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Based on L imited W a it-Depth 

Peter A. Franaszek,  Fellow, IEEE, Jayant R. Haritsa, Member,  IEEE, John T. Robinson, and  Alexander Thomasian 

Abstract- The performance of high-volume transaction pro- 
cessing systems for business applications is determined by the 
degree of contention for hardware resources as well as for data. 
Hardware resource requirements may  be met cost-effectively 
with a data-partitioned or shared-nothing architecture. However, 
the two-phase locking (2PL) concurrency control method may  
restrict the performance of a shared-nothing system more se- 
verely than that of a centralized system due to increased lock 
holding times. Deadlock detection and resolution are an added 
complicating factor in shared-nothing systems. In this paper, 
we describe distributed Wait-Depth Limited (WDL) concurrency 
control (CC), a locking-based distributed CC method that limits 
the wait-depth of blocked transactions to one, thus preventing the 
occurrence of deadlocks. Several implementations of distributed 
WDL which vary in the number of messages and the amount 
of information available for decision making are discussed. The 
performance of a generic implementation of distributed WDL 
is compared with distributed 2PL (with general waiting policy) 
and the Wound-Wait  CC method through a detailed simulation. 
It is shown that distributed WDL behaves similarly to 2PL for 
low lock contention levels, but for substantial lock contention 
levels (caused by higher degrees of transaction concurrency), 
distributed WDL outperforms the other methods to a significant 
degree. 

Index Terms- Concurrency control, distributed algorithms, 
distributed databases, performance evaluation, simulation, two- 
phase locking. 

I. INTR~DLJCTI~N 

H IGH-END transaction processing systems for business 
applications (such as  banking, airline reservations, etc.) 

have  stringent requirements for CPU processing power,  I/O 
bandwidth, high availability, and  cost effectiveness. Architec- 
tures for this purpose have  evolved in three categories which 
are sometimes referred to as  Shared Everything (SE), Shared 
Disk (SD), and  Shared Nothing (SN) systems [16]. SN or 
data partitioned systems include distributed databases,  but also 
have  been  used as  a  system design. paradigm (e.g., Tandem 
multicomputers, Teradata’s DBW012,  and  mult icomputers 
with hypercube interconnection topologies). It has  been  argued 
that the SN paradigm is superior to the other two from the 
viewpoint of cost effectiveness, scalability, and  availability. 
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Although SE and  SD systems serve as  the workhorse 
for today’s high-end transaction processing systems, we are 
concerned with high-performance transaction processing in SN 
systems. This is because the increasing demand  for higher 
transaction throughput from the viewpoint of processing power  
and  I/O bandwidth can be  met cost-effectively by  SN systems. 
The  performance of SN systems in a  transaction processing 
environment is affected by  the number  of internode messages 
generated by  transactions. The  cost of sending and  receiv- 
ing messages tends to be  nonnegl ible [9] and  constitutes a  
significant CPU processing overhead that does  not arise in 
central ized systems. On  the other hand,  there is the advantage 
of low cost per  MIPS microprocessor technology, which 
makes SN systems attractive for processing high volumes of 
transactions [8] as  well as  data-intensive queries. 

Two-phase locking (2PL) with the general  waiting policy 
is the prevalent Concurrency Control (CC) method in com- 
mercial database systems.’ It has  been  shown in numerous 
studies (see, e.g., [4], [17], [19]) that the performance of 
a  system with 2PL may be  constrained by  data rather than 
hardware resource contention. In fact, SN systems are more 
susceptible to thrashing (degradat ion in system performance) 
than central ized systems because of the increased lock holding 
times due  to internode communicat ion and  commit protocols 
[2], and  possible delays in deadlock detection and  resolution. 
Several ways to cope with this problem are as  follows. 

1) The use of different types of locks. Finer locking granu- 
larity (e.g., record versus page  level locking), less restrictive 
locking modes  (e.g., shared versus exclusive locks), semantics- 
based  locks ( increment and  decrement  locks which take advan-  
tage of commutativity), or special ized locks for indexes and  
other data structures [2] are some examples. 

2) The use of CC methods other than 2PL. A large number  
of CC methods have  been  proposed [2]. It can  be  concluded 
from the studies reported in [4], [7] that in a  system with 
high data contention, significant improvements in per formance 
(compared to 2PL) are possible by  utilizing data prefetching 
or judicious restarts of transactions (as descr ibed below). The  
adopt ion of these methods requires additional CPU processing 
capacity to tolerate the wasted processing due  to transaction 
restarts. 

A class of CC methods that take advantage of access 
invariance are descr ibed in [5]. Briefly, access invariance 

‘Whi le all CC methods considered in this paper are based on  two-phase 
locking, we use 2PL to refer to the standard locking policy where a  transaction 
encountering a  lock conflict is blocked and restarts are initiated only when 
there is a  deadlock. 
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implies that a  transaction will access the same set of database 
objects when  it is executed at different times in a  relatively 

i short time interval. Such CC methods potentially have  two 
/ I execut ion phases,  where the first phase  does  not involve CC 

and  serves the purpose of prefetching data for the second 
I execut ion phase,  which uses some CC method, e.g., 2PL. 

W ith full access invariance, all of the data required for the 

I second execut ion will be  found in the database buffer (in main 
memory),  and  the execut ion time of this phase  will be  an  
order of magni tude shorter than the first phase.  Therefore, the 
mean  lock holding times in the second phase  are an  order 
of magni tude shorter than they would have  been  if locks 
were acquired in the first phase,  which implies a  significant 
reduct ion in lock contention. This effect is quantif ied in 
[20]. In fact, an  appropriate CC method such as  optimistic 
die [5] may be  used during the first execut ion phase,  in 
which case a  successfully validated transaction may commit 
at the complet ion of its first phase.  Given that the second 
phase  is based  on  locking, lock preclaiming may be  used 
to prevent deadlocks since the data required for execut ion 
are known at the end  of the first execut ion phase.  This 
hybrid CC scheme was shown to outperform 2PL in a  high- 
per formance SN system with data partitioning [18]. Due  to the 
usual d isadvantages associated with implementing optimistic 
methods [lo], [13], this method will not be  considered further 
in this work. 

The  Wait-Depth Limited (WDL) CC method for central ized 
databases (descr ibed in Section II-D) limits the wait-depth of 
b locked transactions, and  is shown in [6], [7] to have  superior 
per formance with respect to 2PL, other locking methods such 
as  running priority [4], and  even optimistic CC methods (see, 
e.g., [2]) (when the hardware resources of the system are 
finite). In this paper,  we propose an  appropriate modification 
of WDL  to SN systems, which has  the twin goals of maintain- 
ing the main characteristics of WDL,  while minimizing the 
number  of additional messages that would be  required for a  
straightforward implementation. For example, the difference 
of current time and  the starting time of the current invocation 
of a  transaction is used  to indicate its progress instead of the 
number  of locks held by  the transaction in central ized systems 
[4], [6] (this progress information is used  in deciding which 
transaction should be  restarted to limit the wait-depth). In 
addition, schemes based  on  distributed decision making reduce 
the number  of internode messages,  but may incur more restarts 
than are absolutely necessary to limit the wait-depth to one.  
W e  also propose alternate implementations of distributed WDL  
that eliminate the possibility of multiple restarts at the cost of 
additional complexity and/or extra messages.  

Simulation is used  to compare the performance of dis- 
tributed WDL  with the distributed 2PL and  the Wound-Wai t  
methods [14]. 2PL was chosen because it is the protocol 
used  in almost all transaction processing systems. Deadlock 
detection in distributed 2PL tends to be  complex. Alternative 
deadlock resolution schemes are based  on  central ized and  
distributed combining of wait-for graphs or using t imeouts (see 
Section II-B). An advantage of the Wound-Wai t  (WW) [14] 
and  distributed WDL  methods (with a  wait-depth of one,  as  
discussed later) with respect to 2PL is that they are deadlock- 

free. Furthermore, in the case of WW,  the decision as  to 
which transaction is to be  restarted is done  locally (at the node  
where the lock conflict occurs), without requiring additional 
messages.  Our  choice of CC methods covers the three main 
categories proposed in [4] of priority-less (2PL), strict priority 
(WW), and  approximate essential blocking (distributed WDL).  

A large number  of papers  have  been  written describing 
new distributed CC methods and  compar ing their per formance 
through analysis or simulation. Some of the early work deal ing 
with per formance issues of distributed CC methods is surveyed 
in [15]. A more recent comparat ive study of CC methods and  
a  survey of other works appears  in [3]. A simulation study 
deal ing with the effect of locking on  the performance of an  
SN system is reported in [ll]. 

The  paper  is organized as  follows. Section II descr ibes 
the distributed WDL  method, and  also includes a  brief de-  
scription of the 2PL and  W W  methods. Section III descr ibes 
the model  for the computer  systems, the database,  and  the 
transaction characteristics considered in the simulation study. 
Simulation results are descr ibed in Section IV. Alternative 
implementations of distributed WDL  are descr ibed in Section 
V. Conclusions appear  in Section VI. 

