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SUMMARY

In July 1995, the Indian Institute of Science undertook a consultancy project for Texas Instruments
India Pvt Ltd under contract CP 2560/0406/95. The project consultant was Dr. Jayant Haritsa of the
Supercomputer Education & Research Centre at the Indian Institute of Science. The goal of the project
was to develop a database system for supporting interconnect analysis in VLSI chip design. Over a
period of a year, an object-oriented software package called DIAS (Database System for Interconnect
Analysis) was developed for this purpose by Dr. Jayant Haritsa and his students, N. S. Arun and M.
Krishna. The DIAS system was developed using the public-domain SHORE software, available from
the University of Wisconsin (Madison), as the backend engine. Approximately 40,000 lines of object-
oriented application code were written on top of this platform. The project was completed in August
1996 with the installation of the DIAS software at Texas Instruments India. This report describes in

detail the design, implementation, interfaces and features of the DIAS database system.



Contents

1 Introduction
1.1 Motivation . . . . . . . . e e e e e e e
1.2 Current data management solutions . . . . . . . ... . ... oL
1.3 Database Management Systems . . . . . . . . .. ... oL o
1.4 The DIAS System . . . . . . . . . . o e e e e e e
1.5 Earlier Work . . . . . . o L e e e e e e
1.6 Organization . . . . . . . . . . L e e e e e e e e

2 Database Modeling Approaches
2.1 Application Requirements . . . . . . . . . ..o
2.2 Drawbacks of traditional database systems . . . . . . . .. .. ... oL oL
2.3 The Object Oriented data model . . . . . . .. . ... o .
2.4 Object Oriented Database Management Systems . . . . . ... ... ... ... .....
2.5 Choice for DTAS . . . . . . . e

3 OODBMS Platforms
3.1 Object Oriented database programming languages . . . . ... ... ... ... .....
3.1.1 ODE . . . e
3.1.2 ObjectStore . . . . . . . L e e e e e e
3.1.3 GemStone . . . . ..o e e e e
314 Og oo o e e e e e
3.1.5 ONTOS . . . e e
3.2 Extended relational database systems . . . .. . ... ... L L L.
3.21 POSTGRES . . . . e
3.2.2 Tlustra . . . . . . e e e e e e
3.23 STARBURST . . . . o o e
3.3 Database System Generators . . . . . . . . . . . . .. ... e e
3.3.1 EXODUS . . . e e
3.3.2 SHORE . . . . . . e e
3.3.3 GENESIS . . . . . e
3.4 Object Managers . . . . . . . . o Lo e e e
34.1 Mneme . . . ..o L e e e e e
3.4.2 POMS . . . e
3.5 Choice for DIAS . . . . . . o e

4 SHORE
4.1 Imtroduction . . . . . . . . o L L
4.2 Basic Shore Concepts . . . . . . . . . L Lo e
4.3 Shore Object Basics . . . . . . . . . L e e e
4.4 File System Features . . . . . . . . . L.

ii

13
15
15
16
17
18
19
19
19
21
21
21
22
23
24
25
25
25
26



CONTENTS

4.4.1 Shore Object namespace . . . . . . . . . . it e e e e e
4.4.2 Legacy Unix tool support . . . . . . . . . . . L
4.5 Object Oriented Database System features . . . . . . . . . ... ... ... ........
4.5.1 The Shore Type System . . . . . . . . . . . . . ..
4.5.2 Shore Language Bindings . . . . . . . .. .. ... o
4.5.3 Other OODB-Like services . . . . . . . . . o i i it ittt e s
4.6 The Shore Architecture . . . . . . . . . L e
4.7 Shore Software Components . . . . . . . . . . . . . e e e e
4.7.1 The Language Independent Library . . . ... .. ... ... ... ... ...,
4.7.2 The Shore server . . . . . . . . . o it i e e e e e
4.8 Conclusion . . . . . . . . L e e
5 Object Oriented Methodologies
5.1 Imtroduction . . . . . . . . . L e e e e e
5.2 Traditional Approaches . . . . . . . . . .. ..
5.3 The Object Modeling Technique . . . . . . .. . .. . . ... ... ...
5.4 The Booch Method . . . . . . . . . . . . . e e
5.5 The Fusion Method . . . . . . . . . . . . e
5.6 Other Object Oriented Approaches . . . . . . . . . . . .. ... ... ... .......
5.7 Comparison of OO Methodologies . . . . . .. ... ... ... ... ... ... ... ..
5.8 Choice for DIAS . . . . . . . . . e
6 Analysis
6.1 Problem Statement . . . . . . . ..o oL
6.2 Identifying Classes . . . . . . . . . . . . e
6.3 Relationships . . . . . . . . e
6.4 Link Attributes . . . . . . . . L. e
6.5 Other Relationships . . . . . . . . . . . e
6.6 Attributes and Operations of Classes . . . . . . . . . . . . . . ... ...,
6.7 Inheritance . . . . . . . L. L e e e e
6.8 Normalization of the Object Model . . . . . . . . . . . . ... .
7 Design and Optimization
7.1 DIAS System Architecture . . . . . . . . .. ... L
7.2 Object Design . . . . . . . . . L e e e
7.2.1 Obtaining operations on classes . . . . . . . . . . . ..o oo
7.2.2 Designing algorithms to implement operations . . . ... ... ... .......
7.2.3 Design of associations . . . . . ... . ... e
7.3 Additional classes . . . . . . ...l e e e e
7.4 Further optimization . . . . . . . . . . o L Lo e
7.5 Accessmethods . . . . . . . . ..
7.6 Index Organizations for Aggregation Hierarchies . . . . ... ... ... .. ... ...,
7.6.1 The Nested index . . . . . . . . . . . i e
7.6.2 ThePathindex . . . . . . . . . . . L e
7.7 Index Organizations for Association Paths . . . . . . . .. ... ... ... ........
7.8 Index Organizations for Inheritance Hierarchies . . . . . . .. . ... ... ... .....
7.8.1 The CHitree . . . . . . . . . . @ i i i it it it st e
7.8.2 ThehcCtree . . . . . . . . e e e
7.9 Unified Index Organizations for Composite
Hierarchies . . . . . . . . . . o o e e e

