
1246 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 11, NOVEMBER 1993

Distribu ted Concurrency Contro l
Based on L imited W a it-Depth

Peter A. Franaszek, Fellow, IEEE, Jayant R. Haritsa, Member, IEEE, John T. Robinson, and Alexander Thomasian

Abstract- The performance of high-volume transaction pro-
cessing systems for business applications is determined by the
degree of contention for hardware resources as well as for data.
Hardware resource requirements may be met cost-effectively
with a data-partitioned or shared-nothing architecture. However,
the two-phase locking (2PL) concurrency control method may
restrict the performance of a shared-nothing system more se-
verely than that of a centralized system due to increased lock
holding times. Deadlock detection and resolution are an added
complicating factor in shared-nothing systems. In this paper,
we describe distributed Wait-Depth Limited (WDL) concurrency
control (CC), a locking-based distributed CC method that limits
the wait-depth of blocked transactions to one, thus preventing the
occurrence of deadlocks. Several implementations of distributed
WDL which vary in the number of messages and the amount
of information available for decision making are discussed. The
performance of a generic implementation of distributed WDL
is compared with distributed 2PL (with general waiting policy)
and the Wound-Wait CC method through a detailed simulation.
It is shown that distributed WDL behaves similarly to 2PL for
low lock contention levels, but for substantial lock contention
levels (caused by higher degrees of transaction concurrency),
distributed WDL outperforms the other methods to a significant
degree.

Index Terms- Concurrency control, distributed algorithms,
distributed databases, performance evaluation, simulation, two-
phase locking.

I. INTR~DLJCTI~N

H IGH-END transaction processing systems for business
applications (such as banking, airline reservations, etc.)

have stringent requirements for CPU processing power, I/O
bandwidth, high availability, and cost effectiveness. Architec-
tures for this purpose have evolved in three categories which
are sometimes referred to as Shared Everything (SE), Shared
Disk (SD), and Shared Nothing (SN) systems [16]. SN or
data partitioned systems include distributed databases, but also
have been used as a system design. paradigm (e.g., Tandem
multicomputers, Teradata’s DBW012, and mult icomputers
with hypercube interconnection topologies). It has been argued
that the SN paradigm is superior to the other two from the
viewpoint of cost effectiveness, scalability, and availability.

Manuscript received May 14, 1991; revised June 8, 1992. A preliminary
version of this paper was presented at the 12th International Conference on
Distributed Comput ing Systems, Yokohama, Japan, June 1992.

P. A. Franaszek, J. T. Robinson, and A. Thomasian are with the IBM T. J.
Watson Research Center, Yorktown Heights, NY 10598.

J. R. Haritsa is with the Systems Research Center, University of Maryland,
Col lege Park, MD 20742.

IEEE Log Number 9213611.

Although SE and SD systems serve as the workhorse
for today’s high-end transaction processing systems, we are
concerned with high-performance transaction processing in SN
systems. This is because the increasing demand for higher
transaction throughput from the viewpoint of processing power
and I/O bandwidth can be met cost-effectively by SN systems.
The performance of SN systems in a transaction processing
environment is affected by the number of internode messages
generated by transactions. The cost of sending and receiv-
ing messages tends to be nonnegl ible [9] and constitutes a
significant CPU processing overhead that does not arise in
central ized systems. On the other hand, there is the advantage
of low cost per MIPS microprocessor technology, which
makes SN systems attractive for processing high volumes of
transactions [8] as well as data-intensive queries.

Two-phase locking (2PL) with the general waiting policy
is the prevalent Concurrency Control (CC) method in com-
mercial database systems.’ It has been shown in numerous
studies (see, e.g., [4], [17], [19]) that the performance of
a system with 2PL may be constrained by data rather than
hardware resource contention. In fact, SN systems are more
susceptible to thrashing (degradat ion in system performance)
than central ized systems because of the increased lock holding
times due to internode communicat ion and commit protocols
[2], and possible delays in deadlock detection and resolution.
Several ways to cope with this problem are as follows.

1) The use of different types of locks. Finer locking granu-
larity (e.g., record versus page level locking), less restrictive
locking modes (e.g., shared versus exclusive locks), semantics-
based locks (increment and decrement locks which take advan-
tage of commutativity), or special ized locks for indexes and
other data structures [2] are some examples.

2) The use of CC methods other than 2PL. A large number
of CC methods have been proposed [2]. It can be concluded
from the studies reported in [4], [7] that in a system with
high data contention, significant improvements in per formance
(compared to 2PL) are possible by utilizing data prefetching
or judicious restarts of transactions (as descr ibed below). The
adopt ion of these methods requires additional CPU processing
capacity to tolerate the wasted processing due to transaction
restarts.

A class of CC methods that take advantage of access
invariance are descr ibed in [5]. Briefly, access invariance

‘Whi le all CC methods considered in this paper are based on two-phase
locking, we use 2PL to refer to the standard locking policy where a transaction
encountering a lock conflict is blocked and restarts are initiated only when
there is a deadlock.

1045-9219/93$03.00 0 1993 IEEE

FRANASZEK ef al.: CONCURRENCY CONTROL BASED ON LIMITED WAIT-DEPTH

implies that a transaction will access the same set of database
objects when it is executed at different times in a relatively

i short time interval. Such CC methods potentially have two
/ I execut ion phases, where the first phase does not involve CC

and serves the purpose of prefetching data for the second
I execut ion phase, which uses some CC method, e.g., 2PL.

W ith full access invariance, all of the data required for the

I second execut ion will be found in the database buffer (in main
memory), and the execut ion time of this phase will be an
order of magni tude shorter than the first phase. Therefore, the
mean lock holding times in the second phase are an order
of magni tude shorter than they would have been if locks
were acquired in the first phase, which implies a significant
reduct ion in lock contention. This effect is quantif ied in
[20]. In fact, an appropriate CC method such as optimistic
die [5] may be used during the first execut ion phase, in
which case a successfully validated transaction may commit
at the complet ion of its first phase. Given that the second
phase is based on locking, lock preclaiming may be used
to prevent deadlocks since the data required for execut ion
are known at the end of the first execut ion phase. This
hybrid CC scheme was shown to outperform 2PL in a high-
per formance SN system with data partitioning [18]. Due to the
usual d isadvantages associated with implementing optimistic
methods [lo], [13], this method will not be considered further
in this work.

The Wait-Depth Limited (WDL) CC method for central ized
databases (descr ibed in Section II-D) limits the wait-depth of
b locked transactions, and is shown in [6], [7] to have superior
per formance with respect to 2PL, other locking methods such
as running priority [4], and even optimistic CC methods (see,
e.g., [2]) (when the hardware resources of the system are
finite). In this paper, we propose an appropriate modification
of WDL to SN systems, which has the twin goals of maintain-
ing the main characteristics of WDL, while minimizing the
number of additional messages that would be required for a
straightforward implementation. For example, the difference
of current time and the starting time of the current invocation
of a transaction is used to indicate its progress instead of the
number of locks held by the transaction in central ized systems
[4], [6] (this progress information is used in deciding which
transaction should be restarted to limit the wait-depth). In
addition, schemes based on distributed decision making reduce
the number of internode messages, but may incur more restarts
than are absolutely necessary to limit the wait-depth to one.
W e also propose alternate implementations of distributed WDL
that eliminate the possibility of multiple restarts at the cost of
additional complexity and/or extra messages.

Simulation is used to compare the performance of dis-
tributed WDL with the distributed 2PL and the Wound-Wai t
methods [14]. 2PL was chosen because it is the protocol
used in almost all transaction processing systems. Deadlock
detection in distributed 2PL tends to be complex. Alternative
deadlock resolution schemes are based on central ized and
distributed combining of wait-for graphs or using t imeouts (see
Section II-B). An advantage of the Wound-Wai t (WW) [14]
and distributed WDL methods (with a wait-depth of one, as
discussed later) with respect to 2PL is that they are deadlock-

free. Furthermore, in the case of WW, the decision as to
which transaction is to be restarted is done locally (at the node
where the lock conflict occurs), without requiring additional
messages. Our choice of CC methods covers the three main
categories proposed in [4] of priority-less (2PL), strict priority
(WW), and approximate essential blocking (distributed WDL).

A large number of papers have been written describing
new distributed CC methods and compar ing their per formance
through analysis or simulation. Some of the early work deal ing
with per formance issues of distributed CC methods is surveyed
in [15]. A more recent comparat ive study of CC methods and
a survey of other works appears in [3]. A simulation study
deal ing with the effect of locking on the performance of an
SN system is reported in [ll].

The paper is organized as follows. Section II descr ibes
the distributed WDL method, and also includes a brief de-
scription of the 2PL and W W methods. Section III descr ibes
the model for the computer systems, the database, and the
transaction characteristics considered in the simulation study.
Simulation results are descr ibed in Section IV. Alternative
implementations of distributed WDL are descr ibed in Section
V. Conclusions appear in Section VI.

II. DISTRIBUTED CONCURRENCY CONTROL ALGORITHMS

Our study compares the performance of distributed WDL
with respect to two well-known CC methods that, like dis-
tributed WDL, use locking as the underlying synchronizat ion
mechanism. The selected methods are the distributed 2PL [2]
and the Wound-Wai t (WW) method [14]. In this section, we
first descr ibe the general structure of a distributed transaction
in our model. A brief description of the 2PL and W W CC
methods is then presented, fol lowed by a detailed description
of distributed WDL.

A. Structure of Distributed Transactions

Each distributed global transaction consists of a muster
(or coordinator) process and a set of subtransact ions (or
cohort processes). The transaction runs at one of the nodes
of the system, making database calls to the DBMS at the
local (resp. remote) nodes to access local (resp. remote)
data. Only sequential transaction execut ion with a single
end-of-transaction commit point is considered here, for the
sake of simplicity. W e are not concerned with transactions
involving user interactions, such as long-running transactions
arising in computer-aided design applications, but rather with
“short” transactions arising in business applications which
have stringent response time requirements. For all the CC
methods, the two-phase commit protocol [2] is used to ensure
transaction atomicity.

