8 GB memory
and 1.2 TB of hard disk.

Comparative Techniques. In the remainder of this section, we compare the bouquet
algorithm (with anorexic parameter λ = 20% and CSI enhancements) against the
native PostgreSQL optimizer and the SEER robust plan selection algorithm [Harish
et al. 2008].

SEER uses a mathematical model of plan cost behavior in conjunction with anorexic
reduction to provide replacement plans (Prep(qe) for qe) that, at all locations in the ESS,
either improve on the native optimizer’s performance or are worse by at most the λ
factor. It is important to note here that, in the SEER framework, the comparative
yardstick is Popt(qe), the optimal plan at the estimated location, whereas in our work,
the comparison is with Popt(qa), the optimal plan at the actual location. Still, it has
been shown in Harish et al. [2008] that in many cases c(Prep(qe), qa) � c(Popt(qe), qa),
and, hence, SEER is expected to perform better than the native optimizer on our sub-
optimality-based metrics. Finally, since c(Prep(qe), qa) ≤ (1 + λ) × c(Popt(qe), qa) ∀qa ∈
ESS, we can infer that MH ≤ λ with SEER.

On the other hand, purely heuristic-based reoptimization techniques, such as
POP Markl et al. [2004] and Rio Babu et al. [2005], are not included in the evalu-
ation suite. No doubt they can be very effective when the estimation errors are small
in magnitude and number. But when the errors are significant, as is commonplace
in practice [Lohman 2014], their performance on our metrics (MSO or MH) could be
arbitrarily poor. This is because of their inability to provide worst-case performance
guarantees—in fact, they are unable to do so with regard to both Popt(qe) and Popt(qa),
as explained in detail in Dutt and Haritsa [2014b]).

Further, the heuristics that POP and Rio employ are more appropriate for low-
dimensional spaces—for example, that near-optimality of a plan at the corners of the
principal diagonal of the error space implies near-optimality in the interior of this
space or that the selectivity validity ranges found by comparing only with the class
of structure-equivalent plans provide good approximations to the true ranges. There-
fore, these techniques may not work well when faced with large multi-dimensional
estimation errors, which is the primary target of our work.

For ease of exposition, we will hereafter refer to the bouquet algorithm, the native
optimizer, and the SEER algorithm as BOU, NAT, and SEER, respectively, in presenting
the results.

8.2. Compile-Time Overheads

The computationally expensive aspect of BOU’s compile-time phase is the identification
of the plans on the isosurfaces of the ESS. For this task, we have proposed a new
algorithm NEXUS, as described in Section 6, that can selectively explore locations for
a particular isosurface, and ignore the remaining portion of the ESS. Currently, using

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

Plan Bouquets: A Fragrant Approach to Robust Query Processing 11:29

Fig. 17. Empirical MSO Performance.

only single-core processing, the compile-time overheads for 3D, 4D, and 5D queries
with NEXUS are typically a few minutes, a few hours, and several hours, respectively.
Although the overheads continue to increase exponentially with the number of ESS
dimensions, we wish to highlight that NEXUS is highly parallelizable and can therefore
exploit modern multi-core architectures to substantively ameliorate, in absolute terms,
these overheads.

Further, as mentioned in Section 6, the plan bouquet execution can be overlapped
with its compilation—specifically, execution can be started as soon as the first plan
on the first isosurface is identified, and the identification of subsequent plans can be
carried out concurrently with the ongoing executions.

Finally, note that the isosurface identification process is a one-time exercise, and
its overhead can be amortized by repeated invocations of the same query, which often
happens with “canned” form-based interfaces in the enterprise domain.

8.3. Empirical Worst-Case Performance (MSO)

In Figure 17, the empirical MSO performance is profiled, on a log scale, for a set of
10 representative queries submitted to NAT, SEER, and BOU. The first point to note
is that NAT is not inherently robust—to the contrary, its MSO is huge, ranging from
around 103 to 107. Second, SEER also does not provide any material improvement
on NAT—this may seem paradoxical at first glance but is only to be expected once we
realize that not all the highly sub-optimal (qe, qa) combinations in NAT were necessarily
helped in the SEER framework. Finally, and in marked contrast, BOU provides orders
of magnitude improvements over NAT and SEER—as a case in point, for 5D_DS_Q19,
BOU drives MSO down from 106 to around just 10. In fact, even in absolute terms, it
consistently provides an MSO of fewer than 10 across all the queries.