7.10 Efficient execution of queries . . . . . . . . Lo oo o e

iii

28
29
29
29
29
30
30
30
30
31
32

33
33
33
34
34
35
36
36
37

40
41
41
43
47
47
48
48
50



CONTENTS

8 DIAS Kernel Implementation

8.1 Object Model implementation . . . . . . . . .. ... Lo o e
8.2 Data Manipulation . . . . . . . . .. oL e
8.3 Access Methods . . . . . . . . . . .. e
83.1 Bl tree . . . . . . . e
8.3.2 NestedIndex . . . . . . . . . . . . . e e e e e e e e
8.3.3 PathIndex . . . . . . . . . . . . . . e e e
8.3.4 CHtree . . . . . . . o o e e e e e e e e e
8.3.0 hcCitree . . . . . . . . . e e e e
8.4 Other implementation details . . . . . . . . .. ... Lo o Lo

9 Interfaces

9.1 ToolInterface . . . . . . . . . . e e
9.2 Programming Interface . . . . . . . .. ..o
9.3 QueryInterface . . . . . . . . L

10 Introduction to Query Processing
10.1 Motivation . . . . . . . . e e e e e e e e e e e e e
10.2 Goals and contributions . . . . . .. ..o oL e
10.3 Interface to DIAS . . . . . . . L e e
10.4 Query Processor . . . . . . ... e e e e e e e
10.5 Bulkloader . . . . . . . . . e e e e e e e e e e e
10.6 Schema Manager . . . . . . . . . . . L e e e e e e e
10.7 Access Methods . . . . . . . . . L e e

11 Related Work in Query Processing
11.1 Monolithic database systems . . . . . . . . . .. .. oL o e

11.1.1
11.1.2
11.1.3

O .
ObjectStore . . . . . . . . e e e e
ORION . . . e e e

11.2 Database system generators . . . . . . . . . . .. ... oL oL

11.2.1
11.2.2
11.2.3

GENESIS . . . e e
EXODUS . . . o e e e
SHORE . . . . . o e e e e

11.3 Our work . . . . . o e e e e e

12 Object Oriented Query Processing
12.1 Object oriented Concepts . . . . . . . . . . . o L e e e
12.2 Object oriented and relational query processing . . . . . . . . . .. .. ...
12.3 Stages in Query processing . . . . . .. Lo e e e e e e e
12.4 Tssues in Query proCessing . . . . . . . . . o i a e e e e e e e e

13 Query Model
13.1 OVErview . . . . . L o i e e e e e e e
13.2 The Query Model Representation . . . . . . . . . .. .. ... o 0oL

13.2.1
13.2.2
13.2.3
13.2.4
13.2.5
13.2.6

Nodesand Edges . . . . . . . . . . . o
Directionof anedge . . . . . . . . . . . L
Notation . . . . . . . . . o e e e e e
Aggregation Edge Qualifiers . . . . . . . . ... oo oo L oL
Inheritance Edge Qualifiers . . . . . . .. ... . L oo o oL
Reference Edge Qualifiers . . . . . . . . . .. ... oo

v

69
69
72
74
74
74
74
75
75
76

78
78
79
81

83
83
84
85
85
86
87
87

89
89
89
90
90
91
91
91
91
92

93
93
95
97
100



CONTENTS

13.3 Definitions . . . . . . . . . . . e e e e e e e e e e
13.4 Operations on the query graph . . . . . . . ... ... o o Lo
13.5 Benefits . . . . . L e e e e

14 Access Methods
14.1 Classification of queries . . . . . . . . . . . o L e
14.2 Simple value based queries . . . . . . . .. L. L e e e e e e e
14.2.1 BT tree . . . . . . .
14.2.2 Extendible hashing . . . . . . . . . . ... oL
14.3 Aggregation based Access Methods . . . . . . .. .. .. oo Lo
14.3.1 The Nested Index . . . . . . . . . . . . 0 e e e s e e e
14.3.2 The Path Index . . . . . . . . . . . . . . . . e e e e
14.3.3 Multiindex . . . . . . . . . . e e e e e e e
14.3.4 Multi index with path configuration . . . ... .. .. ... ... ... .....
14.4 Inheritance based access methods . . . . . . . . . . .. ... ... .. ... ... ..
14.4.1 The CH tree . . . . . . . . o i i i e e e e e e e e e e e e e e s
14.4.2 The H-tree . . . . . . . . . . i e e e e e e e e e e e e e e
14.4.3 The hcC tree . . . . . . . . . o e e e e e e e e e e

15 The Query Processing System
15.1 System Architecture . . . . . . . . . . .. L
15.2 SHORE Server . . . . . . . . . . . . e e e e
15.3 DIAS datamodel . . . . . . . . . L
15.4 Schema Manager . . . . . . . . . . L e e e e e e
15.5 Query Processor . . . . . .. L e e e e e e
15.5.1 Query Language . . . . . . . . . . . e
15.5.2 Interface Server . . . . . . . . . . . L e e e e e e
15.5.3 Parser and Tree Generator . . . . . . . . . . . . . . i it
15.5.4 Semantic Evaluator . .. ... ... ... .. ... ... .. e
15.5.5 Flow Generator . . . . . . . . . . . . . . e e e e e
15.5.6 Optimiser . . . . . . . . . L e e e e e
15.5.7 Executor . . . . . . . . . e e e e e e e e e e
15.6 Access Methods . . . . . . . . . . . e

16 Implementation of the Query Processing System
16.1 Schema Manager . . . . . . . . . . . e e e e e e
16.2 Parse Tree . . . . . . o . o L o e e e
16.3 Query graph . . . . . L L e e e e e
16.4 Subtree generation . . . . . . . . ... L e e e e e e e
16.5 Optimisation . . . . . . . . o L L e e e e e e e
16.6 Execution . . . . . . . . L e e e e
16.7 Heterogeneity . . . . . . . . . . . . e e e e e e
16.8 Other Details . . . . . . . . o L e e e

17 Bulkloading in OODBMS
17.1 What is BulkLoading? . . . . . . . . . . . e
17.2 Necessity . . . . o« o o e e e e e
17.3 Issues in bulkloading in OODBMS . . . . . . .. ... .. .. .. .. .. . ...,
17.4 The DIAS BulkLoading Architecture . . . . . . . . .. .. ... .. ... ...
17.4.1 DIF Data File . . . . . . . . . e e
17.4.2 Parser and Translator . . . . . . . . ... .. . . o e