II. DISTRIBUTED CONCURRENCY CONTROL ALGORITHMS 

Our study compares the performance of distributed WDL  
with respect to two well-known CC methods that, like dis- 
tributed WDL,  use  locking as  the underlying synchronizat ion 
mechanism. The  selected methods are the distributed 2PL [2] 
and  the Wound-Wai t  (WW) method [14]. In this section, we 
first descr ibe the general  structure of a  distributed transaction 
in our  model. A brief description of the 2PL and  W W  CC 
methods is then presented, fol lowed by a  detailed description 
of distributed WDL.  

A. Structure of Distributed Transactions 

Each distributed global transaction consists of a  muster 
(or coordinator) process and  a  set of subtransact ions (or 
cohort  processes).  The  transaction runs at one  of the nodes  
of the system, making database calls to the DBMS at the 
local (resp. remote) nodes  to access local (resp. remote) 
data. Only sequential transaction execut ion with a  single 
end-of-transaction commit point is considered here, for the 
sake of simplicity. W e  are not concerned with transactions 
involving user interactions, such as  long-running transactions 
arising in computer-aided design applications, but rather with 
“short” transactions arising in business applications which 
have  stringent response time requirements. For all the CC 
methods, the two-phase commit protocol [2] is used  to ensure 
transaction atomicity. 

The  data distribution across the nodes  of SN systems such as  
database machines is based  on  hashing appl ied to the primary 
key field in a  relation. This general ly implies a  uniform 
distribution of accesses to the objects in the database.  In the 
case of specific applications and  transaction types, the data 
(e.g., relations or fragments of them) may be  al located SO as 
to enhance  locality of access. The  latter allocation will be  used  
in our  study since it allows us to study the effect of locality 
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of access. Furthermore, we will assume that the data are not 
replicated, thereby requiring execut ion at a  unique node  for 
each  data item that is accessed by  a  transaction. 

When  a  new transaction arrives at one  of the nodes  of 
the system, it is ass igned a  t imestamp. The  t imestamp is 
constructed by  appending the node  identifier of the parent node  
to the current system clock time at that node,  thus ensur ing that 
all transaction t imestamps are unique. The  global transaction’s 
t imestamp is also assigned to all of its cohorts. 

B. The Two-Phase Locking (2PL) 
Concurrency Control Method 

This is the commonly used  CC paradigm in distributed 
databases.  Transact ions set locks directly at the primary ex- 
ecution node  and  indirectly through their subtransact ions at 
other nodes.  All locks are held until a  transaction is either 
successfully committed or it is absorbed (strict 2PL) [2]. 

When  there is a  lock conflict, the transaction request ing the 
lock is blocked, and  a  request to this effect is posted in an  
FCFS queue.  Since deadlocks are a  possibility with 2PL, a  
central ized deadlock detection scheme may be  adopted.  Alter- 
natively, deadlock detection may be  carried out by  the various 
nodes  in a  round-robin fashion [3]. Distributed deadlock de-  
tection methods will further reduce communicat ion overhead 
for deadlock detection. Timeouts due  to their simplicity are the 
most popular method for deadlock resolution in SN systems. It 
is noted in [ll] that it is difficult to determine an  appropriate 
t imeout interval. 

C. The Wound-Wait  (WW) Concurrency Control Method 

The W W  CC method descr ibed in (141 is an  effective 
method for prevent ing deadlocks in a  distributed database 
based  on  local decisions made  at the node  where the lock 
conflict occurred. This is accompl ished by  utilizing priorities 
in resolving lock conflicts based  on  transaction t imestamps. 
When  an  older transaction requests a  lock on  an  object which 
is locked by  a  younger  transaction in a  conflicting mode,  
then the younger  transaction is aborted. Younger  transactions, 
however,  are made  to wait for older transactions when  they 
request conflicting locks on  data items held by  older trans- 
actions. Deadlocks are eliminated since any  cycle of waiting 
transactions would have  to include at least one  instance of an  
older transaction waiting for a  younger  transaction and  such 
instances are prevented by  this CC method. 

An improvement in per formance is achieved by  ordering 
lock requests according to transaction t imestamps (with older 
transactions being placed ahead  of younger  transactions in the 
queues  for locks). When  a  transaction is restarted, it retains the 
t imestamp that was associated when  it first entered the system. 

D. The Distributed WDL Concurrency Control Method 

In this section, we first descr ibe the central ized WDL  
method. In Section II-D2), we discuss the length function for 
distributed WDL,  which is descr ibed in Section II-D3). This is 
fol lowed by an  illustrative example, a  discussion of the issue of 
multiple transaction restarts to resolve the same lock conflict, 
and  a  high-level compar ison of various methods. 

-.- 

1) Centralized WDL: The WDL(d)  CC methods descr ibed 
in [6], [7] constitute a  family of CC methods which restrict 
the wait-depth to d levels (only d = 1  is considered here), and  
in addit ion use  a  judicious victim selection policy to choose 
the transaction to be  restarted such that wasted processing is 
minimized. Lock conflicts resulting in a  violation of the wait- 
depth limit are resolved in WDL  by compar ing the progress 
made  by the transactions involved in the lock conflict or their 
“length” (denoted by  L(T) for transaction T). The  central ized 
WDL  method can be  specif ied succinctly by  considering the 
wait-for trees associated with two active transactions T and  T’ 
as shown in Fig. la(a). Transact ion T (resp. T’) is blocking 
n  > 0  (resp. m  > 0) transactions. Next, T’ makes a  lock 
request and  encounters a  lock conflict with either transaction 
T or one  of the n transactions blocked by  it. The  following 
rules cover all possible cases. 

1) Case of Fig. la(b) 
a) m = 0: T’ waits (the wait tree is of depth 1). 
b) m  > 0: Restart T’ unless L(T’) > L(T) and, for each  

i,L(T’) 2  L(T,‘), in which case restart T. 
2) Case of Fig. la(c): 

a) m  = 0: Restart Tl unless L(Tl) > L(T) and  Ii > 
L(T’), in which case restart T. 

b) m  > 0: Restart T’ unless L(T’) > L(Tl) and, for 
each  i,L(T’) _> L(T,I), in which case restart Tl. 

A pictorial representat ion of the WDL  paradigm is given 
in Fig. l(b). 

What  we just descr ibed is a  specific instance of the wait- 
depth limited policies that were proposed in 161,  [7]. Alterna- 
tively, it is possible to consider only two (rather than three or 
more) transactions at a  time in resolving lock conflicts [21].2 
Referring to Fig. l(a), when  T’ has a  lock conflict with T 
(resp. Tl) as in Fig. la(b) [resp. Fig. la(c)], we first check if 
it is blocking other transactions (i.e., m  > 0). If so, we restart 
T’ if L(T) is smaller than L(T’) [resp. L(Tl)]. Otherwise, 
the transaction holding the lock (T or Tl) is restarted. In the 
case that T’ is not blocking other transactions, however,  we 
check whether the transaction holding the lock is active or 
b locked [as in Fig. la(c)]. If it is active, no  action is taken. 
If it is blocked, we restart T’ if L(T’) < L(Tl); otherwise, 
Tl is restarted. 

For central ized database systems, this simplified scheme 
provides performance that is close to that of the original WDL  
method [21]. When  implemented in a  distributed environment, 
however,  the message complexity (the number  of messages 
required for conflict resolution as  discussed in Section V-C) 
of the simplified method is identical to that of the original 
method. Given that the simplified method does  not result in 
a  reduct ion in messages complexity and  its per formance (in 
central ized systems) is inferior to the original WDL,  we do  
not consider the simplified WDL  in this study. 

2) The Length Function in Distributed WDL: In the cen- 
tralized case, it is convenient to define L(T) as the number  
of locks held by  T, and  this has  been  shown to yield good  
performance [6], [7]. However,  in the distributed case, given 
a  particular subtransaction, determination of the total number  

‘The primary reason for considering this scheme in [21] was to simplify 
the analysis required for estimating transaction restart probabilities. 
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of locks held by  all subtransact ions of the global transaction 
would involve excessive communicat ion, and  in any  case, 
the information could be  obsolete by  the time it was finally 
collected. Therefore, for distributed WDL,  a  length function 
based  on  time will be  used,  as  follows. Each global transaction 
will be  assigned a  starting time (for its latest invocation if a  
transaction is restarted), and  this starting time will be  included 
in the startup message for each  subtransaction. so  that the 
starting time of a  global transaction will be  locally known 
at any  node  execut ing one  of its subtransactions. Given a  
transaction, its length is def ined as  the difference of current 
time and  the starting time of the global transaction. 

W e  expect  that transaction length def ined in this fashion 
will be  highly correlated with the total number  of locks held 
by  all subtransact ions of a  global transaction, and  therefore 
will have  similar per formance characteristics when  used as  a  
WDL  length function (note that subtransact ions are executed 
sequential ly in our  model). This conjecture is verified by  the 
simulation results in Section IV. In the case of central ized 
WDL,  the cumulative number  of locks requested by  a  trans- 
action was also considered in [6]. [7]. This assures a  gain in 
transaction priority as  the durat ion of its stay in the system 
increases, such that a  transaction is not delayed in the system 
indefinitely due  to restarts. It was observed,  however,  that 
this length function provides performance which is inferior 
to the one  based  on  the number  of locks obtained in the latest 
invocation. Furthermore, restart waiting (delaying the restart 
of an  aborted transaction until its conflicting transactions are 
completed) makes the possibility of repeated restarts highly 
unlikely. In a  distributed system, randomly generated delays 
before transaction restart are appropriate for this purpose 
when  the conflicting transaction(s) are not local. Although 
distributed clock synchronizat ion has  been  widely studied, 
extremely accurate clock synchronizat ion is not required for 
our  purposes since typical t ime-of-day clocks, correctly set to 
an  external s tandard reference time, would suffice. 