8.4. Average-Case Performance (ASO)

At first glance, it may be surmised that BOU’s dramatic improvement in worst-case
behavior is purchased through a corresponding deterioration of average-case perfor-
mance. To quantitatively demonstrate that this is not so, we evaluate ASO for NAT,
SEER, and BOU in Figure 18, again, on a log scale. We see here that for some queries
(e.g., 3D_DS_Q15), ASO of BOU is much better than that of NAT, while for the remain-
der (e.g., 4D_H_Q8), the performance is comparable. Even more gratifyingly, the ASO
in absolute terms is typically less than 5 for BOU. On the other hand, SEER’s perfor-
mance is again similar to that of NAT—this is an outcome of the high dimensionality
of the ESS that makes it extremely difficult to find universally safe replacements that
are also substantively beneficial.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

11:30 A. Dutt and J. R. Haritsa

Fig. 18. ASO performance.

Fig. 19. Distribution of enhanced robustness (5D_DS_Q19).

Fig. 20. MaxHarm performance.

8.5. Spatial Distribution of Robustness

We now profile for a sample query, namely 5D_DS_Q19, the percentage of locations
for which BOU has a specific range of improvement over NAT. That is, the spatial
distribution of enhanced robustness, SubOptworst(qa)

SubOpt(∗,qa) . This statistic is shown in Figure 19,
where we find that for the vast majority of locations (close to 85%), BOU provides two
or more orders of magnitude improvement with respect to NAT. SEER, on the other
hand, provides significant improvement over NAT for specific (qe, qa) combinations but
may not materially help the worst-case instance for each qa. Therefore, we find that its
robustness enhancement is less than 10 at all locations in the ESS.

8.6. Adverse Impact of Bouquet (MH)

Thus far, we have presented the improvements due to BOU. However, as highlighted
in Section 2, there may be individual qa locations where BOU performs poorer than
NAT’s worst case, that is, SubOpt(∗, qa) > SubOptworst(qa). This aspect is quantified in
Figure 20, where the maximum harm is shown (on a linear scale) for our query test
suite. We observe that BOU may be up to a factor of 2 worse than NAT. Moreover, SEER
now steals a march over BOU since it guarantees that MH never exceeds λ (= 0.2).

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

Plan Bouquets: A Fragrant Approach to Robust Query Processing 11:31

Fig. 21. Bouquet cardinality.

However, the important point to note is that the percentage of locations for which harm
is incurred by BOU is less than 1% of the space. Therefore, from an overall perspective,
the likelihood of BOU adversely impacting performance is rare. Further, even in these
few cases the harm is limited (≤ MSO-1), especially when viewed against the order of
magnitude improvements achieved in the beneficial scenarios.

8.7. Plan Cardinalities

The plan cardinalities of NAT, SEER, and BOU are shown on a log-scale in Figure 21.
We observe here that, although the original POSP cardinality may be in the several
tens or hundreds, the number of plans in SEER is orders of magnitude lower, and those
retained in BOU is even smaller—only around 10 or fewer, even for the 5D queries.
This is primarily due to the initial anorexic reduction and the subsequent confinement
to the isosurfaces. The important implication of these statistics is that the bouquet size
is, to the first degree of approximation, effectively independent of the dimensionality
and complexity of the error space.

8.8. MSOg Sensitivity to λ Setting

Until now, both BOU and SEER have been evaluated empirically over different metrics
by setting the reduction-parameter λ to 20%, a value that had been found in Harish
et al. 2007] to routinely provide anorexic reduction over a wide range of database
environments. However, a legitimate question remains as to whether the ideal choice
of λ requires query and/or data-specific tuning. To assess this quantitatively, we show,
in Figure 22, the MSOg values as a function of λ over the (0,100) percent range for
a spectrum of query templates. The observation here is that the MSOg values drop
steeply with the use of covering enhancement and improve even further when λ is
increased to 10% and subsequently are relatively flat in the (10,30) percent interval,
suggesting that our 20% choice for λ is a safe bet in general.