106
108
108

110
110
111
111
112
112
112
114
116
118
119
120
121
122

125
125
126
127
128
129
130
131
131
132
133
134
134
135

137
137
138
139
139
139
140
141
142



CONTENTS vi

17.4.3 DIAS APl and SHORE . . . . . . . . . . . . i it 148

17.4.4 Extractor and Formatter . . . . .. ... .. ... Lo o Lo 148

17.5 Handling Bulkloading Issues in DIAS . . . . . . . . .. .. ... .. .. .. ... .. 149

18 Performance 150
18.1 Bulk transfer of legacy data . . . . . . .. . ... .. 150
18.2 Access of specificdata . . . . . . ... L. 151
18.3 Impact of access methods on query processing . . . . . . . .. . ... ... ... 151
18.3.1 Simple value based queries . . . . . . . . ... L e 152

18.3.2 Queries targeted on hierarchies . . . . . . .. .. . ... o o000 152

19 Summary and Future Work 155
19.1 Salient Features of DTAS . . . . . . . . . o . L e 155
19.2 Special Features of the Query Processing System . . . . . .. ... .. ... .. ..... 157
19.3 Future Work on the DIAS Kernel . . . . . . . . . .. .. ... ... 157
19.4 Future work on the DTAS QPS . . . . . . . . . . . . . 158
19.5 Final Remarks . . . . . . . oL e 160
Bibliography 160
A SDL Declarations 168
B The Rumbaugh Notation 177
C DIAS Object Model 179
D Grammar of query language 180
E Application Programming Interface 182
F Shore Manuals 201



Chapter 1

Introduction

1.1 Motivation

Right from the inception of integrated circuit fabrication in the early sixties, efforts have been made
to improve chip performance, in terms of speed, density and power, by reducing the feature size.
In fact, recent reports mention new chip manufacturing processes that have less than 10 nanometre
resolution [[EEE96]. The increase in circuit complexity has led to the use of interconnections spread over
several metal layers (sometimes as many as five to seven metal layers). As a result, these interconnects
have begun to occupy a considerable portion of the layout in modern VLSI chips. A related consequence
is that interconnect parasitics, which are unintended harmful sideeffects that arise as a consequence
of the layout, can have a potentially significant adverse impact on chip performance. Therefore, the
electrical characteristics of these parasitics need to be taken into account in the design of modern
IC chips. This requirement is borne out by recent studies which have found that the delay due to
interconnects may cause upto 70 percent of the total signal delay [RaPi94, Khan91] thereby forming
the primary bottleneck in chip performance.

In the chip design process, taking interconnect parasitics into account involves a four-stage process,
as shown in Figure 1.1. In the first step, parasitic information is extracted from the original circuit
design. In the next phase, these parasitics are represented using modeling techniques such as, for
example, RC trees or transmission lines. This data is then incorporated into the circuit netlist. An
example circuit is shown in Figure 1.2 where the interconnect parasitics are modeled as resistances and
capacitances. Finally, the circuit is analysed for electrical parameters such as timing, power dissipation,
etc. Based on these results, the circuit design is revised and the interconnect analysis is repeated. This
feedback process continues until a circuit with satisfactory electrical characteristics is realized.

All of the above stages of interconnect study involve processing data that is both large in size and
complex in nature. For example, the parasitic data is in the order of Megabytes even for simple chip
designs. Moreover, there are rich semantic relationships in the data such as “part-of” (containment),
“is-a” (inheritance), etc. For example, a Cell contains ports, a Cell is a Library Cell or a Design
Cell, etc. The above-mentioned features of parasitic data indicate a clear need for providing data

management support tools.
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Figure 1.1: The Phases of Interconnect Study

1.2 Current data management solutions

Current chip design systems are typically managing their interconnect data using a custom-built file-

based approach. This approach is turning out to be unsatisfactory for the following reasons:

e The system does not provide a natural way of modeling complex objects.

The whole file has to be scanned even if the relevant data constitutes only a small portion of it.

Any changes to the file structure require rewriting of all applications.

Extending the system to handle additional parameters is difficult.

There are no inbuilt mechanisms either for maintaining database consistency during concurrent

access or for providing automatic crash recovery.

Some current chip design systems are not only file-based but are also text-based in that all data
is stored in textual form. For these systems, the problems of the file-based approach are further

exacerbated because of the following reasons:
e Data processing is slow due to textual parsing.
e The database is unnecessarily large since all data types are stored in textual format.
o The entire database has to be parsed and stored in memory before data processing can be initiated.

From the above discussion, it is evident that current interconnect data management solutions form
a serious bottleneck in the chip design process in terms of both functionality and performance. Since

chip complexity usually doubles every two years, the problem will only worsen with the course of time.
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Figure 1.2: A circuit showing interconnect parasitics

1.3 Database Management Systems

To effectively manage the ever-increasing vastness and complexity of these data, an alternative to the
file-based approach is to employ a database technology based approach. In this scenario, various tools
interact with the Database Management System (DBMS) in each of the stages providing inputs as well

as retrieving data to feed the next stage, as shown in Figure 1.3.

Using a database system provides the following benefits:

e [t is designed to handle data of arbitrary size and complexity.

e It serves as a single, central repository eliminating redundancy of multiple copies of the same

data.

e It stores the data in an application independent form.

e It provides an interface to the stored data which can be used to write specific applications irre-

spective of the form in which the underlying data is stored.

e Desirable features such as automatic recovery of data after failures and concurrency control are

It ensures that only the relevant parts of the database are accessed.

now the responsibility of the DBMS rather than that of application programs.
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Figure 1.3: DBMS solution for interconnect parasitic data management

e Special access methods can be incorporated to query the data efficiently.

Most of the commercial database systems in use today (e.g., Oracle, Ingres, etc.) are based on the
relational data model, where all data is represented in the form of tables. However, this model has
been found to be inadequate to naturally support complex applications such as VLSI CAD. A solution
to the problem has recently emerged with the development of database systems based on the object
oriented modeling paradigm, which provides a powerful and natural vehicle for representing domains

that are rich in semantic relationships.

1.4 The DIAS System

In this report, we present the design and implementation of DIAS (Database System for Intercon-
nect Analysis), a system that is tuned for supporting interconnect parasitics data. In particular, we
first present a comprehensive object oriented model for capturing the complex semantics of the domain.
The model represents in detail the variety of data relating to design and analysis of a VLSI circuit.
The design data consists of data regarding the various components of a circuit design and the complex
interrelationships among them. The analysis data deals with the data introduced during the intercon-

nect study of the designed circuit. In addition, the model also represents layout and characterization
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Figure 1.4: DIAS System Overview

information.