The data distribution across the nodes of SN systems such as
database machines is based on hashing appl ied to the primary
key field in a relation. This general ly implies a uniform
distribution of accesses to the objects in the database. In the
case of specific applications and transaction types, the data
(e.g., relations or fragments of them) may be al located SO as
to enhance locality of access. The latter allocation will be used
in our study since it allows us to study the effect of locality

1248 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 11, NOVEMBER 1993

of access. Furthermore, we will assume that the data are not
replicated, thereby requiring execut ion at a unique node for
each data item that is accessed by a transaction.

When a new transaction arrives at one of the nodes of
the system, it is ass igned a t imestamp. The t imestamp is
constructed by appending the node identifier of the parent node
to the current system clock time at that node, thus ensur ing that
all transaction t imestamps are unique. The global transaction’s
t imestamp is also assigned to all of its cohorts.

B. The Two-Phase Locking (2PL)
Concurrency Control Method

This is the commonly used CC paradigm in distributed
databases. Transact ions set locks directly at the primary ex-
ecution node and indirectly through their subtransact ions at
other nodes. All locks are held until a transaction is either
successfully committed or it is absorbed (strict 2PL) [2].

When there is a lock conflict, the transaction request ing the
lock is blocked, and a request to this effect is posted in an
FCFS queue. Since deadlocks are a possibility with 2PL, a
central ized deadlock detection scheme may be adopted. Alter-
natively, deadlock detection may be carried out by the various
nodes in a round-robin fashion [3]. Distributed deadlock de-
tection methods will further reduce communicat ion overhead
for deadlock detection. Timeouts due to their simplicity are the
most popular method for deadlock resolution in SN systems. It
is noted in [ll] that it is difficult to determine an appropriate
t imeout interval.

C. The Wound-Wait (WW) Concurrency Control Method

The W W CC method descr ibed in (141 is an effective
method for prevent ing deadlocks in a distributed database
based on local decisions made at the node where the lock
conflict occurred. This is accompl ished by utilizing priorities
in resolving lock conflicts based on transaction t imestamps.
When an older transaction requests a lock on an object which
is locked by a younger transaction in a conflicting mode,
then the younger transaction is aborted. Younger transactions,
however, are made to wait for older transactions when they
request conflicting locks on data items held by older trans-
actions. Deadlocks are eliminated since any cycle of waiting
transactions would have to include at least one instance of an
older transaction waiting for a younger transaction and such
instances are prevented by this CC method.

An improvement in per formance is achieved by ordering
lock requests according to transaction t imestamps (with older
transactions being placed ahead of younger transactions in the
queues for locks). When a transaction is restarted, it retains the
t imestamp that was associated when it first entered the system.

D. The Distributed WDL Concurrency Control Method

In this section, we first descr ibe the central ized WDL
method. In Section II-D2), we discuss the length function for
distributed WDL, which is descr ibed in Section II-D3). This is
fol lowed by an illustrative example, a discussion of the issue of
multiple transaction restarts to resolve the same lock conflict,
and a high-level compar ison of various methods.

-.-

1) Centralized WDL: The WDL(d) CC methods descr ibed
in [6], [7] constitute a family of CC methods which restrict
the wait-depth to d levels (only d = 1 is considered here), and
in addit ion use a judicious victim selection policy to choose
the transaction to be restarted such that wasted processing is
minimized. Lock conflicts resulting in a violation of the wait-
depth limit are resolved in WDL by compar ing the progress
made by the transactions involved in the lock conflict or their
“length” (denoted by L(T) for transaction T). The central ized
WDL method can be specif ied succinctly by considering the
wait-for trees associated with two active transactions T and T’
as shown in Fig. la(a). Transact ion T (resp. T’) is blocking
n > 0 (resp. m > 0) transactions. Next, T’ makes a lock
request and encounters a lock conflict with either transaction
T or one of the n transactions blocked by it. The following
rules cover all possible cases.

1) Case of Fig. la(b)
a) m = 0: T’ waits (the wait tree is of depth 1).
b) m > 0: Restart T’ unless L(T’) > L(T) and, for each

i,L(T’) 2 L(T,‘), in which case restart T.
2) Case of Fig. la(c):

a) m = 0: Restart Tl unless L(Tl) > L(T) and Ii >
L(T’), in which case restart T.

b) m > 0: Restart T’ unless L(T’) > L(Tl) and, for
each i,L(T’) _> L(T,I), in which case restart Tl.

A pictorial representat ion of the WDL paradigm is given
in Fig. l(b).

What we just descr ibed is a specific instance of the wait-
depth limited policies that were proposed in 161, [7]. Alterna-
tively, it is possible to consider only two (rather than three or
more) transactions at a time in resolving lock conflicts [21].2
Referring to Fig. l(a), when T’ has a lock conflict with T
(resp. Tl) as in Fig. la(b) [resp. Fig. la(c)], we first check if
it is blocking other transactions (i.e., m > 0). If so, we restart
T’ if L(T) is smaller than L(T’) [resp. L(Tl)]. Otherwise,
the transaction holding the lock (T or Tl) is restarted. In the
case that T’ is not blocking other transactions, however, we
check whether the transaction holding the lock is active or
b locked [as in Fig. la(c)]. If it is active, no action is taken.
If it is blocked, we restart T’ if L(T’) < L(Tl); otherwise,
Tl is restarted.

For central ized database systems, this simplified scheme
provides performance that is close to that of the original WDL
method [21]. When implemented in a distributed environment,
however, the message complexity (the number of messages
required for conflict resolution as discussed in Section V-C)
of the simplified method is identical to that of the original
method. Given that the simplified method does not result in
a reduct ion in messages complexity and its per formance (in
central ized systems) is inferior to the original WDL, we do
not consider the simplified WDL in this study.

2) The Length Function in Distributed WDL: In the cen-
tralized case, it is convenient to define L(T) as the number
of locks held by T, and this has been shown to yield good
performance [6], [7]. However, in the distributed case, given
a particular subtransaction, determination of the total number

‘The primary reason for considering this scheme in [21] was to simplify
the analysis required for estimating transaction restart probabilities.

FRANASZEK <‘f al.: CONCURRENCY CONTROL BASED ON LIMITED WAIT-DEPTH 1249

of locks held by all subtransact ions of the global transaction
would involve excessive communicat ion, and in any case,
the information could be obsolete by the time it was finally
collected. Therefore, for distributed WDL, a length function
based on time will be used, as follows. Each global transaction
will be assigned a starting time (for its latest invocation if a
transaction is restarted), and this starting time will be included
in the startup message for each subtransaction. so that the
starting time of a global transaction will be locally known
at any node execut ing one of its subtransactions. Given a
transaction, its length is def ined as the difference of current
time and the starting time of the global transaction.

W e expect that transaction length def ined in this fashion
will be highly correlated with the total number of locks held
by all subtransact ions of a global transaction, and therefore
will have similar per formance characteristics when used as a
WDL length function (note that subtransact ions are executed
sequential ly in our model). This conjecture is verified by the
simulation results in Section IV. In the case of central ized
WDL, the cumulative number of locks requested by a trans-
action was also considered in [6]. [7]. This assures a gain in
transaction priority as the durat ion of its stay in the system
increases, such that a transaction is not delayed in the system
indefinitely due to restarts. It was observed, however, that
this length function provides performance which is inferior
to the one based on the number of locks obtained in the latest
invocation. Furthermore, restart waiting (delaying the restart
of an aborted transaction until its conflicting transactions are
completed) makes the possibility of repeated restarts highly
unlikely. In a distributed system, randomly generated delays
before transaction restart are appropriate for this purpose
when the conflicting transaction(s) are not local. Although
distributed clock synchronizat ion has been widely studied,
extremely accurate clock synchronizat ion is not required for
our purposes since typical t ime-of-day clocks, correctly set to
an external s tandard reference time, would suffice.

3) Distributed WDL: The following notation and conven-
tions will be used in explaining the distributed WDL paradigm.

1) At any point in time, there is a set of global transactions
IT,).

2) Each transaction T, has an originating or primary node,
denoted by P(T,). with starting time denoted by /(T,).

3) If T, has a subtransact ion at node k:. this subtransact ion
is denoted by T,k.

4) There are two CC subsystems at each node X:. the
LCC (local CC) which manages locks and wait relations for
all subtransact ions T;k. execut ing at node I;. and the GCC
(global CC) which manages all wait relations that include any
transaction T, with P(T,) = k:. and that makes global restart
decisions for any of the transactions in this set of wait relations.

5) There is a send function that transparently sends mes-
sages between subsystems whether they are at the same or
different nodes.

The general idea of the distributed WDL method is that:
1) whenever an LCC schedules a wait between two sub-
transactions, this information is sent via messages to the
GCC’s of the primary nodes of the corresponding global
transactions, and 2) each GCC will asynchronously deter-

mine if transactions should be restarted, using its waiting
and starting time information. Due to LCC’s and GCC’s
operat ing asynchronously, condit ions may temporari ly arise
in which the wait-depth of subtransact ions is greater than one;
however, such condit ions will eventually be resolved either
by a transaction committing or by being restarted by a GCC.
The operat ion of the distributed WDL method will now be
descr ibed in more detail.

In addit ion to the usual functions of granting lock requests,
schedul ing subtransact ion waits, and releasing locks as part
of subtransact ion commit or abort processing, each LCC does
the following: whenever a wait Tzk + T3k is scheduled, the
message (T, - ‘I’j.P(T~),f(T’~)) is sent to the GCC at node
P(T,). and the message (P(T,),t(T,).T, + TJ) is sent to
the CCC at node P(T,). unless P(T,) = P(T,), in which
case only one message (T; + I”,) is sent to the GCC at node
w-t) (= PCT,)).

Each GCC dynamically maintains a wait g raph of global
transactions which is updated using the messages it receives
from LCC’s of the form just described. Note that starting time
and primary node information is included in these messages
for those transactions that have a primary node different from
that of the node to which the message was sent, so that
each GCC has starting time and primary node information
available for all transactions in its wait graph. Each GCC
analyzes this wait information, either periodically or every
time a message is received, and using the WDL method,
determines whether transactions should be restarted. Periodic
checking has the potential of combining messages associated
with multiple transactions together, such that the number of in-
ternode messages is reduced. A similar effect can be achieved
by bundling several messages into one before transmission.
While reducing communicat ion overhead, both methods have
the d isadvantage of increasing the chances of the wait-depth
criterion being temporari ly violated.