8.9. Commercial Database Engine

All the results presented thus far were obtained on our instrumented PostgreSQL en-
gine. We now present sample evaluations on a popular commercial engine, hereafter
referred to as COM. Since COM’s API does not directly support injection of selectivi-
ties, we constructed queries 3D_H_Q5b and 4D_H_Q8b wherein all error dimensions
correspond to selection predicates on the base relations—the selectivities on such di-
mensions can be indirectly set up through changing only the constants in the query.
The database and system environment remained identical to that of the PostgreSQL
experiments.

Focusing on the performance aspects, shown in Figure 23, we find that here also large
values of MSO and ASO are obtained for NAT and SEER. Further, BOU continues to

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

11:32 A. Dutt and J. R. Haritsa

Fig. 22. MSOg vs reduction-parameter (λ).

Fig. 23. Commercial engine performance (log-scale).

provide substantial improvements on these metrics with a small-sized bouquet. Again,
the robustness enhancement is at least an order of magnitude for more than 90% of
the query locations, without incurring any harm at the remaining locations (MH < 0).
These results imply that our earlier observations are not artifacts of a specific engine.

9. RELATED WORK

A rich body of literature is available pertaining to selectivity estimation issues
[Deshpande et al. 2007]. We start with the overview of the closely related techniques
that can be collectively termed as plan-switching approaches, as they involve runtime
switching among complete query plans. At first glance, our bouquet approach, with its
partial execution of multiple plans, may appear very similar to runtime re-optimization
techniques such as POP [Markl et al. 2004] and Rio [Babu et al. 2005]. However, there
are key differences: First, they start with the optimizer’s estimate as the initial seed
and then conduct a full-scale re-optimization if the estimate is found to be significantly
in error. In contrast, we always start from the origin of the selectivity space and
directly choose plans from the bouquet for execution without invoking the optimizer
again. A beneficial and unique side effect of this start-from-origin approach is that it
assures repeatability of the query execution strategy.

Second, both POP and Rio are based on heuristics and do not provide any per-
formance bounds. In particular, POP may get stuck with a poor plan since its
selectivity validity ranges are defined using structure-equivalent plans only. Similarly,

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

Plan Bouquets: A Fragrant Approach to Robust Query Processing 11:33

Rio’s sampling-based heuristics for monitoring selectivities may not work well for
join-selectivities, and its definition of plan robustness based solely on the performance
at the corners of the ESS has not been justified.

Recently, a novel interleaved optimization and execution approach was proposed in
Neumann and Galindo-Legaria [2013], wherein plan fragments are selectively exe-
cuted, when recommended by an error propagation framework, to guard against the
fallout of estimation errors. The error framework leverages an elegant histogram con-
struction mechanism from Moerkotte et al. [2009] that minimizes the multiplicative
error. While this technique substantively reduces the execution overheads, it also pro-
vides no guarantees as it is largely based on heuristics.

Techniques that use a single plan during the entire query execution [Chu et al. 2002;
Babcock and Chaudhuri 2005; Harish et al. 2008; Moerkotte et al. 2009; Chaudhuri
et al. 2010; Tzoumas et al. 2013] run into the basic infeasibility of a single plan to be
near-optimal across the entire selectivity space. The bouquet mechanism overcomes
this problem by identifying a small set of plans that collectively provide the near-
optimality property. Further, it does not require any prior knowledge of the query
workload or the database contents. On the other hand, the use of only one active
plan (at a time) to process the data makes the bouquet algorithm dissimilar from
Routing-based approaches, wherein different data segments may be routed to different
simultaneously active plans—for example, “plan per tuple” [Avnur and Hellerstein
2000] and “plan per tuple group” [Polyzotis 2005].

Interestingly, a recent proposal [Ngo et al. 2012] that decides the join strategy on a
per-tuple basis also provides performance guarantees but in terms of the query output
size. Moreover, these guarantees are predicated on the presence of a futuristic join
operator (similar to Leapfrog triejoin [Veldhuizen 2014]) that can concurrently combine
several relations. In contrast, we provide execution time sub-optimality guarantees for
the conventional query processing frameworks that are prevalent in current RDBMS
engines, wherein typically only binary joins are supported.

Our technique may also superficially look similar to PQO techniques (e.g.,
PPQO [Bizarro et al. 2009]), since a set of plans are identified before execution by
exploring the selectivity space. The primary difference is that these techniques are
useful for saving on optimization time for query instances with known parameters and
selectivities. On the other hand, our goal is to regulate the worst case performance
impact when the computed selectivities are likely to be erroneous.

