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Abstract—To address the classical selectivity estimation problem for OLAP queries in relational databases, a radically different

approach called PlanBouquet was recently proposed in [1], wherein the estimation process is completely abandoned and replaced

with a calibrated discovery mechanism. The beneficial outcome of this new construction is that provable guarantees on worst-case

performance, measured as Maximum Sub-Optimality (MSO), are obtained thereby facilitating robust query processing. The

PlanBouquet formulation suffers, however, from a systemic drawback—the MSO bound is a function of not only the query, but also

the optimizer’s behavioral profile over the underlying database platform. As a result, there are adverse consequences: (i) the bound

value becomes highly variable, depending on the specifics of the current operating environment, and (ii) it becomes infeasible to

compute the value without substantial investments in preprocessing overheads. In this paper, we first present SpillBound, a new

query processing algorithm that retains the core strength of the PlanBouquet discovery process, but reduces the bound dependency

to only the query. It does so by incorporating plan termination and selectivity monitoring mechanisms in the database engine.

Specifically, SpillBound delivers a worst-case multiplicative bound, ofD2 þ 3D, whereD is simply the number of error-prone

predicates in the user query. Consequently, the bound value becomes independent of the optimizer and the database platform, and the

guarantee can be issued simply by query inspection. We go on to prove that SpillBound is within an OðDÞ factor of the best possible

deterministic selectivity discovery algorithm in its class. We next devise techniques to bridge this quadratic-to-linear MSO gap by

introducing the notion of contour alignment, a characterization of the nature of plan structures along the boundaries of the selectivity

space. Specifically, we propose a variant of SpillBound, called AlignedBound, which exploits the alignment property and provides

a guarantee in the range ½2Dþ 2;D2 þ 3D�. Finally, a detailed empirical evaluation over the standard decision-support benchmarks

indicates that: (i) SpillBound provides markedly superior performance w.r.t. MSO as compared to PlanBouquet, and (ii)

AlignedBound provides additional benefits for query instances that are challenging for SpillBound, often coming close to the ideal

of MSO linearity inD. From an absolute perspective, AlignedBound evaluates virtually all the benchmark queries considered in our

study with MSO of around 10 or lesser. Therefore, in an overall sense, SpillBound and AlignedBound offer a substantive step

forward in the long-standing quest for robust query processing.

Index Terms—Selectivity estimation, plan bouquets, robust query processing

Ç

1 INTRODUCTION

A long-standing problem plaguing database systems is
that the predicate selectivity estimates used for optimiz-

ing declarative SQL queries are often significantly in error [3],
[4]. This results in highly sub-optimal choices of execution
plans, and corresponding blowups in query response times.
The reasons for such substantial deviations are well docu-
mented [5], and include outdated statistics, coarse summaries,
attribute-value independence (AVI) assumptions, complex
user-defined predicates, and error propagations in the query
execution tree. It is therefore of immediate practical relevance
to design query processing techniques that limit the deleteri-
ous impact of these errors, and thereby provide robust query
processing.

We use the notion of Maximum Sub-Optimality (MSO),
introduced in [1], as a measure of the robustness provided

by a query processing technique to errors in selectivity
estimation. Specifically, given a query, the MSO of the proc-
essing algorithm is the worst-case ratio, over the entire selec-
tivity space, of its execution cost with respect to the optimal
cost incurred by an oracular system that magically knows
the correct selectivities. It has been empirically determined
that MSOs can reach very large values on current database
engines [1]—for instance, with Query 19 of the TPC-DS
benchmark, it goes as high as a million!1 More importantly,
worrisomely large sub-optimalities are not rare—for the
same Q19, the sub-optimalities for as many as 40 percent of
the locations in the selectivity space are higher than 1,000.

As explained in [1], most of the previous approaches to
robust query processing (e.g., [3], [6], [7], [8]), including the
influential POP and Rio frameworks, are based on heuristics
that are not amenable to bounded guarantees on the MSO mea-
sure. A notable exception to this trend is the PlanBouquet

algorithm, recently proposed in [1], which provides, for the
first time, a provable MSO guarantee. Here, the selectivities
are not estimated, but instead, systematically discovered at
run-time through a calibrated sequence of cost-limited execu-
tions from a carefully chosen set of plans, called the “plan
bouquet”. The search space for the bouquet plans is the
Parametric Optimal Set of Plans (POSP) [9] over the selectivity
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1. Assuming that estimation errors can range over the entire selec-
tivity space.
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space. The PlanBouquet technique guaranteesMSO � 4 � j
PlanBouquetj.2

1.1 PlanBouquet
We describe the working of PlanBouquet with the help of
the example query EQ shown in Fig. 1, which enumerates
orders for cheap parts costing less than 1,000. To process
this query, current database engines typically estimate three
selectivities, corresponding to the two join predicates
ðpart ffl lineitemÞ and ðorders ffl lineitemÞ, and the filter
predicate (p retailprice < 1;000). While it is conceivable
that the filter selectivity may be estimated reliably, it is often
difficult to ensure similarly accurate estimates for the join
predicates. We refer to such predicates as error-prone predi-
cates, or epp in short (shown bold-faced in Fig. 1).

1.1.1 Example Execution

Given the above query, PlanBouquet constructs a two-
dimensional space, called as Error-prone Selectivity Space
(ESS) corresponding to the epps, covering their entire selec-
tivity range (½0; 1� � ½0; 1�), as shown in Fig. 2a.

On this selectivity space, a series of iso-cost contours, IC1
through ICm, are drawn—each iso-cost contour ICi has an
associated cost CCi, and represents the connected selectivity
curve along which the cost of the optimal plan, as determined
by the optimizer, is equal to CCi. Further, the contours are
selected such that the cost of the first contour IC1 corresponds
to the minimum query costC at the origin of the space, and in
the following intermediate contours, the cost of each contour
is double that of the previous contour.3 That is, CCi ¼ 2ði�1ÞC
for 1 < i < m . The last contour’s cost, CCm, is capped to the
maximumquery cost at the top-right corner of the space.

As a case in point, in Fig. 2a, there are five hyperbolic-
shaped contours, IC1 through IC5, with their costs ranging
from C to 16C. Each contour has a set of optimal plans cov-
ering disjoint segments of the contour—for instance, con-
tour IC2 is covered by plans P2, P3 and P4.

The union of the optimal plans appearing on all the
contours constitutes the “plan bouquet”—so, in Fig. 2a,
plans P1 through P14 form the bouquet. Given this set, the
PlanBouquet algorithm operates as follows: Starting
with the cheapest contour IC1, the plans on each contour
are sequentially executed with a time limit equal to the con-
tour’s budget.

If a plan fully completes its execution within the
assigned time limit, then the results are returned to the
user, and the algorithm finishes. Otherwise, as soon as
the time limit of the ongoing execution expires, the plan
is forcibly terminated and the partially computed results
(if any) are discarded. It then moves on to the next plan
in the contour and starts all over again. In the event that
the entire set of plans in a contour have been tried out
without any reaching completion, it jumps to the next con-
tour and the cycle repeats.

As a sample instance, consider the case where the query
is located at q, in the intermediate region between contours
IC3 and IC4, as shown in Fig. 2a. To process this query,
PlanBouquet would invoke the following budgeted exe-
cution sequence:

P1jC;P2j2C;P3j2C;P4j2C;P5j4C; . . . ; P10j4C;P11j8C;P12j8C;
with the execution of the final P12 plan completing the
query.

1.1.2 Performance Guarantees

The overheads entailed by the “trial-and-error” exercise can
be bounded, irrespective of the query location in the space. In par-
ticular, MSO � 4 � r, where r is the plan cardinality on the
“maximum density” contour. The density of a contour
refers to the number of plans present on it—for instance, in
Fig. 2a, the maximum density contour is IC3 which features
six plans.

1.1.3 Limitations

The PlanBouquet formulation, while breaking new ground,
suffers from a systemic drawback—the specific value of r,
and therefore the bound, is a function of not only the query,
but also the optimizer’s behavioral profile over the underlying
database platform (including data contents, physical schema,
hardware configuration, etc.). As a result, there are adverse
consequences: (i) The bound value becomes highly variable,
depending on the specifics of the current operating environ-
ment—for instance, with TPC-DS Query 25, PlanBouquet’s
MSO guarantee of 24 under PostgreSQL shot up, under an
identical computing environment, to 36 for a commercial
engine, due to the change in r; (ii) It becomes infeasible to
compute the valuewithout substantial investments in prepro-
cessing overheads; and (iii) Ensuring a bound that is small
enough to be of practical value, is contingent on the heuristic
of “anorexic reduction” [10] holding true.

1.2 SpillBound
Our objective here is to develop a robust query processing
approach that offers an MSO bound which is solely query-
dependent, irrespective of the underlying database platform.
That is, we desire a “structural bound” instead of a
“behavioral bound”. Accordingly, we present a new query
processing algorithm, called SpillBound, that achieves
this objective in the sense that it delivers an MSO bound
that is only a function of D, the number of predicates in
the query that are prone to selectivity estimation errors.
Moreover, the dependency is in the form of a low-order

Fig. 1. Example query (EQ).

Fig. 2. PlanBouquet and SpillBound.