Whenever it is decided that a transaction T, should be
restarted, a restart message for T, is sent to node P(T,).
However, no wait relations are modif ied by the GCC at this
time (since T, could currently be in a commit or abort phase);
instead, the status of T, is marked as pending. Actual commit
or abort (followed by restart) of a transaction Ti is handled
by the transaction coordinator at node p(Ti). Commit is
initiated upon receiving successful complet ion messages from
all subtransactions; abort is initiated upon receiving a restart
message from some GCC (or also possibly due to receiving
an abort message from some other transaction coordinator
at a subtransact ion node, for example, due to a disk error).
The commit or abort is handled by communicat ing with the
transaction coordinators and LCC’s at each subtransact ion
node using known techniques (the two-phase commit protocol
[2]). Additionally, it is necessary to send the appropriate
information to each GCC that is currently maintaining wait
information for T,. This can be determined locally using the
wait information maintained by the GCC at node P(T,): the
GCC’s for the primary nodes of the transactions that are
waiting on T, or on which T, is waiting must be notified. Each
such GCC removes T, from its wait g raph and acknowledges.
In the case of transaction restart, restart can be initiated after

1250 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 11, NOVEMBER 1993

L

T 1 . ..T
I2... n

5lr
T

(a)

7 1 . ..I
I2... n

IT

(b)

(4 (b)

P(Tl)= 1, P(T2)=5, Po3)=9

El ri

I’
I

\ I nods? ‘\

l->dOtc12)) (l.WTh->T2)
1

@2--:T&S.t(T,)) (5,t@).T2->T, t t t
11 (yw

4
m

TT
Nodal

cccupdat.MP.-
FarNodaSLS(kat)

Requesting Trawxtion: T,q
Holding Tmn~action: TH

0)

co

WAIT GRAPH

‘R - ‘H

TX - TR - TH

ACTION

blcck T,q

if L(TR) > hfar(L(T~),L(Tx))
reststt T,j

else
restan TR

(3) TR - TH - Ty if LCT,) > hfer(L(T~).L(Tr))
restart Tr

else

restart TH

(4) TX - TR - TH - Ty same as for (2)

I Site 3 I

SkL

l Update Wait Graph

71-72
Tr+T,+T2

. Run WDL locally
BlockT,

Restart T,

Send restat message for T2

Sk2
. Update Wait Graph

71-172
TI+TZ+Ty

. Run WDL locally
Block T,

ReStart 72

Send restart message for T,

-I
(4 (cl

Site 1 Site 2

Tx+T,+Tz T,-+T+T>

Restan Restan

TI 72

Tt T,

I-

Two restarts

T2 TY

72 T2

(e)

Fig. 1. (a) Initial and temporary states for WDL. (b) Operation of the WDL method. (c) Simple example of distributed WDL method. (d) Basic operations
in distributed WDL. (e) Multiple restart problem in WDL.

FRANASZEKetaL:CONCURRENCYCONTROLBASEDONLlMITEDWAIT-DEPTH 1251

receiving acknowledgment from all subtransact ion nodes and
each such GCC.

The above can be illustrated by a simple example, as
illustrated in Fig. l(c). As shown, there are three transactions
TI, T2, T3, with primary nodes 1, 5, and 9, and with various
subtransact ions possibly scattered around the system. Only
those subtransact ions that enter a wait relation are indicated
in the figure.

1) At node 3, Tl3 requests a lock held in an incompatible
mode by T23, the LCC schedules (Tl3 + T23), and messages
are sent as shown to the GCC’s at nodes P(Tl) and P(T2).

2) Concurrently, at node 7, T27 requests a lock held in an
incompatible mode by T37, the LCC schedules (Tz7 + T37)r
and messages are sent as shown to the GCC’s at nodes P(T2)
and P(T3).

3) At some later time, these various messages are received
and wait graphs are updated by the GCC’s at nodes 1, 5, and
9. After both messages for the GCC at node 5 are received,
there is a wait chain of depth 2, as shown in the figure.

4) The GCC at node 5 determines, using local current time
and the recorded starting time for each transaction (since
P(T2) = 5, its starting time is available locally), that L(T2) >
L(T3) and L(T2) > L(Tl). Therefore, following the WDL CC
method, it decides to restart T3, and sends a restart message
to the transaction coordinator at node P(T3) = 9.

5) The transaction coordinator at node 9 receives the restart
message and begins transaction restart by sending restart
messages for all nodes execut ing a subtransact ion Tsk and
GCC update messages to the local GCC and the one at node
z
J.

Note that, in practice, situations could develop that would
be far more complex than that of this simple example: due to
GCC’s operat ing independent ly and asynchronously, decisions
could be made concurrently by two or more GCC’s to restart
different transactions in the same wait chain, a situation that
would not occur in the central ized case. The case when this
situation arises is illustrated in Fig. l(d) and (e). Nodes 1 and
2 receives messages from Node 3 about the conflict between
transactions Tl and T2, and incorporating this new conflict
information results in the wait-for graphs shown in Fig. l(d).
In this scenario, as per the basic WDL method [see Fig. l(c)],
Node 1 will decide to either restart Tl or send a restart message
for T2 to Node 2. At the same time, Node 2 will decide
to either restart T2 or send a restart message for TY to its
parent node. The important point to note is that for three of
the four possible restart combinations, two transactions are
restarted. If we consider the conflict from a global perspective,
however, we see that the resultant wait chain is identical to
Case (4) in Fig. l(b), and that only one of Tl or Tz need have
been restarted to satisfy the limit on wait-depth. Since CC
performance is usually dominated by the way in which simple
cases are handled, we expect the distributed WDL method
descr ibed here to have a performance characteristic similar to
the central ized WDL method.

To summarize, in WW, all conflicts are decided locally at
the conflict node, and conflict information does not have to
be transmitted to other nodes. In 2PL also, all conflicts are
decided locally, with the only overhead being the periodic

transmission of wait graphs for deadlock detection. For WDL,
however, each conflict could result in as many as two messages
having to be transmitted (if the parent nodes of the conflicting
transactions and the conflict node are all different). Additional
messages may be required if the transaction to be restarted
has a different primary execut ion node from the primary node
of the conflicting transactions (for example, when the primary
node for TV in Fig. l(d) is different from Node 2). This may
cause increased communicat ion costs and delays in resolving
data conflicts. Also, since nodes possess only parts of the
global wait chain, decisions could be made concurrently by
two or more nodes to restart different transactions in the
same wait chain. Therefore, there may be more restarts of
transactions than would strictly be necessary to satisfy the
limit on the depth of wait chains. Alternative distributed WDL
implementations that alleviate the drawbacks of the Basic
distributed WDL method are descr ibed in Section V.

III. THE DISTRIBUTED DATABASE MODEL

A detailed simulation model of a distributed DBMS was
developed for studying the performance behavior of the dis-
tributed 2PL, WW, and WDL CC methods._ The general
structure of the model is shown in Fig. 2(a). In this model,
the database is partit ioned among a number of nodes, each
of which has a complete local DBMS. The nodes commu-
nicate with each other using messages transmitted on an
interconnection network. The database itself is modeled as a
collection of pages. A transaction consists of a sequence of
data accesses, which involves a lock request, accessing the
data item, followed by a period of CPU processing.

The model of the local database system as shown in Fig. 2(b)
consists of seven components: an application manager that
generates transactions; an execution manager that translates
each transaction into a set of calls to the DMS (data manage-
ment system) and also models transaction initiation, commit,
and abort; a DMS manager that models the data management
services for the database; a buffer manager that models the
buffer allocation and replacement policies; a concurrency
control (CC) manager that implements the details of the
CC methods; a recovery manager that controls the logging
process; and lastly, a resource manager that models the CPU
and disk resources and services the hardware requests of all the
other modules. In addit ion to these per-node components, the
model also has a network manager that models the behavior of
the underlying communicat ion subnetwork and interfaces with
the resource manager module at each node. The following
subsect ions descr ibe the details of the hardware resource
configuration, the database access pattern, and the transaction
workload generat ion process.

A. The Computer System Model

The system model and the settings for the simulation
parameters are as follows:

1) Multisystem Configuration: There are N = 4 computer
systems, consisting of tightly coupled mult iprocessors with
P = 4 processors per system. The total processing capacity per
system is varied to study its effect on the relative performance

1252 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 11, NOVEMBER 1993

(b)
Fig. 2. (a) Distributed DBMS model structure. (b) Single site model

structure.

of CC methods. Since it is expected that processor speeds
will increase over the next decade, we will study the effect of
increased processing capacity on the maximum throughputs
achievable by different methods.

2) Inter-system Communication: A high bandwidth inter-
connect ion network which introduces negligible delay inter-
connects the computer systems. W e take into account, how-
ever, the CPU overhead to send and receive messages (similar
assumptions are made in [3], among others). Transact ion
execut ion requests and messages for data access have the same
priority at the CPU. Messages related to CC, however, are
assigned higher priority to facilitate speedy conflict resolution
and reduce lock holding times.

3) II0 Subsystem: The disk service time including any
queueing delays is assumed to be fixed and equal to 20 ms
in the simulator.

4) Database Cache: A database cache with an LRU pol-
icy for caching local data is available at each node. High
content ion items (see Section III-B) tend to be always in the
cache, FDn-high N 1.00, while the hit ratio for low content ion
items is FDB-tow = 0.50. The cache is large enough that data

referenced by in-progress transactions are not replaced before
they are completed.

5) Logging and Recovery: Nonvolati le (random access)
storage is considered for logging, thereby circumventing the
need for synchronous disk I/O. Logging time is therefore an
order of magni tude smaller than the time required to write onto
disk and it is ignored in the simulator. Note that this results
in reducing lock holding time for all of the CC methods.

B. The Database Access Model

The database model considered in this study is descr ibed
below.

I) Database Objects: Data items (e.g., disk pages) con-
stitute the unit of locking. W e distinguish high and low
content ion data items based on their access f requency by
transactions. At each system, there are Dhiah = 256 (resp.
D low = 7936) data i tems in the high (resp. low) content ion
category. A fraction Fhigh =’ 0.25 (resp. Flow = 0.75) of
all transaction accesses are uniformly to high (resp. low)
content ion items. Therefore, the level of data content ion is
determined by the high content ion data items since they
are accessed roughly ten times more frequently than low
content ion items.3 As could be expected, when Dhigh is large,
resulting in low levels of data contention, all CC methods
provide the same performance. A small value of Dhigh iS

modeled in the experiments descr ibed here in order to highlight
dif ferences in the performance of the methods.