3) Distributed WDL: The following notation and  conven-  
tions will be  used  in explaining the distributed WDL  paradigm. 

1) At any  point in time, there is a  set of global transactions 
IT,). 

2) Each transaction T, has an  originating or primary node,  
denoted by  P(T,). with starting time denoted by  /(T,). 

3) If T, has  a  subtransact ion at node  k:. this subtransact ion 
is denoted by  T,k. 

4) There are two CC subsystems at each  node  X:. the 
LCC (local CC) which manages  locks and  wait relations for 
all subtransact ions T;k. execut ing at node  I;. and  the GCC 
(global CC) which manages  all wait relations that include any  
transaction T, with P(T,) = k:. and  that makes global restart 
decisions for any  of the transactions in this set of wait relations. 

5) There is a  send function that transparently sends mes- 
sages between subsystems whether they are at the same or 
different nodes.  

The  general  idea of the distributed WDL  method is that: 
1) whenever  an  LCC schedules a  wait between two sub- 
transactions, this information is sent via messages to the 
GCC’s of the primary nodes  of the corresponding global 
transactions, and  2) each  GCC will asynchronously deter- 

mine if transactions should be  restarted, using its waiting 
and  starting time information. Due  to LCC’s and  GCC’s 
operat ing asynchronously,  condit ions may temporari ly arise 
in which the wait-depth of subtransact ions is greater than one;  
however,  such condit ions will eventually be  resolved either 
by  a  transaction committing or by  being restarted by  a  GCC. 
The  operat ion of the distributed WDL  method will now be  
descr ibed in more detail. 

In addit ion to the usual functions of granting lock requests, 
schedul ing subtransact ion waits, and  releasing locks as  part 
of subtransact ion commit or abort  processing, each  LCC does  
the following: whenever  a  wait Tzk + T3k is scheduled, the 
message (T, - ‘I’j.P(T~),f(T’~)) is sent to the GCC at node  
P(T,). and  the message (P(T,),t(T,).T, + TJ) is sent to 
the CCC at node  P(T,). unless P(T,) = P(T,), in which 
case only one  message (T; + I”,) is sent to the GCC at node  
w-t) (= PCT,)). 

Each GCC dynamically maintains a  wait g raph of global 
transactions which is updated using the messages it receives 
from LCC’s of the form just described. Note that starting time 
and  primary node  information is included in these messages 
for those transactions that have  a  primary node  different from 
that of the node  to which the message was sent, so  that 
each  GCC has  starting time and  primary node  information 
available for all transactions in its wait graph. Each GCC 
analyzes this wait information, either periodically or every 
time a  message is received, and  using the WDL  method, 
determines whether transactions should be  restarted. Periodic 
checking has  the potential of combining messages associated 
with multiple transactions together, such that the number  of in- 
ternode messages is reduced.  A similar effect can  be  achieved 
by  bundling several messages into one  before transmission. 
While reducing communicat ion overhead,  both methods have  
the d isadvantage of increasing the chances of the wait-depth 
criterion being temporari ly violated. 

Whenever  it is decided that a  transaction T, should be  
restarted, a  restart message for T, is sent to node  P(T,). 
However,  no  wait relations are modif ied by  the GCC at this 
time (since T, could currently be  in a  commit or abort  phase);  
instead, the status of T, is marked as  pending. Actual commit 
or abort  (followed by restart) of a  transaction Ti is handled 
by  the transaction coordinator at node  p(Ti). Commit is 
initiated upon  receiving successful complet ion messages from 
all subtransactions; abort  is initiated upon  receiving a  restart 
message from some GCC (or also possibly due  to receiving 
an  abort message from some other transaction coordinator 
at a  subtransact ion node,  for example, due  to a  disk error). 
The  commit or abort  is handled by  communicat ing with the 
transaction coordinators and  LCC’s at each  subtransact ion 
node  using known techniques (the two-phase commit protocol 
[2]). Additionally, it is necessary to send the appropriate 
information to each  GCC that is currently maintaining wait 
information for T,. This can be  determined locally using the 
wait information maintained by  the GCC at node  P(T,): the 
GCC’s for the primary nodes  of the transactions that are 
waiting on  T, or on  which T, is waiting must be  notified. Each 
such GCC removes T, from its wait g raph and  acknowledges.  
In the case of transaction restart, restart can  be  initiated after 
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Fig. 1. (a) Initial and  temporary states for WDL.  (b) Operation of the WDL  method. (c) Simple example of distributed WDL  method. (d) Basic operations 
in distributed WDL.  (e) Multiple restart problem in WDL.  
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receiving acknowledgment  from all subtransact ion nodes  and  
each  such GCC. 

The  above  can be  illustrated by  a  simple example, as  
illustrated in Fig. l(c). As shown, there are three transactions 
TI, T2, T3, with primary nodes  1, 5, and  9, and  with various 
subtransact ions possibly scattered around the system. Only 
those subtransact ions that enter a  wait relation are indicated 
in the figure. 

1) At node  3, Tl3 requests a  lock held in an  incompatible 
mode  by T23, the LCC schedules (Tl3 + T23), and  messages 
are sent as  shown to the GCC’s at nodes  P(Tl) and  P(T2). 

2) Concurrently, at node  7, T27 requests a  lock held in an  
incompatible mode  by T37, the LCC schedules (Tz7 + T37)r 
and  messages are sent as  shown to the GCC’s at nodes  P(T2) 
and  P(T3). 

3) At some later time, these various messages are received 
and  wait graphs are updated by  the GCC’s at nodes  1, 5, and  
9. After both messages for the GCC at node  5  are received, 
there is a  wait chain of depth 2, as  shown in the figure. 

4) The  GCC at node  5  determines, using local current time 
and  the recorded starting time for each  transaction (since 
P(T2) = 5, its starting time is available locally), that L(T2) > 
L(T3) and  L(T2) > L(Tl). Therefore, following the WDL  CC 
method, it decides to restart T3, and  sends a  restart message 
to the transaction coordinator at node  P(T3) = 9. 

5) The  transaction coordinator at node  9  receives the restart 
message and  begins transaction restart by  sending restart 
messages for all nodes  execut ing a  subtransact ion Tsk and  
GCC update messages to the local GCC and  the one  at node  
z 
J. 

Note that, in practice, situations could develop that would 
be  far more complex than that of this simple example: due  to 
GCC’s operat ing independent ly and  asynchronously,  decisions 
could be  made  concurrently by  two or more GCC’s to restart 
different transactions in the same wait chain, a  situation that 
would not occur in the central ized case. The  case when  this 
situation arises is illustrated in Fig. l(d) and  (e). Nodes  1  and  
2  receives messages from Node  3  about  the conflict between 
transactions Tl and  T2, and  incorporating this new conflict 
information results in the wait-for graphs shown in Fig. l(d). 
In this scenario, as  per  the basic WDL  method [see Fig. l(c)], 
Node  1  will decide to either restart Tl or send a  restart message 
for T2 to Node  2. At the same time, Node  2  will decide 
to either restart T2 or send a  restart message for TY to its 
parent node.  The  important point to note is that for three of 
the four possible restart combinations, two transactions are 
restarted. If we consider the conflict from a  global perspective, 
however,  we see that the resultant wait chain is identical to 
Case (4) in Fig. l(b), and  that only one  of Tl or Tz need  have  
been  restarted to satisfy the limit on  wait-depth. Since CC 
performance is usually dominated by  the way in which simple 
cases are handled, we expect  the distributed WDL  method 
descr ibed here to have  a  performance characteristic similar to 
the central ized WDL  method. 

To  summarize, in WW,  all conflicts are decided locally at 
the conflict node,  and  conflict information does  not have  to 
be  transmitted to other nodes.  In 2PL also, all conflicts are 
decided locally, with the only overhead being the periodic 

transmission of wait graphs for deadlock detection. For WDL,  
however,  each  conflict could result in as  many  as  two messages 
having to be  transmitted (if the parent nodes  of the conflicting 
transactions and  the conflict node  are all different). Additional 
messages may be  required if the transaction to be  restarted 
has  a  different primary execut ion node  from the primary node  
of the conflicting transactions (for example, when  the primary 
node  for TV in Fig. l(d) is different from Node  2). This may 
cause increased communicat ion costs and  delays in resolving 
data conflicts. Also, since nodes  possess only parts of the 
global wait chain, decisions could be  made  concurrently by  
two or more nodes  to restart different transactions in the 
same wait chain. Therefore, there may be  more restarts of 
transactions than would strictly be  necessary to satisfy the 
limit on  the depth of wait chains. Alternative distributed WDL  
implementations that alleviate the drawbacks of the Basic 
distributed WDL  method are descr ibed in Section V. 

