The Journal of Real-Time Systems, 4, 203-241 (1992)
© 1992 Kluwer Academic Publishers. Manufactured in The Netherlands.

Data Access Scheduling in Firm Real-Time
Database Systems

JAYANT R. HARITSA*
Systems Research Center, University of Maryland, College Park, MD 20742

MICHAEL J. CAREY AND MIRON LIVNY
Computer Sciences Department, University of Wisconsin, Madison, WI 53706

Abstract. A major challenge addressed by conventional database systems has been to efficiently implement the
transaction model, which provides the properties of atomicity, serializability, and permanence. Real-time applica-
tions have added a complex new dimension to this challenge by placing deadlines on the response time of the
database system. In this paper, we examine the problem of real-time data access scheduling, that is, the problem
of scheduling the data accesses of real-time transactions in order to meet their deadlines. In particular, we focus
on firm deadline real-time database applications, where transactions that miss their deadlines are discarded and
the objective of the real-time database system is to minimize the number of missed deadlines. Within this framework,
we use a detailed simulation model to compare the performance of several real-time locking protocols and opti-
mistic concurrency control algorithms under a variety of real-time transaction workloads. The results of our study
show that in moving from the conventional database system domain to the real-time domain, there are new
performance-related forces that come into effect. Our experiments demonstrate that these factors can cause per-
formance recommendations that were valid in a conventional database setting to be significantly altered in the
corresponding real-time setting.

1. Introduction

A real-time database system (RTDBS) is a transaction processing system that is designed
to handle workloads where transactions have completion deadlines. The objective of the
system is to meet these deadlines, that is, to complete processing transactions before their
deadlines expire. Our interest in real-time database systems stems from the increasing number
of data-intensive applications that are faced with timing requirements. These applications
include aircraft control, stock trading, network management and factory automation (Abbott
and Garcia-Molina 1988; Stankovic and Zhao 1988). The real-time performance of an
RTDBS depends on several factors such as the database system architecture and the under-
lying processor and disk speeds. For a given system configuration, however, the primary
real-time performance determinants are the policies used for scheduling transactions at
the system resources. These policies determine when service is provided to a transaction,
and therefore directly impact whether or not a transaction completes before its deadline.

The resources that are typically scheduled in real-time computer systems are processors,
memory, and disks; these hardware resources are cooperatively scheduled to meet the sys-
tem’s real-time performance objectives. A special feature of real-time database systems

*This work was done while the author was with the Computer Sciences Department, University of Wisconsin—
Madison. This research was partially supported by the National Science Foundation under grant IRI-8657323.

204 J.R. HARITSA, M.J. CAREY AND M. LIVNY

is that, in addition to the standard physical resources, the data objects stored in the database
form a set of logical resources. Therefore, the data accesses of transactions also have to
be scheduled in accordance with real-time performance objectives. In this paper, we inves-
tigate the problem of real-time data access scheduling, that is, how to schedule the data
accesses of real-time transactions in order to meet their deadlines.

Before considering the real-time aspects of data access scheduling, it is important to note
several factors that make data a unique resource and therefore require its scheduling to
be considered separately from hardware resource scheduling. First, there is a notion of
correctness associated with the order in which transactions access data objects; this is unlike
hardware resources, where the order of service generally does not affect the validity of
the received service. The standard notion of correctness in database systems is serializability
(Eswaran, Gray, Lorie, and Traiger 1976), which requires the outcome of concurrent data
accesses by transactions, as reflected in the database, to be the same as that produced by
executing the concurrent set of transactions in some serial order. Due to the serializability
requirement, a transaction that is scheduled to access a data item does not necessarily make
progress towards its completion. This is because the access may later be determined to
have violated the serializability requirement, in which case the transaction may have to
start all over again. Second, a transaction that is preempted from utilizing a data object
must usually be restarted. In the event of a restart, the transaction loses the service that
it has already received from the system resources. A transaction that is preempted from
service at the hardware resources, however, merely suffers a delay in its execution. Third,
data is a logical resource, and the number of transactions that may be concurrently scheduled
to utilize a particular data object is a function of the scheduling policy, rather than of the
data object itself. Hardware resources such as CPUs and disks, however, are physically
constrained to serve only a single request at a time. Finally, data objects have identity in
the sense that one data object cannot be substituted for another, unlike hardware resources
where service received from any of a set of similar servers is usually equivalent. In sum-
mary, for all the aforementioned reasons, the policies used for hardware resource schedul-
ing are not directly applicable to data access scheduling.

The data access scheduling policies used in database systems are commonly referred to
as concurrency control protocols. Concurrency control protocols preserve database integrity
by resolving non-serial concurrent transaction data accesses in a manner that induces a
serialization order among the conflicting transactions. Several concurrency control
mechanisms have been proposed (Bernstein, Hadzilacos and Goodman 1987), such as lock-
ing, validation (or optimistic methods), and timestamping. Each of these mechanisms takes
a different approach to achieving serializability. The performance tradeoffs of these various
mechanisms have been investigated in depth for conventional database systems (e.g.
Franaszek and Robinson 1985; Agrawal, Carey and Livny 1987), where the performance
objective is usually to minimize the mean response times of transactions. However, these
tradeoffs have to be reevaluated for real-time database systems as the performance objec-
tives of an RTDBS differ from those of a conventional DBMS. The goal of an RTDBS
is to meet transaction deadlines, therefore how early a transaction completes relative to
its deadline is not as important as whether or not it completes by its deadline. Due to this
difference in objectives, the performance results obtained for data access scheduling in
conventional DBMSs may not carry over to RTDBSs.

DATA ACCESS SCHEDULING IN FIRM REAL-TIME DATABASE SYSTEMS 205

There are two major issues that need to be explored with regard to real-time data access
scheduling: First, how do we adapt the various concurrency control mechanisms to the
real-time domain? Second, how do these concurrency control mechanisms compare in their
real-time performance? In this paper, we address these questions for a specific real-time
application framework. Within this framework, we compare the performance of several
real-time locking protocols and optimistic concurrency control algorithms, using a detailed
RTDBS simulation model as the evaluation tool.

The results of our study show that, in moving from the conventional DBMS domain to
the RTDBS domain, there are new performance-related forces that come into effect. These
new factors are a consequence of the real-time environment and therefore have not arisen
in the performance of conventional database systems. Our experiments demonstrate that
these factors can cause performance recommendations that were valid in a conventional
DBMS setting to be significantly altered in the corresponding RTDBS setting. In this paper,
we highlight these real-time-specific performance factors and evaluate their impact on con-
currency control performance under a variety of real-time transaction workloads.

The remainder of this paper is organized in the following fashion: In Section 2, we describe
the real-time application framework that is considered in our study. Related work on real-
time data access scheduling is reviewed in Section 3. Then, in Section 4, we describe the
functioning of the concurrency control algorithms that are compared in this study and discuss,
at an intuitive level, their real-time strengths and weaknesses. The RTDBS simulation model
is presented in Section 5, and the results of the performance experiments are highlighted
in Section 6. Finally, in Section 7, we summarize the main conclusions of the study and
outline future research avenues.

2. Real-Time Framework

Real-time applications can be grouped into three categories: Hard Deadline, Firm Deadline
and Soft Deadline. The grouping is based on how the application is impacted by the viola-
tion of task time constraints. For hard deadline applications, missing a deadline is equivalent
to a catastrophe. For firm deadline or soft deadline applications, however, missing deadlines
leads to degraded performance but does not entail catastrophic results. The distinction be-
tween firm deadline and soft deadline applications lies in their treatment of late tasks. For
a firm deadline application, completing a task after a deadline has expired is of no utility
and may even be harmful. Therefore, late tasks are permanently aborted (i.e., “killed”)
and discarded. For a soft deadline application, however, there is some (diminished) utility
to completing tasks even after their deadlines have expired.

In this study, we restrict our attention to firm deadline database applications, and late
transactions are therefore discarded by the real-time database system. We choose to selec-
tively investigate firm deadline applications for the following reasons: First, database systems
for efficiently supporting hard deadline applications, where all transaction deadlines have
to be met, appear infeasible due to the large variance between the average case and worst
case execution times of a typical database transaction (Stankovic and Zhao 1988). Second,
we expect that understanding scheduling issues from firm deadline applications will provide
a foundation for addressing the more complex framework of soft deadline applications,
where transactions may retain some utility if completed after their deadlines.

206 LR. HARITSA, M.J. CAREY AND M. LIVNY

For the purposes of this study, we assume that the objective of the RTDBS is to mini-
mize the number of missed transaction deadlines. We also assume that the RTDBS has
no a priori knowledge about transaction processing requirements, as such knowledge is
difficult to obtain in a general database context where queries and updates are embedded
in application programs. This lack of knowledge means that transactions are detected to
be late only when they actually miss their deadlines, as the system cannot estimate their
remaining service requirements. It also means that, from the system’s perspective, transac-
tions are distinguished only by their arrival times and deadlines.

Since satisfaction of transaction timing constraints is the primary goal (rather than other
considerations, such as fairness), the RTDBS scheduling policies can be reasonably expected
to be priority-driven; the priority assignment scheme is tuned to minimize the number of
discarded transactions. OQur simulation model implements a database system architecture
wherein a priority mapper unit assigns a priority to each transaction on its arrival. These
priorities are then used by the various system schedulers in resolving contention among
transactions for hardware resources and data objects. This priority architecture shields the
internal database mechanisms from the details of the priority assignment process, and is
modular since it separates priority generation from priority usage.