I The overall cache hit ratio for a transaction execut ing for
the first time (i.e., not a restarted transaction) is Phit =
FDB-~~,., X Fl,, + FDB-high X Fhigh = 0.625 (typical Of some
high-end transaction processing systems). This hit ratio also
applies to data accesses at remote nodes.

2) Access Mode: All data items are accessed in exclusive
mode since we are interested in the relative performance of
the CC methods. Shared accesses would have resulted in a
reduct ion in the data content ion level, but this would require
an appropriate choice of the fraction of shared lock requests
and more complicated conflict resolution, especially in the case
of WDL.

3) Deadlock Detection: Deadlock detection is required
only for 2PL since W W and WDL prevent deadlocks. In
our simulation implementation, the deadlock detection is
immediate, that is, a deadlock is detected as soon as a lock
conflict occurs and a cycle is formed. Also, the overhead
for detecting deadlocks is set to zero. These simplifications
are justifiable because the f requency of deadlocks tends to be
negligibly small, at least for the locking modes considered here
[20].4 The choice of a victim in resolving a deadlock is made
based on transaction t imestamps: the youngest transaction
in the cycle is restarted to resolve the deadlock. When
a transaction is restarted, it retains the t imestamp that it
was assigned when it first entered the system. Deadlock
detection and resolution are handled in this fashion in order to

3A restarted transaction makes the same sequence of data accesses as the
original transaction, that is, there is no resampling of data items.

4Most deadlocks are attributable to the conversion of shared to exclusive
locks, and can be prevented by introducing update locks.

FRANASZEK ct al.: CONCURRENCY CONTROL BASED ON LIMITED WAIT-DEPTH 1253

observe how W W and WDL compare with the “best” possible
per formance of 2PL.

C. The Transaction Processing Model

The construction and characteristics of the transaction work-
load are descr ibed below.

I) Transaction “Arrivals”: W e consider a c losed system
with It4 transactions in each system (and N x A4 transactions
in the complex), i.e., a completed transaction is immediately
replaced by a new transaction at the same system. This implies
that we have a system with a fixed number of users and zero
“think times.” The parameter M is varied to study the effect
of transaction concurrency on performance.5

2) Transaction Classes: There are multiple transaction
classes based on transaction size, that is, the number of
data items (n,) accessed by a transaction in class c.
Transact ions are introduced into the system with frequencies
fc,c = I,... , C according to #what might be expected in a
stream of arriving transactions. Transact ion sizes are 4, 8, 16,
and 32 with associated frequencies (0.20, 0.20, 0.35, 0.25).
This geometr ic progression of transactions sizes yields a high
variability in transaction size, while using only a small number
of transaction classes. In addit ion to this four-class distribution,
we also exper imented with two other distributions: uniform
and fixed. For the uniform distribution, transactions sizes are
uniformly distributed between 8 and 24 (inclusive), while
for the fixed distribution, all transactions are of size 16.
These settings ensure that the mean transaction size of all the
distributions is 16.

The advantage of using the f requency-based model instead
of model ing a fixed number of transactions in each class is
twofold: 1) we have the assurance that various CC methods
process the same mix of transactions, and 2) the overall
throughput can be used to compare the relative performance
of CC methods.

3) Transaction Processing Stages:
Transaction Initialization: This requires CPU processing

only, and the pathlength for this stage is linitr = 100000
instructions. If a transaction is restarted due to any reason,
Lit2 = 50000 instructions are executed as part of its
initialization phase.

Data Processing: There are n steps in this stage, where
n is the number of data items accessed by the transaction
(from local or remote partitions). Each transaction is routed to
the system at which it exhibits a high degree of locality. The
fraction of local accesses at each system is Fiocal, while the
remaining 1 - Flocal accesses are uniformly distributed over
the remaining systems.

A data item may be available in the database cache, in which
case the pathlength per data item is 1,-a,& = 20000. This
includes the overhead for CC. Otherwise, when data have to
be accessed from disk, an additional Idisk = 5000 instructions
are required (the processing required to retrieve cached data is
considered to be negligible). In addition, it takes Isend = 5000

*it follows from Little’s law that a nonzero think t ime simply has the
effect of reducing the system throughput. A zero think t ime (and otherwise
no constraints on the degree of concurrency) tends to reduce simulation cost
by removing variability in the number of concurrent transactions.

instructions to send or receive a message. Therefore, 20000
instructions are executed for intersystem communicat ion when
the data are not available locally.

Transaction Completion: The CPU processing in this stage
requires Iccornplete = 50 000 instructions. In case a transaction
has accessed local data only, it may commit at this point
without requiring a two-phase commit protocol. Commit pro-
cessing requires I,-ommit = 5000 instructions to force a log
record onto stable storage.

If multiple systems are involved in processing a transaction
as part of two-phase commit, Ipre-,-ommit = 5000 instructions
are executed at the primary node of transaction execut ion
(mainly to write a pre-commit log record). There is also a
per-system overhead of Issend and Ireceive to send and receive
PRECOMMIT messages. Pre-commit processing at secondary
nodes from which data were accessed requires Iremote = 5000
instructions, which includes writing pre-commit records. Each
remote system, after forcing modif ied data onto stable storage,
sends an ACK message to the primary system, which in
turn sends a COMMIT message to all of the nodes involved
after forcing a commit record onto the log. On receiving this
message, each system releases all locks that are held locally
by the committing transaction.

Since WDL and W W are restart-oriented policies, pro-
visions are made to reduce the overhead of restarting a
transaction. W e postulate that a no-steal policy is fol lowed
by the transaction processing system [2], and that the undo
records are held in main storage while the transaction is active.
It follows that transaction restarts can be performed without
requiring disk I/O. W e incur Irestart = 5000 instructions
at the primary node of transaction execut ion and the sites
of subtransact ion execut ion to account for the overhead of
releasing locks and undoing updates to modif ied pages.

IV. SIMULATION RESULTS

In this section, we present per formance results for the
distributed 2PL, WW, and WDL CC methods obtained from
a simulator written in DeNet [12]. The performance met-
ric employed in compar ing the CC methods is the overall
system throughput across all N nodes as a function of the
aggregate system Mult iprogramming Level (MPL). The mean
transaction response time follows easily from Little’s law. In
particular, we are interested in the peak throughput that is
achievable by each of the CC methods as it determines the
limit on system performance due to content ion for data and
resources. Due to the symmetric nature of the workload and
the database system, the mean throughput at each node is
the same and is l/N of the overall throughput. Furthermore,
due to conservat ion of flow, the throughput of each class of
transactions is proport ional to its fractional contribution in the
input workload. Each simulation was run until steady-state
behavior (whenever available, which excludes the thrashing
region for 2PL). The batch means method was used to obtain
relative half-widths of 5% about the mean throughput at 90%
conf idence level. The simulations also generated a host of
other statistical information, including resource utilization, the
restart ratio, def ined as the ratio of the number of transaction

1254 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTE~~S,VOL.~,NO. 11. NOVEMBER 1993

100.0 LWof 300.0 ro0.n

(4

100.0 $I.~ 300.0 400.0

(b)

(cl
Fig. 3. Throughput. (a) 50 MIPS/CPU. (b) 100 MIPS/CPU. (c) 200 MIPS/CPU.

restarts and the number of transactions completed, mean
transaction blocking time, etc. These secondary measures help
in explaining the behavior of the CC methods under various
loading conditions, but are reported here to a limited extent due
to space limitations. The experiments investigated the effects
of variations in system processing capacity, data locality,
message costs, and transaction size distribution.

A. The Effect of Increased Processing Capacity

Our first set of experiments profiled the performance of
the CC methods as a function of system processing capac-
ity. The experiments were conducted for varying processor
speeds, using the four-class distribution and keeping all other
parameters at the levels specif ied in Section III. Fig. 3(a)-(c)
present the transaction throughputs obtained under each CC
method for per-processor speeds of 50, 100, and 200 MIPS,
respectively (note that there are P = 4 processors per node
and N = 4 nodes). In Fig. 4(a)-(c), the corresponding restart
ratios for each of these experiments are shown. This metric
helps to analyze how heavily a CC method is b iased towards
using either restarts or blocking as the method of conflict
resolution, Note that the number of transaction restarts is not

an adequate indicator of wasted processing. Therefore, Fig.
5(a)-(c) present the processor utilization characteristics for this
set of experiments. In these utilization figures, three curves are
shown for each CC method. First, the total utilization (solid
line) indicates the actual processor utilization generated by the
CC method; second, the useful utilization (dashed line) plots
the resource usage made by those transaction execut ions that
resulted in complet ion (i.e., they exclude the resources spent
on work that was later undone by restarts); and, finally, the
message utilization (dotted line) plots the fraction of the total
resource utilization that is spent in the processing of messages.
This breakup of processor utilization helps to identify the
source of per formance limitations and the overheads associated
with each CC method.

The throughput results [Fig. 3(a)-(c)] indicate that the
throughput for each CC method initially increases as the
system MPL is raised, but peaks after the MPL is raised
sufficiently high and decreases for MPL’s beyond this point
(the reader is reminded that this is so for a high lock con-
tention environment, and for very low content ion levels,
all methods provide an effective throughput which follows
the throughput characteristic). These trends are similar to
those seen in central ized DBMS [l], [7], [6] and can be

FRANASZEK et al.: CONCURRENCY CONTROL BASED ON LIMITED WAIT-DEF’TH 1255

'M"o; 300.0 400.0

(4

0.0

(b)

0.0 IOU.0 CK 300.0 ‘unI.u

Cc)

Fig. 4. Restart ratio. (a) 50 MIPS/CPU. (b) 100 MIPS/CPU. (c) 200 MIPS/CPU.

explained as follows: the initial increase is due to the fact
that better per formance is obtained through increased degree
of concurrent transaction processing. There is little hardware
resource and lock content ion initially, but the content ion
increases with increased MPL. Provided that there was no
lock contention, the system throughput increases with MPL,
and ultimately attains asymptotic behavior beyond the point
at which the bott leneck resource (processors) saturates (this
is at least true for the simplified computer system model
considered in most simulation studies, e.g., we assume there
is adequate database buffer space). When lock content ion is
taken into account, system throughput may actually decrease
with increased MPL. There are two factors contributing to this
phenomenon. In the case of 2PL, where transaction restarts are
rare [20] and wasted processing is negligible, the degradat ion
in per formance (reduction in throughput in a c losed system)
is due to the fact that the mean number of active transactions
may actually decrease as the number of transactions activated
in the system is increased [4], [17], [19]. In the case of a CC
method, which uses restarts, the throughput in a c losed system
increases up to the point where the bott leneck resource (the
CPU) saturates, but beyond this point, the system throughput
decreases due to unnecessary restarts. This phenomenon can be
prevented by limiting the number of transactions activated in

the system or by using restart waiting [6], [7], i.e., a transaction
which was aborted due to a lock conflict with one or more
transactions is delayed until the conflicting transactions are
completed.