Further, the bouquet technique does not modify plan structures at runtime. This is
a major difference from “plan-morphing” approaches, where the execution plan may
be substantially modified at runtime using custom-designed operators, for example,
chooseplan [Cole and Graefe 1994], switch [Babu et al. 2005], and feedback [Chaudhuri
et al. 2008].

Another direction to handle wrong plan choices has been to invent adaptive operators
in the query plan—for instance, scan in Borovica-Gajic et al. [2015] and join in Graefe
[2012]. Although they have been shown to be quite effective in cases when the sub-
optimality of the plan is a result of wrong operator decisions, not much progress has
been made for cases when the sub-optimality is caused due to wrong choice of join-order
itself.

Finally, we emphasize that our goal of minimizing the worst case performance in
the presence of unbounded selectivity errors, does not coincide with any of the earlier
works in this area. Previously considered objectives include (a) improved performance
compared to the optimizer generated plan [Babu et al. 2005; Harish et al. 2008; Kabra
and DeWitt 1998; Markl et al. 2004; Neumann and Galindo-Legaria 2013; Tzoumas
et al. 2013], (b) improved average performance and/or reduced variance [Chu et al.
2002; Chaudhuri et al. 2010; Babcock and Chaudhuri 2005], (c) improved accuracy of

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

11:34 A. Dutt and J. R. Haritsa

selectivity estimation structures [Aboulnaga and Chaudhuri 1999], (d) bounded impact
of multiplicative estimation errors [Moerkotte et al. 2009], and (e) smooth performance
degradation [Graefe 2012; Borovica-Gajic et al. 2015].

We introduced the notion of worst case performance guarantees using the plan bou-
quet algorithm in Dutt and Haritsa [2014a] and also investigated a variety of compile-
time and runtime enhancements. Our current work has the following additional con-
tributions: (a) Proposes randomized variants of the basic plan bouquet algorithm and
guarantees on maximum expected sub-optimality in Section 4; (b) introduces another
potent compile-time enhancement, execution covering sequence, that significantly low-
ers the effective isosurface plan densities, resulting in materially improved worst case
guarantees, in Section 5.2; (c) presents a completely new mechanism for identification
of isosurfaces in Section 6, that dramatically reduces the large compile-time overheads
associated with bouquet identification; and (d) demonstrates how the plan bouquet
approach can be successfully implemented in a completely non-invasive manner, lever-
aging existing database engine API functionalities, while retaining its performance
profile, in Sections 7 and 8.

10. CRITIQUE OF THE BOUQUET APPROACH

Having presented the mechanics and performance of the bouquet approach, we now
take a step back and critique the technique.

The bouquet approach is intended for use in difficult estimation environments, that
is, in database setups where accurate selectivity estimation is hard to achieve. However,
when estimation errors are a priori known to be small, re-optimization techniques such
as those by Markl et al. [2004] and Babu et al. [2005], which use the optimizer’s estimate
as the initial seed, are likely to converge much quicker than the bouquet algorithm,
which requires starting at the origin to ensure the first quadrant invariant. But, if the
estimates were a priori guaranteed to be under-estimates, then the bouquet algorithm
can also leverage the initial seed.

Being a plan-switching approach, the bouquet technique suffers from the drawbacks
generic to such approaches: First, they are poor at serving latency-sensitive applications
as they have to perforce wait for the final plan execution to return result tuples.
Second, they are not recommended for update queries since maintaining transactional
consistency with multiple executions may incur significant overheads to rollback the
effects of the aborted partial executions. Finally, with single-plan optimizers, DBAs
can use their domain knowledge to fine-tune the plan using “plan-hints.” But this is
not straightforward in plan-switching techniques since the actual plan sequence is
determined only at runtime. Notwithstanding, these plan-switching techniques are
now featured even in commercial products (e.g. Oracle [2013]).

There are also a few problems that are specific to the bouquet approach: First, while
it is inherently robust to changes in data distribution, since these changes only shift
the location of qa in the existing ESS, the same is not true with regard to database
scale-up. That is, if the database size increases significantly, then the original ESS no
longer covers the entire error space. An obvious solution to handle this problem is to
recompute the bouquet from scratch, but most of the processing may turn out to be
redundant.