3. Related work

Real-time database systems are a recent concept, and have received attention only during
the last few years. The problem of scheduling transactions with the objective of minimiz-
ing the number of late transactions was first addressed in (Abbott and Garcia-Molina 1988;
1989). In these studies, the performance of several different concurrency control protocols,
all of which used locking as the underlying serialization mechanism, were evaluated through
simulation. The experimental results showed real-time locking protocols based on a priority
inheritance approach (Sha, Rajkumar and Lehoczky 1987) to perform better than those
based on a priority abort approach (Abbott and Garcia-Molina 1988). (These priority
schemes are described in detail in Section 4.)

A simulation-based study of the relative performance of optimistic techniques and lock-
ing protocols in a real-time environment was presented in (Haritsa, Carey and Livny 1990a).
Optimistic algorithms were found to perform significantly better then their locking counter-
parts in the experiments of that study, especially when data contention was the primary
performance-limiting factor. That work was extended in (Haritsa, Carey and Livny 1990b),
where several new real-time optimistic algorithms that delivered improved real-time per-
formance were presented and evaluated.

Similar real-time concurrency control studies have also been conducted as part of the
SPRING project (Ramamritham and Stankovic 1989). A feature of these studies (Huang,
Stankovic, Towsley and Ramamritham 1989; Huang, Stankovic, Ramamritham and Towsley
1991a; 1991b) is that they were conducted on a real-time database testbed, RT-CARAT, and
their results therefore include the effect of implementation overheads. Testbed limitations
constrained the studies to consider a closed system with a fixed amount of resources; in
addition, disk scheduling was under the control of the operating system and therefore did
not incorporate transaction priorities. Real-time congurrency control algorithms based on

DATA ACCESS SCHEDULING IN FIRM REAL-TIME DATABASE SYSTEMS 207

locking were compared in (Huang et al. 1989; Huang et al. 1991b). In contrast to the results
of (Abbott and Garcia-Molina 1989), their experiments showed locking protocols based
on priority abort to perform considerably better than those based on priority inheritance.
A comparative study of real-time optimistic techniques and locking protocols was reported
in (Huang et al. 1991a). The experiments of this study showed optimistic algorithms to
outperform locking protocols under low data contention. At high data contention, however,
it was the locking protocols which outperformed the optimistic algorithms; these results
differed from those seen in (Haritsa et al. 1990a; 1990b).

From the above sumimary, we note that there have been several recent studies of real-
time concurrency control; some of the results of these studies have been contradictory in
nature. There are significant workload, system, and implementation differences between
the studies conducted by the various research groups, thus making it difficult to pinpoint
the source of the performance discrepancies. We attempt to reconcile some of these con-
tradictions in this paper.

Data access scheduling algorithms that combine different concurrency control mechanisms
have also been proposed recently. In (Lin and Son 1990), a real-time concurrency control
algorithm that has the flavor of both locking and optimistic methods was presented, while
an algorithm that combines timestamp and optimistic techniques was described in (Cook,
Son, Oh, and Lee 1991). Based on a qualitative analysis, it was conjectured that these
“mixed” algorithms would perform better than algorithms based on a single serialization
mechanism. To our knowledge, however, a quantitative performance study that supports
these claims has not yet been published.

4. Concurrency Control Algorithms

In this section, we discuss the various locking and optimistic concurrency control algorithms
that are evaluated in our study. For each algorithm class, we first present the basic conven-
tional protocol and then describe real-time adaptations of this basic protocol. The descrip-
tion of each algorithm is supplemented with a discussion, at an intuitive level, of its poten-
tial strengths and weaknesses in the real-time domain. (We consider here only concurrency
control algorithms based exclusively on locking or optimistic concurrency control; hybrid
algorithms (e.g. (Lin and Son 1990)) are not included in the scope of our study.)

4.1. Conventional Locking (2PL)

In classical two-phase locking (2PL) (Eswaran et al. 1976), transactions set read locks on
objects that they read, and these locks are later upgraded to write locks for the objects
that are updated. Multiple transactions can simultaneously share a read lock on a data item,
but write locks are exclusive. If a lock request is denied, the requesting transaction is blocked
until the lock is released. Locks obtained by a transaction during the course of its execu-
tion are held until the transaction commits, at which time it simultaneously releases all
of its locks. Deadlocks are possible with the 2PL protocol, and therefore a deadlock detec-
tion scheme is required to find deadlocks. When a deadlock is found, it is broken by restarting
one of the transactions in the cycle of waiting transactions.

208 JR. HARITSA, M.J. CAREY AND M. LIVNY

Most commercial conventional database systems use 2PL as their concurrency control
mechanism. This is because 2PL’s blocking-based conflict resolution policy results in con-
servation of resources, thus delivering good performance under resource-limited conditions,
and because recovery methods for use with 2PL. are well understood (e.g. (Gray, McJones
and Blasgen 1981)). A potential drawback in the RTDBS environment, however, is that
2PL does not take transaction priorities into account. This may result in high priority trans-
actions being blocked by low priority transactions, a phenomenon known as priority inver-
sion (Sha et al. 1987). Priority inversion can cause the affected high-priority transactions
to miss their deadlines.

4.2. Real-Time Locking Algorithms

Two different schemes, priority inheritance (Sha et al. 1987) and priority abort (Abbott
and Garcia-Molina 1988), have been proposed as basic mechanisms for incorporating priority
in locking protocols. Real-time locking algorithms based on each of these schemes were
studied in (Abbott and Garcia-Molina 1989) and are described below.

4.2.1. 2PL Wait Promote (2PL-WP). The 2PL Wait Promote algorithm (Abbott and Garcia-
Molina 1989) is identical to basic 2PL in its resolution of conflicts, that is, transactions
always block whenever a lock request is denied. A difference, however, is that it includes
a priority inheritance mechanism. With this mechanism, whenever a requester blocks behind
a lower-priority lock holder, the lock holder’s priority is promoted to that of the requester.
In other words, the lock holder inherits the priority of the lock requester, and the holder
retains this elevated priority until it either commits or is restarted (due to deadlock resolu-
tion). When a data item is locked by more than one transaction, only those lock holders
that have a lower priority than the requester inberit the priority of the requester. This algo-
rithm guarantees that every transaction holding a lock on a data item has a priority that
is at least as high as that of the highest priority transaction waiting for the lock. An impor-
tant point to note here is that a transaction’s inherited priority becomes its priority at all
the resources in the system.

The 2PL-WP algorithm retains the resource-conservation features of 2PL. In addition,
it reduces the blocking time of high priority transactions by increasing the priority of con-
flicting low priority lock holders (these low priority transactions execute faster and therefore
release their locks earlier). A drawback, however, is that the blocking times of high-priority
transactions are still uncertain in their duration (Huang et al. 1991b). In fact, under high
data contention, where data conflicts are frequent, priority inheritance could result in most
or all of the transactions in the system executing at the same priority. In this situation,
the behavior of the RTDBS would effectively reduce to that of a conventional DBMS.

4.2.2. 2PL High Priority (2PL-HP). The 2PL High Priority algorithm modifies the basic
2PL protocol by incorporating a High Priority (Abbott and Garcia-Molina 1988) conflict
resolution scheme which ensures that high priority transactions are not delayed by low
priority transactions. The High Priority scheme resolves all data conflicts immediately in
favor of the transaction with the higher priority. In particular, when a transaction requests

DATA ACCESS SCHEDULING IN FIRM REAL-TIME DATABASE SYSTEMS 209

a lock on an object held by one or more lower priority transactions in a conflicting lock
mode, the lock-holding transactions are restarted and the requester is granted the lock. If
the requester’s priority is lower than that of any of the lock holders, it waits for the object
to be released (the wait queue for an object is managed in priority order). In addition,
a new reader can join a group of lock-holding readers only if its priority is higher than
that of all the writers waiting for the lock. A secondary benefit of the High Priority scheme
is that it also serves as a deadlock prevention mechanism.!

The 2PL-HP algorithm ensures that high priority transactions do not “see’ lower prior-
ity transactions, and thus helps these urgent transactions to meet their deadlines. A drawback,
however, is that a transaction may be restarted by a higher priority transaction that later
misses its deadline and is discarded. This means that the restart did not result in the higher
priority transaction meeting its deadline. In addition, it may cause the lower priority trans-
action to miss its deadline as well, apart from the loss of system resources due to the restart.
Therefore, such wasted restarts may result in performance degradation. Also, 2PL-HP loses
some of basic 2PL’s beneficial blocking factor due to the partially restart-based nature of
the High Priority scheme.

4.3. Conventional Optimistic Concurrency Control (OPT)

In classical optimistic concurrency control (OPT) (Kung and Robinson 1981), transactions
read and update data items freely, storing their updates into a private workspace. These
updates are made public at commit time. Before a transaction is allowed to commit, however,
it has to pass a validation test. This test checks that there is no conflict of the validating
transaction with transactions that committed since it began execution. The validating trans-
action is restarted if it fails this test.

A variant of the above algorithm incorporates the Broadcast Commit scheme suggested
in (Menasce and Nakanishi 1982; Robinson 1982)2 Here, when a transaction commits,
it identifies other currently executing transactions that it conflicts with and these conflicting
transactions are immediately restarted. Note that there is no need to check for conflicts
with already committed transactions since any such transaction would have, in the event
of a conflict, already restarted the validating transaction at its (the committed transaction’s)
own earlier commit time. This also means that a validating transaction is always guaranteed
to commit. The broadcast commit variant detects conflicts earlier than the classical OPT
algorithm, resulting in fewer wasted resources and earlier restarts. In the rest of this paper,
we will refer to this variant as the basic OPT algorithm.