Considering the performance of the CC methods individ-
ually, we observe that the peak throughput attained by 2PL
is considerably smaller than that of the other CC methods.6
At low MPL’s, since few transactions are blocked and there
is little wasted work due to deadlock-resolut ion restarts, 2PL
behaves as well as the other CC methods. As the system MPL
is increased, however, the number of b locked transactions
in the system increases steeply, causing the throughput to
level off. For MPL’s beyond this peak throughput, a sharp
fall in transaction throughput is seen and constitutes the
thrashing region for 2PL (see, e.g., [19]). An important point
to observe here is that the performance of 2PL shows only
negligible improvement with an increase in processor speeds
(e.g., compare Fig. 3(a) and 3(c)). The reason that 2PL is
unable to take advantage of increased resource capacity is
that its conflict resolution mechanism results in most of the

61n the case of low MIPS systems (and high MPL), 2PL may slightly
outperform WDL (peak 2PL throughput may exceed peak WDL throughput
by a few percent [7]) because of the wasted processing that is incurred by
WDL.

1256 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 11, NOVEMBER 1993

:. 0.6
I
Z
A
T 0.4

:,
N

0.2

U
T
I
L 0.6
I

Z
A
T OA

:,
N

(4 (b)
1.0 1 rc-

U
T

:. 0.6,
I

0.0 100.0 ET 3W.O 4w.a

(4

Fig. 5. Utilization. (a) 50 MIPS/CPU. (b) 100 MIPS/CPU. (c) 200 MIPS/CPU.

transactions being blocked under high lock content ion [4],
[17], [l], [7], [6], [19]. In this situation, it is not possible
to gain higher concurrency by just adding resources to the
system since there are no transactions available to make use
of the additional capacity when the level of lock content ion
is high. This explanat ion is confirmed by looking at the CPU
utilization graphs for 2PL in Fig. 5(a)-(c), which show that the
total utilization of 2PL decreases as the processor speeds are
increased, thus resulting in maintaining essentially the same
throughput characteristic. Since restarts in 2PL are caused only
when deadlocks occur, its restart ratio numbers [Fig. 4(a)-(c)]
are significantly smaller than those of the other CC methods.

Turning our attention now to WW, we observe that it
delivers a peak throughput intermediate to that of WDL and
2PL. Due to the significant restart component of its conflict
resolution policy, which allows for higher levels of concurrent
transaction execution, it is able to increase its use of system
resources when the MPL is raised. In addition, its peak
throughput per formance improves, to a limited extent, with an
increase in processing capacity. Once the processing capacity
reaches sufficiently high values, however, the peak throughput
of W W remains virtually the same and is unaffected by the
availability of faster resources. An interesting characteristic

of the throughput profile of W W is that its degradat ion for
MPL’s beyond the peak is very gradual and occurs at a much
smaller rate than those of the other CC methods. The reason
for the observed behavior is that when the lock content ion is
the primary performance limiting factor, the maximum number
of concurrent transactions in W W asymptotically reaches
l/p, where p is the pairwise probability of conflict among
transactions [4]. Therefore, only for the case of processor
speed being 50 MIPS, which causes the resources to be
heavily utilized [see Fig. 5(a)] do we see a fall in throughput
at MPL’s beyond that of the peak throughput. For faster
processor speeds [Fig. 5(b)-(c)], lock content ion is the main
performance limiting factor, and the throughput characteristic
of W W flattens out at high MPL’s.

Finally, with regard to WDL, we observe that it delivers
a peak throughput greater than the other CC methods for the
set of processor speeds considered in these experiments. More
importantly, the performance of WDL improves with increased
processor speeds, which means that unlike 2PL and WW,
WDL is capable of utilizing additional resource capacity to
achieve high throughputs. Therefore, as the processing capac-
ity of the system is %icreased, WDL performs increasingly
better than the other two CC methods. From Fig. 4(a)-(c)

FRANASZEK et al.: CONCURRENCY CONTROL BASED ON LIMITED WAIT-DEPTH 1257

600 -

100.0 $llll 300.0 400.0

(4

Fig. 6. (a) Locality 0.25 (200 MIPS/CPU). (‘-4 MsgCost =

and 5(a)-(c), it can be observed that WDL has significantly
higher processor utilization and restart ratio characteristics
than the other CC methods. The reason for this behavior
is that WDL attempts to approximate the essential blocking
property [4] by ensur ing that wait-chains never involve more
than two transactions. At high MPL’s, when the number of
lock conflicts is extremely high, this wait-chain limiting policy
results in a high restart rate. The increased restart rate also
means that fewer transactions are blocked, thereby resulting
in an increase in the number of active transactions and higher
resource utilization. Due to this ability of distributed WDL to
fully utilize the resources, its per formance noticeably degrades
beyond the peak throughput since increases in MPL after
this point result in a significant increase in both data and
resource contention. An important point to note here is that,
as observed in Section II-D, some of the restarts of WDL are
unnecessary and are caused by the distributed nature of the
conflict resolution algorithm. Elimination of such restarts may
help further improve the performance of distributed WDL.
Alternative conflict resolution protocols that eliminate these
unnecessary restarts (at the cost of extra delay and increased
number of messages) are descr ibed in Section V.

B. Message Costs and Locality

In previous studies of distributed database systems (e.g.,
[3]), it has been observed that system performance may be
quite sensitive to data locality and message costs. Therefore,
in our second set of experiments, we investigated the perfor-
mance effects of having either similar degrees of data locality
or higher message costs than those used in the basel ine set of
experiments.

The first experiment investigated the performance of the
CC methods when the locality is reduced from 0.75 to 0.25
(uniform distribution across four nodes), while the second
experiment increased the CPU cost per message from 5000
instructions to an artificially high value of 20 000 instructions
(factor of four). Both these experiments were conducted for all
the processor speeds of the first experiment, but due to space

(b)
20 000 (200 MIPS/CPU).

limitations, only the graphs obtained for a processor speed of
200 MIPS are shown here in Fig. 6(a) and (b). Compar ing
these figures with Fig. 3(c), we observe that a l though the
absolute per formance of all the CC methods is adversely
affected, the relative behavior of the CC methods does not
change significantly.

It should be noted, however, that the performance of dis-
tributed WDL is impacted more severely than those of the
other CC methods. This is due to the fact that its message
complexity is greater than that of the other schemes since its
conflict resolution mechanism involves sending messages to
the parent nodes of the conflicting transactions every time a
conflict occurs. Therefore, with either decreased locality or
increased message cost, the performance of WDL is more
seriously affected. This is also confirmed by compar ing the
message utilization of WDL as compared to W W and 2PL in
Fig. 5(a)-5(c). Since our primary aim, however, is to maximize
peak system throughput, and as we are willing to devote
resources towards this end, WDL appears to be the CC method
of choice since it outperforms 2PL or W W if the resource
capacity is sufficiently large. This feature was observed in all
of our experiments.

C. Transaction Size Distribution

In our final set of experiments, we investigated the effect
of having a transaction distribution different from the four-
class distribution used in the basel ine set of experiments.
Experiments were conducted with both the uniform distri-
but ion and the fixed distribution. Fig. 7(a) and 7(b) present
the results of these experiments for a processor speed of 200
MIPS, with all other parameters being at the levels specif ied
in Section III. From these figures, we observe again that while
the absolute throughputs of the CC methods are affected by the
size distribution, their relative behavior remains qualitatively
the same as that seen in the basel ine experiments.

From the three sets of experiments descr ibed above, we
conclude that for systems having sufficient processing capac-
ity, WDL delivers a significantly higher peak throughput than

1258 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 11, NOVEMBER 1993

30n.o 4lMM 0.0 100.0 %! 300.0 4004

(4 @I

Fig. 7. (a) Uniform Ts size (200 MIPS/CPU). (b) Fixed Ts size (200 MIPS/CPU).

both W W and 2PL. It should also be noted that, while the
performance degradat ion of WDL for MPL’s beyond the peak
is worse than that of WW, this degradat ion can be eliminated
by using restart waiting [5], [6]. Since information about
the complet ion of transactions at remote nodes is not readily
available, randomly generated delays before transaction restart
are appropriate in this case.

V. ALTERNATIVE DISTRIBUTED WDL PROTOCOLS

The simulation results presented in the previous section
showed that the distributed WDL concurrency control protocol
can provide significant per formance benefits over traditional
distributed locking algorithms. In this section, we go on
to discuss modifications to the Basic protocol that could
result in further improving the performance of distributed
WDL. W e will first informally motivate and descr ibe the
modifications, and then conclude by present ing an analysis
of these modifications.

A. Eliminating Multiple Restarts

The Basic distributed WDL protocol allows the conflict
resolution mechanism at each node to operate asynchronously
and independent ly of the other nodes. A drawback of this
scheme, however, is that since each node keeps wait graphs
only for transactions that originate at that node, it is possible
that more transactions may be restarted than are strictly
necessary to limit wait chains to a maximum length of one.
This “multiple restart” problem was illustrated earlier in Fig.
l(d) and (e).

W e descr ibe here three alternative distributed WDL proto-
cols that attempt to address the multiple restart problem. The
protocols make different tradeoffs in the number of messages
used for conflict resolution and the delay in conflict resolution.
To illustrate the functioning of the protocols, we will focus
our attention on the case where the conflict node and the
parent nodes of the conflicting transactions are all different.
The details of the protocols are presented below (in the

pictures illustrating the protocols, the dotted lines represent ing
messages indicate messages that may need to be sent, while
the full l ines represent ing messages indicate messages that
have to be sent).