III. THE DISTRIBUTED DATABASE MODEL 

A detailed simulation model  of a  distributed DBMS was 
developed for studying the performance behavior of the dis- 
tributed 2PL, WW,  and  WDL  CC methods._ The  general  
structure of the model  is shown in Fig. 2(a). In this model, 
the database is partit ioned among  a  number  of nodes,  each  
of which has  a  complete local DBMS. The  nodes  commu- 
nicate with each  other using messages transmitted on  an  
interconnection network. The  database itself is modeled as  a  
collection of pages.  A transaction consists of a  sequence of 
data accesses,  which involves a  lock request, accessing the 
data item, followed by a  period of CPU processing. 

The  model  of the local database system as shown in Fig. 2(b) 
consists of seven components:  an  application manager that 
generates transactions; an  execution manager that translates 
each  transaction into a  set of calls to the DMS (data manage-  
ment system) and  also models transaction initiation, commit, 
and  abort; a  DMS manager that models the data management  
services for the database;  a  buffer manager that models the 
buffer allocation and  replacement policies; a  concurrency 
control (CC) manager that implements the details of the 
CC methods; a  recovery manager that controls the logging 
process; and  lastly, a  resource manager that models the CPU 
and  disk resources and  services the hardware requests of all the 
other modules. In addit ion to these per-node components,  the 
model  also has  a  network manager that models the behavior of 
the underlying communicat ion subnetwork and  interfaces with 
the resource manager  module at each  node.  The  following 
subsect ions descr ibe the details of the hardware resource 
configuration, the database access pattern, and  the transaction 
workload generat ion process. 

A. The Computer System Model 

The system model  and  the settings for the simulation 
parameters are as  follows: 

1) Multisystem Configuration: There are N = 4  computer  
systems, consisting of tightly coupled mult iprocessors with 
P = 4  processors per  system. The  total processing capacity per  
system is varied to study its effect on  the relative performance 



1252 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 11, NOVEMBER 1993 

(b) 
Fig. 2. (a) Distributed DBMS model  structure. (b) Single site model  

structure. 

of CC methods. Since it is expected that processor speeds 
will increase over the next decade,  we will study the effect of 
increased processing capacity on  the maximum throughputs 
achievable by  different methods. 

2) Inter-system Communication: A high bandwidth inter- 
connect ion network which introduces negligible delay inter- 
connects the computer  systems. W e  take into account,  how- 
ever, the CPU overhead to send and  receive messages (similar 
assumptions are made  in [3], among  others). Transact ion 
execut ion requests and  messages for data access have  the same 
priority at the CPU. Messages related to CC, however,  are 
assigned higher priority to facilitate speedy conflict resolution 
and  reduce lock holding times. 

3) II0 Subsystem: The disk service time including any  
queueing delays is assumed to be  fixed and  equal  to 20  ms 
in the simulator. 

4) Database Cache: A database cache with an  LRU pol- 
icy for caching local data is available at each  node.  High 
content ion items (see Section III-B) tend to be  always in the 
cache,  FDn-high N 1.00, while the hit ratio for low content ion 
items is FDB-tow = 0.50. The  cache is large enough  that data 

referenced by  in-progress transactions are not replaced before 
they are completed. 

5) Logging and  Recovery: Nonvolati le ( random access) 
storage is considered for logging, thereby circumventing the 
need  for synchronous disk I/O. Logging time is therefore an  
order of magni tude smaller than the time required to write onto 
disk and  it is ignored in the simulator. Note that this results 
in reducing lock holding time for all of the CC methods. 

B. The Database Access Model 

The database model  considered in this study is descr ibed 
below. 

I) Database Objects: Data items (e.g., disk pages)  con- 
stitute the unit of locking. W e  distinguish high and  low 
content ion data items based  on  their access f requency by  
transactions. At each  system, there are Dhiah = 256  (resp. 
D low = 7936) data i tems in the high (resp. low) content ion 
category. A fraction Fhigh =’ 0.25 (resp. Flow = 0.75) of 
all transaction accesses are uniformly to high (resp. low) 
content ion items. Therefore, the level of data content ion is 
determined by the high content ion data items since they 
are accessed roughly ten times more frequently than low 
content ion items.3 As could be  expected, when  Dhigh is large, 
resulting in low levels of data contention, all CC methods 
provide the same performance. A small value of Dhigh iS 

modeled in the experiments descr ibed here in order to highlight 
dif ferences in the performance of the methods. 

I The  overall cache hit ratio for a  transaction execut ing for 
the first time (i.e., not a  restarted transaction) is Phit =  
FDB-~~,., X Fl,, + FDB-high X Fhigh = 0.625 (typical Of some 
high-end transaction processing systems). This hit ratio also 
applies to data accesses at remote nodes.  

2) Access Mode: All data items are accessed in exclusive 
mode  since we are interested in the relative performance of 
the CC methods. Shared accesses would have  resulted in a  
reduct ion in the data content ion level, but this would require 
an  appropriate choice of the fraction of shared lock requests 
and  more complicated conflict resolution, especially in the case 
of WDL.  

3) Deadlock Detection: Deadlock detection is required 
only for 2PL since W W  and  WDL  prevent deadlocks. In 
our  simulation implementation, the deadlock detection is 
immediate, that is, a  deadlock is detected as  soon as  a  lock 
conflict occurs and  a  cycle is formed. Also, the overhead 
for detecting deadlocks is set to zero. These simplifications 
are justifiable because the f requency of deadlocks tends to be  
negligibly small, at least for the locking modes  considered here 
[20].4 The  choice of a  victim in resolving a  deadlock is made  
based  on  transaction t imestamps: the youngest  transaction 
in the cycle is restarted to resolve the deadlock. When  
a  transaction is restarted, it retains the t imestamp that it 
was assigned when  it first entered the system. Deadlock 
detection and  resolution are handled in this fashion in order to 

3A restarted transaction makes the same sequence of data accesses as the 
original transaction, that is, there is no  resampling of data items. 

4Most deadlocks are attributable to the conversion of shared to exclusive 
locks, and  can be  prevented by introducing update locks. 
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observe how W W  and  WDL  compare with the “best” possible 
per formance of 2PL. 

C. The Transaction Processing Model 

The construction and  characteristics of the transaction work- 
load are descr ibed below. 

I) Transaction “Arrivals”: W e  consider a  c losed system 
with It4 transactions in each  system (and N x A4 transactions 
in the complex), i.e., a  completed transaction is immediately 
replaced by  a  new transaction at the same system. This implies 
that we have  a  system with a  fixed number  of users and  zero 
“think times.” The  parameter M is varied to study the effect 
of transaction concurrency on  performance.5 

2) Transaction Classes: There are multiple transaction 
classes based  on  transaction size, that is, the number  of 
data items (n,) accessed by  a  transaction in class c. 
Transact ions are introduced into the system with frequencies 
fc,c =  I,... , C according to #what  might be  expected in a  
stream of arriving transactions. Transact ion sizes are 4, 8, 16, 
and  32  with associated frequencies (0.20, 0.20, 0.35, 0.25). 
This geometr ic progression of transactions sizes yields a  high 
variability in transaction size, while using only a  small number  
of transaction classes. In addit ion to this four-class distribution, 
we also exper imented with two other distributions: uniform 
and  fixed. For the uniform distribution, transactions sizes are 
uniformly distributed between 8  and  24  (inclusive), while 
for the fixed distribution, all transactions are of size 16. 
These settings ensure that the mean transaction size of all the 
distributions is 16. 

The  advantage of using the f requency-based model  instead 
of model ing a  fixed number  of transactions in each  class is 
twofold: 1) we have  the assurance that various CC methods 
process the same mix of transactions, and  2) the overall 
throughput can  be  used to compare the relative performance 
of CC methods. 

3) Transaction Processing Stages: 
Transaction Initialization: This requires CPU processing 

only, and  the pathlength for this stage is linitr =  100000  
instructions. If a  transaction is restarted due to any  reason, 
Lit2 =  50000  instructions are executed as  part of its 
initialization phase.  

Data Processing: There are n steps in this stage, where 
n is the number  of data items accessed by  the transaction 
(from local or remote partitions). Each transaction is routed to 
the system at which it exhibits a  high degree of locality. The  
fraction of local accesses at each  system is Fiocal, while the 
remaining 1  - Flocal accesses are uniformly distributed over 
the remaining systems. 

A data item may be  available in the database cache,  in which 
case the pathlength per  data item is 1,-a,& = 20000.  This 
includes the overhead for CC. Otherwise, when  data have to 
be accessed from disk, an  additional Idisk =  5000  instructions 
are required (the processing required to retrieve cached data is 
considered to be  negligible). In addition, it takes Isend = 5000  

*it follows from Little’s law that a  nonzero think t ime simply has the 
effect of reducing the system throughput. A zero think t ime (and otherwise 
no  constraints on  the degree of concurrency) tends to reduce simulation cost 
by removing variability in the number  of concurrent transactions. 

instructions to send or receive a  message.  Therefore, 20000  
instructions are executed for intersystem communicat ion when  
the data are not available locally. 

Transaction Completion: The CPU processing in this stage 
requires Iccornplete =  50  000  instructions. In case a  transaction 
has  accessed local data only, it may commit at this point 
without requiring a  two-phase commit protocol. Commit pro- 
cessing requires I,-ommit =  5000  instructions to force a  log 
record onto stable storage. 