2. A more precise bound is given later in this section.
3. A doubling factor minimizes the MSO guarantee, as proved in [1].
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polynomial, with MSO expressed as ðD2 þ 3DÞ. Conse-
quently, the bound value becomes: (i) independent of the
database platform,4 (ii) known upfront by merely inspecting
the query, and not incurring any preprocessing overhead,
(iii) indifferent to the anorexic reduction heuristic, and (iv)
certifiably low in value for practical values ofD.

1.2.1 Example Execution

SpillBound shares the core contour-wise discovery
approach of PlanBouquet, but its execution strategy differs
markedly. Specifically, it achieves a significant reduction in
the cost of the sequence of budgeted executions employed
during the selectivity discovery process. For instance, in the
example scenario of Fig. 2a, the sequence of budgeted execu-
tions correspond to the plans highlighted in blue

P1jC;P2j2C;P3j2C;P6j4C;P8j4C;P12j8C;
with P12 again completing the query. Note that the reduced
executions result in cost savings of more than 50 percent
over PlanBouquet.

The advantages offered by SpillBound are achieved by
the following key properties—Half-space Pruning and Con-
tourDensity Independent (CDI) execution—of the algorithm.

1.2.2 Half-Space Pruning

With each contour whose plans do not complete within the
assigned budget, PlanBouquet is able to prune the corre-
sponding hypograph—that is, the search region below the
contour curve.

A pictorial view is shown in Fig. 2b, which focuses on
contour IC3—here, the hypograph of IC3 is the Region-1
marked with red dots.

However, with SpillBound, a much stronger half-space-
based pruning comes into play. This is vividly highlighted
in Fig. 2b, where the half-space corresponding to Region-2
is pruned by the (budget-limited) execution of P8, while the
half-space corresponding to Region-3 is pruned by the (bud-
get-limited) execution of P6. Note that Region-2 and Region-
3 together subsume the entire Region-1 that is covered by
PlanBouquet when it crosses IC3. Our half-space pruning
property is achieved by leveraging the notion of “spilling”,
whereby operator pipelines in the execution plan tree are
prematurely terminated at chosen locations, in conjunction
with run-time monitoring of operator selectivities.

1.2.3 Contour Density Independent Execution

Let us define a “quantum progress” to be a step in which the
algorithm either (a) jumps to the next contour, or (b) fully
learns the selectivity of some epp (thus reducing the effec-
tive number of epps). Then, in the example scenario, while
advancing through the various contours in the discovery
process, SpillBound makes quantum progress by execut-
ing at most two plans on each contour. In general, when
there are D error-prone predicates in the user query,
SpillBound is guaranteed to make quantum progress
based on cost-budgeted execution of at most D carefully
chosen plans on the contour.

Specifically, in each contour, for each dimension, one
plan is chosen for spill-mode execution. The plan chosen for

spill-mode execution is the one that provides the maximal
guaranteed learning of the selectivity along that dimension.
In our example, P8 and P6 are the plans chosen for the con-
tour IC3 along theX and Y dimensions, respectively.

1.3 Bridging the MSO Gap
At this juncture, a natural question to ask is whether some
alternative selectivity discovery algorithm, based on half-
space pruning, can provide better MSO bounds than
SpillBound. In this regard, we prove that no deterministic
technique in this class can provide an MSO bound less than
D. Therefore, the SpillBound guarantee is no worse than
a factor OðDÞ as compared to the best possible algorithm in
its class.

1.3.1 Contour Alignment

Given this quadratic-to-linear gap on the MSO guarantee,
we seek to characterize exploration scenarios in which
SpillBound’s MSO approaches the lower bound. For this
purpose, we introduce a new concept called contour align-
ment—a contour is aligned if the contour plan that is inci-
dent on the boundary of the ESS, has its selectivity learning
dimension (during spill-mode execution) matching with the
incident dimension. For instance, in the example of Fig. 2,
contour IC3 would be aligned if plan P5, rather than P6, hap-
pened to be the plan providing the maximal guaranteed
learning along the Y dimension. Leveraging this notion, we
show that the MSO bound can be reduced to OðDÞ if the
contour alignment property is satisfied at every contour
encountered during its execution.

Unfortunately, in practice, we may not always find the
alignment property satisfied at all contours. Therefore, we
design the AlignedBound algorithm which extracts the
benefit of alignment wherever available, either natively or
through an explicit induction. Specifically, AlignedBound
delivers an MSO that is guaranteed to be in the platform-
independent range ½2Dþ 2;D2 þ 3D�.

1.4 Empirical Results
The bounds delivered by PlanBouquet and SpillBound

are, in principle, uncomparable, due to the inherently different
nature of their parametric dependencies. However, in order
to assess whether the platform-independent feature of
SpillBound is procured through a deterioration of the
numerical bound, we have carried out a detailed experimen-
tal evaluation of both the approaches on standard benchmark
queries, operating on the PostgreSQL engine. Moreover, we
have empirically evaluated the MSO obtained for each query
through an exhaustive enumeration of the selectivity space.

Our experiments indicate that for the most part,
SpillBound provides similar guarantees to PlanBou-

quet, and occasionally, much tighter bounds. As a case
in point, for TPC-DS Query 91 with six error-prone predi-
cates, the MSO bound is 96 with PlanBouquet, but
comes down to 54 with SpillBound. More pertinently,
the empirical MSO of SpillBound is significantly better
than that of PlanBouquet for all the queries. For
instance, the empirical MSO for Q91 decreases from
PlanBouquet’s 49 to 19 for SpillBound.

Turning our attention to AlignedBound, its performance
is typically closer to the lower end of its guarantee range, i.e.,
2Dþ 2, and often provides substantial benefits for query
instances that are challenging for SpillBound. For instance,

4. Under the assumption that D remains constant across the
platforms.
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AlignedBound brings the MSO of the above-mentioned
Q91 test case down to 10.4. Moreover, AlignedBound is
able to complete virtually all the benchmark queries evalu-
ated in our studywith aMSO of around 10 or lower.

In a nutshell, AlignedBound consistently collapses
the enormous MSOs incurred with contemporary indus-
trial-strength query optimizers, down to a single order of
magnitude.

1.4.1 Caveats

We hasten to add that our proposed algorithms are not a
substitute for a conventional query optimizer. Instead, they
are intended to complementarily co-existwith the traditional
setup, leaving to the user’s discretion, the specific approach
to employ for a query instance. When small estimation
errors are expected, the native optimizer could be sufficient,
but if larger errors are anticipated, our algorithms are likely
to be the preferred choice.

1.4.2 Organization

The remainder of this paper is organized as follows:
In Section 2, a precise description of the robust execution
problem is provided, along with the associated notations.
The building blocks of our algorithms are presented in
Section 3. The SpillBound algorithm and the proof of its
MSO bound are presented in Section 4, followed by the
AlignedBound algorithm and its analysis in Section 5.
The experimental framework and performance results are
enumerated in Section 6, while pragmatic deployment
aspects are discussed in Section 7. The related literature is
reviewed in Section 8, and our conclusions are summarized
in Section 9.

2 PROBLEM FRAMEWORK

In this section, we present the key concepts, notations, and
the formal problem definition. For ease of presentation, we
assume that the error-prone selectivity predicates (epps) for
a given user query are known apriori, and defer the issue of
identifying these epps to Section 7.

2.1 Error-Prone Selectivity Space
Consider a query with D epps. The set of all epps is denoted
by EPP ¼ fe1; . . . ; eDg where ej denotes the jth epp. The
selectivities of the D epps are mapped to a D-dimensional
space, with the selectivity of ej corresponding to the jth
dimension. Since the selectivity of each predicate ranges
over ½0; 1�, a D-dimensional hypercube ½0; 1�D results, hence-
forth referred to as the error-prone selectivity space, or ESS. In
practice, an appropriately discretized grid version of ½0; 1�D
is considered as the ESS. Note that each location q 2 ½0; 1�D
in the ESS represents a specific instance where the epps of
the user query happen to have selectivities corresponding
to q. Accordingly, the selectivity value on the jth dimension
is denoted by q:j. We call the location at which the selectiv-
ity value in each dimension is 1, i.e, q:j ¼ 1; 8j, as the
terminus.

The notion of a location q1 dominating a location q2 in the
ESS plays a central role in our framework. Formally, given
two distinct locations q1; q2 2 ESS, q1 dominates q2, denoted
by q1 � q2, if q1:j 	 q2:j for all j 2 1; . . . ; D. In an analogous
fashion, other relations, such as 6
, �, and 6� can be defined
to capture relative positions of pairs of locations.

2.2 Search Space for Robust Query Processing
We assume that the query optimizer can identify the optimal
query execution plan if the selectivities of all the epps
are correctly known.5 Therefore, given an input query and
its epps, the optimal plans for all locations in the ESS grid
can be identified through repeated invocations of the opti-
mizer with different selectivity values. The optimal plan for
a generic selectivity location q 2 ESS is denoted by Pq, and
the set of such optimal plans over the complete ESS consti-
tutes the Parametric Optimal Set of Plans [9].6

We denote the cost of executing an arbitrary plan P at a
selectivity location q 2 ESS by CostðP; qÞ. Thus, CostðPq; qÞ
represents the optimal execution cost for the selectivity
instance located at q. In this framework, our search space
for robust query processing is simply the set of tuples
<q; Pq; CostðPq; qÞ> corresponding to all locations q 2 ESS.