1) Table Protocol: In the Table Protocol, shown in Fig. 8,
information about a conflict is sent to the parent nodes of both
the conflicting transactions, just as in the standard protocol.
On receipt of this information, each parent node updates its
local wait g raph and executes the WDL algorithm locally.
However, the WDL decision is not implemented right away.
Instead, the decision of each parent node is transmitted to the
complementary parent node. At both nodes, using the local
decision and the remote decision as indexes into a “Conflict
Decision Table” (Fig. S), a consensus decision is implemented.
If the table entry is “Block Ti,” then both nodes do not
take further action. If the table entry is “Restart Ti ,” Node
1 implements the decision, and correspondingly, if the table
entry is “Restart Tz,” Node 2 handles the restart. Finally, if
the table recommendat ion is “Restart TV ,” Node 2 restarts TY
if it is a locally originating transaction; otherwise, it sends a
restart message to the parent node of TY.

Due to the consensual nature of the decision process, the
Table Protocol eliminates the problem of multiple restarts.
It is also a completely general protocol since even if the
internal mechanisms of the WDL algorithm were to be altered,
the cooperat ive decision-making ensures proper coordination
among the conflicting parent nodes. Note that the Conflict
Decision Table is very simply der ived by determining what the
correct WDL decision would have been if a global perspect ive
of the wait chain were available.

The benefits of the Table Protocol are gained, however,
at the expense of an increased number of messages (due to
decision transmissions) and delays in conflict resolution (due
to having to wait for the complementary node decision) as
compared to the Basic WDL protocol.

2) Sequential Protocol: As ment ioned earlier, the Table
Protocol is a general protocol that handles the multiple restart
problem inherent in the distributed nature of the Basic WDL
algorithm. However, for the particular WDL decision process

-T-
~-.-. --

FRANASZEK et al.: CONCURRENCY CONTROL BASED ON LIMITED WAIT-DEPTH 1259

Site 3

sitd sit&
.Update Wait Graph *Update Wait Graph

Tt+T2 Tl’T2

T,+TI ‘72 T,+T2'T,

.Run WDL locally .Run WDL locally

l Transmit decision to Site 2 *Transmit decision to Site 1

Ls.kL BlockT, Restart T2 Restart Tr

Fig. 8. Table protocol for distributed WDL.

of Fig. l(b), we can improve on the Table Protocol by
recognizing that Node 2 needs to be involved in the decision
process only if Node 1 reaches a “block TR decision” after
execut ing the WDL algorithm on its piece of the wait graph.
The Sequential Protocol takes advantage of this feature of
WDL. In this protocol, shown in Fig. 9, information about
a conflict is sent only to the parent node of the transaction
whose data request caused the conflict. Accordingly, in Fig. 9,
Node 3 sends the information about the conflict between TI
and Tz to Node 1 alone. On receiving the conflict message,
Node 1 updates its wait g raph and executes the WDL algorithm
on the resultant graph. If the WDL decision is “Restart TI,”
the decision is implemented locally. If the decision is “Restart
Tz,” a restart message for Tz is sent to Node 2. However,
if the decision is “Block Tl,” then the conflict information
is forwarded to Node 2. On receiving this message, Node
2 updates its local wait graph, executes WDL on it, and
implements the resulting decision.

The Sequential Protocol eliminates multiple restarts by
making WDL decisions in sequence. It also reduces the
number of messages for conflict resolution (e.g., if Node 1
decides to restart TI, then Node 2 does not even get to know
of the occurrence of the conflict). Compared to the Basic WDL
protocol, a drawback of the Sequential Protocol is that the
delay in conflict resolution may be increased in some cases
due to Node 2 obtaining knowledge of the conflict only after
hear ing from Node 1. However, it is no worse than the Table
Protocol in this respect, and in cases where the WDL decision
is handled completely by Node 1, the delay is less than that
of the Table Protocol.

3) Local Protocol: A further improvement on the Sequen-
tial Protocol can be made by recognizing that Node 3, the
conflict node, could potentially resolve the conflict locally

Site 2

72

(1. IT,), T,+Td

w
*Update Wait Graph

TI*Tz
T,+T1+T2

.Run WDL locally
9 sit&
.&date Wait Graph

TI+Tz
T,‘T2+T7

. Run WDL locally

Fig. 9. Sequential protocol for distributed WDL.

if it possessed information about transaction Tl’s associated
wait graph. Therefore, in the Local Protocol, shown in Fig.
10, when a lock request is made by a transaction to a
remote node, information about the current wait g raph status
of the request ing transaction is sent a long with the request.
Accordingly, in Fig. 10, the wait chain associated with TI is
sent to Node 3 along with its data request, and this information
is incorporated into the wait g raph maintained by Node 3.
When the conflict between TI and Tz occurs, the WDL
algorithm is executed locally at Node 3. Based on the WDL
decision, one of the following courses of action is taken: 1)
if the decision is “Restart TI,” then TI is removed from the
queue of waiters for the conflict lock, and a message is sent
to Node 1, which then handles the lock release at other nodes;
2) if the decision is “Restart Tz,” the conflict lock is locally
re leased and a message is sent to Node 2, which then handles
the lock release at the remaining nodes; or 3) if the decision is
“Block TI ,” however, the remainder of the protocol is identical
to that of the Sequential protocol.

The advantages of the Local Protocol are that it eliminates
multiple restarts, reduces the number of messages needed for
conflict resolution, and reduces the conflict resolution delay. In
fact, unlike the Basic, Table, and Sequential protocols, where
all conflicts have to be reported to the parent nodes of one or
both of the conflicting transactions, the Local Protocol resolves
conflicts at the conflict node itself in some cases. This aspect
of the Local protocol may considerably reduce message traffic
and delay in resolving conflicts.

A d isadvantage of the Local Protocol, however, is that when
WDL is executed at the conflict node, it uses “old” information
about the wait g raph of the request ing transaction. This could
result in restarts that may be unnecessary from the viewpoint
of the current state of the global wait g raph (e.g., TI may be
blocking T, at the time of data request to Node 3, but this

.--

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 11, NOVEMBER 1993

sit&

.Updaa Wait Graph

.Run WDL locally
-__.__. -.---.

SkL
c....-

-Up&ate Wait Graph

.Run WDL locally
> &$&&

-Update Wait Graph

.Run WDL locally

Fig. 10. Local protocol for distributed WDL

may no longer be true at the time of conflict between Tr and
Tz). Also, in cases where the final conflict resolution decision
is made by Node 2, the Local Protocol has increased latency,
as compared to the Basic WDL protocol, in resolving conflicts
due to the delay caused by the sequential passing around of
the conflict information. However, it is no worse than either
the Sequential Protocol or the Table Protocol in this respect.

In summary, the Table Protocol offers a general solution
to the multiple restart problem, while the Sequential Protocol
and the Local Protocol are optimizations that are based on
the specific WDL algorithm presented in this paper. In the
following subsection, we outline a further optimization to the
above set of modif ied protocols.

B. Fast Wait-Chain Breaking

In the Basic distributed WDL protocol, the release of locks
held by a transaction that is scheduled for restart occurs only
when its parent node sends a lock release message to each
of its subtransact ion nodes. However, the decision to restart
the transaction may have been arrived at (by a different node)
considerably earlier. For example, in the Sequential Protocol
(Fig. 9), Node 1 may decide to restart transaction T2, but the
restart process takes place only after Node 1 sends a “Restart
Tz ” message to Node 2. This delay in implementing the
restart decision increases the time period during which wait-
chains of length greater than one exist, and therefore degrades
performance. It would therefore be helpful if, in the above
example, Node 1 could itself initiate the restart of T2. This
is not possible since Node 1 does not know the locations
of all of Tz’s subtransactions. The important point to note,
however, is that we desire quick release primarily for the lock
that corresponds to a wait-chain of length greater than one,
that is, the lock on which TI and Tz are conflicting. Release

of this “critical” lock can be initiated by Node 1 since it
knows the location of the conflict, i.e., Node 3. To elaborate,
Node 1 can send a transaction restart message to Node 2, the
parent node of Tz, and simultaneously send a lock release
message to Node 3 for transaction Tz’s subtransact ion T23.
When Node 2 receives the transaction restart message from
Node 1, it sends a lock release message for T2 to all the
remaining subtransact ion nodes of Tz apart from the conflict
node. Therefore, there are savings in both the number of
messages (this could be particularly significant if transactions
typically have only a few remote subtransact ions) and in the
delay in conflict resolution.

In summary, a conflict decision node can send a restart
message to the parent node of a remotely originating transac-
tion and simultaneously send a lock release message for this
transaction to the conflict occurrence node, thereby reducing
the delay in the breaking of wait chains. This improvement can
be added to the modif ied protocols descr ibed above. For the
Table Protocol, the optimization comes into play only when
the final decision is to restart Tg and the parent node of TY
is different than that of T2. In the case of the Local and
Sequential Protocols, however, in addit ion to the above case,
the optimization also takes effect whenever Node 1 decides
to restart T2.

A point to note here is that if a node receives a lock release
message for a subtransact ion that is in the commit process, the
lock release message is ignored since the subtransact ion will
soon be releasing its locks.