We then describe the design and implementation of a database system that implements the model
and supports efficient data processing. DIAS has been developed for use in the chip development process
of Texas Instruments, Inc., but its design is broadly applicable to other environments as well. DTAS
is an object oriented database solution developed using Rumbaugh’s OMT methodology of software
development [Ru+91]. DIAS uses the SHORE system [Zwi+94] as the backend database engine, and has
been implemented using a combination of the Shore Data Language (SDL), a language-neutral notation
for describing types of all persistent data, and C++, used for writing application code. The current
system runs to approximately 35,000 lines of code. Users of DIAS can interact with the system through
either a Query Interface or a Tool Interface. The Query Interface is used for dynamically formulating
queries while the Tool Interface is used for supporting existing (legacy) design tools that require a file
system interface, rather than a database system interface. This is facilitated by the fact that Shore
supports both database features and file system features. DIAS also provides a Programming Interface
in the form of a library of routines that can be used to manipulate the database. These routines
can be used for developing new design tools that directly use the database interface. For efficient
query processing, a complete query processing system is implemented. Specialised access methods are
incorporated for fast access of data. Issues related to object management and transaction processing
are handled by the Shore server. The system overview of DIAS is as shown in Figure 1.4.

In summary, DIAS forms part of an information framework that extends chip design database sys-
tems that deal primarily with management of design data to include support for analysis of interconnect

parasitics. DIAS is a working prototype and is being field-tested at Texas Instruments, Inc.
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1.5 Earlier Work

The issue of data management for VLSI CAD has seen considerable research activity. The emphasis on
making tools and data more accessible to designers has led to the data oriented design systems. Exam-
ples of VLSI CAD design database systems are OCT [HMSN86], Cbase [Breu+88], 3DIS [AKMPS85],
etc. Also, tool oriented systems such as Cadweld [DaDi91] emphasizing tool integration have been
developed.

Data representation and data management are major components of an electronic CAD frame-
work [HNSB90, Gup+89]. Framework standards have been developed by EDIF [EDIF93] and
CFI [CFI94]. These standards provide an information model and a programming interface. CAD
databases such as DDB [SAL93, SPDL89] are based on the information model.

The systems considered above deal primarily with management of design data. In contrast, the
focus of our work is on the complementary aspect of modeling and processing of analysis data. While
the issues in design data management continue to be relevant since the basic entities are the same, other
issues that are specific to analysis have to be dealt with. Our work involves a database system mainly
focused on meeting the needs of data management of interconnect parasitics related data. To the best
of our knowledge, this system represents the first database-related work in the area of interconnect

analysis.

1.6 Organization

The rest of the report is organized as follows: In Chapter 2, we consider the requirements of our
application and choose to adopt the object oriented data model for our database system. We briefly
survey several object oriented database systems and choose a particular database engine to serve as the
backend platform in Chapter 3. In Chapter 4, we provide the details of the backend database engine.
Chapter 5 deals with several object oriented methodologies for software development and outlines the
broad stages of the development of DIAS. We then discuss the object model that is developed for
representing interconnect parasitics data in Chapter 6. The DIAS system architecture, the design
and optimization stages are described in Chapter 7. We focus on the implementation of the DIAS
kernel in Chapter 8. The interfaces that DIAS provides form the topic of Chapter 9. Chapter 10
provides a brief introduction to query processing. Chapter 11 presents important aspects of query
processing in representative object oriented database systems. The basic concepts of object orientation
and issues in query processing are discussed in chapter 12. The query model is presented in chapter 13.
Chapter 14 presents a survey of access techniques used for efficient retrieval in object oriented database
systems. The design of the query processing system is discussed in chapter 15 and chapter 16 describes
the implementation details. The design and implementation of the DIAS bulkloader is presented in
chapter 17. Chapter 18 describes the results of some initial tests to study the performance of DIAS. We

conclude in chapter 19 with the summary of our work and suggest possible avenues for future work.



Chapter 2

Database Modeling Approaches

The domain of an application consists of a number of entities and the interrelationships among them.
Databases are used to store information regarding these entities. The information is represented by
means of the data and the schema. The data constitutes the bulk of the database while the schema
is metadata describing the structure of the data. The data model of a database system defines the
type system for specifying data and the operations on the data and the relationships among them. A
Database Management System uses a particular data model for its implementation. Popular data mod-
els are the network model [BaWi64], the hierarchical model [McGee77], the relational model [Codd70],
and recently, the object oriented data model. Frequently, DBMSs provide query languages for manip-
ulating the data.

We now discuss some of the main requirements of a database system for VL.ST CAD, specifically for
managing interconnect parasitics data. Then, we discuss some of the disadvantages of using conven-
tional database systems for this application. We then consider the main features of the object oriented

data model which make it suitable for our application.

2.1 Application Requirements

We now consider the requirements of a VLSI CAD application. The subsequent design of the system

will have to target these requirements.

1. Complex objects
Applications such as VLSI CAD, multimedia and ATl require a database processing model that
is different from conventional ones such as banking, inventory control, etc. The idea is to have a
processing model that supports the actual processing “context” or “working set” of the application
rather than individual data items. Such a context defines the amount of data needed to perform
a specific application task. VLSI design is usually done one step at a time using different tools: a
synthesis tool is used to transform the logic description of a chip into chip structure data, which
is then used by the planning tool to design the floorplan that, in turn, is fed to the chip assembly
tool in order to derive the mask layout that is needed for chip manufacturing. The process model
adopted by each tool is characterised by first reading its input data, then working in this context,

and finally feeding the output data as the input to the subsequent tool.
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For example, the context for the chip planning tool describes the structure of the cell which is
being designed. It consists of components defining the sub-cells together with their area estima-
tions, and components giving the net data as well as the pin data that define the connections
between the sub-cells relating the sub-cell components through pins on the same net. Thus, we
can characterise a context as a composite or complex object consisting of several components
(possibly of different types) with relationships in between. The provision of such a context re-
quires efficient delivery of that component and the relationship data from the underlying DBMS.

To satisfy this requirement, the DBMS should support direct representation of complex objects.