Throughout the paper, we adopt the convention of using
qa to denote the actual selectivities of the user query epps—
note that this location is unknown at compile-time, and
needs to be explicitly discovered. For traditional optimizers,
we use qe to denote the estimated selectivity location based on
which the execution plan Pqe is chosen to execute the query.
However, this characterization is not applicable to plan
switching approaches like PlanBouquet and SpillBound

because they explore a sequence of locations during their dis-
covery process. So, we denote the deterministic sequence
pursued for a query instance corresponding to qa by Seqqa .

2.3 Maximum Sub-Optimality [1]
We now present the performance metrics proposed in [1] to
quantify the robustness of query processing.

A traditional query optimizer will first estimate qe, and
then use Pqe to execute a query which may actually be
located at qa. The sub-optimality of this plan choice, relative
to an oracle that magically knows the correct location, and
therefore uses the ideal plan Pqa , is defined as

SubOptðqe; qaÞ ¼ CostðPqe ; qaÞ
CostðPqa ; qaÞ

: (1)

The quantity SubOptðqe; qaÞ ranges over ½1;1Þ.
With this characterization of a specific ðqe; qaÞ combina-

tion, the maximum sub-optimality that can potentially arise
over the entire ESS is given by

MSO ¼ max
ðqe;qaÞ2ESS

ðSubOptðqe; qaÞÞ: (2)

The above definition for a traditional optimizer can be gen-
eralized to selectivity discovery algorithms like PlanBou-

quet and SpillBound. Specifically, suppose the discovery
algorithm is currently exploring a location q 2 Seqqa—it will
choose Pq as the plan andCostðPq; qÞ as the associated budget.
Extending this to the whole sequence, the analogue of Equa-
tion (1) is defined as follows:

SubOptðSeqqa ; qaÞ ¼
P

q2Seqqa CostðPq; qÞ
CostðPqa ; qaÞ

; (3)

5. For example, through the classical DP-based search of the plan
space [11].

6. Letter subscripts for plans denote locations, whereas numeric sub-
scripts denote identifiers.
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leading to

MSO ¼ max
qa2ESS

SubOptðSeqqa ; qaÞ: (4)

2.4 Problem Definition
With the above framework, the problem of robust query
processing is defined as follows:

For a given input query Q with its EPP, and the search space
consisting of tuples <q; Pq; CostðPq; qÞ> for all q 2 ESS, develop
a query processing approach that minimizes the MSO guarantee.

As in [1], the primary assumptions made in this paper
that allow for systematic construction and exploration of
the ESS are those of plan cost monotonicity (PCM) and selectiv-
ity independence (SI). PCM may be stated as: For any two
locations qb; qc 2 ESS, and for any plan P ,

qb 
 qc ) CostðP; qbÞ > CostðP; qcÞ: (5)

That is, it encodes the intuitive notion that when more data
is processed by a query, signified by the larger selectivities
for the predicates, the cost of the query processing also
increases. On the other hand, SI assumes that the selectiv-
ities of the epps are all independent—while this is a com-
mon assumption in much of the query optimization
literature, it often does not hold in practice. In our future
work, we intend to extend SpillBound to handle the more
general case of dependent selectivities.

2.5 Geometric View and Notations
We now present a geometric view of the discovery space
and some important notations. Consider the special case of
a query with two epps, resulting in an ESS with X and Y
dimensions. Now, incorporate a third Z dimension to cap-
ture the cost of the optimal plan on the ESS, i.e, for q 2 ESS,
the value of the Z-axis is CostðPq; qÞ. This 3D surface, which
captures the cost of the optimal plan on the ESS, is called the
Optimal Cost Surface (OCS). Associated with each point on
the OCS is the POSP plan for the underlying location in the
ESS. A sample OCS corresponding to the example query EQ
in the Introduction is shown in Fig. 3, which provides a per-
spective view of this surface. In this figure, the optimality
region of each POSP plan is denoted by a unique color. So,
for example, the region with blue points corresponds to
those locations where the “blue plan” is the optimal plan.7

Discretization of OCS: Let Cmin and Cmax denote the mini-
mum and maximum costs on the OCS, corresponding to
the origin and the terminus of the 3D space, respectively
(an outcome of the PCM assumption). We define m ¼
dlog 2ðCmax

Cmin
Þe þ 1 hyperplanes that are parallel to theXY plane

as follows. The first hyperplane is drawn at Cmin. For
i ¼ 2; . . . ;m� 1, the ith hyperplane is drawn at Cmin 
 2i�1.
The last hyperplane is drawn at Cmax. These hyperplanes cor-
respond to the m isocost contours IC1; . . . ; ICm. The isocost
contour ICi is essentially the 2D curve obtained by intersect-
ing the OCS with the ith hyperplane. We denote the cost of
ICi by CCi. The set of plans that are on the 2D curve of ICi
are referred to as PLi. For example, in Fig. 3, PL4 includes the
purple andmaroonplans (in addition toplans that are not visi-
ble in this perspective). The hypograph of an isocost contour ICi
is the set of all locations q 2 ESS such thatCostðPq; qÞ � CCi.

The above geometric intuition and the formal notations
readily extend to the general case of D epps, and these nota-
tions are summarized in Table 1 for easy reference.

3 BUILDING BLOCKS OF OUR ALGORITHMS

The platform-independent nature of the MSO bound of the
SpillBound is enabled by the key properties of half-space
pruning and contour density independent execution. The
AlignedBound algorithm that provides anOðDÞMSOunder
certain special scenarios is based on the concept of contour
alignment. In this section, we present these building blocks of
the SpillBound and AlignedBound algorithms.

3.1 Half-Space Pruning
Half-space pruning is the ability to prune half-spaces from
the search space based on a single cost-budgeted execution
of a contour plan. We now present how half-space pruning
is achieved by using spilling during execution of query
plans. While the use of spilling to accelerate selectivity
discovery had been mooted in [1], they did not consider its
exploitation for obtaining guaranteed search properties.

We use spilling as the mechanism for modifying the exe-
cution of a selected plan—the objective here is to utilize
the assigned execution budget to extract increased selectiv-
ity information of a specific epp. Since spilling requires
modification of plan executions, we shall first describe the
query execution model.

3.1.1 Execution Model

We assume the demand driven iterator model, commonly
seen in database engines, for the execution of operators in the

Fig. 3. 3D cost surface on ESS.

TABLE 1
Notations

Notation Meaning

epp (EPP) Error-prone predicate (its collection)
ESS Error-prone selectivity space
D Number of dimensions of ESS
e1; . . . ; eD TheD epps in the query

q 2 ½0; 1�D A location in the ESS space
q:j Selectivity of q in the jth dimension of ESS
Pq Optimal Plan at q 2 ESS
qa Actual run-time selectivity
CostðP; qÞ Cost of plan P at location q
ICi Isocost Contour i
CCi Cost of an isocost contour ICi
PLi Set of plans on contour ICi

7. Since Fig. 3 is only a perspective view of the OCS, it does not cap-
ture all the POSP plans.
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plan tree [12]. Specifically, the execution takes place in a bot-
tom up fashionwith the base relations at the leaves of the tree.

In conventional database query processing, the execution
of a query plan can be partitioned into a sequence of pipe-
lines [13]. Intuitively, a pipeline can be defined as the maxi-
mal concurrently executing subtree of the execution plan.
The entire execution plan can therefore be viewed as an
ordering on its constituent pipelines. We assume that only
one pipeline is executed at a time in the database system, i.
e, there is no inter-pipeline concurrency—this appears to be
the case in current engines. To make these notions concrete,
consider the plan tree shown in Fig. 4—here, the constituent
pipelines are highlighted with ovals, and are executed in
the sequence fL1; L2; L3; L4g.

Finally, we assume a standard plan costing model that
estimates the individual costs of the internal nodes, and
then aggregates the costs of all internal nodes to represent
the estimated cost of the complete plan tree.

3.1.2 Spill-Mode of Execution

We now discuss how to execute plans in spill-mode. For
expository convenience, given an internal node of the plan
tree, we refer to the set of nodes that are in the subtree
rooted at the node as its upstream nodes, and the set of nodes
on its path to the root of the complete plan tree as its down-
stream nodes.

Suppose we are interested in learning about the selectiv-
ity of an epp ej. Let the internal node corresponding to ej in
plan P be Nj. The key observation here is that the execution
cost incurred on Nj’s downstream nodes in P is not useful
for learning about Nj’s selectivity. So, discarding the output
of Nj without forwarding to its downstream nodes, and
devoting the entire budget to the subtree rooted at Nj, helps
to use the budget effectively to learn ej’s selectivity. Specifi-
cally, given plan P with cost budget B, and epp ej chosen
for spilling, the spill-mode execution of P is simply the

following: Create a modified plan comprised of only the
subtree of P rooted atNj, and execute it with cost budget B.

Since a plan could consist of multiple epps (red coloured
nodes in Fig. 4), the sequence of spill node choices should be
made carefully to ensure guaranteed learning on the selectiv-
ity of the chosen node-this procedure is described next.