Second, the dimensionality of the error space can be large for complex queries, which
has direct impact on the bouquet identification overheads as well as MSOg. This prob-
lem is exacerbated by the presence of parameterized predicates, which need to be
included as dimensions in the ESS, in addition to the error-prone selectivity predi-
cates. However, at the same time, it is also important to note that a complex query does
not necessarily imply a commensurately large number of error dimensions, because:
(i) The selectivities of base relation predicates of the form “column op constant” can be

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

Plan Bouquets: A Fragrant Approach to Robust Query Processing 11:35

estimated accurately with current techniques and (ii) the join selectivities for PK-FK
joins can be estimated accurately if the entire PK relation participates in the join.

Given the above discussion, the bouquet approach is currently recommended specif-
ically for providing response-time robustness in large archival read-only databases
supporting complex decision-support applications that are likely to suffer significant
estimation errors. We expect that many of today’s OLAP installations may fall into this
category.

11. CONCLUSIONS

Selectivity estimation errors resulting in poor query processing performance are part
of the database folklore. In this article, we investigated a new approach to this classical
problem, wherein the estimation process was completely discarded for error-prone pred-
icates. Instead, such selectivities were progressively discovered at runtime through a
carefully graded sequence of cost-budgeted executions from a “plan bouquet.” The ex-
ecution sequence, which followed a cost-doubling geometric progression, ensured that
the overheads are bounded, thereby ensuring MSOg of 4 times the plan cardinality
of the densest isosurface. Also, incorporating randomized strategies in the above al-
gorithm brought down the multiple of 4 to only 1.8 as the guarantee on the expected
performance. To the best of our knowledge, such bounds have not been previously
presented in the database literature.

We also proposed an efficient isosurface identification algorithm for pragmatic over-
heads during bouquet identification and two compile time enhancements that signif-
icantly improved the worst-case guarantees. Together they ensured that MSOg was
less than 20 across all the queries in our evaluation set, an enormous improvement
compared to the MSO performance of the native optimizer, wherein this metric ranged
from the thousands to the millions. Further, the bouquet’s ASO performance was al-
ways either comparable to or much better than the native optimizer, with most of
the query locations having a sub-optimality of less than 4. Finally, while the bouquet
algorithm did occasionally perform worse than the native optimizer for specific query
locations, such situations occurred at less than 1% of the locations, and the performance
degradation was relatively small, a factor of 2 or less.

Since the bouquet technique works best when the cost model is perfect, a potential fu-
ture work is to extend the tuning techniques of Wu et al. [2013] to further reduce the cost
modeling errors. Developing incremental bouquet maintenance techniques is another
interesting research challenge, as also mechanisms for reducing the dimensionality of
the ESS space to only those that materially impact the robustness guarantees.

In closing, the bouquet approach promises an easy-to-deploy solution with guaran-
teed performance and repeatability in query execution, features that had hitherto not
been available, thereby opening up new possibilities for robust query processing.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.

ACKNOWLEDGMENTS

We thank Neeldhara Misra, C. Rajmohan and Bruhathi Sundarmurthy for stimulating discussions about
different parts of this work. We also thank Prasad Deshpande for helpful feedback on the draft version of
this article.

REFERENCES

Ashraf Aboulnaga and Surajit Chaudhuri. 1999. Self-tuning histograms: Building histograms without look-
ing at data. In Proc. of the 1999 ACM SIGMOD Intl. Conf. on Management of Data (SIGMOD’99).
181–192.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

11:36 A. Dutt and J. R. Haritsa

Ron Avnur and Joseph M. Hellerstein. 2000. Eddies: Continuously adaptive query processing. In Proc. of the
2000 ACM SIGMOD Intl. Conf. on Management of Data (SIGMOD’00). 261–272.

Brian Babcock and Surajit Chaudhuri. 2005. Towards a robust query optimizer: A principled and practical
approach. In Proc. of the 2005 ACM SIGMOD Intl. Conf. on Management of Data (SIGMOD’05). 119–130.

Shivnath Babu, Pedro Bizarro, and David DeWitt. 2005. Proactive re-optimization. In Proc. of the 2005 ACM
SIGMOD Intl. Conf. on Management of Data (SIGMOD’05). 107–118.