If multiple systems are involved in processing a  transaction 
as  part of two-phase commit, Ipre-,-ommit =  5000  instructions 
are executed at the primary node  of transaction execut ion 
(mainly to write a  pre-commit log record). There is also a  
per-system overhead of Issend and  Ireceive to send and  receive 
PRECOMMIT messages.  Pre-commit processing at secondary 
nodes  from which data were accessed requires Iremote = 5000  
instructions, which includes writing pre-commit records. Each 
remote system, after forcing modif ied data onto stable storage, 
sends an  ACK message to the primary system, which in 
turn sends a  COMMIT message to all of the nodes  involved 
after forcing a  commit record onto the log. On  receiving this 
message,  each  system releases all locks that are held locally 
by the committing transaction. 

Since WDL  and  W W  are restart-oriented policies, pro- 
visions are made  to reduce the overhead of restarting a  
transaction. W e  postulate that a  no-steal policy is fol lowed 
by the transaction processing system [2], and  that the undo 
records are held in main storage while the transaction is active. 
It follows that transaction restarts can be  performed without 
requiring disk I/O. W e  incur Irestart =  5000  instructions 
at the primary node  of transaction execut ion and  the sites 
of subtransact ion execut ion to account  for the overhead of 
releasing locks and  undoing updates to modif ied pages.  

IV. SIMULATION RESULTS 

In this section, we present per formance results for the 
distributed 2PL, WW,  and  WDL  CC methods obtained from 
a  simulator written in DeNet [12]. The  performance met- 
ric employed in compar ing the CC methods is the overall 
system throughput across all N nodes  as  a  function of the 
aggregate system Mult iprogramming Level (MPL). The  mean  
transaction response time follows easily from Little’s law. In 
particular, we are interested in the peak throughput that is 
achievable by  each  of the CC methods as  it determines the 
limit on  system performance due  to content ion for data and  
resources. Due  to the symmetric nature of the workload and  
the database system, the mean  throughput at each  node  is 
the same and  is l/N of the overall throughput.  Furthermore, 
due  to conservat ion of flow, the throughput of each  class of 
transactions is proport ional to its fractional contribution in the 
input workload. Each simulation was run until steady-state 
behavior (whenever  available, which excludes the thrashing 
region for 2PL). The  batch means  method was used to obtain 
relative half-widths of 5% about  the mean  throughput at 90% 
conf idence level. The  simulations also generated a  host of 
other statistical information, including resource utilization, the 
restart ratio, def ined as  the ratio of the number  of transaction 
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restarts and  the number  of transactions completed, mean  
transaction blocking time, etc. These secondary measures help 
in explaining the behavior of the CC methods under  various 
loading conditions, but are reported here to a  limited extent due  
to space limitations. The  experiments investigated the effects 
of variations in system processing capacity, data locality, 
message costs, and  transaction size distribution. 

A. The Effect of Increased Processing Capacity 

Our first set of experiments profiled the performance of 
the CC methods as  a  function of system processing capac-  
ity. The  experiments were conducted for varying processor 
speeds,  using the four-class distribution and  keeping all other 
parameters at the levels specif ied in Section III. Fig. 3(a)-(c) 
present the transaction throughputs obtained under  each  CC 
method for per-processor speeds of 50, 100,  and  200  MIPS, 
respectively (note that there are P = 4  processors per  node  
and  N = 4  nodes).  In Fig. 4(a)-(c), the corresponding restart 
ratios for each  of these experiments are shown. This metric 
helps to analyze how heavily a  CC method is b iased towards 
using either restarts or blocking as  the method of conflict 
resolution, Note that the number  of transaction restarts is not 

an  adequate  indicator of wasted processing. Therefore, Fig. 
5(a)-(c) present the processor utilization characteristics for this 
set of experiments. In these utilization figures, three curves are 
shown for each  CC method. First, the total utilization (solid 
line) indicates the actual processor utilization generated by  the 
CC method; second,  the useful utilization (dashed line) plots 
the resource usage  made  by those transaction execut ions that 
resulted in complet ion (i.e., they exclude the resources spent  
on  work that was later undone  by restarts); and,  finally, the 
message utilization (dotted line) plots the fraction of the total 
resource utilization that is spent  in the processing of messages.  
This breakup of processor utilization helps to identify the 
source of per formance limitations and  the overheads associated 
with each  CC method. 

The  throughput results [Fig. 3(a)-(c)] indicate that the 
throughput for each  CC method initially increases as  the 
system MPL is raised, but peaks  after the MPL is raised 
sufficiently high and  decreases for MPL’s beyond  this point 
(the reader is reminded that this is so  for a  high lock con- 
tention environment, and  for very low content ion levels, 
all methods provide an  effective throughput which follows 
the throughput characteristic). These trends are similar to 
those seen in central ized DBMS [l], [7], [6] and  can be  
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explained as  follows: the initial increase is due  to the fact 
that better per formance is obtained through increased degree 
of concurrent transaction processing. There is little hardware 
resource and  lock content ion initially, but the content ion 
increases with increased MPL. Provided that there was no  
lock contention, the system throughput increases with MPL, 
and  ultimately attains asymptotic behavior beyond  the point 
at which the bott leneck resource (processors) saturates (this 
is at least true for the simplified computer  system model  
considered in most simulation studies, e.g., we assume there 
is adequate  database buffer space).  When  lock content ion is 
taken into account,  system throughput may actually decrease 
with increased MPL. There are two factors contributing to this 
phenomenon.  In the case of 2PL, where transaction restarts are 
rare [20] and  wasted processing is negligible, the degradat ion 
in per formance (reduction in throughput in a  c losed system) 
is due  to the fact that the mean  number  of active transactions 
may actually decrease as  the number  of transactions activated 
in the system is increased [4], [17], [19]. In the case of a  CC 
method, which uses restarts, the throughput in a  c losed system 
increases up  to the point where the bott leneck resource (the 
CPU) saturates, but beyond  this point, the system throughput 
decreases due  to unnecessary  restarts. This phenomenon  can be  
prevented by  limiting the number  of transactions activated in 

the system or by  using restart waiting [6], [7], i.e., a  transaction 
which was aborted due  to a  lock conflict with one  or more 
transactions is delayed until the conflicting transactions are 
completed. 

Considering the performance of the CC methods individ- 
ually, we observe that the peak  throughput attained by  2PL 
is considerably smaller than that of the other CC methods.6 
At low MPL’s, since few transactions are blocked and  there 
is little wasted work due  to deadlock-resolut ion restarts, 2PL 
behaves  as  well as  the other CC methods. As the system MPL 
is increased, however,  the number  of b locked transactions 
in the system increases steeply, causing the throughput to 
level off. For MPL’s beyond  this peak  throughput,  a  sharp 
fall in transaction throughput is seen  and  constitutes the 
thrashing region for 2PL (see, e.g., [19]). An important point 
to observe here is that the performance of 2PL shows only 
negligible improvement with an  increase in processor speeds 
(e.g., compare Fig. 3(a) and  3(c)). The  reason that 2PL is 
unable to take advantage of increased resource capacity is 
that its conflict resolution mechanism results in most of the 

61n the case of low MIPS systems (and high MPL), 2PL may slightly 
outperform WDL  (peak 2PL throughput may exceed peak WDL  throughput 
by a  few percent [7]) because of the wasted processing that is incurred by 
WDL.  
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Fig. 5. Utilization. (a) 50  MIPS/CPU. (b) 100  MIPS/CPU. (c) 200  MIPS/CPU. 

transactions being blocked under  high lock content ion [4], 
[17], [l], [7], [6], [19]. In this situation, it is not possible 
to gain higher concurrency by  just adding resources to the 
system since there are no  transactions available to make use 
of the additional capacity when  the level of lock content ion 
is high. This explanat ion is confirmed by looking at the CPU 
utilization graphs for 2PL in Fig. 5(a)-(c), which show that the 
total utilization of 2PL decreases as  the processor speeds are 
increased, thus resulting in maintaining essentially the same 
throughput characteristic. Since restarts in 2PL are caused only 
when  deadlocks occur, its restart ratio numbers  [Fig. 4(a)-(c)] 
are significantly smaller than those of the other CC methods. 

Turning our  attention now to WW,  we observe that it 
delivers a  peak  throughput intermediate to that of WDL  and  
2PL. Due to the significant restart component  of its conflict 
resolution policy, which allows for higher levels of concurrent 
transaction execution, it is able to increase its use  of system 
resources when  the MPL is raised. In addition, its peak  
throughput per formance improves, to a  limited extent, with an  
increase in processing capacity. Once  the processing capacity 
reaches sufficiently high values, however,  the peak  throughput 
of W W  remains virtually the same and  is unaffected by  the 
availability of faster resources. An interesting characteristic 

of the throughput profile of W W  is that its degradat ion for 
MPL’s beyond  the peak  is very gradual  and  occurs at a  much 
smaller rate than those of the other CC methods. The  reason 
for the observed behavior is that when  the lock content ion is 
the primary performance limiting factor, the maximum number  
of concurrent transactions in W W  asymptotically reaches 
l/p, where p  is the pairwise probability of conflict among  
transactions [4]. Therefore, only for the case of processor 
speed  being 50  MIPS, which causes the resources to be  
heavily utilized [see Fig. 5(a)] do  we see a  fall in throughput 
at MPL’s beyond  that of the peak  throughput.  For faster 
processor speeds [Fig. 5(b)-(c)], lock content ion is the main 
performance limiting factor, and  the throughput characteristic 
of W W  flattens out at high MPL’s. 