The interconnect parasitics study results in incorporation of large amounts of data to these
contexts. This data constitutes new subcomponents and additional relationships to the existing
complex design object. The role of the database system thus becomes all the more important in
that in addition to supporting design entities, it has to effectively deal with the vast and complex

parasitics data.

2. Hierarchical nature of design
Usually, a complex design is composed of several subdesigns which in turn may be made of smaller
components and so on till a primitive element is reached. To support this in a direct manner,

the system should be capable of supporting hierarchies of arbitrary levels of nesting.

3. Uniform Representation
A circuit is often designed and analysed from several perspectives, such as netlist, layout, etc.
Individual CAD applications frequently deal with data from a single viewpoint. This requires

translation of data from one format to another to facilitate intertool communication.

4. Fast storage and access
The capability to access and modify small sections of the vast data is an important functionality.
Frequently, users would want to deal with logical subunits of a complex design for ease of ma-
nipulation and speed of processing. The database system should support fast access of relevant

data through efficient query mechanisms.

5. Support for schema evolution
The underlying structure of the data or the schema may be subject to changes over a period of
time. For example, the format of characterization data may change with a new vendor. The

database system should support easy changes to the schema.

6. Long transactions
The duration of CAD transactions is usually much longer than those of other database applica-
tions. The conventional techniques for concurrency control and recovery are based on locking and
logging respectively. A CAD transaction acquires a lock on a data item which is released after a
long time during which no other transaction can access the data item. Also, if the transaction is
not successfully committed, to preserve database consistency, the database system is restored to
the state at the start of the transaction. This results in substantial undoing of past work. The

solution requires adoption of non-conventional transaction models.
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7. Support for legacy applications
With the development of a new system, an immediate concern is the handling of existing data
and the application programs that deal with them. For example, CAD simulation tools are file
based with specific formats. Very often, either the applications have to be rewritten or the data

left in their original files and new applications continue to access this data from files.

2.2 Drawbacks of traditional database systems

Most current database systems are based on the relational data model, where all data is represented
in the form of tables. Though these systems have a proven track record for commercial applications,
they fail to satisfy the needs of specialised scientific and engineering applications such as CAD. We

next highlight some of these shortcomings which are especially relevant to our application domain.

e No support for complex objects
Most objects that are dealt with in VLSI CAD applications are complex. The inherent support
for a direct and natural representation is required for performance reasons. The inability to
represent naturally leads to fragmentation of a single object into numerous records. Retrieving

information about this complex object as a whole needs expensive “join” operations.

e Schema evolution difficult
The underlying structure (schema) of the data changes over time. In relational databases, any
changes to the structure of the data may involve making changes to a number of relational schemes

as all logically related data may not be grouped together in one single table.

e No support for hierarchies
Hierarchies are an inherent feature in the VLSI CAD design domain. These should be represented
in a natural manner. However, the relational model does not allow for an easy representation of

such data as the hierarchy has to be flattened down into a set of tables.

e Lack of efficient handling of specialised queries
Though conventional systems have a well defined query language, they do not efficiently handle
some queries that are specific to our VLSI CAD application. For example, consider a typical query
on the signals of a design: “Fetch all signals and their source terminals that suffer slew greater
than 5 ns.” Answering this query efficiently requires access methods that take into account the

hierarchical relationships among the data.

2.3 The Object Oriented data model

Recent research in the field of databases has resulted in the emergence of new approaches such as the
object oriented data model, which overcome the limitations of earlier models. The object oriented
data model is also particularly suited for our CAD application as it satisfies most of the requirements

discussed earlier. We next briefly describe the basic concepts of the object oriented data model.

1. Object: The basic modeling primitive is the object. Each object has a unique identity, which
does not change with time. The system assigns a unique Object Identifier (OID) to preserve this
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invariant property. The state of objects is defined by the values they carry for a set of properties.
These properties may be either attributes of the object itself or relationships between the object
and one or more other objects. The behaviour of objects is defined by the set of operations (or

methods) that can be executed on an object of that type.

2. Class: Objects can be categorized into classes or user-defined types. A class serves as an ab-
straction for grouping objects that share the same structure and behaviour and a common range

of states called its extent. An object is an instance of a particular class.

3. Aggregation: Aggregation supports the construction of objects which are themselves composed
of other objects. This essentially captures the PART-OF relationship between the constituent
objects and the complex object. This powerful feature supports arbitrary levels of nesting in
the form of a hierarchy, called the aggregation hierarchy. An object at one level is composed of

objects of lower levels of the hierarchy.

4. Inheritance: The inheritance feature allows new classes to be derived [Alba83] from existing ones.
The derived classes inherit the attributes and methods of the parent class. They may also refine
the methods of the parent class and add new methods. Inheritance is used to denote the IS-A
relationship between classes. The parent class is a generalization of the child classes and the
child classes are specializations of the parent class. For example, a Car is a specialisation of the
class Vehicle, while Vehicle is a generalisation over Car, Bus, etc. Inheritance gives rise to a class

hierarchy.

5. Encapsulation: The state of an object as defined by its attributes can be “hidden” and made
accessible only through the methods of its class. This is done by declaring the attributes to be
“private” and the methods to be “public”. This is called encapsulation [Ga+87], which is bor-
rowed from the concept of abstract data types in programming languages. In this view, an object
has an interface part and an implementation part. The database translation of this principle
is that an object has both data and operations to perform on the object. Thus, encapsulation

provides a form of logical data independence.

6. Overloading and Overriding: A method may have the same name but different implementations.
This is called overloading. The redefinition of the operation for each type is called overriding.
The actual method invoked may be decided at run-time based on the type of the object, called
late binding. Late binding is a form of polymorphism [CaWe85], where different implementations

are attached to the same name so that they can be applied on objects of different types.