3.1.3 Spill Node Identification

Given a plan and an ordering of the pipelines in the plan,
we consider an ordering of epps based on the following two
rules:

Inter-Pipeline Ordering: Order the epps as per the execution
order of their respective pipelines; in Fig. 4, since L4 is
ordered after L2, the epp nodes N3 and N4 are ordered
after N9 andN10.

Intra-Pipeline Ordering: Order the epps by their upstream-
downstream relationship, i.e., if an epp node Na is
downstream of another epp node Nb within the same
pipeline, then Na is ordered after Nb; in the example, N3

is ordered after N4.
It is easy to see that the above rules produce a total-order-

ing on the epps in a plan—in Fig. 4, it is N10; N9; N4; N3.
Given this ordering, we always choose to spill on the node
corresponding to the first epp in the total-order. The selectiv-
ity of a spilled epp node is fully learnt when the correspond-
ing execution goes to completion within its assigned
budget. When this happens, we remove the epp from EPP

and it is no longer considered as a candidate for spilling in
the rest of the discovery process.

As a result of this procedure, note that the selectivities of
all predicates located upstream of the currently spilling epp

will be known exactly—either because they were never epps,
or because they have already been fully learnt in the ongo-
ing discovery process. Therefore, their cost estimates are
accurate, leading to the following “half-space pruning”
lemma. The proof of the lemma can be seen in [2].

Lemma 3.1. Consider a plan P for which the spill node identifi-
cation mechanism identifies the predicate ej for spilling. Fur-
ther, consider a location q 2 ESS. When the plan P is executed
with a budget CostðP; qÞ in spill-mode, then we either learn (a)
the exact selectivity of ej, or (b) that qa:j > q:j.

3.2 Contour Density Independent Execution

We now show how the half-space pruning property can be
exploited to achieve the contour density independent (CDI)
execution property of the SpillBound algorithm. For this
purpose, we employ the term “quantum progress” to refer
to a step in which the algorithm either jumps to the
next contour, or fully discovers the selectivity of some epp.
Informally, the CDI property ensures that each quantum
progress in the discovery process is achieved by expending
no more than jEPPj number of plan executions.

For ease of understanding, we present here the technique
for the special case of two epps referred to by X and Y ,
deferring the generalization forD epps to the next section.

Consider the 2D ESS shown in Fig. 5, and assume that
we are currently exploring contour IC3. The two plans for
spill-mode execution in this contour are identified as
follows: We first identify the subset of plans on the contour
that spill on X using the spill node identification algo-
rithm—these plans are identified as Px

5 , P
x
7 , P

x
8 in Fig. 5.

Fig. 4. Execution plan tree of TPC-DS Query 26.
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The next step is to enumerate the subset of locations on the
contour where these X-spilling plans are optimal. From this
subset, we identify the location with the maximum X coordi-
nate, referred to as qxmax, and its corresponding contour plan,
which is denoted as Px

max. The P
x
max plan is the one chosen to

learn the selectivity ofX—in Fig. 5, this choice is Px
8 .

By repeating the same process for the Y dimension, we
identify the location qymax, and plan Py

max, for learning the
selectivity of Y—in Fig. 5, the plan choice is Py

6 . Note that
the location ðqxmax:x; q

y
max:yÞ is guaranteed to be either on or

beyond the IC3 contour.
The following lemma shows that the above plan identifi-

cation procedure satisfies the CDI property.

Lemma 3.2. In contour ICi, if plans Px
max and P

y
max are executed

in spill-mode, and both do not reach completion, then CostðPqa ;
qaÞ > CCi, triggering a jump to the next contour ICiþ1.

Proof. Since the executions of both Px
max and Py

max do not
reach completion, we infer that qxmax:x < qa:x and
qymax:y < qa:y. Therefore, qa strictly dominates the loca-
tion ðqxmax:x; q

y
max:yÞ whose cost, by PCM, is greater than

CCi. Thus CostðPqa ; qaÞ > CCi. tu
Consider the general case of ICi when there are more

than two epps. Corresponding to an epp ej, the location
qjmax and plan Pj

max are defined similar to the way qxmax and
Px

max are defined (i.e, by replacing the X coordinate with
the jth coordinate corresponding to ej).

3.3 Contour Alignment
We now introduce a key concept that helps characterize
search scenarios in which the MSO of the SpillBound

algorithm matches the lower bound. Again, for ease of
understanding, we consider the special case of a 2D ESS

with predicatesX and Y .
Consider a contour, say ICi, and a dimension j 2 fX;Y g.

A location qjext 2 ICi is said to be an extreme location along
dimension j if the location has the maximum coordinate
value for dimension j among the contour locations belong-
ing to ICi, i.e, qjext:j 	 q:j, 8q 2 ICi. In Fig. 6, these extreme
locations are highlighted by (bold) dots.

A contour ICi is said to satisfy the property of contour
alignment along a dimension j if it so happens that
qjmax ¼ qjext, i.e., the optimal plan at qjext spills on predicate
ej. For ease of exposition, if a contour satisfies the contour
alignment property along at least one of its dimensions,
then we refer to it as an aligned contour. In Fig. 6, contours
IC2 and IC4 are aligned along the X and Y dimensions,
respectively, and are therefore aligned contours—however,
contour IC3 is not so because it is not aligned along
either dimension.

Given a contour ICi, Lemma 3.2 showed the sufficiency
of two plan executions to guarantee a quantum progress in
the discovery process. Leveraging the alignment notion, the
following lemma describes when the same progress can be
achieved with exactly one execution.

Lemma 3.3. If a contour ICi is aligned, then the execution of
exactly one plan in spill-mode with budget CCi, is sufficient to
make quantum progress in the discovery process.

Proof. Without loss of generality, let us assume that the
contour ICi satisfies contour alignment along dimension

j, i.e, the optimal plan P at the location qjext spills on
dimension j. By Lemma 3.1, the spill-mode execution of
P with budget CCi ensures that we either learn the exact
selectivity of ej or learn that qa:j > qjext:j. Suppose we
learn that qa:j > qjext:j, then it implies that qa lies beyond
ICi. Thus, just the execution of P in spill-mode yields
quantum progress. tu
Note that in the general ESS case of more than two

epps, there may be a multiplicity of qjmax or qjext locations,
but Lemma 3.3 can be easily generalized such that quan-
tum progress is achieved with a single execution in these
scenarios also.

4 THE SPILLBOUND ALGORITHM

In this section, we present our new robust query processing
algorithm, SpillBound, which leverages the properties of
half-space pruning and CDI execution.We begin by introduc-
ing an important notation: Our search for the actual query
location, qa, begins at the origin, andwith each spill-mode exe-
cution of a contour plan, we monotonically move closer
towards the actual location. The running selectivity location,
as progressively learnt by SpillBound, is denoted by qrun.

During the entire discovery process of SpillBound,
only POSP plans on the isocost contour are considered for
spill-mode executions. Moreover, when we mention the
spill-mode execution of a particular plan on a contour, it
implicitly means that the budget assigned is equal to the
cost of the contour. For ease of exposition, if the epp chosen
to spill on is ej for a plan P , we shall hereafter highlight this
information with the notation Pj.

For ease of exposition, we first present a version, called
2D-SpillBound, for the special case of two epps, and then
extend the algorithm to the general case of several epps.

4.1 2D-SpillBound

To provide a geometric insight into the working of 2D-

SpillBound, we will refer to the two epps, e1 and e2, as X
and Y , respectively. 2D-SpillBound explores the doubling

Fig. 5. Choice of contour crossing plans. Fig. 6. Contour alignment.
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isocost contours IC1; . . . ; ICm, starting with the minimum
cost contour IC1. During the exploration of a contour, two
plans Px

max and Py
max are identified, as described in Section

3.2, and executed in spill-mode. The order of execution
between these two plans can be chosen arbitrarily, and the
selectivity information learnt through their execution is used
to update the running location qrun. This process continues
until one of the spill-mode executions reaches completion,
which implies that the selectivity of the corresponding epp

has been completely learnt.
Without loss of generality, assume that the learnt selectiv-

ity is X. At this stage, we know that qa lies on the line
X ¼ qa:x. Further, the discovery problem is reduced to the
1D case, which has a unique characteristic—each isocost
contour of the new ESS (i.e., line X ¼ qa:x) contains only one
plan, and this plan alone needs to be executed to cross the
contour, until eventually some plan finishes its execution
within the assigned budget. In this special 1D scenario, there
is no operational difference between PlanBouquet and
2D-SpillBound, so we simply invoke the standard Plan-

Bouquetwith only the Y epp, starting from the contour cur-
rently being explored. Note that plans are not executed in
spill-mode in this terminal 1D phase because spilling in the
1D caseweakens the bound, as explained in [14].

4.1.1 Execution Trace

An illustration of the execution of 2D-SpillBound on
TPC-DS Query 91 with two epps is shown in Fig. 7. In this
example, the join predicate Catalog-Sales ffl Date-Dim,
denoted by X, and the join predicate Customer ffl Customer-
Address, denoted by Y , are the two epps (both selectivities
are shown on a log scale).

We observe here that there are six doubling isocost con-
tours IC1; . . . ; IC6. The execution trace of 2D-SpillBound
(blue line) corresponds to the selectivity scenario where the
user’s query is located at qa ¼ ð0:04; 0:1Þ.