Finally, with regard to WDL,  we observe that it delivers 
a  peak  throughput greater than the other CC methods for the 
set of processor speeds considered in these experiments. More 
importantly, the performance of WDL  improves with increased 
processor speeds,  which means  that unlike 2PL and  WW,  
WDL  is capable of utilizing additional resource capacity to 
achieve high throughputs. Therefore, as  the processing capac-  
ity of the system is %icreased, WDL  performs increasingly 
better than the other two CC methods. From Fig. 4(a)-(c) 
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and  5(a)-(c), it can  be  observed that WDL  has  significantly 
higher processor utilization and  restart ratio characteristics 
than the other CC methods. The  reason for this behavior 
is that WDL  attempts to approximate the essential blocking 
property [4] by  ensur ing that wait-chains never  involve more 
than two transactions. At high MPL’s, when  the number  of 
lock conflicts is extremely high, this wait-chain limiting policy 
results in a  high restart rate. The  increased restart rate also 
means  that fewer transactions are blocked, thereby resulting 
in an  increase in the number  of active transactions and  higher 
resource utilization. Due  to this ability of distributed WDL  to 
fully utilize the resources, its per formance noticeably degrades 
beyond  the peak  throughput since increases in MPL after 
this point result in a  significant increase in both data and  
resource contention. An important point to note here is that, 
as  observed in Section II-D, some of the restarts of WDL  are 
unnecessary  and  are caused by the distributed nature of the 
conflict resolution algorithm. Elimination of such restarts may 
help further improve the performance of distributed WDL.  
Alternative conflict resolution protocols that eliminate these 
unnecessary  restarts (at the cost of extra delay and  increased 
number  of messages)  are descr ibed in Section V. 

B. Message Costs and Locality 

In previous studies of distributed database systems (e.g., 
[3]), it has  been  observed that system performance may be  
quite sensitive to data locality and  message costs. Therefore, 
in our  second set of experiments, we investigated the perfor- 
mance  effects of having either similar degrees of data locality 
or higher message costs than those used in the basel ine set of 
experiments. 

The  first experiment investigated the performance of the 
CC methods when  the locality is reduced from 0.75 to 0.25 
(uniform distribution across four nodes),  while the second 
experiment increased the CPU cost per  message from 5000  
instructions to an  artificially high value of 20  000  instructions 
(factor of four). Both these experiments were conducted for all 
the processor speeds of the first experiment, but due  to space 

(b) 
20 000 (200 MIPS/CPU). 

limitations, only the graphs obtained for a  processor speed  of 
200  MIPS are shown here in Fig. 6(a) and  (b). Compar ing 
these figures with Fig. 3(c), we observe that a l though the 
absolute per formance of all the CC methods is adversely 
affected, the relative behavior of the CC methods does  not 
change  significantly. 

It should be  noted, however,  that the performance of dis- 
tributed WDL  is impacted more severely than those of the 
other CC methods. This is due  to the fact that its message 
complexity is greater than that of the other schemes since its 
conflict resolution mechanism involves sending messages to 
the parent nodes  of the conflicting transactions every time a  
conflict occurs. Therefore, with either decreased locality or 
increased message cost, the performance of WDL  is more 
seriously affected. This is also confirmed by compar ing the 
message utilization of WDL  as compared to W W  and  2PL in 
Fig. 5(a)-5(c). Since our  primary aim, however,  is to maximize 
peak  system throughput,  and  as  we are willing to devote 
resources towards this end,  WDL  appears  to be  the CC method 
of choice since it outperforms 2PL or W W  if the resource 
capacity is sufficiently large. This feature was observed in all 
of our  experiments. 

C. Transaction Size Distribution 

In our  final set of experiments, we investigated the effect 
of having a  transaction distribution different from the four- 
class distribution used  in the basel ine set of experiments. 
Experiments were conducted with both the uniform distri- 
but ion and  the fixed distribution. Fig. 7(a) and  7(b) present 
the results of these experiments for a  processor speed  of 200  
MIPS, with all other parameters being at the levels specif ied 
in Section III. From these figures, we observe again that while 
the absolute throughputs of the CC methods are affected by  the 
size distribution, their relative behavior remains qualitatively 
the same as that seen  in the basel ine experiments. 

From the three sets of experiments descr ibed above,  we 
conclude that for systems having sufficient processing capac-  
ity, WDL  delivers a  significantly higher peak  throughput than 
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Fig. 7. (a) Uniform Ts size (200 MIPS/CPU). (b) Fixed Ts size (200 MIPS/CPU). 

both W W  and  2PL. It should also be  noted that, while the 
performance degradat ion of WDL  for MPL’s beyond  the peak  
is worse than that of WW,  this degradat ion can be  eliminated 
by  using restart waiting [5], [6]. Since information about  
the complet ion of transactions at remote nodes  is not readily 
available, randomly generated delays before transaction restart 
are appropriate in this case. 

V. ALTERNATIVE DISTRIBUTED WDL PROTOCOLS 

The simulation results presented in the previous section 
showed that the distributed WDL  concurrency control protocol 
can  provide significant per formance benefits over traditional 
distributed locking algorithms. In this section, we go  on  
to discuss modifications to the Basic protocol that could 
result in further improving the performance of distributed 
WDL.  W e  will first informally motivate and  descr ibe the 
modifications, and  then conclude by  present ing an  analysis 
of these modifications. 

A. Eliminating Multiple Restarts 

The Basic distributed WDL  protocol allows the conflict 
resolution mechanism at each  node  to operate asynchronously 
and  independent ly of the other nodes.  A drawback of this 
scheme, however,  is that since each  node  keeps wait graphs 
only for transactions that originate at that node,  it is possible 
that more transactions may be  restarted than are strictly 
necessary to limit wait chains to a  maximum length of one.  
This “multiple restart” problem was illustrated earlier in Fig. 
l(d) and  (e). 

W e  descr ibe here three alternative distributed WDL  proto- 
cols that attempt to address the multiple restart problem. The  
protocols make different tradeoffs in the number  of messages 
used for conflict resolution and  the delay in conflict resolution. 
To  illustrate the functioning of the protocols, we will focus 
our  attention on  the case where the conflict node  and  the 
parent nodes  of the conflicting transactions are all different. 
The  details of the protocols are presented below (in the 

pictures illustrating the protocols, the dotted lines represent ing 
messages indicate messages that may need  to be  sent, while 
the full l ines represent ing messages indicate messages that 
have to be  sent). 

1) Table Protocol: In the Table Protocol, shown in Fig. 8, 
information about  a  conflict is sent to the parent nodes  of both 
the conflicting transactions, just as  in the standard protocol. 
On  receipt of this information, each  parent node  updates its 
local wait g raph and  executes the WDL  algorithm locally. 
However,  the WDL  decision is not implemented right away. 
Instead, the decision of each  parent node  is transmitted to the 
complementary parent node.  At both nodes,  using the local 
decision and  the remote decision as  indexes into a  “Conflict 
Decision Table” (Fig. S), a  consensus decision is implemented. 
If the table entry is “Block Ti,” then both nodes  do  not 
take further action. If the table entry is “Restart Ti ,” Node  
1  implements the decision, and  correspondingly, if the table 
entry is “Restart Tz,” Node 2  handles the restart. Finally, if 
the table recommendat ion is “Restart TV ,” Node  2  restarts TY 
if it is a  locally originating transaction; otherwise, it sends a  
restart message to the parent node  of TY. 

Due to the consensual  nature of the decision process, the 
Table Protocol eliminates the problem of multiple restarts. 
It is also a  completely general  protocol since even if the 
internal mechanisms of the WDL  algorithm were to be  altered, 
the cooperat ive decision-making ensures proper coordination 
among  the conflicting parent nodes.  Note that the Conflict 
Decision Table is very simply der ived by  determining what the 
correct WDL  decision would have  been  if a  global perspect ive 
of the wait chain were available. 

The  benefits of the Table Protocol are gained, however,  
at the expense of an  increased number  of messages (due to 
decision transmissions) and  delays in conflict resolution (due 
to having to wait for the complementary node  decision) as  
compared to the Basic WDL  protocol. 

2) Sequential Protocol: As ment ioned earlier, the Table 
Protocol is a  general  protocol that handles the multiple restart 
problem inherent in the distributed nature of the Basic WDL  
algorithm. However,  for the particular WDL  decision process 

-T- 
~-.-. -- 
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Fig. 8. Table protocol for distributed WDL.  

of Fig. l(b), we can improve on  the Table Protocol by  
recognizing that Node  2  needs  to be  involved in the decision 
process only if Node  1  reaches a  “block TR decision” after 
execut ing the WDL  algorithm on  its piece of the wait graph. 
The  Sequential Protocol takes advantage of this feature of 
WDL.  In this protocol, shown in Fig. 9, information about  
a  conflict is sent only to the parent node  of the transaction 
whose data request caused the conflict. Accordingly, in Fig. 9, 
Node  3  sends the information about  the conflict between TI 
and  Tz to Node  1  alone. On  receiving the conflict message,  
Node  1  updates its wait g raph and  executes the WDL  algorithm 
on  the resultant graph. If the WDL  decision is “Restart TI,” 
the decision is implemented locally. If the decision is “Restart 
Tz,” a  restart message for Tz is sent to Node  2. However,  
if the decision is “Block Tl,” then the conflict information 
is forwarded to Node  2. On  receiving this message,  Node  
2  updates its local wait graph, executes WDL  on  it, and  
implements the resulting decision. 