Pedro Bizarro, Nicolas Bruno, and David J. DeWitt. 2009. Progressive parametric query optimization. IEEE
Trans. Knowl. Data Eng. 21, 4 (2009), 582–594.

Renata Borovica-Gajic, Stratos Idreos, Anastasia Ailamaki, Marcin Zukowski, and Campbell Fraser. 2015.
Smooth scan: Statistics-oblivious access paths. In Proc. of the 31st IEEE Intl. Conf. on Data Engg.
(ICDE’15). 315–326.

Surajit Chaudhuri, Hongrae Lee, and Vivek R. Narasayya. 2010. Variance aware optimization of parame-
terized queries. In Proc. of the 2010 ACM SIGMOD Intl. Conf. on Management of Data (SIGMOD’10).
531–542.

Surajit Chaudhuri, Vivek Narasayya, and Ravi Ramamurthy. 2008. A pay-as-you-go framework for query
execution feedback. In Proc. VLDB 1, 1 (2008), 1141–1152.

Marek Chrobak, Claire Kenyon, John Noga, and Neal E. Young. 2008. Incremental medians via online
bidding. Algorithmica 50, 4 (2008), 455–478.

Francis Chu, Joseph Halpern, and Johannes Gehrke. 2002. Least expected cost query optimization: What
can we expect? In Proc. of the 21st Symposium on Principles of Database Systems (PODS’02). 293–302.

Richard L. Cole and Goetz Graefe. 1994. Optimization of dynamic query evaluation plans. In Proc. of the
1994 ACM SIGMOD Intl. Conf. on Management of Data (SIGMOD’94). 150–160.

Amol Deshpande, Zachary Ives, and Vijayshankar Raman. 2007. Adaptive query processing. Foundations
and Trends in Databases 1, 1 (2007), 1–140.

Anshuman Dutt and Jayant R. Haritsa. 2014a. Plan bouquets: Query processing without selectivity estima-
tion. In Proc. of the 2014 ACM SIGMOD Intl. Conf. on Management of Data (SIGMOD’14). 1039–1050.

Anshuman Dutt and Jayant R. Haritsa. 2014b. Query Processing without Estimation. Technical Report
TR-2014-01. Database Systems Lab, SERC/CSA, Indian Institute of Science. Retrieved from http://dsl.
serc.iisc.ernet.in/publications/TR/TR-2014-01.pdf.

Fedor V. Fomin and Alexey A. Stepanov. 2007. Counting minimum weighted dominating sets. In Computing
and Combinatorics. Lecture Notes in Computer Science, Vol. 4598. Springer, Berlin, 165–175.

Goetz Graefe. 2012. New algorithms for join and grouping operations. Comput. Sci. 27, 1 (Feb. 2012), 3–27.
Goetz Graefe, Wey Guy, Harumi A. Kuno, and Glenn N. Paulley. 2012. Robust query processing (Dagstuhl

seminar 12321). Dagstuhl Rep. 2, 8 (2012), 1–15.
D. Harish, Pooja N. Darera, and Jayant R. Haritsa. 2007. On the production of anorexic plan diagrams. In

Proc. of the 33rd Intl. Conf. on Very Large Data Bases (VLDB’07). 1081–1092.
D. Harish, Pooja N. Darera, and Jayant R. Haritsa. 2008. Identifying robust plans through plan diagram

reduction. In Proc. VLDB 1, 1 (2008), 1124–1140.
IBM. 2003. Using a SELECTIVITY clause to influence the optimizer. Retrieved from www.ibm.com/

developerworks/data/library/tips/dm-0312yip/.
Yannis E. Ioannidis and Stavros Christodoulakis. 1991. On the propagation of errors in the size of join

results. In Proc. of the 1991 ACM SIGMOD Intl. Conf. on Management of Data (SIGMOD’91). 268–277.
Navin Kabra and David J. DeWitt. 1998. Efficient mid-query re-optimization of sub-optimal query execution

plans. In Proc. of the 1998 ACM SIGMOD Intl. Conf. on Management of Data (SIGMOD’98). 106–117.
Donald E. Knuth. 1997. The Art of Computer Programming, Volume 2 (3rd ed.): Seminumerical Algorithms.