Optimistic algorithms, due to their entirely restart-based conflict resolution policy, tend
to waste resources since a restart necessitates previously performed work to be redone.
This results in their performing poorly in conventional DBMSs operating under resource-
limited conditions (Agrawal et al. 1987). In an RTDBS environment, however, OPT im-
plicitly derives a blocking effect due to resource contention: low priority transactions wait
when resources are captured by high priority transactions. This blocking effect can decrease
data conflicts since low priority transactions that may conflict with high priority transac-
tions are effectively prevented from making significant progress by the priority-based
resource scheduling. Moreover, if a conflict does occur and a low priority transaction has
to be restarted, the resource wastage is at least reduced.

210 J.R. HARITSA, M.J. CAREY AND M. LIVNY

A second drawback of OPT in conventional DBMSs is that data conflicts are detected
and resolved only at transaction commit time, and this delayed conflict resolution causes
additional resources to be wasted. In an RTDBS, however, delayed conflict resolution can
actually aid in making better decisions since more information about the conflicting trans-
actions is available at commit time when the conflict is resolved. For example, 2PL-HP’s
problem of wasted restarts cannot occur with OPT. This is because, with OPT, a transac-
tion that reaches its validation stage is guaranteed to commit and to complete before its
deadline. Since only validating transactions can cause restarts of other transactions, there
is no possibility of having wasted restarts.

A potential drawback of OPT in the RTDBS environment is that it does not take transac-
tion priorities into account—low-priority transactions that reach validation unilaterally com-
mit and cause conflicting higher priority transactions to be restarted. This may result in
the affected high priority transactions missing their deadlines. In addition, there is the ques-
tion of whether the beneficial aspects of delayed conflict resolution (no wasted restarts)
outweigh its negative aspects (increased resource wastage by transactions that are eventu-
ally restarted).

4.4. Real-Time Optimistic Algorithms

In developing real-time optimistic algorithms, the goal is to prevent low priority validating
transactions from unilaterally committing when they conflict with higher priority transac-
tions. Two different mechanisms, priority sacrifice and priority wait, were proposed in
(Haritsa et al. 1990b) to address this problem, and algorithms based on these mechanisms
are described in this section.

In the subsequent discussion, we will use the term conflict set to denote the set of cur-
rently executing transactions that conflict with a validating transaction. The acronym CHP
(Conflicting Higher Priority) is used to refer to transactions that are in the conflict set and
have a higher priority than the validating transaction. Similarly, we use the acronym CLP
(Conflicting Lower Priority) to refer to transactions that are in the conflict set and have
a lower priority than the validating transaction.

4.4.1. OPT-SACRIFICE. The OPT-SACRIFICE algorithm modifies the basic OPT protocol
by incorporating a priority sacrifice mechanism. In this algorithm, a transaction that reaches
its validation stage checks for conflicts with currently executing transactions. If conflicts
are detected and one or more of the transactions in the conflict set is a higher priority
transaction, then the validating transaction is restarted—that is, it is sacrificed in an effort
to help the CHP transactions make their deadlines. The validation algorithm of OPT-
SACRIFICE can therefore be written as:

if CHP transactions in conflict set then
restart the validating transaction;
else
restart transactions in conflict set;
commit the validating transaction,

DATA ACCESS SCHEDULING IN FIRM REAL-TIME DATABASE SYSTEMS 211

OPT-SACRIFICE satisfies the goal of giving preferential treatment to high priority trans-
actions. It suffers, however, from the potential problem of wasted sacrifices, where a trans-
action is sacrificed on behalf of another transaction that is later discarded. Such sacrifices
are useless and cause performance degradation. This drawback of OPT-SACRIFICE is anal-
ogous to the wasted restarts problem of 2PL-HP.

4.4.2 OPT-WAIT. The OPT-WAIT algorithm modifies the basic OPT protocol by incorpo-
rating a priority wait mechanism. In this algorithm, a transaction that reaches validation
and finds CHP transactions in its conflict set is “put on the shelf,” that is, it is made to
wait and not allowed to commit immediately. This gives the higher priority transactions
a chance to make their deadlines first. While a transaction is waiting, it is possible that
it will be restarted due to the commit of one of the CHP transactions. The validation
algorithm of OPT-WAIT can therefore be written as:

while CHP transactions in conflict set do
wait;

restart transactions in conflict set;

commit the validating transaction;

There are several features of the priority wait mechanism that may have a positive impact
on performance: First, precedence is given to high-priority transactions, thus helping them
to meet their deadlines. Second, the problem of wasted sacrifices does not exist here because
the waiting transaction cannot be restarted by CHP transactions that miss their deadlines
and are discarded. In other words, all restarts are made “‘on demand” and at the commit
time of a higher priority transaction. Also, if a waiter’s CHP transactions are all discarded
due to missing their deadlines, then the waiter is immediately taken off the shelf and com-
mitted. Third, since transactions wait instead of immediately restarting, a blocking effect
is derived—this results in conservation of resources, which can be beneficial to perfor-
mance (Agrawal et al. 1987). Finally, the fact that a CHP transaction commits does not
necessarily imply that the waiting transaction will be restarted. This is because, although
the waiter conflicts with the high-priority transaction, the converse may not be true, that
is, data conflicts may be uni-directional (Robinson 1982). For uni-directional conflicts,
therefore, the waiting transaction can commit immediately after the CHP transaction has
committed (if no other CHP transactions remain). This means that the data conflict be-
tween a waiter and a higher priority transaction may possibly be resolved without a restart
of either transaction. Therefore, the priority wait mechanism has the potential to actually
eliminate some data conflicts (Haritsa et al. 1990b).

While the waiting scheme appears to have many positive features, it has some drawbacks
as well. One potential drawback is that if a transaction finally commits after waiting for
some time, it causes all of its CLP transactions to be restarted at a later point in time.
The delayed restart decreases the chances that these transactions will meet their deadlines,
and also results in more wasted resources. A second drawback is that the validating transac-
tion may develop new conflicts during its waiting period, thus causing an increase in con-
flict set sizes and leading to more restarts. Another way to understand this is to realize that
waiting causes objects to be, in a sense, “locked” for longer periods of time. Therefore,

212 J.R. HARITSA, M.J. CAREY AND M. LIVNY

while waiting has the capability to reduce the probability of a restart-causing conflict be-
tween a given pair of transactions, it simultaneously increases the probability of having
a greater number of conflicts per transaction. This increase may be substantial when there
are a large number of transactions in the system.

4.4.3. WAIT-50. The WAIT-50 algorithm is an extension of the OPT-WAIT algorithm—in
addition to the priority wait mechanism, it incorporates a wait control mechanism. The
wait control mechanism monitors transaction conflict states and dynamically decides when,
and for how long, a validating transaction should be made to wait for the higher priority
transactions in its conflict set. A transaction’s conflict state is assumed to be characterized
by the index HPpercent, which is the percentage of the transaction’s total conflict set size
that is formed by CHP transactions. The operation of the wait mechanism is conditioned
on the value of this index. In the WAIT-50 algorithm, a simple 50 percent rule is used—a
validating transaction is made to wait only while HPpercent is greater than or equal to
50, that is, while half or more of its conflict set is composed of higher priority transac-
tions. (The rationale for the choice of 50 percent is provided in Section 6.) The validation
algorithm of WAIT-50 can therefore be written as:

while CHP transactions in conflict set and
HPpercent = 50 do
wait;
restart transactions in conflict set;
commit the validating transaction;

The aim of the wait control mechanism is to detect when the beneficial effects of waiting,
in terms of giving preference to higher priority transactions and decreasing pairwise con-
flicts, are outweighed by its drawbacks, in terms of later restarts and increased conflict
set sizes. Therefore, while OPT-WAIT and OPT represent the extremes with regard to wait-
ing—OPT-WAIT always waits for a CHP transaction, and OPT never waits—WAIT-50 is
a hybrid algorithm that dynamically controls the amount of waiting. In fact, we can view
OPT, WAIT-50, and OPT-WAIT as all being special cases of the general algorithm WAIT-X,
where X is the cutoff HPpercent level, with X taking on the values oo, 50 and 0, respectively.

4.5 Summary

Conventional locking and conventional optimistic concurrency control represent two ex-
tremes in terms of data conflict detection and data conflict resolution—Ilocking detects con-
flicts as soon as they occur and resolves them using blocking; optimistic concurrency con-
trol detects conflicts only at transaction commit times and resolves them using restarts.
In this section, we described the conventional locking and (forward) optimistic concurrency
control algorithms (2PL and OPT), and discussed several real-time variants of these algo-
rithms (2PL-WP, 2PL-HP, OPT-SACRIFICE, OPT-WAIT, and WAIT-50). The real-time
concurrency control algorithms all aim to meet more transaction deadlines by preferentially
serving the urgent transactions. They incorporate different priority mechanisms such as

DATA ACCESS SCHEDULING IN FIRM REAL-TIME DATABASE SYSTEMS 213

priority inheritance and priority abort in the locking algorithms, and priority sacrifice and
priority wait in the optimistic algorithms.

We conducted experiments to evaluate the real-time performance of the various locking
and optimistic concurrency control algorithms described here, and the following sections
describe the experimental framework and the result of the experiments.