2.4 Object Oriented Database Management Systems

The object oriented data model is the basis on which Object Oriented Database Management Systems
(OODBMS) are built. In addition to implementing the data model, an OODBMS supports the basic
features of database management systems such as transactions, concurrency control and recovery. We
shall next look at some of the important features of OODBMSs which are particularly important from

our application’s point of view and provide relevant examples from our application.
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e Modeling Power: Since an OODBMS uses an object oriented data model, the expressive power
available in object oriented programming is readily available in OODBMSs. Hierarchies which
occur naturally in the domain are capable of being mapped directly. An example of this in our
application is the following: A Cell could be a Design Cell or a Library Cell and a Design Cell is
composed of other Design Cells and so on. This is represented using a combination of aggregation

and inheritance hierarchies.

e Persistent Programming: Most of the concepts such as classes, aggregation, inheritance, etc.
discussed earlier are similar to the corresponding concepts in object oriented languages. Many
OODBMS are based on extending object oriented programming languages to include support
for persistence. Persistence is the property by which data survives beyond the execution of the

program that created them.

e No “impedance mismatch”: In relational database systems, the computational power of the query
language is considerably lesser than that of a programming language. This poses a restriction on
the processing of the data stored in the database. This is frequently referred to as the impedance
mismatch problem [BIZd87].

OODBMSs resolve this problem by providing a single database language that can be used for

both programming and querying.
e Schema evolution: The changes to the schema of the database get mapped to the following;:

1. changes to the attributes, methods of a class
2. changes to the inheritance graphs

3. changes to the types themselves

These changes are easily applied to the existing class definitions. However, the existing instances
are converted to a new class by defining transformation methods for the new classes with the old
instances as arguments and then creating instances of the new classes and finally deleting the old

instances.

In our application, the structure of the characterisation data changes over time. So, easy schema

evolution helps in migration to newer formats.

2.5 Choice for DIAS

Considering the above features, it appears that the object oriented data model is a suitable choice
for DIAS. The requirements discussed earlier are targeted in DIAS by providing a database system
solution built on the object oriented data model that captures the modeling requirements such as
complex objects, hierarchies, etc. It also supports for easy schema evolution. The use of a single data
store in the form of an object oriented database system has the following advantages. It stores the data
in a format independent manner, thereby saving the high runtime cost incurred in translation of data
between different formats. All applications see a single consistent view of the data. Also, modifications

to the data are now restricted to a single location.
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Efficient manipulation of the stored data is handled by providing support for querying and fast
retrieval. DIAS implements a transaction model in which a long transaction is broken down into
a sequence of chained transactions. Legacy data is supported by providing an interface for existing
applications to interact in a seamless manner with the new system. Applications can then be developed
to incrementally move these data out of the files and into the database system as if they were new
data.



Chapter 3

OODBMS Platforms

In this chapter, we briefly survey several Object Oriented Database Management Systems (OODBMS)
that could serve as the platform on which to build the database system for storing VLSI interconnect
parasitic data. We finally choose a database engine that is particularly suited for our application.
We start with a description of the features that a system should possess in order to be called an
object oriented database system. While Codd’s original paper [Codd70] gave a clear specification of a
relational data model, no common definition for “the” object oriented data model has as yet emerged.
The reason might be the lack of a consensus on a formal specification of the object oriented data model.
However, there is general agreement over what features are expected of an object oriented database
system. We next consider some of the descriptions of object oriented database systems that are found
in the literature.

The Object Oriented Database System Manifesto [Atk+89] is an early attempt to define an object
oriented database system. It describes the features and characteristics of an object database system.

It classifies the characteristics of an OODB system into three groups:

1. Mandatory Features: Mandatory features are those that a database system must provide to be
called object oriented. These include the support for complex objects, object identity, encapsula-
tion, types or classes, inheritance, overriding with dynamic binding, extensibility, computational
completeness, persistence, secondary storage management, concurrency, recovery, and ad-hoc

query facility.

2. Optional Features: These features would be desirable but are not mandatory to qualify the system
as an OODBMS. These are multiple inheritance, type checking and inference, distribution, long

transactions and versions.

3. Open Features: These are points open to the designers’ choice. These include the program-
ming paradigm, the representation system, the type system and the degree of uniformity in the

treatment of types, objects, and methods.

A data model that is similar to that described in the Object Oriented Database System Manifesto
is proposed by [Kim90]. The requirements for an OODBMS that are mentioned include support for
concepts of object and object identifier, attributes and methods, class, and class hierarchy, on top

of the database features required by a DBMS in the traditional sense. This view is also shared by

13
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[ZdMa90]. They maintain that an OODBMS must first provide the basic features and functionality
that are provided by conventional current database systems. These features are divided into essential

and frequent features:

¢ Essential Features, such as a data model and language, representation of relationships among
entities, permanence, sharing of data and capability of supporting databases of arbitrarily large

sizes.
e Frequent Features, that include integrity constraints, authorization, query language and views.

After defining the above features, [ZdMa90] propose the threshold and the reference object oriented
models. An object oriented database system, in addition to satisfying the essential features, must
atleast satisfy the requirements of the threshold model: object identity, encapsulation, and complex
objects. A powerful OODBMS may adopt the reference model, that adds the following features to the
threshold model: typing of objects and variables, hierarchies, polymorphism, collections, namespaces,
queries and indexes, relationships and versions.

The above specifications try to encompass almost all the features of an OODBMS. Object oriented
database systems use different approaches to provide these features. We shall next attempt to survey
representative systems based on each of these approaches.

Based on the approaches to object data management, a broad classification is as below:

e Object Oriented database programming languages: Object oriented database programming lan-
guages add database capabilities to existing object oriented programming languages. The
database system augments the programming language by providing persistence, concurrency con-
trol, a query language and other DBMS capabilities. Examples are ODE [AgGe89], ObjectStore
[Lamb+90], GemStone [Bret+88], Oy [Deux+90], and Ontos [AHKD89].

e Extended Relational Database Systems: Extended Relational Database Systems augment the re-
lational model with the ability to define new data types, invoke programming language procedures
from the query language, and to write procedures in the query language itself. Other features
that are incorporated are a hierarchy of relation types with inheritance of attributes, query lan-
guage extensions for transitive closure, and rules. POSTGRES [RoSt90], Illustra [IIUGY95], and

Starburst [Sch+90] are examples of such systems.

e Database System Generators: These are systems allowing the user to build an OODBMS tailored
to particular needs, typically with a custom data model and a database language. There are two
approaches here: the toolkit approach and the constructor approach. In the toolkit approach, a
powerful language is provided for writing a DBMS together with prewritten packages for the ap-
plication independent capabilities such as the query parser and optimizer and a storage manager.
In the constructor approach, the database system generator provides a formalization of database
architecture, allowing a DBMS to be generated by linking together the existing modules in dif-
ferent ways. EXODUS [Car+90] follows the toolkit approach while GENESIS [Bat+90] follows

the constructor approach.

e Object Managers: Object Managers usually have less functionality than the ones considered so
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far. They minimally provide a persistent object store with concurrency control but do not have

a query or programming language. Examples are Mneme [MoSi88] and POMS [Coc+89].