On each contour, the plans executed by 2D-SpillBound

in spill-mode are marked in blue—for example, on IC2, plan
P4 is executed in spill-mode for the epp Y . Further, upon each
execution of a plan, an axis-parallel line is drawn from the pre-
vious qrun to the newly discovered qrun, leading to theManhat-
tan profile shown in Fig. 7. For example, when plan P6 is
executed in spill-mode forX, the qrun moves from (2E-4, 6E-4)
to (8E-4, 6E-4). To make the execution sequence unambigu-
ously clear, the trace joining successive qruns is also annotated
with the plan execution responsible for the move—to high-
light the spill-mode execution, we use pi to denote the spilled
execution of Pi. So, for instance, the move from (2E-4, 6E-4) to
(8E-4, 6E-4) is annotatedwith p6.

With the above framework, it is now easy to see that the
algorithm executes the sequence p2; p4; p6; p7; p10; p11, which
results in the discovery of the actual selectivity of Y epp.
After this, the 1D PlanBouquet takes over and the
selectivity of X is learnt by executing P11 and P19 in regular
(non-spill) mode.

This example trace of 2D-SpillBound exemplifies
how the benefits of half-space pruning and CDI execution are
realized. It is important to note that 2D-SpillBound may
execute a few plans twice—for example, plan P11—once in
spill-mode (i.e., p11) and once as part of the 1D PlanBouquet

exploration phase. In fact, this notion of repeating a plan exe-
cution during the search process substantially contributes to
theMSObound in the general case ofD epps.

4.1.2 Performance Bounds

Consider the situation where qa is located in the region
between ICk and ICkþ1, or is directly on ICkþ1. Then, the
2D-SpillBound algorithm explores the contours from 1 to
kþ 1 before discovering qa. In this process,

Lemma 4.1. The 2D-SpillBound algorithm ensures that at
most two plans are executed from each of the contours
IC1; . . . ; ICkþ1, except for one contour in which at most three
plans are executed.

Proof. Let the exact selectivity of one of the epps be learnt in
contour ICh, where 1 � h � kþ 1. From CDI execution,
we know that 2D-SpillBound ensures that at most two
plans are executed in each of the contours IC1; . . . ; ICh.
Subsequently, PlanBouquet begins operating from con-
tour ICh, resulting in three plans being executed in ICh,
and one plan each in contours IChþ1 through ICkþ1. tu
We now analyze the worst-case cost incurred by 2D-

SpillBound. For this, we assume that the contour with
three plan executions is the costliest contour ICkþ1. Since the
ratio of costs between two consecutive contours is 2, the total
cost incurred by 2D-SpillBound is bounded as follows:

TotalCost � 2 � CC1 þ 
 
 
 þ 2 � CCk þ 3 � CCkþ1

¼ 2 � CC1 þ 
 
 
 þ 2 � 2k�1 � CC1 þ 3 � 2k � CC1
� 2kþ2 � CC1 þ 2k � CC1
¼ 5 � 2k � CC1:

(6)

From the PCM assumption, we know that the cost for an
oracle algorithm (that apriori knows the location of qa) is
lower bounded by CCk. By definition, CCk ¼ 2k�1 � CC1.
Hence,

MSO � 5 � 2k � CC1
2k�1 � CC1 ¼ 10; (7)

leading to the theorem:

Theorem 4.2. The MSO bound of 2D-SpillBound for
queries with two error-prone predicates is bounded by 10.

Remark. Note that even for a r value as low as 3, the MSO
bound of 2D-SpillBound is better than the bound,
4 � 3 ¼ 12, offered by PlanBouquet.

Fig. 7. Execution trace for TPC-DS Query 91.
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4.2 Extending to Higher Dimensions
We now present SpillBound, the generalization of the 2D-
SpillBound algorithm to handle D error-prone predicates
e1; . . . ; eD. Before doing so, we hasten to add that the EPP set,
asmentioned earlier, is constantly updated during the execu-
tion, and epps are removed from this set as and when their
selectivities become fully learnt. Further, when a contour ICi
is explored, the effective search space is the subset of locations
on ICi whose selectivity along the learnt dimensionsmatches
the learnt selectivities. From now on, in the context of explo-
ration, references to ICi will mean its effective search space.

The primary generalization that needs to be achieved is
to select, prior to exploration of a contour ICi, the best set
(wrt selectivity learning) of jEPPj plans that satisfy the half-
space pruning property and ensure complete coverage of
the contour. To do so, we consider the (location, plan) pairs
ðq1max; P

1
maxÞ; . . . ; ðqjEPPjmax ; P

jEPPj
max Þ as defined at the end of the

Section 3.2. The set of jEPPj plans that satisfy the contour den-
sity independent execution property is fP 1

max; . . . ; P
jEPPj
max g.

A subtle but important point to note here is that, during the
exploration of ICi, the identity of Pj

max may change as the con-
tour processing progresses. This is because some of the plans
that were assigned to spill on other epps, may switch to spill-
ing on ej due to their original epps being completely learnt
during the ongoing exploration. Accordingly, we term the
first execution of a Pj

max in contour ICi as a fresh execution, and
subsequent executions on the same epp as repeat executions.

Algorithm 1. The SpillBound Algorithm

Init: i = 1, EPP ¼ fe1; . . . ; eDg;
while i � m do " for each contour

if jEPPj ¼ 1 then " only one epp left
Run PlanBouquet to discover the selectivity of the
remaining epp starting from the present contour;
Exit;

end if
Run the spill node identification procedure on each plan
in the contour ICi, i.e, plans in PLi, and use this informa-
tion to choose plan Pj

max for each epp ej;
exec-complete = false;
for each epp ej do
exec-complete = Spill-Mode-Execution(Pj

max; ej; CCi);
Update qrun:j based on selectivity learnt for ej;
if exec-complete then
/* learnt the actual selectivity for ej*/
Remove ej from the set EPP;
Break;

end if
end for
if !exec-complete then
i = i+1; /* Jump to next contour */

end if
Update ESS based on learnt selectivities;

end while

Finally, it is possible that a specific epp may have no plan
on ICi on which it can be spilled—this situation is handled
by simply skipping the epp. The complete pseudocode
for SpillBound is presented in Algorithm 1—here,
Spill-Mode-Execution(Pj

max; ej; CCi) refers to the execution
of plan Pj

max spilling on ej with budget CCi.
With the above construction, the following lemma can be

proved in a manner analogous to that of Lemma 3.2:

Lemma 4.3. In contour ICi, if no plan in the set fPj
maxjej 2 EPPg

reaches completion when executed in spill-mode, thenCostðPqa ;
qaÞ > CCi, triggering a jump to the next contour ICiþ1.

4.2.1 Performance Bounds

We now present an overview of how the MSO bound is
obtained for SpillBound—the full proof is available in [14].

In the worst-case analysis of 2D-SpillBound, the
exploration cost of every intermediate contour is bounded
by twice the cost of the contour. Whereas the exploration
cost of the last contour (i.e., ICkþ1) is bounded by three times
the contour cost because of the possible execution of a third
plan during the PlanBouquet phase. We now present how
this effect is accounted for in the general case.

Repeat Executions: As explained before, the identity of
plan Pj

max may dynamically change during the exploration
of a contour ICi, resulting in repeat executions. If this phe-
nomenon occurs, the new Pj

max plan would have to be exe-
cuted to ensure compliance with Lemma 4.3. We observe
that each repeat execution of an epp is preceded by an event
of fully learning the selectivity of some other epp, leading to
the following lemma (proof in [14]):

Lemma 4.4. The SpillBound algorithm executes at most D
fresh executions in each contour, and the total number of repeat
executions across contours is bounded by DðD�1Þ

2 .

Suppose that the actual selectivity location qa is located in
the region between ICk and ICkþ1, or is directly on ICkþ1.
Then, the total cost incurred by the SpillBound algorithm
in discovering qa is the sum of costs from fresh and repeat
executions in each of the contours IC1 through ICkþ1.
Further, the worst-case cost is incurred when all the repeat
executions happen at the costliest contour, namely ICkþ1.
Hence, the total cost of SpillBound is given by

Xkþ1

i¼1

ð#fresh executionsðICiÞÞ � CCi þ DðD� 1Þ
2

� CCkþ1:

Since the number of fresh executions on any contour is
bounded by D, we obtain the following theorem (proof on
similar lines to the 2D scenario):

Theorem 4.5. The MSO bound of the SpillBound algorithm
for any query with D error-prone predicates is bounded by
D2 þ 3D.

Remark. For ease of exposition of SpillBound, and to facili-
tate comparison with PlanBouquet, we have chosen a cost
ratio of 2 between successive contours. However, it is
interesting to note that cost doubling is not the ideal
choice for SpillBound, unlike PlanBouquet, as explained
in [14]—for instance, a factor of 1.8 improves SpillBound’s
MSO guarantee from 10 to 9.9 in the 2D case. Only mar-
ginal improvements are obtained with these ideal factors
for the ESS dimensionalities considered in our study.

4.3 Lower Bound
We now present a lower bound on MSO for a class of
deterministic half-space pruning algorithms denoted by
E, that includes SpillBound in its ambit. We prove the
following theorem.