5. Real-Time DBMS Performance Model

A detailed model of a real-time database system was used to study the performance of the
various concurrency control algorithms (see (Haritsa 1991) for a complete model descrip-
tion). In this model, the database system configuration consists of a shared-memory multi-
processor operating on disk resident data (for simplicity, we assume that all data is accessed
from disk and buffer pool considerations are therefore ignored)3 The database itself is
modeled as a collection of data pages.

Transactions arrive in a Poisson stream and each transaction has an associated deadline.
A transaction consists of a sequence of read page and write page operations. A read page
operation involves a concurrency control request to get access permission, followed by a
disk 1I/0O to read the page, followed by a period of CPU usage for processing the page.
Write page operations are handled similarly except for their disk I/O—their disk activity
is deferred until the transaction has committed. Here we assume that the RTDBS has suffi-
cient buffer space to allow the retention of updates until commit time, and we also assume
the use of a log-based recovery scheme where only log pages are forced to disk prior to
commit. A transaction that is restarted due to a data conflict follows the same data access
pattern as its original incarnation. If a transaction has not completed by its deadline, it
is immediately aborted and discarded. The basic structure of the model is shown in Figure 1.

The model has five components: a source that generates transactions; a fransaction man-
ager that models the execution of transactions; a concurrency control (CC) manager that
implements the details of the concurrency control algorithms; a resource manager that

SOURCE TRANSACTION MANAGER SINK

Start Transaction End Transaction

Service Done

Resource Request CC Request

Resource Request Service Done
RESOURCE MANAGER CC MANAGER

Figure 1. RTDBS model structure.

214 J.R. HARITSA, M.J. CAREY AND M. LIVNY

models the CPU and I/O resources; and a sink that gathers statistics on completed transac-
tions. The priority mapper unit (described in Section 2) is embedded in the transaction
manager. The following two subsections describe the workload generation process and the
hardware resource configuration.

5.1. Workload Model

The workload model characterizes transactions in terms of the data pages that they access
and the number of pages that they update. Table 1 summarizes the key parameters of the
workload model. The ArrivalRate parameter specifies the mean rate of transaction arrivals.
The number of pages accessed by a transaction varies uniformly between half and one-
and-a half times the value of TransSize. Page requests are generated from a uniform distribu-
tion (without replacement) spanning the entire database. A page that is read is updated
with probability WriteProb. Therefore, a page write operation is always preceded by a read
for the same page; this means that the write set of a transaction is a subset of its read set
and that there are no blind writes (Bernstein et al, 1987).

In each of our experiments, a single formula is used to assign deadlines to all transac-
tions, and the choice of formula is determined by the DeadlineAssignment parameter. We
use two different deadline assignments in this study. The first assignment, DAL, is:

Dy = Ay + SF * Ep (DAD)

where Dy, Ay and Ep are the deadline, arrival time, and execution time of transaction 7,
respectively (the method for computing E7 is discussed in Section 5.3). SF is a slack factor
that provides control over the tightness/slackness of deadlines. With this formula, all trans-
actions have the same slack ratio—this is defined to be the ratio (Dy — A7)/Er and is equal
to the slack factor SF in DAL. The physical interpretation of this ratio is that it is the num-
ber of completion opportunities available to the transaction, given its deadline. (A slack
ratio of less than 1 implies that it is impossible for the transaction to complete before its
deadline.)
The second deadline assignment, DA2, is:

Dy = Ay + Uniform(LSF, HSF) * Epy, (DA2)

Table 1. Workload model parameters.

Parameter Meaning
ArrivalRate Transaction arrival rate
TransSize Average transaction size (in pages)
WriteProb Write probability per accessed page
DeadlineAssignment DAl or DA2
LSF Low Slack Factor

HSF High Slack Factor

DATA ACCESS SCHEDULING IN FIRM REAL-TIME DATABASE SYSTEMS 215

The transaction execution time used in this assignment, E_,, is the execution time of the
largest transaction in the workload (i.e., a transaction accessing 1.5 * TransSize pages).
Each transaction’s slack factor is uniformly chosen over the range set by LSF and HSF.
With this deadline assignment, transaction slack ratios are spread over a range of values
based on the ratio of E,,, to the Er’s and the spread in slack factors. The DA2 assignment
makes the deadline of a transaction independent of its execution time, unlike DA1 where
transaction deadlines are linearly dependent on their execution times.

The LSF and HSF workload parameters in Table 1 set the slack factors to be used in
the deadline formulas. (For DA, both these parameters are set to the same number and
SF takes on this value.) While the simulation model’s workload generator utilizes informa-
tion about transaction execution times in assigning deadlines, it is important to note that
the real-time database system itself is assumed to have no access to such information (as
discussed in Section 2).

5.2. System Model

The physical resources in our model consist of multiple CPUs and multiple disks. There
is a single queue for the CPUs and the service discipline is preemptive-resume, with preemp-
tion being based on transactions priorities. Each of the disks has its own queue and is sched-
uled with a priority Head-Of-Line scheduling policy (Abbott and Garcia-Molina 1989).
Table 2 summarizes the key parameters of the system model. The DatabaseSize parameter
gives the number of pages in the database, and the data pages are modeled as being uniformly
distributed across all of the disks. The NumCPUs and NumDisks parameters specify the
hardware resource configuration, while the PageCPU and PageDisk parameters capture
the CPU and disk processing times per data page.

5.3. Execution Time Computation

As mentioned earlier, the deadline assignments used in this study, DAl and DA2, incor-
porate transaction execution times in their deadline computations. The execution time of
a transaction, Er, is computed with the following expression

Er = NumReadsy * (PageCPU + PageDisk) + NumWrites; * PageCPU,

Table 2. System model parameters.

Parameter Meaning
DatabaseSize Number of pages in database
NumCPUs Number of processors
NumDisks Number of disks
PageCpu CPU time for processing a data page

PageDisk Disk service time for a page

216 J.R. HARITSA, M.J. CAREY AND M. LIVNY

where NumReadst and NumWritesy are the number of pages that are read and updated by
the transaction, respectively. The disk time for writing updated pages is not included in
the resource time computation since these writes occur affer the transaction has committed.

5.4. Concurrency Control Overhead

There are no explicit concurrency cost control parameters included in our system model
since we assume that the overhead of performing concurrency control is small compared
to data processing times. Moreover, a rough equivalence between the concurrency control
costs for locking and optimistic concurrency control was established in (Carey 1983); we
therefore do not expect the omission of these overheads to bias our results.

6. Experiments and Results

In this section, we present the performance results from our experiments comparing the
various locking protocols and optimistic concurrency control algorithms in a real-time data-
base system environment. The simulator used to obtain the results was written in DeNet
(Livny 1988), a Modula-2 based simulation language. The transaction priority assignment
in all of the experiments described here is Farliest Deadline—transactions with earlier dead-
lines have higher priority than transactions with later deadlines. Earliest Deadline is widely
used in real-time systems, and does not require knowledge of transaction processing re-
quirements, thus making it suitable for our operating constraints.

During the discussion of the concurrency control algorithms in Section 4, it was men-
tioned that deadlocks are possible with the 2PL and 2PL-WP locking algorithms. In our
simulator, deadlock detection was initiated for these two algorithms whenever a transac-
tion blocked, thereby detecting deadlocks as soon as they occurred. Deadlocks were resolved
by aborting the transaction with the lowest priority among the transactions involved in the
deadlock (for 2PL-WP, the original priorities of the deadlocked transactions were used
in determining the victim).*

The validation test of algorithms based on forward optimistic concurrency control involves
checking for conflict with the read sets of active transactions. This raises some implemen-
tation difficulties since the data sets of active transactions are dynamically changing (Haerder
1984). For simplicity, the problem was bypassed in the simulator by modeling the valida-
tion test as an instantaneous operation. However, we expect this idealization to have little
effect on our results since a mechanism for implementing the validation test with minor
overhead is described in (Haritsa 1991).

In the following presentation, we first describe the study’s performance metric and then
list the settings used for the system parameters. Subsequently, we discuss our results with
regard to the impact of resource contention, data contention, and variations in workload
characteristics.

DATA ACCESS SCHEDULING IN FIRM REAL-TIME DATABASE SYSTEMS 217

6.1. Performance Metric

The performance metric of our experiments is MissPercent, which is computed as

MissPercent = [NO- of Input Transactions — No. of InTime Transactzons] * 100

No. of Input Transactions

Thus, MissPercent is the percentage of input transactions that the system is unable to com-
plete before their deadlines. MissPercent values in the range of 0 to 20 percent are taken
to represent system performance under *“normal” loads, while MissPercent values in the
range of 20 to 100 percent represent system performance under “heavy” loads. A long-
term operating region where the miss percentage is large is obviously unrealistic for a viable
RTDBS. Exercising the system to high miss levels, however, provides valuable information
on the response of the algorithms to brief periods of stress loading. All MissPercent graphs
in this paper show mean values that have relative half-widths about the mean of less than
10% at the 90% confidence level, with each experiment having been run until at least 5000
transactions were processed by the system. Only statistically significant differences are
discussed here.

The simulator was instrumented to generate a host of other statistical information, in-
cluding CPU and disk utilizations, number of transaction restarts, mean system population,
etc. These secondary measures help to explain the MissPercent behavior of the concurrency
control algorithms under various workloads and system conditions.