The  Sequential Protocol eliminates multiple restarts by  
making WDL  decisions in sequence. It also reduces the 
number  of messages for conflict resolution (e.g., if Node  1  
decides to restart TI, then Node  2  does  not even  get to know 
of the occurrence of the conflict). Compared to the Basic WDL  
protocol, a  drawback of the Sequential Protocol is that the 
delay in conflict resolution may be  increased in some cases 
due  to Node  2  obtaining knowledge of the conflict only after 
hear ing from Node  1. However,  it is no  worse than the Table 
Protocol in this respect, and  in cases where the WDL  decision 
is handled completely by  Node  1, the delay is less than that 
of the Table Protocol. 

3) Local Protocol: A further improvement on  the Sequen-  
tial Protocol can  be  made  by recognizing that Node  3, the 
conflict node,  could potentially resolve the conflict locally 

Site 2 

72 

(1. IT,), T,+Td 

w 
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TI*Tz 
T,+T1+T2 

.Run WDL locally 
9 sit& 
.&date Wait Graph 

TI+Tz 
T,‘T2+T7 

. Run WDL locally 

Fig. 9. Sequential  protocol for distributed WDL.  

if it possessed information about  transaction Tl’s associated 
wait graph. Therefore, in the Local Protocol, shown in Fig. 
10, when  a  lock request is made  by a  transaction to a  
remote node,  information about  the current wait g raph status 
of the request ing transaction is sent a long with the request. 
Accordingly, in Fig. 10, the wait chain associated with TI is 
sent to Node  3  along with its data request, and  this information 
is incorporated into the wait g raph maintained by  Node  3. 
When  the conflict between TI and  Tz occurs, the WDL  
algorithm is executed locally at Node  3. Based on  the WDL  
decision, one  of the following courses of action is taken: 1) 
if the decision is “Restart TI,” then TI is removed from the 
queue  of waiters for the conflict lock, and  a  message is sent 
to Node  1, which then handles the lock release at other nodes;  
2) if the decision is “Restart Tz,” the conflict lock is locally 
re leased and  a  message is sent to Node  2, which then handles 
the lock release at the remaining nodes;  or 3) if the decision is 
“Block TI ,” however,  the remainder of the protocol is identical 
to that of the Sequential protocol. 

The  advantages of the Local Protocol are that it eliminates 
multiple restarts, reduces the number  of messages needed  for 
conflict resolution, and  reduces the conflict resolution delay. In 
fact, unlike the Basic, Table, and  Sequential protocols, where 
all conflicts have  to be  reported to the parent nodes  of one  or 
both of the conflicting transactions, the Local Protocol resolves 
conflicts at the conflict node  itself in some cases. This aspect  
of the Local protocol may considerably reduce message traffic 
and  delay in resolving conflicts. 

A d isadvantage of the Local Protocol, however,  is that when  
WDL  is executed at the conflict node,  it uses “old” information 
about  the wait g raph of the request ing transaction. This could 
result in restarts that may be  unnecessary  from the viewpoint 
of the current state of the global wait g raph (e.g., TI may be  
blocking T, at the time of data request to Node  3, but this 

.-- 
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Fig. 10. Local protocol for distributed WDL  

may no  longer be  true at the time of conflict between Tr and  
Tz). Also, in cases where the final conflict resolution decision 
is made  by Node  2, the Local Protocol has  increased latency, 
as  compared to the Basic WDL  protocol, in resolving conflicts 
due  to the delay caused by the sequential passing around of 
the conflict information. However,  it is no  worse than either 
the Sequential Protocol or the Table Protocol in this respect. 

In summary,  the Table Protocol offers a  general  solution 
to the multiple restart problem, while the Sequential Protocol 
and  the Local Protocol are optimizations that are based  on  
the specific WDL  algorithm presented in this paper.  In the 
following subsection, we outline a  further optimization to the 
above  set of modif ied protocols. 

B. Fast Wait-Chain Breaking 

In the Basic distributed WDL  protocol, the release of locks 
held by  a  transaction that is scheduled for restart occurs only 
when  its parent node  sends a  lock release message to each  
of its subtransact ion nodes.  However,  the decision to restart 
the transaction may have  been  arrived at (by a  different node)  
considerably earlier. For example, in the Sequential Protocol 
(Fig. 9), Node  1  may decide to restart transaction T2, but the 
restart process takes place only after Node  1  sends a  “Restart 
Tz ” message to Node  2. This delay in implementing the 
restart decision increases the time period during which wait- 
chains of length greater than one  exist, and  therefore degrades 
performance. It would therefore be  helpful if, in the above  
example, Node  1  could itself initiate the restart of T2. This 
is not possible since Node  1  does  not know the locations 
of all of Tz’s subtransactions. The  important point to note, 
however,  is that we desire quick release primarily for the lock 
that corresponds to a  wait-chain of length greater than one,  
that is, the lock on  which TI and  Tz are conflicting. Release 

of this “critical” lock can be  initiated by  Node  1  since it 
knows the location of the conflict, i.e., Node  3. To  elaborate, 
Node  1  can send a  transaction restart message to Node  2, the 
parent node  of Tz, and  simultaneously send a  lock release 
message to Node  3  for transaction Tz’s subtransact ion T23. 
When  Node  2  receives the transaction restart message from 
Node 1, it sends a  lock release message for T2 to all the 
remaining subtransact ion nodes  of Tz apart from the conflict 
node.  Therefore, there are savings in both the number  of 
messages (this could be  particularly significant if transactions 
typically have  only a  few remote subtransact ions) and  in the 
delay in conflict resolution. 

In summary,  a  conflict decision node  can send a  restart 
message to the parent node  of a  remotely originating transac- 
tion and  simultaneously send a  lock release message for this 
transaction to the conflict occurrence node,  thereby reducing 
the delay in the breaking of wait chains. This improvement can 
be  added  to the modif ied protocols descr ibed above.  For the 
Table Protocol, the optimization comes into play only when  
the final decision is to restart Tg and  the parent node  of TY 
is different than that of T2. In the case of the Local and  
Sequential Protocols, however,  in addit ion to the above  case, 
the optimization also takes effect whenever  Node  1  decides 
to restart T2. 

A point to note here is that if a  node  receives a  lock release 
message for a  subtransact ion that is in the commit process, the 
lock release message is ignored since the subtransact ion will 
soon  be  releasing its locks. 

C. Protocol Analysis 

In the protocol descriptions above,  we informally high- 
l ighted the features of the various modif ied protocols by  
considering the case where the conflict node  and  the parent 
nodes  of the conflict transactions were all different. W e  now 
go  on, in this section, to provide a  more concrete analysis of 
the expected performance behavior of the modif ied algorithms. 
To  this end,  we have  presented, in Fig. 11, a  detailed tabulation 
of the message,  delay, and  restart characteristics of the various 
distributed WDL  protocols over all possible conflict situations. 
In Fig. 11, each  protocol is character ized by  three columns: 
CRO, CRM, and  CRD. The  first column, CR0 (Conflict 
Resolut ion Outcome), descr ibes the possible outcomes of 
the WDL  decision process. The  possible outcomes are to 
Block (B), to Restart TI (Rl), to Restart T2 (R2), or to 
Restart TY (Ry). The  modif ied protocols (Table, Sequential, 
and  Local) ensure that only one  of these outcomes finally 
takes effect. W ith the Basic protocol, however,  a  combinat ion 
of two outcomes is implemented when  the parent nodes  of the 
conflicting transactions are different (all possible combinat ions 
of outcomes are enumerated in the table). The  second protocol 
column in Fig. 11, CRD (Conflict Resolut ion Delay), is the 
time period (measured in number  of message transmission 
delays) between the occurrence of a  lock conflict and  the 
complet ion of the WDL  decision process at the conflict and  
parent nodes  (this includes the time for the physical breaking 
of the wait chain in the cases where the conflict results in 
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wait-chains of length greater than one). The  last protocol 
column, CRM (Conflict Resolut ion Messages),  is the number  
of messages that are sent in order to resolve the conflict dur ing 
the Conflict Resolut ion Delay (CRD) period. 

1) Table Construction: In this section, we will illustrate 
how the table entries in Fig. 11  describing the conflict res- 
olution delay and  message numbers  for each  conflict situation 
are der ived for the various protocols.’ W e  use case I-e) in Fig. 
11  as  our  example (this case captures the situation where the 
conflict node  and  the parent nodes  of the conflicting nodes  are 
all different). Assume that the right conflict resolution decision 
(from a  global perspect ive of the wait chain) is to restart 
Tl, i.e., the outcome of the WDL  decision process should be  
RI, and  that Node  3  is the conflict node.  If we examine the 
Basic Protocol, an  Rl decision takes two conflict information 
messages (one to each  parent node),  and  then a  message from 
Node 1  to Node  3  to remove Tl3 from the queue  of lock 
waiters. Therefore, the delay in implementing the decision to 
restart RI is CRD = 2  (since the conflict information messages 
are sent in parallel), while the number  of messages involved 
in the decision process is CRM = 3. In addition, based  on  the 
WDL  decision at Node  2, additional messages may be  sent 
for restarting either T2 or Ty . A decision to restart T2, for 
example, will take an  additional message to Node  3  to release 
T23’s locks. Therefore, the CRM for the Basic Protocol for an  
Rl decision could be  3, 4, or 5, based  on  the WDL  decision 
at Node  2. 