Addison-Wesley Professional, Boston, MA, 145–146.
Guy Lohman. 2014. Is Query Optimization a Solved Problem? Retrieved from http://wp.sigmod.org/

?author=20.
Zvi Lotker, Boaz Patt-Shamir, and Dror Rawitz. 2008. Rent, lease or buy: Randomized algorithms for mul-

tislope ski rental. In Proc. of the 25th Annual Symposium on Theoretical Aspects of Computer Science.
503–514.

Volker Markl, Vijayshankar Raman, David Simmen, Guy Lohman, Hamid Pirahesh, and Miso Cilimdzic.
2004. Robust query processing through progressive optimization. In Proc. of the 2004 ACM SIGMOD
Intl. Conf. on Management of Data (SIGMOD’04). 659–670.

Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Preventing bad plans by bounding the
impact of cardinality estimation errors. In Proc. VLDB 2, 1 (Aug. 2009), 982–993.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

http://dsl.serc.iisc.ernet.in/publications/TR/TR-2014-01.pdf
http://dsl.serc.iisc.ernet.in/publications/TR/TR-2014-01.pdf
http://www.ibm.com/developerworks/data/library/tips/dm-0312yip/
http://www.ibm.com/developerworks/data/library/tips/dm-0312yip/
http://wp.sigmod.org/?author=20
http://wp.sigmod.org/?author=20

Plan Bouquets: A Fragrant Approach to Robust Query Processing 11:37

Thomas Neumann and César A. Galindo-Legaria. 2013. Taking the edge off cardinality estimation errors
using incremental execution. In Datenbanksysteme für Business, Technologie und Web (BTW), 15. Fachta-
gung des GI-Fachbereichs “Datenbanken und Informationssysteme” (DBIS), 11.-15.3.2013 in Magdeburg,
Germany. Proceedings. 73–92.

Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2012. Worst-case optimal join algorithms: [Extended
abstract]. In Proc. of the 31st Symposium on Principles of Database Systems (PODS’12). 37–48.

Oracle. 2013. Optimizer with Oracle Database 12c. Retrieved from www.oracle.com/ocom/groups/public/
@otn/documents/webcontent/1963236.pdf.

Neoklis Polyzotis. 2005. Selectivity-based partitioning: A divide-and-union paradigm for effective query
optimization. In Proc. of the 14th ACM Intl. Conf. on Information and Knowledge Management (CIKM’05).
ACM, New York, NY, 720–727.

PostgreSQL. 2009. PostgreSQL 8.4. www.postgresql.org/docs/8.4/static/release.html. (2009).
Naveen Reddy and Jayant R. Haritsa. 2005. Analyzing plan diagrams of database query optimizers. In Proc.

of the 31st Intl. Conf. Very Large Data Bases (VLDB’05). 1228–1239.
P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. 1979. Access path

selection in a relational database management system. In Proc. of the 1979 ACM SIGMOD Intl. Conf.
on Management of Data (SIGMOD’79). 23–34.

SQLSERVER. 2010. Using the USE PLAN Query Hint. Retrieved from technet.microsoft.com/en-us/
library/ms186954(v=sql.105).aspx.

Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil. 2001. LEO - DB2’s learning optimizer.
In Proc. of the 27th Intl. Conf. on Very Large Data Bases (VLDB’01). 19–28.

Kostas Tzoumas, Amol Deshpande, and Christian S. Jensen. 2013. Efficiently adapting graphical models for
selectivity estimation. VLDB J. 22, 1 (2013), 3–27.

Todd L. Veldhuizen. 2014. Triejoin: A simple, worst-case optimal join algorithm. In Proc. of the 17th Intl.
Conf. on Database Theory (ICDT’14). 96–106.

Wentao Wu, Yun Chi, Shenghuo Zhu, Jun’ichi Tatemura, Hakan Hacigümüs, and Jeffrey F. Naughton. 2013.
Predicting query execution time: Are optimizer cost models really unusable? In Proc. of the 29th IEEE
Intl. Conf. on Data Engg. (ICDE’13). 1081–1092.

Received March 2015; revised September 2015; accepted January 2016

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 11, Publication date: May 2016.

http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/1963236.pdf
http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/1963236.pdf
file:www.postgresql.org/docs/8.4/static/release.html
file:technet.microsoft.com/en-us/library/ms186954(v=sql.105).aspx
file:technet.microsoft.com/en-us/library/ms186954(v=sql.105).aspx