Theorem 4.6. For any algorithm A 2 E and D 	 2, there exists
aD-dimensional ESS where MSO of A is at leastD.

The proof of the above theorem is omitted due to space
considerations and can be found in Section 5 of [14].
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5 THE ALIGNEDBOUND ALGORITHM

Given the quadratic-to-linear gap on MSO, we now identify
exploration scenarios in which the MSO of SpillBound

matches theVðDÞ lower bound—we do so by leveraging the
contour alignment notion. Consider the scenario in which all
the contours are aligned—then by Lemma 3.3, each of these
contour requires only a single execution to make quantum
progress. Following the lines of the analysis of SpillBound,
and the fact that the most expensive execution sequence
occurs when all the selectivities are learnt in the last contour
(ICkþ1), the total cost incurred in theworst-case would be

TotalCost ¼ CC1 þ 
 
 
 þ CCk þ D � CCkþ1

¼ CC1 þ 
 
 
 þ 2k�1CC1 þ D � 2kCC1
� ð2k�1CC1Þð2Dþ 2Þ;

leading to the following theorem:

Theorem 5.1. If the contour alignment property is satisfied at
every step of the algorithm’s execution, then the MSO bound is
2Dþ 2.

In practice, however, the contour alignment property
may not be natively satisfied at all contours—for instance,
as enumerated later in Table 2, as few as 18 percent of the
contours were aligned for a 3D ESS with TPC-DS Query 96.
Therefore, we propose in this section the AlignedBound

algorithm which operates in three steps: First, it exploits the
property of alignment wherever available natively. Second,
it attempts to induce this property, by replacing the optimal
plan with an aligned substitute if the substitution does not
overly degrade the performance. Finally, it investigates the
possibility of leveraging alignment at a finer granularity
than complete contours.

To aid in description of the algorithm, we denote by
Extði; jÞ the set of all extreme locations on a contour ICi
along a dimension j. With this, a contour ICi is said to sat-
isfy contour alignment along dimension j if qjmax 2 Extði; jÞ,
i.e, at least one of the extreme locations along dimension j
has an optimal plan that spills on ej. Second, the set of all
plans that spill on predicate ek is denoted by Pk.

5.1 Induced Contour Alignment
Given a contour ICi that does not satisfy contour alignment,
we induce contour alignment on the contour as follows: Con-
sider a plan P which spills on ek 2 EPP. It is a candidate
replacement plan for any location qkext 2 Extði; kÞ in order to
obtain alignment along dimension k—the cost of the replace-
ment is equal to CostðP; qkextÞ. Therefore, the minimum cost
of inducing contour alignment along dimension k is given by
the pair ðPk 2 Pk; qkext 2 Extði; kÞÞ for which CostðPk; qkextÞ is
minimized. Next, we find the dimension j for which the cost

of the replacement pair ðPj; qjextÞ is minimum across all
dimensions. Finally, the optimal plan at qjext is replaced by
Pj, and the penalty � of this replacement is the ratio of
CostðPj; qjextÞ toCostðPq

j
ext
; qjextÞ.

The usefulness of induced contour alignment depends on
the penalty incurred in enforcing the property. To assess
this quantitatively, we conducted an empirical study, whose
results are shown in Table 2. Here, each row is a query
instance. The “Original” column indicates the percentage of
the contours that satisfy contour alignment without any
replacements. A column with a particular � value, say c,
indicates the percentage of the contours satisfying contour
alignment when the replacement plans are not allowed to
exceed a penalty of c. The last column shows the minimum
penalty that needs to be incurred for all the contours to sat-
isfy contour alignment.

We see from the table that there are cases where full con-
tour alignment can be induced relatively cheaply—for
instance, a 50 percent penalty threshold is sufficient to make
Query 5D_Q29 completely aligned. However, there also are
cases, such as 3D_Q96, where extremely high penalty needs
to be paid to achieve contour alignment. Therefore, we now
develop a weaker notion of alignment, called “predicate set
alignment” (PSA), which operates at a finer granularity than
entire contours, and attempts to address these problematic
scenarios.

5.2 Predicate Set Alignment
We say that a set T � EPP satisfies predicate set alignment
with the leader dimension j if, for any location q 2 ICi whose
optimal plan spills on any dimension in T , q:j � qjmax:j. The
set of all locations in ICi whose optimal plan spills on a
dimension corresponding to a predicate in T , is denoted by
ICijT . For convenience, we assume that the predicate corre-
sponding to the leader dimension belongs to T . Note that
PSA is a weaker notion of alignment—while contour align-
ment with leader dimension j mandates that qjmax:j 	 q:j
for any q 2 ICi, PSA only requires that qjmax:j 	 q:j for all
q 2 ICijT .
Lemma 5.2. Suppose T1; . . . ; Tl are sets of epps satisfying predi-

cate set alignment such that [k¼l
k¼1Tk ¼ EPP, then [k¼l

k¼1ICij
Tk ¼ ICi.

Proof. Every q 2 ICi spills on one of the dimensions in EPP.
Therefore, it belongs to at least one ICijT . tu

Lemma 5.3. Suppose T1; . . . ; Tl are sets of epps satisfying predi-
cate set alignment such that [k¼l

k¼1Tk ¼ EPP, then spill-mode
execution of l POSP plans on ICi is sufficient to make quantum
progress.

Proof. Let j1; . . . ; jl be the leader dimensions for T1; . . . ; Tl,
respectively. Then, the l POSP plans chosen for the execu-
tion are P

q
jk
max

for k ¼ 1; . . . ; l. After this, based on the defi-

nition of PSA, Lemma 5.2, and an argument similar to the

proof of Lemma 3.3, it can be shown that spill-mode execu-

tion of the chosen l POSP plans is sufficient to make quan-

tum progress. The complete proof is available in [14]. tu

5.2.1 Inducing Predicate Set Alignment

Consider a contour ICi, and a candidate set T � EPP with a
leader dimension j 2 T . We now present a mechanism to
induce predicate set alignment on T with leader dimension j.

TABLE 2
Cost of Enforcing Contour Alignment

Query Original � ¼ 1:2 � ¼ 1:5 � ¼ 2:0 Max �

3D_Q96 18 18 27 45 130
4D_Q7 70 70 90 90 3.62
4D_Q26 20 30 40 50 66.95
4D_Q91 67 67 77 77 5.38
5D_Q29 40 70 100 - 1.35
5D_Q84 100 - - - 1
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We consider the extreme location along the dimension j
among all the locations in ICijT , i.e, qjT ¼ argmaxq2ICijT q:j
(in case of a multiplicity of such points, any one point can
be picked). Consider the set S ¼ fq 2 ICi ^ q:j ¼ qjT :jg, i.e,
all the locations belonging to ICi whose coordinate value
on jth dimension is equal to the coordinate value on jth
dimension of an extreme location in ICijT . It is easy to see
that T satisfies predicate set alignment if the optimal plan
at any of the locations in S is replaced with a plan P
that spills on ej. We now find a pair ðP 2 Pj; q 2 SÞ such
that CostðP; qÞ is minimum. The predicate set alignment
property is induced by replacing the optimal plan at q
with the plan P . The penalty � for the replacement is
defined as before. We remark that the step of inducing
predicate set alignment can be implemented efficiently
and is discussed in [14].

5.2.2 Finding Minimum Cost Predicate Set Cover

Lemma 5.3 essentially says that a set of predicate sets
T1; . . . ; Tl that cover EPP can be leveraged to make quantum
progress. We now argue that it is sufficient to limit the
search to merely the set of partition covers of EPP.

Consider a set T which satisfies PSA along dimension j.
The cover cost of T1; . . . ; Tl is said to be sum of cost of enforc-
ing PSA for each of the Tis. We say that T satisfies maximal
PSA with leader dimension j if no super-set of T satisfies
the property with same or lesser cost. Consider T1; . . . ; Tl

which cover EPP and have been enforced to satisfy maximal
PSA. We now obtain a partition cover whose cover cost is at
most the cover cost of T1; . . . ; Tl.

Let j1; . . . ; jl be the leader dimensions for T1; . . . ; Tl. The
maximal property of the Tis implies that no dimension can be
a leader dimension for more than one Ti. Therefore, the fol-

lowing sets p1 ¼ T1 þ fj1g � [m¼l
m¼2fjmg;pk ¼ Tk þ fjkg � [m¼l

m¼1;m6¼k

fjmg � [m<k
m¼1 pm for k ¼ 2; . . . ; l� 1, and pl ¼ Tl � [m¼l�1

m¼1 pm

provide a partition cover with the same set of leader dimen-
sions j1; . . . ; jl. It follows that the cover cost of p1; . . . ;pl is at
most the cover cost of T1; . . . ; Tl. The full proof of this is
presented in [14]. Therefore, we can restrict the search for
EPP cover to only partition covers without incurring any
increase in the penalty of the EPP cover. The benefit of this is
that the number of partition covers of a set is much smaller
than the number of different ways of covering a set with
its subsets.

Given a partition cover p ¼ fp1; . . . ;plg, p� denotes the
sum of the penalties incurred in enforcing PSA for each of
the pis along their leader dimensions.