6.2. Parameter Settings

The resource parameter settings are such that the CPU time to process a page is 10 milli-
seconds while disk access times are 20 milliseconds. For experiments that were intended
to factor in the effect of resource contention on the performance of the algorithms, the
number of processors and number of disks were set to 10 and 20, respectively. For experi-
ments that were intended to isolate the effect of data contention, an “infinite” resources
situation (Tay 1984; Franaszek and Robinson 1985; Agrawal et al. 1987), where there is
no queueing for resources, was simulated. A point to note here is that while abundant
resources are usually not to be expected in conventional database systems, they may be
more common in RTDBS environments since many real-time systems are sized to handle
transient heavy loading. This directly relates to the application domain of RTDBSs, where
functionality, rather than cost, is often the driving consideration.

We began our performance evaluation by first developing a baseline experiment. Further
experiments were constructed around the baseline experiment by varying a few parameters
at a time. To serve as a basis for comparison, the performance achievable in the absence
of concurrency control is also shown on the graphs, under the title NO-CC, for experiments
in which the RTDBS has limited resources.

6.3. Experiment I: Baseline Experiment

The settings of the workload parameters and system parameters for the baseline experiment
are listed in Table 3. These settings were chosen with the objective of having significant

218 J.R. HARITSA, M.J. CAREY AND M. LIVNY

Table 3. Baseline parameter settings

Workload System

Parameter Value Parameter Value
TransSize 16 pages DatabaseSize 1000 pages
WriteProb 0.25 NumCPUs 10
DeadlineAssignment DAl NumbDisks 20
LSF 4.0 PageCPU 10 ms
HSF 4.0 PageDisk 20 ms

data and resource contention in the system, thus helping to bring out the performance dif-
ferences between the concurrency control algorithms. Transaction deadlines are assigned
using deadline assignment DAI1, which assigns the same slack ratio to all transactions. For
this experiment, Figures 2a and 2b show the MissPercent behavior under normal load and
heavy load conditions, respectively.

0 2L O apL-wp A 2PL-HP B No-cc
X orr + OPTSACRIFICE V OPT-WAIT O waIt-50
254

mm—.g

=S oc0om=o iy

0.0 5.0 100 150 200 250
Arrival Rate

Figure 2a. Baseline (normal load).

DATA ACCESS SCHEDULING IN FIRM REAL-TIME DATABASE SYSTEMS 219

O 2eL O 2PL-WP A wLwp B No-cc
X orr + OPTSACRIFICE V' OPT-WAIT O warr-50
100 -

M

i

S

S

P

e

r

c

e

n

t

25.0 50.0 75.0 100.0

Arrival Rate

Figure 2b. Baseline (heavy load).

Focusing our attention on the locking algorithms (2PL, 2PL-HP, 2PL-WP) in these graphs,
we observe that the priority abort-based algorithm, 2PL-HP, performs the best under both
normal loads and heavy loads. 2PL-HP performs better than 2PL because it ensures that
urgent transactions are not delayed by transactions with later deadlines, unlike 2PL whose
priority-indifferent blocking policy results in long waiting times under high contention,
thus causing urgent transactions to miss their deadlines. Interestingly, the performance of
the priority inheritance-based algorithm, 2PL-WP, is only slightly better than that of 2PL.
This is because, under high data contention, urgent transactions are repeatedly blocked
by low priority transactions and the priority inheritance mechanism results in many trans-
actions executing at the same priority. Consequently, high-priority transactions effectively
receive little or no preferential treatment and the objective of providing service to transac-
tions based on the urgency of their deadlines is not realized.

Comparing the above results for locking atgorithms to those of the optimistic concurrency
control algorithms, we observe that OPT, the conventional optimistic algorithm, performs
better than all the locking algorithms, including 2PL-HP. This is a surprising result since
OPT is potentially wasteful of resources and is indifferent to transaction priorities, and
could therefore be expected to perform worse than 2PL-HP. If we compare the average

220 J.R. HARITSA, M.J. CAREY AND M. LIVNY

number of restarts suffered by a transaction with OPT and with 2PL-HP, however, we find
that 2PL-HP has many more restarts than OPT, as shown in Figure 2¢5 This phenomenon
is due to the wasted restarts problem of 2PL.-HP (described in Section 4.2.2), where even
a transaction that is later discarded may restart other transactions. In contrast, with OPT,
only a committing transaction can restart other transactions. At higher loads, when many
transactions miss their deadlines and are discarded, 2PL-HP has significantly more restarts
than OPT. This is brought out clearly in Figure 2c, where we observe a large difference be-
tween the “useful restarts” curve for 2PL-HP, which shows the number of restarts caused
only by eventually committed transactions, and the “total restarts” curve for 2PL-HP, which
shows the total number of restarts caused by all transactions. (For all algorithms, the number
of restarts decrease after a certain load because resource contention, rather than data con-
tention, becomes the more dominant reason for transactions missing their deadlines.)
The average progress made by transactions before they were restarted due to data con-
flicts is shown in Figure 2d (a transaction’s progress is measured in terms of the fraction
of its total execution that is completed). We observe in this figure that 2PL-HP consistently
detects conflicts earlier than OPT, as should be expected based on the discussion in Sec-
tion 4. One might therefore also expect 2PL-HP to waste less resources than OPT. However,

O 2pL < 2PL-wP A 2PLHP
X ot + opT-sacrFicE 'V OPT-waIT O warr-50
1.5 Loy A USEFUL(2PL-HP)

R
e
s
t 104
a
r
t
R
a
! 0.5 -
i
0

0.0 200 400 600 80.0 100.0

Arrival Rate

Figure 2c. Restarts (baseline).

DATA ACCESS SCHEDULING IN FIRM REAL-TIME DATABASE SYSTEMS 221

0O 2rL <& 2pL-wP A 2pLwP
X orr + OPT-SACRIFICE V opT-WAIT O WAIT-50
1.0
R 0.8 -
e
S
t
a 0.6
T
t
P 04
0
i
n
t 02
0.0

0.0 200 400 600 80.0 100.0

Arrival Rate

Figure 2d. Restart point (baseline).

since OPT has far fewer restarts, it actually makes better overall use of resources than
2PL-HP. This concept is quantified in Figure 2e, where the total utilization and the useful
utilization of the processors (the bottleneck resource) are shown. Useful utilization is com-
puted as the processor usage made by those transactions that eventually met their deadlines.
From the utilization curves, it is clear that OPT is more resource-efficient than 2PL-HP.
Therefore, for the workload of this experiment, the delayed conflict resolution policy of
OPT proves to be beneficial in its overall effect.

Moving on to the real-time algorithms, we observe that OPT-SACRIFICE, although per-
forming better than the locking algorithms, performs worse than the priority-indifferent
OPT algorithm. The degraded performance of OPT-SACRIFICE is due to its wasted sacri-
fices problem (described in Section 4.4.1), where validating transactions restart themselves
for higher priority transactions that are later discarded. In Figure 2d, we observe that the
average restart point of transactions is noticeably greater with OPT-SACRIFICE than with
any of the remaining optimistic algorithms. This is because the sacrifice-induced restarts
of low priority transactions occur when they have completed their entire processing. The
combination of later restarts and greater number of restarts results in OPT-SACRIFICE
wasting more resources than OPT. This is quantified in Figure 2e, where the useful utiliza-
tion of resources by OPT-SACRIFICE is noticeably smaller than that of OPT.

222 J.R. HARITSA, M.J. CAREY AND M. LIVNY

0 2rL <O wL-wp A opLHP B No-cc
X opt + OPT-SACRIFICE V OPT-WAIT O WAIT-50

B O m o BN e g

0.0 200 400 600 800 100.0

Arrival Rate

Figure 2e. CPU utilization (baseline).

Turning our attention to the priority-wait-based algorithms, OPT-WAIT and WAIT-50,
we observe in Figure 2a that under normal loads, their performance is superior to that
of OPT. This is due to the beneficial effects of their priority cognizance. Under heavy loads
(Figure 2b), however, WAIT-50 and OPT-WAIT behave identically to OPT. This latter result
is because, with high resource contention, it is uncommon for a low priority transaction
to gain access to the resources. Consequently, transactions usually reach their validation
stage only when their deadline is quite close, which means that the priority wait mechanism
has very limited impact, and Wait-50, OPT-WAIT, and OPT become essentially the same
algorithm.

An important point to note here is that the transaction workload of this experiment could
be expected, in the absence of deadlines, to generate exactly the opposite results in a resource-
limited conventional DBMS (Agrawal et al. 1987): A locking algorithm would perform
better (w.r.t. mean response time) than an optimistic algorithm because (a) it has no wasted
restarts since all transactions are eventually executed to completion, and (b) it is better
at conserving resources.

DATA ACCESS SCHEDULING IN FIRM REAL-TIME DATABASE SYSTEMS 223

64. Experiment 2: Pure Data Contention

The goal of our next experiment was to isolate the impact of data contention on the perfor-
mance of the concurrency control algorithms. For this experiment, therefore, the resources
were made “‘infinite,”® keeping all the other parameter values the same as those used in
the baseline experiment. The MissPercent performance results for this system configura-
tion are presented in Figures 3a and 3b. We observe in these figures that 2PL and 2PL-WP
perform very poorly, and that 2PL-HP is superior to both of them. We also observe that
conventional OPT performs better than 2PL-HP over virtually the entire loading range.
There are two reasons for OPT outperforming 2PL-HP here: First, the wasted restarts prob-
lem of 2PL-HP, as outlined earlier for the baseline experiment, occurs here too. This effect
is shown in Figure 3c. Second, the blocking component of 2PL-HP reduces the number
of transactions that are executing and making progress. This blocking causes an increase
in the average number of transactions in the system, thus generating more conflicts and
a greater number of restarts. With OPT, however, transactions are always executing and
are never blocked. This effect is quantified in Figure 3d, which shows the mean number
of transactions in the system for the different algorithms.