C. Protocol Analysis

In the protocol descriptions above, we informally high-
l ighted the features of the various modif ied protocols by
considering the case where the conflict node and the parent
nodes of the conflict transactions were all different. W e now
go on, in this section, to provide a more concrete analysis of
the expected performance behavior of the modif ied algorithms.
To this end, we have presented, in Fig. 11, a detailed tabulation
of the message, delay, and restart characteristics of the various
distributed WDL protocols over all possible conflict situations.
In Fig. 11, each protocol is character ized by three columns:
CRO, CRM, and CRD. The first column, CR0 (Conflict
Resolut ion Outcome), descr ibes the possible outcomes of
the WDL decision process. The possible outcomes are to
Block (B), to Restart TI (Rl), to Restart T2 (R2), or to
Restart TY (Ry). The modif ied protocols (Table, Sequential,
and Local) ensure that only one of these outcomes finally
takes effect. W ith the Basic protocol, however, a combinat ion
of two outcomes is implemented when the parent nodes of the
conflicting transactions are different (all possible combinat ions
of outcomes are enumerated in the table). The second protocol
column in Fig. 11, CRD (Conflict Resolut ion Delay), is the
time period (measured in number of message transmission
delays) between the occurrence of a lock conflict and the
complet ion of the WDL decision process at the conflict and
parent nodes (this includes the time for the physical breaking
of the wait chain in the cases where the conflict results in

FRANASZEK ef al.: CONCURRENCY CONTROL BASED ON LIMITED WAIT-DEPTH 1261

r

I

I c F I c J ua

LOCK
PROTOCCt.

czmFLIcr I M5lC
5CEN4tlO PROTOCOL

TABLE
PROTOCU. PRE

CR0 at0 cm

EYO

P22PyZN5

I) Pl#(P2-N 12)

I) Pl+P2+Nl2

PRLZ
CR0 CR0 Cal

5EouENnu
PROTOCOL

Ro CR0 cm I. P2&‘+N2y

a) P I-PZ-N 12

x(0 CR0 CRI

BB
032
MY
RIB

RI&

R1.R

R2.0

R2.R:

RZ,R!

-

1
1

2

2

2

2

2

2

2

1

2

3

2

2

5

3

2

3

7
1

3

2

2

4
2

2

4

2

3

4

3

4

5

4

4

5

;-
Rl

R2

w

B

Rl

Ri

Ry

-

ir

Rl

R2

Ru

B

RI

R2

Ru

r

Rl

R2

Ru

B

RI

R2

Ry

0
0

0

2

1

2

2

3

1

2

3

1

2

3

2

2

3

-

0
0
0
2

1

2

2

3

1

2

3

1

2

3

2

3

5

-

i-
Rl

R2

Rv

B

RI

R2

w

B

Rl

R2

w

-

0
0
0
1

1

2

2

2

2

2

2

2

-

0
0
0
2

1

2

2

3

2

2

2

4

i-
t1
t2

ti

3

?l

t2

v

3

PI

R2

pv

0
0

0

1

1

2

2

2

1

0

1.

2

r

Rl

R2

&

B

Rl

R2

&

B

Rl

R2

Rv

-

P
0

0

1

1

1.2

1.2

2

1

0

1.2

2

-

RI

R2

Rv

b) (PI-P2)fN12 B

Rl

R2

w

c) (P 1-N 12)#P2 B.B

B,R2

WY

R1.B

R 1.R:

Rlh

R2.B

R2.R:

R2.b
I.

Protoco&
CGNFLICT
SCENARIO

II.

P2-PyCN5

All mlrba rwnain id.ntkal to that for P2=Py-N2y
mxcmpt that

1) lha CR0 and CRY m. both mduc& by 1
for ate-(*,Ry) in BASIC protod.

2) lh CRM b raducd by 1 for CRC+ty) in
all the medlfbd protocoh.

III.
P2=Py-N&

All nbba rmndn ldmtical to that for PZ-Py-N2y
except that

1) Ttm CR0 b rducd by 2 fa tha CRO-@,Ry
md by 1 for a?D-(w?y) md mo-(R2,Ry 1
in the BAYC protocol. lb CRM b reduced
bv 2 fa CJV).

B Block I
Rl Restart T,
R2 IR&art T? I

Fig. 11. Conflict resolution costs for distributed WDL implementations.

1262 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 1 I, NOVEMBER 1993

wait-chains of length greater than one). The last protocol
column, CRM (Conflict Resolut ion Messages), is the number
of messages that are sent in order to resolve the conflict dur ing
the Conflict Resolut ion Delay (CRD) period.

1) Table Construction: In this section, we will illustrate
how the table entries in Fig. 11 describing the conflict res-
olution delay and message numbers for each conflict situation
are der ived for the various protocols.’ W e use case I-e) in Fig.
11 as our example (this case captures the situation where the
conflict node and the parent nodes of the conflicting nodes are
all different). Assume that the right conflict resolution decision
(from a global perspect ive of the wait chain) is to restart
Tl, i.e., the outcome of the WDL decision process should be
RI, and that Node 3 is the conflict node. If we examine the
Basic Protocol, an Rl decision takes two conflict information
messages (one to each parent node), and then a message from
Node 1 to Node 3 to remove Tl3 from the queue of lock
waiters. Therefore, the delay in implementing the decision to
restart RI is CRD = 2 (since the conflict information messages
are sent in parallel), while the number of messages involved
in the decision process is CRM = 3. In addition, based on the
WDL decision at Node 2, additional messages may be sent
for restarting either T2 or Ty . A decision to restart T2, for
example, will take an additional message to Node 3 to release
T23’s locks. Therefore, the CRM for the Basic Protocol for an
Rl decision could be 3, 4, or 5, based on the WDL decision
at Node 2.

Moving on to the Table protocol, it is easily determined
that it takes five messages to implement an Rl decision (two
conflict information messages from Node 3 to Nodes 1 and 2,
two messages for exchange of WDL decision between Node 1
and Node 2, and one more message from Node 1 to Node 3 to
remove Tl3 from the queue of lock waiters), thereby resulting
in CRM = 5. Further, the delay in the decision process is CRD
= 3 since the conflict information messages and the conflict
decision messages are sent in parallel.

Turning our attention to the Sequential Protocol, we find
that it takes two messages to implement the Rl decision, one
for the conflict information to be transmitted from Node 3 to
Node 1, and the second message from Node 1 to Node 3 to
remove Tl3 from the queue of lock waiters. Therefore, the
delay in implementing the decision is CRD = 2, while the
number of messages is CRM = 2.

Finally, for the Local Protocol, it is possible that the conflict
is resolved at Node 3 itself. If this is so, only one message
has to be sent from Node 3 to Node 1 informing it of the
Rl decision, resulting in CRD = 1 and CRM = 1. If Node 3
cannot resolve the conflict itself, however, then the number of
messages and the delay is identical to that of the Sequential
Protocol.

In a similar fashion, we can derive the message complexity
and delay involved in conflict resolution for the various
combinat ions of conflict node location, parent node locations,
and WDL outcome.

2) Performance Expectations: By compar ing the entries
for the various protocols in Fig. 11, we can make several

‘W e assume, in this tabulation, that the optimization for fast wait-chain
breaking is incorporated in the modif ied protocols.

observat ions about their expected performance. First, the
message complexity of the Sequential Protocol is strictly
(i.e., under all conflict situations) less than that of the Table
Protocol, while the message complexity of the Local Protocol
is strictly less than that of the Sequential Protocol. Second,
the message delay of the Local Protocol is strictly less than
that of the Sequential Protocol, which in turn is strictly less
than that of the Table Protocol. Therefore, the Local Protocol
has the best per formance (among the modif ied algorithms) for
both of these measures. As pointed out earlier, however, the
Local Protocol has a h idden cost in that it may generate false
(unnecessary) restarts due to using “old” information about
the wait g raph of the conflicting transactions. The signif icance
of this cost will be determined by the execut ion time of
subtransactions, since the longer the execut ion time, the greater
the possibility of the wait g raph having changed between the
time that the subtransact ion began execut ing and the time
the conflict occurred. For business applications, however,
where transactions are typically simple in structure, we expect
subtransact ion execut ion times to be relatively small, and
therefore false restarts may occur only infrequently. Therefore,
from an overall perspective, the Local Protocol appears to be
the most promising candidate among the modif ied protocols.

If we compare the Local Protocol with the Basic Protocol,
we note that its message complexity is strictly less than that of
the Basic Protocol. However, the delay of the Local Protocol
can be, based on the conflict situation, either more or less than
that of the Basic Protocol. If the final decision is to block, for
example, the Local Protocol has one more delay than the Basic
Protocol (if Node 1 is different than Node 3). In contrast, if
the final decision is to restart Tl, then the delay may be one
less than or the same as that of the Basic Protocol. For the
case where the final decision is to restart T2, the delay of the
Local Protocol may be either one less than, the same, or one
more than that of the Basic Protocol. Finally, in the case where
the final decision is to restart Ty , the delay is less than or the
same as that of the Basic Protocol.

As can be deduced from the above discussion, the only
situation where the delay of the Local Protocol is strictly worse
than the Basic Protocol is when the final decision is to block,
and is limited to the case where the conflict node is different
than the parent node of the lock request ing transaction. On the
other hand, unlike the Basic Protocol, the Local Protocol does
not suffer from the problem of multiple restarts.

Given the above characteristics of the protocols, it is our
expectat ion that the Local Protocol would improve on the
performance of the Basic Protocol, at least in the parameter
regions in which we expect future high-performance systems
to operate. Of course, the actual extent of per formance im-
provement needs to be evaluated with a per formance study.
While a detailed quantitative analysis of the message and delay
characteristics of the various protocols is outside the scope of
this paper, we present here the method by which these relative
performance measures could be computed.

A recent study presents the analysis of (a slightly modif ied
version) of WDL in a central ized system [21]. A byproduct
of the analysis is the relative f requency of events which occur
upon a lock conflict (transaction blockings and different types

FRANASZEK et al.: CONCURRENCY CONTROL BASED ON LIMITED WAIT-DEPTH 1263

of restarts). Aside from the f requency of restarts, we need to
know the probabilit ies associated with different configurations
given in Fig. 11. This aspect of the analysis can also be
under taken using techniques similar to those descr ibed in [22],
where for a given locality of access, the distribution of the
number of accesses to remote nodes is computed. Given the
relative frequencies of restarts, the probabilit ies of various
configurations can be used to obtain estimates for CRM and
CRD for the different implementations of distributed WDL.
Due to feedback effects, such results should be considered
with caution. However, these analytical results can be used as
components of an analytic solution for distributed WDL. A
complete analysis of distributed WDL methods is beyond the
scope of this paper.

VI. CONCLUSIONS

Distributed Wait-Depth Limited (DWDL) CC, a new dis-
tributed concurrency control method that is des igned for high
lock content ion environments, is descr ibed in this paper.
The DWDL method selectively utilizes transaction restarts
to prevent the performance degradat ion that is caused by
transaction blocking which occurs with two-phase locking with
the general waiting policy. In addition, DWDL ensures that
deadlocks (local or distributed) are prevented from occurr ing
by limiting the wait-depth of b locked transactions to no more
than one.