5.3 Algorithm Description
The AlignedBound algorithm is presented in Algo-
rithm 2. The steps that are identical to the steps in Spill-

Bound are not presented again and simply captured as
comments.

The key steps of the algorithm are S1 and S2 which are
executed using the partition cover and predicate set align-
ment techniques described in Section 5.2.

A legitimate concern at this point is whether in trying to
induce alignment, the D2 þ 3D guarantee may have been
lost along the way. The proof that this is not so, and that the
quadratic bound is retained is available in [14]. In summary,
AlignedBound delivers an MSO that is guaranteed to be in
the platform-independent range ½2Dþ 2;D2 þ 3D�.

Algorithm 2. The AlignedBound Algorithm

1: Init: i = 1, EPP = fe1; . . . ; eDg;
2: while i � m do " for each contour
3: /* Handle special 1-D case when it is encountered */
4: S0: P = Set of all partitions of EPP (remaining epps);
5: S1:We pick p 2 Pwith minimum p�;
6: for each part pk 2 p do
7: S2: Let jk be the leader dimension, P the replacement

plan along dimension jk, and q the location whose
optimal plan is replaced with P ;

8: exec-complete = Spill-Mode-Execution P; ejk ; CostðP; qÞ� �
;

9: Update qrun:jk based on selectivity learnt for ejk ;
10: if exec-complete then
11: Remove ejk from the part pk and the set EPP;
12: Break;
13: end if
14: end for
15: /* Update ESS, jump contour as in SpillBound */
16: end while

6 EXPERIMENTAL EVALUATION

As mentioned earlier, the MSO guarantees delivered by
PlanBouquet and SpillBound are not directly compara-
ble, due to the inherently different nature of their dependen-
cies on the r and D parameters, respectively. However, we
need to assess whether the platform-independent feature of
SpillBound is procured at the expense of a deterioration in
the numerical bounds. Accordingly, we present in this section
an evaluation of SpillBound on a representative set of com-
plex OLAP queries, and compare its MSO performance with
that of PlanBouquet. Furthermore, we also conduct an eval-
uation of AlignedBound over the same set of queries to
appraise its performance benefits over SpillBound. The
experimental framework, which is similar to that used in [1],
is described first, followed by an analysis of the results.

6.1 Database and System Framework
Our test workload is comprised of representative SPJ queries
from the TPC-DS benchmark, operating at the base size of
100 GB. The number of relations in these queries range from
4 to 10, and a spectrum of join-graph geometries are mod-
eled, including chain, star, branch, etc. The number of epps
range from 2 to 6, all corresponding to join predicates, giving
rise to challengingmulti-dimensional ESS spaces.

To succinctly characterize the queries, the nomenclature
xD Qz is employed, where x specifies the number of epps,
and z the query number in the TPC-DS benchmark. For
example, 3D_Q15 indicates TPC-DS Query 15 with three of
its join predicates considered to be error-prone.

The database engine used in our experiments is a modified
version of PostgreSQL 8.4 [15] engine, with the primary
changes being the (1) selectivity injection—to generate the
ESS, (2) abstract plan execution—to instruct the execution
engine to execute a particular plan, (3) time-limited execution
of plans and (4) spilling—to execute plans in spill-mode. In
addition, we implement a feature that obtains a least cost plan
from optimizer which spills on a user-specified epp. This is
primarily needed for AlignedBound algorithm to find the
minimum penalty replacement pair which is mentioned in
Section 5.

The remainder of this section is organized as follows. For
ease of presentation, first we compare the performance of
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PlanBouquet and SpillBound, and subsequently move
on to comparing SpillBound and AlignedBound. We use
the abbreviations PB, SB and AB to refer to PlanBouquet,
SpillBound and AlignedBound, respectively. Further,
we use MSOg (MSO guarantee) and MSOe (MSO empirical)
to distinguish between the MSO guarantee and the empiri-
cally evaluatedMSO obtained on our suite of queries.

6.2 SpillBound versus PlanBouquet
The MSO guarantee for PlanBouquet on the original ESS
typically turns out to be very high due to the large values of
r. Therefore, as in [1], we conduct the experiments for
PlanBouquet only after carrying out the anorexic reduction
transformation [10] at the default � ¼ 0:2 replacement
threshold—we use rRED to refer to this reduced value.

6.2.1 Comparison of MSO Guarantees (MSOg)

A summary comparison of MSOg for PB and SB over almost
a dozen TPC-DS queries of varying dimensionality is shown
in Fig. 8—for PB, they are computed as 4ð1þ �ÞrRED,
whereas for SB, they are computed asD2 þ 3D.

We observe here that in a few instances, specifically
4D_Q26, 4D_Q91 and 6D_Q91, SB’s guarantee is noticeably
tighter than that of PB—for instance, the values are 28 and
52.8, respectively, for 4D_Q91. In the remaining queries, the
bound quality is roughly similar between the two algo-
rithms. Therefore, contrary to our fears, the MSO guarantee
is not found to have suffered due to incorporating platform
independence.

6.2.2 Variation of MSO Guarantee with Dimensionality

In our next experiment, we investigated the behavior ofMSOg

as a function of ESS dimensionality for a given query. We
present results here for an example TPC-DS query, namely
Query 91, wherein the number of epps were varied from 2
upto 6—the corresponding performance profile is shown in

Fig. 9. We observe here that while SB is marginally worse at
the lowest dimensionality of 2, it becomes appreciably better
than PB with increasing dimensionality—in fact, at 6D, the
values are 96 and 54 for PB and SB, respectively.

6.2.3 Comparison of Empirical MSO (MSOe)

We now turn our attention to evaluating the empirical MSO,
MSOe, incurred by the two algorithms. There are two rea-
sons that it is important to carry out this exercise: First, to
evaluate the looseness of the guarantees. Second, to evaluate
whether PB, although having weaker bounds in theory, pro-
vides better performance in practice, as compared to SB.

The assessment was accomplished by explicitly and
exhaustively considering each and every location in the ESS

to be qa, and then evaluating the sub-optimality incurred for
this location by PB and SB. Finally, the maximum of these
values was taken to represent the MSOe of the algorithm.

The MSOe results are shown in Fig. 10 for the entire suite
of test queries. Our first observation is that the empirical per-
formance of SB is far better than the corresponding guaran-
tees in Fig. 8. In contrast, while PB also shows improvement,
it is not as dramatic. For instance, considering 6D_Q18, PB
reduces its MSO from 57.6 to 35.2, whereas SB goes down
from 54 to just 16. A detailed analysis of the significant gap
between SB’s MSOg andMSOe values is provided in [2].

The second observation is that the gap between SB and
PB is accentuated here, with SB performing substantially bet-
ter over a larger set of queries. For instance, consider query
5D_Q29, where the MSOg values for PB and SB were 52.8
and 40, respectively—the corresponding empirical values
are 42.3 and 15.1 in Fig. 10.

Finally, even for a query such as 4D_Q7, where PB had a
marginally better bound (24 for PB and 28 for SB in Fig. 8),
we find that it is SB which behaves better in practice (16.1
for PB and 13.9 for SB in Fig. 10).

6.2.4 Average-Case Performance (ASO)

A legitimate concern with our choice of MSO metric is that
its improvements may have been purchased by degrading
average-case behavior. To investigate this possibility, we
have considered ASO, the average case equivalent of MSO,
which is defined as follows under the assumption that all
qa’s are equally likely

ASO ¼
P

qa2ESS SubOptðqe; qaÞP
qa2ESS 1

: (8)

We evaluated the ASO of PB and SB for all the test
queries, and these results are shown in Fig. 11. Observe that,
contrary to our fears, SB provides much better performance,

Fig. 8. Comparison of MSO guarantees (MSOg).

Fig. 9. Variation of MSOg with dimensionality (Q91).

Fig. 10. Comparison of empirical MSO (MSOe).
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especially at higher dimensions, as compared to PB. For
instance, with 5D_Q19, the ASO for SB is nearly 100 percent
better than PB, going down from 17 to 8.6. Thus, SB offers
significant benefits over PB in terms of both worst-case and
average-case behavior.

6.2.5 Sub-Optimality Distribution

In our final analysis, we profile the distribution of sub-
optimality over the ESS. That is, a histogram characteriza-
tion of the number of locations with regard to various
sub-optimality ranges. A sample histogram, corresponding
to query 4D_Q91, is shown in Fig. 12, with sub-optimality
ranges of width 5. We observe here that for over 90 percent
of the ESS locations, the sub-optimality of SB is less than 5.
Whereas this performance is achieved for only 35 percent of
the locations using PB. Similar patterns were observed for
the other queries as well, and these results indicate that
from both global and local perspectives, SB has desirable per-
formance characteristics as compared to PB.

6.3 Wall-Clock Time Experiments
All the experiments thus far were based on optimizer cost
values. We have also carried out experiments wherein the
actual query response times were explicitly measured for the
native optimizer, SB and AB. As a representative example,
we have chosen TPC-DS Q91 featuring 4 error-prone predi-
cates, referred to as e1; . . . ; e4. In this experiment, the opti-
mal plan took less than a minute (44 secs) to complete
the query. However, the native optimizer required more
than 10 minutes (628 secs) to process the data, thus incur-
ring a sub-optimality of 14.3.