0O 2rL O 2pL-wP A 2PLHP
X oprT + OPT-SACRIFICE V OPT-WAIT O WwAIT-50

mm-.z

=S ee =y

Arrival Rate

Figure 3a. Data contention (normal load).

224 J.R. HARITSA, M.J. CAREY AND M. LIVNY

O 2rL O 2pL-wP A 2PL-HP B nNo-cc
X opr + OPT-SACRIFICE V OPT-WAIT O WAIT-50
100
80
M
i
s
5 60
P
€
r
¢ 40 1
e
n
t
20+
4
0¥ T T T T T T .
30.0 50.0 80.0 100.0

Arrival Rate

Figure 3b. Data contention (heavy load).

Moving on to the real-time optimistic algorithms, we observe that OPT-SACRIFICE per-
forms significantly worse relative to the priority-wait-based algorithms than it did under
finite resources. For the most part, OPT-SACRIFICE also performs worse than OPT. The
performance of OPT-SACRIFICE is further degraded here since the high data contention
levels lead to a steep increase in the number of conflicts and, consequently, in the number
of wasted sacrifices.

Turning our attention to OPT-WAIT, we observe that it performs the best at low levels
of data contention due to the beneficial effects of its priority wait mechanism. As data con-
tention increases, however, its performance steadily degrades. Finally, at high data conten-
tion levels, it performs worse than OPT. The reason for OPT-WAIT’s degraded performance
in this region is that the priority wait mechanism causes a significant increase in the average
number of transactions in the system, as shown in Figure 3d. This increase in transaction
population leads to an increased number of data conflicts and to delayed restarts of low
priority transactions, thus having an adverse effect on performance.

Finally, we observe that the WAIT-50 algorithm provides the best overall performance.
It behaves like OPT-WAIT under low data contention, and behaves like OPT under high
data contention. The explanation for this behavior of WAIT-50 is provided in the next
experiment.

DATA ACCESS SCHEDULING IN FIRM REAL-TIME DATABASE SYSTEMS 225

O 2t O 2PL-WP A ovLep
X orr + OPT-SACRIACE V OPT.WAIT O WAIT-50
4.0 4-———A USEFUL(2PL-HP)

R
e 30
s
t
a
r
t 2.0
R
a
t
i ol
0

600 30.0 100.0

Arrival Rate

0.0 200 400

Figure 3c. Restarts (data contention).

An important observation here is that while resource contention can be reduced by pur-
chasing more and/or faster resources, there exists no equally simple mechanism to reduce
data contention. It should also be noted that optimistic algorithms perform better than lock-
ing protocols under infinite resource conditions in a conventional DBMS setting as well
(Franaszek and Robinson 1985; Agrawal et al. 1987).

G.5. Experiment 3: Variable Slack Ratio

Our next experiment investigated the case where transactions may have different slack ratios.
For this experiment, we used deadline assignment DA2, which makes transaction deadlines
independent of their execution times, and results in transactions having a range of slack
ratios. The deadline-related workload parameters, LSF and HSF, were set at 1.33 and 4.0,
respectively, with the remaining workload and system parameters being the same as those
of the baseline experiment.

For this experiment, Figures 4a and 4b show the MissPercent behavior of the algorithms
under normal load and heavy load conditions, respectively. We observe that the qualitative
behavior of the various concurrency control algorithms is similar to that of the baseline

226 JR. HARITSA, M.JI. CAREY AND M. LIVNY

(). O 2pLwe A 2pLHP
X oPr + OPT-SACRIICE V OPT-WAIT O WAIT-50

200 -

150+

2o o0

100

501

H O ey =g o Ny

0w —

0.0 250 50.0 75.0 100.0

Arrival Rate

Figure 3d. Population (data contention).

experiment, with the optimistic algorithms generally performing better than the locking
algorithms. A difference, however, is that the wait-based algorithms, WAIT-50 and OPT-
WAIT, now perform noticeably better than OPT under normal loads. In fact, 2PL-HP and
OPT-SACRIFICE also perform better than OPT at low loads. The reason for the degraded
performance of OPT is that transactions with small slack ratios (relative to the slack ratios
of other transactions) are present in the workload. Such transactions have limited comple-
tion opportunities and OPT’s policy of permitting low priority validating transactions to
restart high priority transactions therefore results in an increased number of missed deadlines
among the transactions with small slack ratios. In the previous experiments, the detrimen-
tal effects of OPT’s indifference to transaction priorities were reduced because all transac-
tions had the same slack ratio.

When the same experiment is carried out under infinite resources, Figures 5a and 5b
are obtained. We observe that the performance improvement of the wait-based algorithms
over OPT at normal loads is greater in these figures relative to the corresponding perfor-
mance under finite resources. The reason for this behavior is the following: In the presence
of resource contention, the priority indifference of OPT is masked to some extent by the
priority scheduling at the resources. Under pure data contention, however, the negative
effects of OPT’s priority-indifference show up in their entirety.

DATA ACCESS SCHEDULING IN FIRM REAL-TIME DATABASE SYSTEMS 227

O 2L O 2PL-WP A 2PLHP B Nocc
X orr + OPT-SACRIFICE V OPT-WAIT O warr-so
254

201
M
i
s
S 151
P
€
T
¢ 104
[
n
t

0 =1
0.0 5.0 100 150 200 250

Arrival Rate

Figure 4a. Variable slack ratio (normal load).

Considering performance at high loads, we observe that OPT-WAIT performs worse than
OPT. This is due to the beneficial aspects of waiting being more than countered by its negative
aspects in terms of later restarts and increased conflicts. In contrast, WAIT-50, which had
been behaving like OPT-WAIT at normal loads, now changes character and behaves like
OPT. Once again, as in the earlier experiments, we find that WAIT-50 turns in the best
overall performance by behaving like OPT-WAIT when data contention is low and like OPT
when data contention is high.

The results of the experiments discussed so far have shown that WAIT-50 provides per-
formance close to that of either OPT or OPT-WAIT in operating regions where they behave
well, and provides the same or slightly better performance at intermediate points. Therefore,
in an overall sense, WAIT-50 integrates priority and waiting into the optimistic concurrency
control framework. Its control mechanism is fairly effective at deciding when the benefits of
priority waiting are outweighed by its drawbacks. In Figure 5c, the wait factor of WAIT-50 is
plotted with respect to that of OPT-WAIT. The “wait factor” measures the total time spent
in priority-waiting using WAIT-50, normalized by the waiting time of OPT-WAIT.” From
this figure, it is clear that WAIT-50’s wait factor is close to that of OPT-WAIT at low con-
tention levels but decreases steadily as the data contention level is increased. Therefore,

228 J.R. HARITSA, M.J. CAREY AND M. LIVNY

0O 2, <O 2pL-wP A pLuP B ~Nocc
X opr + OPT-SACRIFICE V OPL-WAIT O WAIT-50
100 -

©wwn -

=g 0o =o'

25.0 50.0 75.0 100.0

Arrival Rate

Figure 4b. Variable slack ratio (heavy load).

while OPT-WAIT and OPT represent the extremes with regard to priority-waiting, WAIT-50
controls the degree of waiting to match the level of data contention in the system.

6.6. Experiment 4: Wait Control Mechanism

Our next experiment examined the effect of the choice of 50 percent as the cutoff value
for the HPpercent control index in the WAIT-50 algorithm. Keeping the workload and system
parameters the same as those of Experiment 3, we measured the MissPercent performance
of WAIT-25 and WAIT-75 under conditions of both finite and infinite resources. Figures
6a and 6b show the results of the finite resources experiment under normal load and heavy
load, respectively, while Figure 7 gives the corresponding results under infinite resources.
(For clarity, we show only the curves for the priority-wait based algorithms in these figures.)

From these graphs, we observe that lowering the high-priority cutoff value to 25 percent
results in slightly improved normal load performance but worsened heavy load performance.
This behavior is due to the increased wait factor that is delivered by the decreased cutoff
setting. On the other hand, raising the cutoff value to 75 percent has the opposite effect:

DATA ACCESS SCHEDULING IN FIRM REAL-TIME DATABASE SYSTEMS 229

0 2 <O 2PL-WP A 2PLHP
X orr + OPT-SACRIFICE V OPT-WAIT O WwAIT-50

25

201

mm_.g

15

10}

L~ I B e B -

0.0 100 200 300 400 50.0
Arrival Rate

Figure 5a. Data contention (normal load).

the normal load performance becomes worse while the heavy load performance improves
slightly. This behavior is due to the decreased priority cognizance that is delivered by the
increased cutoff setting.

Based on these results, a 50 percent cutoff setting appears to establish a balanced tradeoff
between the opposing forces of priority cognizance and increased data contention, thus
providing good performance across the entire range of loading. The basic philosophy is
that priority-based waiting is quite beneficial under light loads, when data contention levels
are low. Under heavy loads, however, when data contention levels are high, waiting becomes
detrimental to performance. WAIT-50 is effective in dynamically changing its behavior to
match the level of data contention in the system.