We shall now study briefly some of the above systems, concentrating mainly on the following
features: persistence, programming interface, query language, storage management and transaction

management and other options such as constraint enforcement, triggers, versioning, etc.

3.1 Object Oriented database programming languages

3.1.1 ODE

ODE (Object Database and Environment) [AgGe89] offers an integrated data model for both database
manipulation and general purpose programming. The database programming language is O++-, which
is based on C++. O++ borrows and extends the class-based object definition facility of C++ by
providing persistence. Other facilities include versions, sets and clusters of persistent objects and

iterators for these objects. It also has provisions for associating constraints and triggers with objects.

O++ and the data model

In addition to the programming capabilities provided by C++, persistent objects can be declared using
the keyword persistent. Persistent storage operators, pnew and pdelete, are used instead of the C++
operators, new and delete, for creation and destruction of persistent objects respectively. Then, these
objects may be referenced using pointers to persistent objects similar to transient objects. ODE also
introduces the notion of dual pointers which can refer to both transient and persistent objects. All
persistent objects of the same type are grouped together in a cluster, the name of the cluster is the

same as that of the corresponding type; that is, clusters are type extents.

Query Processing

By providing clusters, sets and iterators, O++ provides an alternative to using persistent pointers to
navigate through the database to answer a query. Also, arbitrary “joins” can be performed by iterating

over the clusters to be joined with the join predicate expressed as the iteration condition.

Versioning

The versioning principles employed in ODE ensure that all persistent types can have any number of
versions and that at any point, the current version or a specific version can be accessed. A pointer to
a persistent object can access the current version, in which case it is called a logical id. In case the
pointer refers to a specific version, it is called a version pointer. The macro previous when called with

a persistent pointer and a non-negative integer ¢ returns the ith version.

Triggers

Triggers monitor the database for specific conditions, and when the condition becomes true, the asso-
ciated trigger action is executed. Triggers are specified within class definitions and are of two types:

once-only and perpetual. An once-only trigger is automatically deactivated after the trigger has been
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“fired”, and then must be reactivated explicitly if desired. On the other hand, a perpetual trigger
is automatically reactivated after being fired. A trigger T; is associated with an object whose id is
object-id. If the trigger condition is true, T; is activated by the call, object — id — T;(arguments)
which executes the trigger body of T; in a separate transaction.

3.1.2 ObjectStore

ObjectStore [Lamb+90] is an OODBMS that provides a tightly integrated language interface to the
traditional features of persistent storage and transaction management. It supports a client server model
of computing, with user applications being clients and ObjectStore servers providing the functionality of
distributed databases. Applications access ObjectStore through DML (Data Manipulation Language)
and library interfaces to C++ and C. The DML interface uses extensions to the C++4 language, while
the library interface works through a library of C++ functions.

Querying

In the DML interface, queries are a new kind of language expression. A query expression consists of a
collection object (such as a list or a set) and a C++ Boolean-valued subexpression. The value of the
query expression is the subset of elements of the collection for which the subexpression is true, with
the value of the C++ this variable being set to each element. Queries are also supported by the library
interface. The query expression is passed as a string to query construction, binding and evaluation
functions. Index maintenance and optimization-strategy formulation are maintained automatically by
the system; the programmer specifies which data members should have indexes, and whether they are

B-tree or hash-table indexes.

Persistence

Object persistence is specified by a parameter to the C++ new operator, specifying in which database
the object should reside, and optionally specifying clustering information. An interesting feature of
ObjectStore is its implementation of object identifiers (OIDs) through the use of direct virtual memory
pointers. Whenever the target of a reference is not in the client cache, the virtual memory system
signals a page fault, which the operating system reflects to ObjectStore. Subsequent accesses to the
data are as fast as they would be for ordinary C++ objects. It reverts to longer, structured OIDs for

special purposes such as conveying OIDs between processes or to external ObjectStore repositories.

Version Control

Configurations of objects can be checked out into private “workspaces”, modified, and then checked
back into shared workspaces when the changes are complete. When a configuration is checked out,
other users can be forbidden from checking out the same configuration, or they can be allowed to check
out an alternative version. Thus, the concurrency control can be either pessimistic or optimistic. If two
users change the same data, rather than forcing a long transaction to abort, ObjectStore allows the
users to operate simultaneously on parallel versions of the data, and later to merge their changes. The

version control mechanism can be used for simply recording history, as well as for long transactions.
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The overall distributed database ObjectStore architecture supports a client/server model of com-
puting, with user applications being clients and ObjectStore servers providing the functionality of dis-
tributed databases. The process architecture broadly consists of the ObjectStore Server, that manages
data pages on behalf of client applications, the ObjectStore Directory Manager, that maps hierarchi-
cal database names to servers, and the ObjectStore Cache manager, responsible for optimization of

page-lock management on behalf of client applications.

3.1.3 GemStone

GemStone [Bret+88, MaSt90] merges object oriented language concepts with those of database sys-
tems, and provides an object oriented database language called OPAL, based on Smalltalk. It has
subsequently been integrated with C++; it is one of the first database programming language products

having close integration with two languages.

The GemStone Data Model

The data model and the programming language, OPAL are based on the Smalltalk concepts of object,
message, and class. Objects communicate with one another by passing messages, which are requests
for the receiving object to change its state or return a result. An object responds to a message by a

method, an OPAL procedure that is invoked when an object receives a particular message.

The GemStone Architecture

The major components of the Gemstone system are the two processes, Gem and Stone. The Stone
process is the data manager, providing disk I/O, concurrency control and other transaction services.
The Stone process typically resides on the server machine, accessing the disk through the operating
system calls. The Gem process provides compilation of OPAL programs, user authorization and a
predefined set of OPAL classes and methods for use by the user program. Another process, the PIM
(Procedural Interface Module) is a set of routines to facilitate communication from programs written
in other languages. For example, it supports calls from C programs to execute a sequence of OPAL
statements.

Concurrency control is ensured using either optimistic or pessimistic methods. The pessimistic

scheme uses traditional locking implementation. The optimistic scheme uses shadow paging.