In contrast, SB took only around 4 minutes (246 secs),
corresponding to a sub-optimality of 5.6. Table 3 shows the
drilled down information of plan executions for every con-
tour with SB. In addition, the selectivities learnt for the

corresponding epp during every execution are also cap-
tured. The selectivity information learnt in each contour,
shown in %, is indicated by boldfaced font in the table.
Further, for each execution, the plan employed, and the
overheads accumulated so far, are enumerated. A plan P
executed in spill-mode is indicated with a p. As can be seen
in the table, the execution sequence consists of partial execu-
tions of 13 plans spanning six consecutive contours, and
culminates in the full execution of plan P10 which produces
the query results.

Finally, we also conducted the above mentioned Q91
experiment with AB. The algorithm needed less than
3 minutes (165.1 secs) for completing the query, involving
10 partial plan executions before the culminating full execu-
tion. Thus, AB brings the sub-optimality down to just 3.8 in
this example.

6.4 AlignedBound versus SpillBound
We now turn our attention to evaluating how the predicate
set alignment property, exploited by AB, impacts its empiri-
cal performance as compared to SB. Specifically, we assess
the MSOe incurred by the two algorithms, with the compari-
son on other metrics, such as ASO and sub-optimality distri-
bution, deferred to [14].

6.4.1 Comparison of Empirical MSO

The MSOe numbers for SB and AB are captured in Fig. 13.
First, we highlight that the MSOe values for AB are con-
sistently less than around 10, for all the queries. Second, AB
significantly brings down the MSOe numbers for the several
queries whose MSOe values with SB are greater than 15. As
a case in point, AB brings down the MSOe of 6D_Q91 from
19 to 10.4.

6.4.2 Rationale for AB’s Performance Benefits

Recall that AB provides an MSO guarantee in the range
½2Dþ 2; D2 þ 3D�. As can be seen in Fig. 13, the MSOe val-
ues for AB are closer to the corresponding 2Dþ 2 bound

Fig. 11. Comparison of ASO performance.

Fig. 12. Sub-optimality distribution (4D_Q91).

TABLE 3
SpillBound Execution on TPC-DS Query 91

Contour no. e1 (plan) e2 (plan) e3 (plan) e4 (plan) Time (sec.)

1 0 0 0 0.08 (p1) 1.3
2 0.02 (p3) 0 0 0.3 (p2) 7:5
3 0.08 (p4) 0 0 1 (p5) 21
4 0.2 (p4) 0 0 12 (p5) 51:2
5 5 (p9) 0.8 (p6) 0 12 86:3
5 30 (p9) 0.8 5 (p8) 60 (p7) 176.4
6 80 (P10) 0.8 5 60 246:4

Fig. 13. Comparison of empirical MSO (MSOe).
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value, shown with dotted lines in the figure. These results
suggest that the empirical performance of AB approaches
the OðDÞ lower bound on MSO.

We now shift our focus to examining the reasons for AB’s
MSOe performance benefits overSB. In Table 4, themaximum
penalty over all partitions encountered during execution is
tabulated for the various queries. The important point to note
here is that these penalty values are lower than 3, even for 6D
queries. Since the highest cost investment for quantum prog-
ress in any contour is the maximum penalty times the cost of
the contour, the low value for penalty results in the observed
benefits, especially for higher dimensional queries.

6.5 Evaluation on the JOB Benchmark
All the above experiments were conducted on the TPC-DS
benchmark, an industry standard. Recently a new bench-
mark, called Join Order Benchmark (JOB), specifically
designed to provide challenging workloads for current opti-
mizers, was proposed in [4]. Given its design objective, it
appears appropriate to evaluate our query processing algo-
rithms on this platform. A difficulty, however, is that all the
queries in the JOB benchmark feature cyclic predicates,
directly nullifying our selectivity independence assump-
tion. Therefore, as an interim work-around, we shut off the
optimizer’s automatic inclusion of implicit join predicates,
and verified that the consequent optimizer plans either
remained the same or were only marginally sub-optimal.

We now present results for a representative Query 1a
from the JOB benchmark. For this query, we found that, as
expected by design, the native optimizer’s performance was
substantially worse, with the MSO going well above 6,000.
In marked contrast, SB continued to retain its strong per-
formance profile with an MSO of only around 12. And AB

reduced this even further to below 9.

7 DEPLOYMENT ASPECTS

Over the preceding sections, we have conducted a theoreti-
cal characterization and empirical evaluation of our pro-
posed algorithms. We now discuss some pragmatic aspects
of its usage in real-world contexts. Most of these issues have
already been previously discussed in [1], in the context of
the PlanBouquet algorithm, and we therefore only sum-
marize the salient points here for easy reference.

First, our assumption of a perfect cost model. If we were
to be assured that the cost modeling errors, while non-zero,
are boundedwithin a d error factor, then the MSO guarantees
in this paper will carry through modulo an inflation by a
factor of ð1þ dÞ2 [14]. That is, the MSO guarantee of Spill-
Bound (and AlignedBound) would be ðD2 þ 3DÞð1þ dÞ2.
Moreover, the errors induced by cost model are fairly small.
For instance, d ¼ 0:3 is reported in [16].

Second, with regard to identification of the epps that
constitute the ESS, we could leverage application domain
knowledge and query logs to make this selection, or simply
be conservative and assign all uncertain combination of
predicates to be epps.

Third, the construction of the contours in the ESS is cer-
tainly a computationally intensive task since it is predi-
cated on repeated calls to the optimizer, and the overheads
increase exponentially with ESS dimensionality. However,
for canned queries, it may be feasible to carry out an offline
enumeration; alternatively, when a multiplicity of hard-
ware is available, the contour constructions can be carried

out in parallel since they do not have any dependence on
each other.

Finally, while PlanBouquet can directly work off the
API of existing query optimizers, SpillBound and
AlignedBound are intrusive since they require changes in
the core engine to support plan spilling and monitoring of
operator selectivities. However, our experience with Post-
greSQL is that these facilities can be incorporated relatively
easily—the full implementation required only a few hun-
dred lines of code.

8 RELATED WORK

Our work materially extends the PlanBouquet approach
presented in [1], which is the first work to provide worst-case
guarantees for query processing performance. As already
highlighted, the primary new contribution is the provision of
a structural boundwith SpillBound (and AlignedBound),
whereas PlanBouquet delivered a behavioral bound. Fur-
ther, the performance characteristics of both our algorithms
are substantively superior to those of PlanBouquet, as illus-
trated in the experimental study.

A detailed comparison to the prior literature on selectiv-
ity estimation issues is provided in [1]. Since SpillBound

and AlignedBound belong to the class of plan switching
approaches, they may appear similar at first sight to influen-
tial systems such as POP [3] and Rio [6]. However, there are
key differences: First, they start with the optimizers estimate
as the initial seed and then conduct a full-scale re-optimiza-
tion if the estimate is found to be significantly in error.
In contrast, our proposed algorithms always start executing
plans from the origin of the selectivity space, ensuring both
repeatability of the query execution strategy as well as con-
trolled switching overheads.

Second, both POP and Rio are based on heuristics and do
not provide any performance bounds. In particular, POP
may get stuck with a poor plan since its selectivity validity
ranges are defined using structure-equivalent plans only.
Similarly, Rios sampling-based heuristics for monitoring
selectivities may not work well for join-selectivities, and its
definition of plan robustness based solely on the perfor-
mance at the corners of the ESS has not been validated.

9 CONCLUSION AND FUTURE WORK

We presented SpillBound, a query processing algorithm
that deliver a worst-case performance guarantee dep-
endent solely on the dimensionality of the selectivity
space (D2 þ 3D). This substantive improvement over

TABLE 4
Maximum Penalty for AB

Query max. penalty for AB

3D_Q15 2.42
3D_Q96 3
4D_Q7 2
4D_Q26 2.25
4D_Q27 2
4D_Q91 2.05
5D_Q19 2.5
5D_Q29 1.81
5D_Q84 1.1
6D_Q18 1.92
6D_Q91 1.25
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PlanBouquet is achieved through a potent pair of concep-
tual enhancements: half-space pruning of the ESS thanks to a
spill-based execution model, and bounded number of execu-
tions for jumping from one contour to the next. The new
approach facilitates porting of the bound across database
platforms, easy knowledge and low magnitudes of the
bound value, and indifference to the efficacy of the anorexic
reduction heuristic. Further, we also showed that Spill-
Bound is within an OðDÞ factor of the best deterministic
selectivity discovery algorithm in its class. Finally, we intro-
duced the contour alignment and predicate set alignment
properties and leveraged them to design AlignedBound

with the objective of bridging the quadratic-to-linear MSO
gap between SpillBound and the lower bound.

A detailed experimental evaluation on complex high-
dimensional OLAP queries demonstrated that our algo-
rithms provide competitive guarantees to their Plan-

Bouquet counterpart, while their empirical performance
is significantly superior. Moreover, AlignedBound’s per-
formance often approaches the ideal of MSO linearity inD.

In our future work, we wish to develop automated assis-
tants for guiding users in deciding whether to use the native
query optimizer or our algorithms for executing their queries.
We also plan to work on extending SpillBound and
AlignedBound to handle the case of dependent predicate
selectivities.
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