In all of the experiments discussed so far, the real-time optimistic algorithms have outper-
formed the real-time locking algorithms over the entire range of loading, under conditions
of both limited resources and infinite resources. In particular, WAIT-50, the best per-
forming optimistic algorithm, has always been superior to 2PL-HP, the best among the
locking algorithms, especially when data contention is the primary performance limiting
factor. These results (and additional experimental results presented in (Haritsa et al. 1990a;
1990b)) might appear to suggest that WAIT-50 is always the preferred concurrency control

230 JR. HARITSA, M.J. CAREY AND M. LIVNY

0 2, < 2pL-wp A 2PLHP
X opT + OPT-SACRIFICE V OPT-WAIT O WAIT-50
100 -

80

mm—.g

~D o6 me -y

- [~

[—3 [}
\\\

500 60.0 700 800 90.0 100.0

Arrival Rate

Figure 5b. Data contention (heavy load).

algorithm for transaction workloads that have firm deadlines. However, as we will show
in the following experiment, there are certain regions of operation where the disadvantages
of delayed conflict resolution, in terms of later restarts and more wasted resources, can
outweigh its benefits and result in WAIT-50 performing worse than 2PL-HP.

6.7. Experiment 5: Performance Crossover

In this experiment, we model a situation where transactions have a high write probability
and the database size is large. For this experiment, the transaction write probability was
set to 1.0 and the database size was increased to 10,000 pages, while keeping all the other
parameters the same as those of the baseline experiment. The corresponding MissPercent
behavior is shown in Figures 8a and 8b for normal load and heavy load conditions, respec-
tively. (For graph clarity, we show only the best optimistic and locking algorithms, WAIT-50
and 2PL-HP, respectively.) In these figures we see that, unlike the previous experiments,
it is now 2PL-HP which performs better than WAIT-50. The reason for this change in their
relative performance behavior is explained in the restart curves shown in Figure 8c, where

DATA ACCESS SCHEDULING IN FIRM REAL-TIME DATABASE SYSTEMS 231

V OPT-WAIT O wAIT-50 J
1.01 v
0.8
w
a
i
t 0.6
F
a
[
t 0.41
0
r
0.2 1
0.0 :

0.0 20.0 40.0 60.0 80.0 100.0
Arrival Rate

Figure 5c. Wait factor (data contention).

we see that the number of restarts of 2PL-HP is now significantly lower than that of WAIT-50
at normal loads. This is because the number of conflicts developed by each transaction
is small due to the large database size (compare the restart ratio magnitudes in Figure 8c
to those in Figure 2c). In addition, relatively few transactions miss their deadlines in this
loading region. Therefore, the degrading effect of restarts caused by discarded transactions
is minimized, resulting in behavior similar to that in conventional DBMSs where locking-
based algorithms have fewer restarts than optimistic algorithms. At heavy loads, resource
contention is the dominant factor in causing transactions to miss their deadlines. Therefore,
although 2PL-HP has higher number of restarts than WAIT-50 in this region, these excess
restarts have little performance impact since they are restarts of transactions that will, in
all likelihood, eventually miss their deadlines due to resource contention itself. If we con-
sider the utilization curves in Figure 8d, it is clear that WAIT-50, due to its delayed conflict
resolution and solely restart-based conflict resolution policy, wastes more resources and
therefore performs worse than 2PL-HP.

We conducted another experiment where the arrival rate was fixed at 20 transactions/
second, the write probability was set to 1.0 and the number of pages in the database was
varied from 100 to 10,000. The results of this experiment are shown in Figure 9a and they

232 J.R. HARITSA, M.J. CAREY AND M. LIVNY

X opT V OPT-WAIT
0 warr2s O walt-50 O WAIT-75

201

M 151
1
s
S
P

e 10
r
[
[
n

t 5 1

om - .
0.0 10.0 20.0 30.0

Arrival Rate

Figure 6a. Wait control (normal load).

clearly indicate that there is a crossover point, in terms of the database size, between the
relative performance of 2PL-HP and WAIT-50. For database sizes smaller than the crossover
point, the data contention generated is high enough to cause WAIT-50 to perform better
than 2PL-HP due to 2PL-HP’s problem of wasted restarts. In contrast, for database sizes
larger than the crossover point, 2PL-HP’s immediate detection of conflicts and its block-
ing factor result in its performing better than WAIT-50. This concept is quantified in the
restart curves of Figure 9b.

In Experiments 1 through 4, the database size was smaller than the crossover size, and
therefore these experiments showed WAIT-50 outperforming 2PL-HP. However, as demon-
strated by the experiments just discussed, 2PL-HP performs better than WAIT-50 for data-
base sizes greater than the crossover size. These experiments also help explain the apparent
contradiction in results between the studies of (Haritsa et al. 1990a; 1990b) and (Huang
et al. 1991a) that was mentioned in Section 3. The (Haritsa et al. 1990a; 1990b) studies
considered workloads in the small database region and therefore found WAIT-50 to outper-
form 2PL-HP. In contrast, the experiments of (Huang et al. 1991a) considered workloads
in the large database region and therefore observed 2PL-HP to outperform WAIT-50.

DATA ACCESS SCHEDULING IN FIRM REAL-TIME DATABASE SYSTEMS 233

X orr V' opT-waIT
0 warr2s O WAIT-50 O WAIT-75
100+
80
M
i
s
S 60 -
P
e
r
¢ 40
e
n
t
20
0- T T T T — y -
30.0 50.0 80.0 100.0

Arrival Rate

Figure 6b. Wait control (heavy load).

The database size in the (Huang et al. 1991a) study, which implemented a closed system,
was (MPL * 100 blocks) with each block containing 6 records. The average transaction
length was 6 “steps,” with 4 records accessed in each step. If we define the database access
ratio to be the maximum number of objects that could be simultaneously accessed by all
the transactions in the system relative to the size of the database, then the *“database access
ratio” of (Huang et al. 1991a) study was (MPL * 6 * 4)/(MPL * 100 * 6) = 0.04. In the
(Haritsa et al. 1990a; 1990b) RTDBS experiments, the database size was 1000 pages and
the average transaction length was 16 pages, with the mean population, depending on the
arrival rate, varying from a few transactions to several tens of transactions. Therefore, with
as few as three transactions in the system, the database access ratio = (3 * 16)/1000 = 0.05
was greater than that of the (Huang et al. 1991a) study. At higher loads, the access ratios
were substantially higher, resulting in high contention levels.

It was conjectured in (Huang et al. 1991a) that a major cause for the differences in per-
formance results was that their testbed-based study took algorithm implementation overheads
into account, unlike the simulation-based studies of (Haritsa et al. 1990a; 1990b). However,
as the above experiment shows, the contradictions are primarily due to basic differences
in workloads rather than differences in the systems or their implementations. This was con-
firmed in additional experiments that are not described here due to space considerations.

234 JR. HARITSA, M.J. CAREY AND M. LIVNY

X 0T V OPT-WAIT
O warra2s O warT-5 O WAIT-75

30-.
251
M
i
s 201
S
P
e 151
r
c
e 10
n]
t

60.0 80.0 100.0

Arrival Rate

40.0
Figure 7. Data contention.

7. Conclusions

In this paper, we have addressed the problem of data access scheduling in a real-time database
system supporting transactions with firm deadlines. In particular, we have made a quan-
titative study of the relative performance of locking and optimistic concurrency control
techniques in the firm real-time domain. The performance metric of interest is the percent-
age of deadlines that are met, unlike a conventional DBMS where mean response time
or throughput is usuaily the performance criterion. Using a detailed simulation model of
an RTDBS, we studied the performance of the conventional locking algorithm (2PL), the
conventional optimistic concurrency control algorithm (OPT), and several real-time variants
of these algorithms under a range of workloads and system operating conditions.

Our experiments demonstrated that under sufficiently high data contention, optimistic
algorithms outperform locking algorithms over a wide range of system loading and resource
availability. This is a surprising result since optimistic algorithms perform worse than locking
protocols in resource-limited conventional DBMSs. The improved performance of the opti-
mistic algorithms seen here stems primarily from the firm-deadline feature of discarding

DATA ACCESS SCHEDULING IN FIRM REAL-TIME DATABASE SYSTEMS 235

[A 2PL-HP O WAIT-50 B No-cc-1
201

M 15-

i

s

S

P

e 10 -

r

C

[

n

t 51
0

0.0 5.0 100 150 200 25.0

Arrival Rate

Figure 8a. Large database (normal load).

late transactions. In this context, the delayed conflict resolution policy of optimistic algo-
rithms aids them in making better conflict decisions than locking algorithms (which resolve
conflicts immediately). By delaying conflict resolution to transaction commit time, the opti-
mistic algorithms ensure that transactions which are destined to miss their deadlines do
not impede the progress (w.r.t. data access) of other transactions in the system. The bene-
fits of this feature were strong enough that even the conventional OPT algorithm outper-
formed the best real-time locking algorithm, 2PL-HP, over most of the loading range. This
occurred because 2PL-HP was adversely affected by transactions that were eventually
discarded.

Among the optimistic algorithms, WATT-50 was observed to provide the best overall per-
formance over a fairly wide range of workloads and operating conditions. The WAIT-50
algorithm monitors transaction conflict states and gives precedence to urgent transactions
in a controlled manner. It features a priority wait mechanism that provides preferential
treatment to high priority transactions by forcing low priority validating transactions to
wait for conflicting high priority transactions to complete first. While the priority waiting
mechanism works well at low data contention levels, it can cause significant performance
degradation at high contention levels by generating a steep increase in the number of data

236 JR. HARITSA, M.J. CAREY AND M. LIVNY

LA 2PL-HP O WAIT-50 B Nocc _]
1004
80
M
i
S
S 60
P
e
r
¢ 401
e
n
t
201
q
4
05 — — —
25.0 50.0 75.0 100.0

Arrival Rate

Figure 8b. Large database (heavy load).

conflicts. A simple wait control mechanism consisting of a 50 percent rule is used in the
WAIT-50 algorithm to address this problem: If half or more of the transactions conflicting
with a validating transaction are of higher priority, then the validating transaction is made
to wait; otherwise, it is allowed to commit. This simple rule was found to be quite effective
in detecting when the benefits of priority-waiting were outweighed by its drawbacks, and
resulted in WAIT-50 performing well over the entire range of loading.