In distributed systems, message costs, in terms of processing
overhead and internode communicat ion delay, are relatively
high in practice. Therefore, in designing the distributed WDL
protocol, appropriate modifications were made to the central-
ized WDL paradigm to minimize the number of messages,
while retaining desirable WDL properties. These changes
include the use of transaction arrival time, instead of the
number of locks held, as an indication of transaction progress.

Detailed simulation results showed that distributed WDL
outperforms both standard 2PL and the wound-wait method
in high MIPS systems with a high degree of lock contention.
The improvement in per formance was observed to increase
with increased system processing capacity.

DWDL’s improvement in per formance with respect to stan-
dard locking schemes is attained at the cost of extra processing,
which is due to the messages required for updat ing conflict
graphs and restarting transactions. This extra processing is
almost exclusively in the form of CPU overhead since we
postulate large database buffers such that, g iven a high degree
of access invariance [5], [7], the need for additional disk ac-
cesses is obviated. Given recent hardware trends of increasing
CPU MIPS and decreasing semiconductor memory costs, this
additional CPU processing may be an acceptable approach for
achieving higher transaction throughputs, without requiring the
redesign of transactions. However, it should be noted that, due
to DWDL’s greater message complexity, its per formance is
more susceptible to reduct ions in the locality of transaction
data access and increases in the cost of sending messages than
the other standard locking-based CC methods considered in
this paper.

.~-
I

The basic DWDL algorithm has some drawbacks in that
it may restart more transactions than are strictly necessary
for restricting transaction wait-depths to one. Further, in order
to minimize the delay in conflict resolution, it utilizes more
messages than may be necessary for resolving conflicts. The
performance of DWDL could perhaps be further improved
by addressing these drawbacks. To this end, we proposed
three alternate distributed WDL schemes and presented an
empirical compar ison of their per formance (based on the
number of messages and delay involved in conflict resolution)
with respect to each other and the Basic method. One of
these methods, the Sequential Protocol, appears particularly
attractive, and in our future research, we plan to carry out a
complete per formance study of these alternative protocols.

A significant reduct ion in WDL overhead can be attained
by using a periodic policy for propagat ing lock conflict infor-
mation, as is done for conflict resolution in distributed systems
[2]. Since the probability of encounter ing more complex
graphs is more likely in the case of periodic conflict resolution,
alternate schemes such as the sequential scheme and the more
general data conflict resolution rules presented in [6], [7]
may potentially provide improvements to the Basic distributed
WDL paradigm in this case.

ACKNOWLEDGMENT

The simulator used in this study is an extension of a DeNet
based simulator of a central ized DBMS developed by R.
Jauhari, H. Pirahesh, and C. Mohan at IBM AImaden Research
Center-ARC. The authors thank ARC for the donat ion of their
simulator. W e also thank M. Livny for his assistance with
DeNet.

REFERENCES

[l] R. Agrawal, M. J. Carey, and M. Livny, “Concurrency control perfor-
mance model ing: Alternatives and implications,” ACM Trans. Database
Syst., vol. 12, pp. 6099654, Dec. 1987.

[Z] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control
and Recovery in Database Systems. Reading, MA: Addison-Wesley,
1987.

[3] M. J. Carey and M. Livny, “Distributed concurrency control perfor-
mance: A study of algorithms, distribution, and replication,” in F’roc.
14th Int. Conf: Very Large Data Bases, Los Angeles, CA, Aug. 1988,
pp. 13-25.

[4] P.A. Franaszek and J.T. Robinson, “Limitations of concurrency in
transaction processing,” ACM Trans. Database Syst., vol. 10, pp. l-28,
Mar. 1985.

[5] P. A. Franazsek, J. T. Robinson, and A. Thomasian, “Access invariance
and its use in high contention environments,” in Proc. 6th IEEE Data
Eng. Conf, Los Angeles, CA, Feb. 1990, pp. 47-55.

[6] -, “Wait depth limited concurrency control,” in Proc. 7th IEEE
Conf Data Eng., Kobe, Japan, Apr. 1991, pp. 92-101.

[7] -, “Concurrency control for high contention environments,” ACM
Trans. Database Syst., vol. 17, pp. 304-345, June 1992.

[8] P. Heidelberger and M. S. Lakshmi, “A performance comparison of mul-
timicro and mainframe database architectures,” IEEE Trans. Sojiware
Eng., vol. 14, pp. 522-531, Apr. 1988.

[9] J. N. Gray, “The cost of messages, ” in Proc. 7th Annu. Symp. Principles
OfDistributed Computing, Toronto, Ont., Canada, Aug. 1988, pp. l-7.

[lo] T. Haerder, “Observations on optimistic concurrency control schemes,”
Inform. Syst., vol. 9, no. 2, pp. 11 l-120, 1984.

[ll] B.C. Jenq, B. C. Twitchell, and T. W. Keller, “Locking performance in
a shared nothing parallel database machine,” IEEE Trans. Knowledge
Data Eng., vol. 1, pp. 53&543, Dec. 1989.

IEEE TRANSACTIONS ON PARALLEL AND DISTRJBUTED SYSTEMS, VOL. 4, NO. 11, NOVEMBER 1993

P21

[I31

[I41

1151

P61

[I71

[IsI

M. Livny, DeNer User’s Guide, Version 1.0, Dep. Comput. Sci., Univ.
Wisconsin, Madison, 1988.
C. Mohan, “Less optimism about optimistic concurrency control,” in
Proc. 2nd Int. Workshop Res. Issues in Data Eng., Tempe, AZ, Feb.
1992, pp. 199-204.
D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, II, “System level
concurrency control for distributed database systems,” ACM Trans.
Database Syst., vol. 3, pp. 178-198, June 1978.
K. C. Sevcik, “Comparison of concurrency control methods using an-
alytic models,” in Information Processing 83: Proc. 9th IFIP World
Congr., R. E.A. Mason, Ed., Paris, France, Sept. 1983, pp. 847-858.
M. Stonebraker, “The case for shared nothing,” Database Eng. Bull.,
vol. 9, pp. 4-9, Mar. 1986.
Y. C. Tay, N. Goodman, and R. Suri, “Locking performance in cen-
tralized databases,” ACM Trans. Database Syst., vol. 10, pp. 415462,
Dec. 1985.
A. Thomasian and E. Rahm, “A new distributed optimistic concurrency
control method and a comparison of its performance with two-phase
locking,” in Proc. 10th Int. Distributed Comput ing Conf, Paris, France,
May 1990, pp. 294-301.
A. Thomasian, “Performance limits of two-phase locking,” in Proc. 7th
IEEE Conf: Data Eng., Kobe, Japan, Apr. 1991, pp. 42&435.
A. Thomasian and I. K. Ryu, “Performance analysis of two-phase
locking,” IEEE Trans. So&we Eng., vol. 17, May -1991.
A. Thomasian, “Performance analysis of locking policies with lim-
ited wait-depth,” in Proc. ACM SK?METRICSiPe;f&-mance ‘92 Conf,
Newport, RI, June 1992, pp. 115-127.
-, “On the number of remote sites accessed in distributed transac-
tion processing,” IEEE Trans. Parallel Distributed Syst., to be published.
Also, IBM Res. Rep. RC 15430, Hawthorne, NY, Jan. 1990.

Peter Franaszek (S’63-M’6&SM’89-F’90) re-
ceived the Sc.B. degree from Brown University,
and the M.A. and Ph.D. degrees from Princeton
University.

He is Manager of Systems, Theory and Analysis
in the Computer Sciences Department at the IBM
Thomas J. Watson Research Center. His interests
include analysis and design principles in computer
system organization, algorithms, communicat ion
networks, and coding. He has received a variety of
IBM awards for this work in the areas of algorithms,

interconnection networks, concurrency control principles, and coding theory.
In 1991, he was elected to the IBM Academy of Technology. He was
the recipient of the 1989 Emmanue l R. Piori award of the IEEE for his
contributions to the theory and practice of digital recording codes. During the
academic year 1973-1974, he was on leave from IBM to Stanford University
as Consult ing Associate Professor of Computer Sciences and Electrical
Engineering. Prior to joining IBM, he was a member of technical staff at
Bell Te lephone Laboratories.

Alexander Thomasian received the B.S.E.E. de-
gree from the University of Tehran, Iran, and the
M.Sc. and Ph.D. degrees in computer science from
the University of California, Los Angeles. I

He is a member of the research staff in the Sys-
tems Analysis Department at the IBM T. J. Watson
Research Center. He was a faculty member at Case
Western University and the University of Southern
California and a senior staff scientist at Burroughs
(now Unisys) Corporation. He has also been an
adjunct faculty member in the Computer Science

Department at Columbia University. His current research interests are in the
area of performance analysis and design of parallel and distributed systems,
with emphasis on databases. He has received an Outstanding Innovation Award
from IBM and publ ished about 70 papers. He has given tutorials on high-end
transaction and query processing systems at several conferences sponsored by
IEEE. He serves on the Program Committees of the 1993 Data Engineering
and the 1993 Distributed Comput ing Conference as Vice-Chair of Performance
Model ing and Evaluation.

Dr. Franaszek is a member of Tau Beta Pi and Sigma Xi. Dr. Thomasian is a member of the IEEE Computer Society and the ACM.

Jayant R. Haritsa (S’91-M’91) received the B.S.
degree in electronics and communicat ions engineer-
ing from the Indian Institute of Technology, Madras,
in 1985, and the M.S. and Ph.D. degrees in computer
science from the University of Wisconsin, Madison,
in 1987 and 1991, respectively.

He is currently a Post-Doctoral Fel low with the
Systems Research Center, University of Maryland,
Col lege Park. During 1988 and 1990, he spent sum-

: ” mers at the Microelectronics and Computer Tech-
nology Consort ium and at the IBM T. J. Watson

Research Center, respectively. His research interests include database systems,
real-time systems, network management , and performance model ing.

Dr. Haritsa is a member of the ACM.

John T. Robinson received the B.S. degree in
mathematics from Stanford University, Stanford,
CA, in 1974, and the Ph.D. degree in computer
science from Carnegie-Mellon University in 1982.

Since 1981 he has been with the IBM T. J. Wat-
son Research Center, Yorktown Heights, NY. His
current research interests include database systems,
file systems, parallel and distributed processing, and
design and analysis of algorithms.

Dr. Robinson is a member of the ACM and the
IEEE Computer Society.