Moving on  to the Table protocol, it is easily determined 
that it takes five messages to implement an  Rl decision (two 
conflict information messages from Node  3  to Nodes  1  and  2, 
two messages for exchange of WDL  decision between Node  1  
and  Node  2, and  one  more message from Node 1  to Node  3  to 
remove Tl3 from the queue  of lock waiters), thereby resulting 
in CRM = 5. Further, the delay in the decision process is CRD 
= 3  since the conflict information messages and  the conflict 
decision messages are sent in parallel. 

Turning our  attention to the Sequential Protocol, we find 
that it takes two messages to implement the Rl decision, one  
for the conflict information to be  transmitted from Node  3  to 
Node  1, and  the second message from Node 1  to Node  3  to 
remove Tl3 from the queue  of lock waiters. Therefore, the 
delay in implementing the decision is CRD = 2, while the 
number  of messages is CRM = 2. 

Finally, for the Local Protocol, it is possible that the conflict 
is resolved at Node  3  itself. If this is so, only one  message 
has  to be  sent from Node  3  to Node  1  informing it of the 
Rl decision, resulting in CRD = 1  and  CRM = 1. If Node  3  
cannot  resolve the conflict itself, however,  then the number  of 
messages and  the delay is identical to that of the Sequential 
Protocol. 

In a  similar fashion, we can derive the message complexity 
and  delay involved in conflict resolution for the various 
combinat ions of conflict node  location, parent node  locations, 
and  WDL  outcome. 

2) Performance Expectations: By compar ing the entries 
for the various protocols in Fig. 11, we can make several 

‘W e  assume, in this tabulation, that the optimization for fast wait-chain 
breaking is incorporated in the modif ied protocols. 

observat ions about  their expected performance. First, the 
message complexity of the Sequential Protocol is strictly 
(i.e., under  all conflict situations) less than that of the Table 
Protocol, while the message complexity of the Local Protocol 
is strictly less than that of the Sequential Protocol. Second,  
the message delay of the Local Protocol is strictly less than 
that of the Sequential Protocol, which in turn is strictly less 
than that of the Table Protocol. Therefore, the Local Protocol 
has  the best per formance (among the modif ied algorithms) for 
both of these measures.  As pointed out earlier, however,  the 
Local Protocol has  a  h idden cost in that it may generate false 
(unnecessary)  restarts due  to using “old” information about  
the wait g raph of the conflicting transactions. The  signif icance 
of this cost will be  determined by  the execut ion time of 
subtransactions, since the longer the execut ion time, the greater 
the possibility of the wait g raph having changed  between the 
time that the subtransact ion began  execut ing and  the time 
the conflict occurred. For business applications, however,  
where transactions are typically simple in structure, we expect  
subtransact ion execut ion times to be  relatively small, and  
therefore false restarts may occur only infrequently. Therefore, 
from an  overall perspective, the Local Protocol appears  to be  
the most promising candidate among  the modif ied protocols. 

If we  compare the Local Protocol with the Basic Protocol, 
we note that its message complexity is strictly less than that of 
the Basic Protocol. However,  the delay of the Local Protocol 
can  be, based  on  the conflict situation, either more or less than 
that of the Basic Protocol. If the final decision is to block, for 
example, the Local Protocol has  one  more delay than the Basic 
Protocol (if Node  1  is different than Node  3). In contrast, if 
the final decision is to restart Tl, then the delay may be  one  
less than or the same as that of the Basic Protocol. For the 
case where the final decision is to restart T2, the delay of the 
Local Protocol may be  either one  less than, the same, or one  
more than that of the Basic Protocol. Finally, in the case where 
the final decision is to restart Ty , the delay is less than or the 
same as that of the Basic Protocol. 

As can be  deduced  from the above  discussion, the only 
situation where the delay of the Local Protocol is strictly worse 
than the Basic Protocol is when  the final decision is to block, 
and  is limited to the case where the conflict node  is different 
than the parent node  of the lock request ing transaction. On  the 
other hand,  unlike the Basic Protocol, the Local Protocol does  
not suffer from the problem of multiple restarts. 

Given the above  characteristics of the protocols, it is our  
expectat ion that the Local Protocol would improve on  the 
performance of the Basic Protocol, at least in the parameter 
regions in which we expect  future high-performance systems 
to operate. Of course, the actual extent of per formance im- 
provement  needs  to be  evaluated with a  per formance study. 
While a  detailed quantitative analysis of the message and  delay 
characteristics of the various protocols is outside the scope of 
this paper,  we present here the method by  which these relative 
performance measures could be  computed.  

A recent study presents the analysis of (a slightly modif ied 
version) of WDL  in a  central ized system [21]. A byproduct  
of the analysis is the relative f requency of events which occur 
upon  a  lock conflict (transaction blockings and  different types 
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of restarts). Aside from the f requency of restarts, we need  to 
know the probabilit ies associated with different configurations 
given in Fig. 11. This aspect  of the analysis can also be  
under taken using techniques similar to those descr ibed in [22], 
where for a  given locality of access, the distribution of the 
number  of accesses to remote nodes  is computed.  Given the 
relative frequencies of restarts, the probabilit ies of various 
configurations can be  used to obtain estimates for CRM and  
CRD for the different implementations of distributed WDL.  
Due to feedback effects, such results should be  considered 
with caution. However,  these analytical results can  be  used as  
components  of an  analytic solution for distributed WDL.  A 
complete analysis of distributed WDL  methods is beyond  the 
scope of this paper.  

VI. CONCLUSIONS 

Distributed Wait-Depth Limited (DWDL) CC, a  new dis- 
tributed concurrency control method that is des igned for high 
lock content ion environments, is descr ibed in this paper.  
The  DWDL method selectively utilizes transaction restarts 
to prevent the performance degradat ion that is caused by  
transaction blocking which occurs with two-phase locking with 
the general  waiting policy. In addition, DWDL ensures that 
deadlocks (local or distributed) are prevented from occurr ing 
by  limiting the wait-depth of b locked transactions to no  more 
than one.  

In distributed systems, message costs, in terms of processing 
overhead and  internode communicat ion delay, are relatively 
high in practice. Therefore, in designing the distributed WDL  
protocol, appropriate modifications were made  to the central- 
ized WDL  paradigm to minimize the number  of messages,  
while retaining desirable WDL  properties. These changes  
include the use  of transaction arrival time, instead of the 
number  of locks held, as  an  indication of transaction progress. 

Detailed simulation results showed that distributed WDL  
outperforms both standard 2PL and  the wound-wait  method 
in high MIPS systems with a  high degree of lock contention. 
The  improvement in per formance was observed to increase 
with increased system processing capacity. 

DWDL’s improvement in per formance with respect to stan- 
dard locking schemes is attained at the cost of extra processing, 
which is due  to the messages required for updat ing conflict 
graphs and  restarting transactions. This extra processing is 
almost exclusively in the form of CPU overhead since we 
postulate large database buffers such that, g iven a  high degree 
of access invariance [5], [7], the need  for additional disk ac- 
cesses is obviated. Given recent hardware trends of increasing 
CPU MIPS and  decreasing semiconductor memory costs, this 
additional CPU processing may be  an  acceptable approach for 
achieving higher transaction throughputs, without requiring the 
redesign of transactions. However,  it should be  noted that, due  
to DWDL’s greater message complexity, its per formance is 
more susceptible to reduct ions in the locality of transaction 
data access and  increases in the cost of sending messages than 
the other standard locking-based CC methods considered in 
this paper.  

.~- 
I 

The  basic DWDL algorithm has  some drawbacks in that 
it may restart more transactions than are strictly necessary 
for restricting transaction wait-depths to one.  Further, in order 
to minimize the delay in conflict resolution, it utilizes more 
messages than may be  necessary for resolving conflicts. The  
performance of DWDL could perhaps be  further improved 
by  addressing these drawbacks.  To  this end,  we proposed 
three alternate distributed WDL  schemes and  presented an  
empirical compar ison of their per formance (based on  the 
number  of messages and  delay involved in conflict resolution) 
with respect to each  other and  the Basic method. One  of 
these methods, the Sequential Protocol, appears  particularly 
attractive, and  in our  future research, we plan to carry out a  
complete per formance study of these alternative protocols. 

A significant reduct ion in WDL  overhead can be  attained 
by  using a  periodic policy for propagat ing lock conflict infor- 
mation, as  is done  for conflict resolution in distributed systems 
[2]. Since the probability of encounter ing more complex 
graphs is more likely in the case of periodic conflict resolution, 
alternate schemes such as  the sequential scheme and  the more 
general  data conflict resolution rules presented in [6], [7] 
may potentially provide improvements to the Basic distributed 
WDL  paradigm in this case. 
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