While the optimistic algorithms outperformed the locking algorithms under high data
contention, the situation was reversed under limited data contention. This was because the
performance degradation caused by eventually discarded transactions was minimized under
these conditions. In this situation, the disadvantages of delayed conflict resolution, in terms
of late restarts and wastage of resources, caused the optimistic algorithms to perform worse
than the locking algorithms. Identifying these different workload regions helped us to resolve
the apparent contradictions between the results described in (Haritsa et al. 1990a; 1990b)
and those reported in (Huang et al. 1991a).

Among the locking algorithms, 2PL-HP, which incorporates a priority abort mechanism,
delivered the best performance. In contrast, the 2PL-WP algorithm, which incorporates
a priority inheritance mechanism, performed almost the same as conventional 2PL for the

DATA ACCESS SCHEDULING IN FIRM REAL-TIME DATABASE SYSTEMS 237

L A 2PL-HP O WAIT-50

0.5 B A USEFUL(2PL-HP)

LI N -]

0.2+

Q w0

0.0 —r T T — —
0.0 20.0 400 600 800 100,0

Arrival Rate

Figure 8c. Restarts (large DB).

workloads considered in our experiments. Similar behavior was observed for 2PL-WP in
(Huang et al. 1991b). In (Abbott and Garcia-Molina 1989), however, 2PL-WP was found
to perform significantly better than 2PL-HP. We conjecture that the reason for the differ-
ences in results is that the (Abbott and Garcia-Molina 1989) study considered a soft dead-
line transaction processing environment, where all transactions have to be executed to com-
pletion, while our present study and that of (Huang et al. 1991b), have considered firm
deadline transactions. Based on some preliminary results in (Haritsa et al. 1990a), we
expect the relative performance of locking and optimistic concurrency control algorithms
in the soft-deadline framework to be similar to those observed in conventional DBMSs
since firm deadline-induced problems such as wasted restarts do not arise in this environ-
ment. We plan to investigate this issue in greater detail in our future research.

Another interesting future research challenge is to develop an analytical model of the
WAIT-50 algorithm and to theoretically account for the effectiveness of the 50 percent control
rule. Also, WAIT-50’s control mechanism, which monitors transaction conflict states,
operates on a per-transaction basis. It would be instructive to compare its performance
with that of a control mechanism that monitors global data contention levels (e.g. (Carey,
Krishnamurthi and Livny 1990)).

238 J.R. HARITSA, M.J. CAREY AND M. LIVNY

LA 2PL-HP O WAIT-50 & Nocc

1.0

0.8
---------- USEFUL

0.2

B0 et B N - (=l -No)

008 T T . T .
0.0 200 400 600 80.0 1000

Arrival Rate

Figure 8d. CPU utilization (large DB).

In summary, we have shown that the firm-deadline RTDBS feature of discarding late
transactions can have a profound impact on the performance of concurrency control algo-
rithms, resulting in performance recommendations quite different from those for the corre-
sponding conventional DBMS.

Notes

1. This is true only for priority assignment policies that assign unique priority values and do not dynamically
change the relative priority ordering of concurrently executing transactions.

2. The Broadcast Commit scheme is also sometimes referred to as forward optimistic concurrency control (Haerder
1984).

3. While modeling buffering would certainly result in different absolute performance numbers, we do not expect
that doing so would significantly alter the relative performance behavior of the concurrency control algorithms.

4. The original priorities, and not the inherited priorities, are used for deadlock resolution with 2PL-WP since,
if transactions have to be restarted, we would like the restarted transactions to be the least urgent transactions.

5. The restart graphs in this paper are normalized on a per-transaction basis; that is, they are computed as the
number of restarts divided by the number of input transactions.

6. As mentioned in Section 6.2, infinite resources means that there is no queueing for resources.

7. The wait factor of OPT is trivially zero as the algorithm has no wait component.

DATA ACCESS SCHEDULING IN FIRM REAL-TIME DATABASE SYSTEMS 239

LA 2PL-HP O WAIT-50 B Nocc J

1004

80
M A
i
s
8 60 -
P
e
r
c 40
e
n
t

201

5000.0 10000.0

Database Size

0.0 2000.0

Figure 9a. Crossover (Arr. Rate = 20).

240 JR. HARITSA, M.J. CAREY AND M. LIVNY

A 2PL-HP O WAIT-50 }
12.07
R
e 907
S
t
a
r
t 6.0
R Dyremeenenees A USEFUL(2PL-HP)
a
t
' 301
(1]
0.0 — -1 ;
0.0 2000.0 5000.0 10000.0

Database Size

Figure 9b. Restarts (crossover).

References

Abbott, R., and Garcia-Molina, H. 1988. Scheduling real-time transactions: a performance evaluation, Proc.
of 14th Intl. Conf. on Very Large DataBases. August.

Abbott, R., and Garcia-Molina, H. 1989. Scheduling real-time transactions with disk resident data, Proc of I5th
Intl. Conf. on Very Large DataBases. August.

Agrawal, R., Carey, M., and Livny, M. 1987. Concurrency control performance modeling: alternatives and impli-
cations, ACM Trans. on Database Systems, 12(4), December.

Bernstein, P., Hadzilacos, V., and Goodman, N. 1987. Concurrency Control and Recovery in Database Systems,
Reading, MA: Addison Wesley.

Carey, M. 1983. An abstract model of database concurrency control algorithms, Proc of ACM SIGMOD Intl.
Conf. on Management of Data, May.

Carey, M., Krishnamurthi, S., and Livny, M. 1990. Load control for locking: the half-and-half algorithm, Proc
of 9th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, April.

Cook, R., Son, R., Son, S., Oh, H., and Lee, J. 1991. New paradigms for real-time database systems, Proc
of 8th IEEE Workshop on Real-Time Operating Systems and Software, May.

Eswaran, K., Gray, J., Lorie, R., and Traiger, I. 1976. The notions of consistency and predicate locks in a database
system, Comm. of ACM, 19(11), November.

Franaszek, P., and Robinson, J. 1985. Limitations of concurrency in transaction processing, ACM Tians. on Database
Systems, 12(1), March.

DATA ACCESS SCHEDULING IN FIRM REAL-TIME DATABASE SYSTEMS 241

Gray, J., McJones, P., and Blasgen, M. 1981. The recovery manager of the System R database manager, ACM
Computing Surveys, 13(2), June.

Haerder, T. 1984. Observations on optimistic concurrency control schemes, Information Systems, 9(2).

Haritsa, J., Carey, M., Livny, M. 1990(a). On being optimistic about real-time constraints, Proc. of 9th SIGACT
SIGMOD-SIGART Symp. on Principles of Database Systems, April.

Haritsa, J., Carey, M., Livny, M. 1990(b). Dynamic real-time optimistic concurrency control, Proc. of lith IEEE
Real-Time Systems Symposium, December.

Haritsa, J. 1991. Transaction scheduling in firm real-time database systems, Ph.D. Thesis, Computer Sciences
Dept., Univ. of Wisconsin, Madison.

Huang, J., Stankovic, J., Towsley, D., and Ramamritham, K. 1989. Experimental evaluation of real-time transac-
tion processing, Proc. of 10th IEEE Real-Time Systems Symposium, December.

Huang, J., Stankovic, J., Ramamritham, K., and Towsley, D. 1991(a). Experimental evaluation of real-time op-
timistic concurrency control schemes, Proc. of 17th Intl. Conf. on Very Large Data Bases, September.

Huang, J., Stankovic, J., Ramamritham, K., and Towsley, D. 1991(b). On using priority inheritance in real-time
databases, Proc. of I2th IEEE Real-Time Systems Symposium, December.

Kung, H., and Robinson, J. 1981. On optimistic methods for concurrency control, ACM Trans. on Database Systems,
6(2), June.

Lin, Y., and Son, S. 1990. Concurrency control in real-time database systems by dynamic adjustment of serialization
order, Proc. of lith IEEE Real-Time Systems Symposium, December.

Livny, M. 1988. DeNet User’s Guide, Version 1.0, Computer Sciences Department, Univ. of Wisconsin, Madison.

Menasce, D., and Nakanishi, T. 1982. Optimistic versus pessimistic concurrency control mechanisms in database
management systems, Information Systems, 7(1).

Ramamritham, K., and Stankovic, J. 1989. Overview of the SPRING project, IEEE Real-Time Systems Newsletter,
Winter.

Robinson, J. 1982. Design of concurrency controls for transaction processing systems, Ph.D. Thesis, Computer
Sciences Dept., Carnegie Mellon University.

Sha, L., Rajkumar, R., Lehoczky, J. 1987. Priority inheritance protocols: an approach to real-time synchroniza-
tion, Technical Report CMU-CS-87-181, Depts. of CS, ECE, and Statistics, Carnegie Mellon University.

Stankovic, J., Zhao, W. 1988. On real-time transactions, ACM SIGMOD Record, 17(1), March.

Tay, Y. 1984. A mean value performance model for locking in databases, Ph.D. Thesis, Computer Sciences Dept.,
Harvard University, February.