GemStone interfaces

It supports multiple languages and tools. It provides its own implementation of a Smalltalk based
query language called OPAL. It also supports mapping between C++ object data structures and
OPAL data structures stored in the database, and transparently fetches and translates objects when
a C++ application references them. Also, data may be fetched and stored from GemStone using
procedure calls from application programs written in C or Pascal. This is done through the PIM
process using procedure calls. The GemStone Object Development Environment (GEODE) provides a
visual programming environment for the development of interactive object oriented software based on
ObjectStore.
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3.1.4 O,

The Og [Deux+90] system, is a research prototype that has been transformed into a commercial prod-
uct. O provides object identity, encapsulation, multiple inheritance, late binding, lists, sets, and a

powerful declarative query language.

System Overview

Oy provides a complete application environment consisting of the database programming languages,
CO3 and BasicOa, a set of user interface generation tools, LOOKS, and a programming environment,
OOPE. O; consists of several other additional functional modules: an alphanumeric interface, the
language processor, the query interpreter, the schema manager, the object manager and the disk
manager.

The programming functionalities of O can be realised through COs and BasicO», which are object
oriented extensions of C and Basic respectively. Procedures are stored in the O, database, rather than
in the programming language environment. Procedures are dynamically loaded and linked at run time.
This approach is in contrast to most commercial OODBMS products, which use binary files which are
part of the application. This approach allows optimization of the executable code by replacing dynamic
name solving with function calls where possible. However, this precludes modification to the schema.
02 remedies this by providing two modes of application development, the initial development mode,
when changes to the schema are allowed, and the ezecution mode, when the schema is frozen and the
code optimized.

O, has a powerful declarative query language. The query language can be used to access attributes
and execute methods when used for ad hoc queries and is restricted to operate only on methods to
enforce encapsulation constraints when used as part of the programming language. It provides filters
to select data using the SQL select-from-where clause and includes a complete set of operations to
construct and decompose lists, sets, and tuples. The result of a query can be an object of an existing
type in the database or values. Values may be simple or list, set or tuple of simple values. Apart from

these, a program can also access data one object at a time in navigational fashion also.

Persistence Features

O3 is implemented in C on top of the Wisconsin Storage Manager [CDKKS85]. Structured OIDs are
used, and a reference count is maintained for each object. Persistent objects are deleted automatically
if they can no longer be reached from a persistent, global named object. Lists and sets are implemented

as ordered trees.

Transactions

Transactions are implemented using an optimistic scheme. Pages are read-locked when they are read
from the server, but pages containing modified objects are not write-locked until right before transaction

commit. If the write-lock fails, the transaction is aborted.
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3.1.5 ONTOS

ONTOS [AHKD89], provides persistent storage capabilities to data manipulated using C++ programs.
It is integrated with the language through the introduction of new persistent classes all defined as
subclasses of the base class Entity. Methods can be invoked through conventional compiled C++ calls.
ONTOS also provides facilities to invoke methods by interpretation of named strings at run time.

ONTOS objects exist in two states, deactivated when stored on disk, and activated, when appearing
as ordinary C++ objects in an application program. Objects are activated automatically when an
application program first attempts to fetch them and are deactivated and written back to disk if
changed at the end of a transaction.

Concurrency control is provided by conventional locking at the different granularities of individual
objects, pages or entire segments. It provides caching of objects on the client workstation in its client-
server architecture. It employs a variant of SQL as a query language, making attributes of the objects
visible to the query language user, though it violates the encapsulation semantics of C++. Other
features include automatic maintenance of inverse relationships, versioning and a make tool to keep
application programs synchronized with schema changes.

The programming capability is embedded inside the query language. The query language may be
extended to provide control constructs with the capability of a programming language, which are used
to define actions to be taken when a field is fetched or modified.

Other ONTOS features include the support for multiple versions of an object and Binary Large
Objects (BLOB), which are too large to fit in a single page. These BLOBS are stored using a B-tree
representation, similar to that used in the EXODUS system described later.

3.2 Extended relational database systems

3.2.1 POSTGRES

POSTGRES [RoSt90, StRo86], extends the conventional relational data model to offer services in
two dimensions: object management and knowledge management. Object management ensures direct
representation and manipulation of data belonging to non-traditional data types, while knowledge
management entails storing and enforcing rules that are part of the semantics of an application. Rules
help describe the integrity constraints of an application and also allow the derivation of data that is

not directly stored in the database.

The POSTGRES Data Model

The stated goal of POSTGRES is to retain the simplicity of the relational model. Consequently, the
data model adds the following constructs to the relational data model: classes, inheritance, types and
functions.

The fundamental notion in POSTGRES is that of a class, which is a named collection of instances
of objects. Each instance has the same collection of attributes and each attribute is of a specific type.
Each instance has a unique identifier (OID). A new class can be created by specifying the class name,
along with all attribute names and their types. A class can optionally inherit data elements from other

classes.
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POSTGRES contains an expressive type system and a powerful notion of functions. There are
three kinds of types: base types, array of base types and composite types. It contains an abstract data
type (ADT) facility whereby any user can construct new base types. Functions need to be specified to
convert to these types from the usual base types integer, float and character strings. Arrays of these
types are supported just as for base types. Composite types allow an application designer to construct
complex objects, that is attributes which contain other instances as part or all of their value.

There are three different kinds of functions in POSTGRES: functions written in C, operators and
POSTQUEL functions. A C function can be defined whose arguments are base types or composite
types. This function can be called with the argument as a class name or as a new attribute, whose type
is the return type of the function. POSTGRES supports the operator functions for using indexes in
processing queries. Operators are functions with one or two operands and use the standard operator
notation in the query language. The operator is defined by indicating the token to use in the query
language as well as the function to call to evaluate the operator. The third kind of function is the
POSTQUEL function, where a collection of commands in the POSTQUEL query language are packaged

together and defined as a single function.

The POSTGRES query language

The query language, POSTQUEL, is a set-oriented query language that is a superset of a relational
query language. The features added to a relational query language are support for nested queries,
transitive closure, support for inheritance and time travel. Operators can also have sets of instances as
their operands. The transitive closure operation allows one to explode an aggregation or inheritance
hierarchy by specifying a * after the class name. The query is run until the answer fails to grow. Time

travel allows the user to run historical queries such as “Find the salary of Sam at time T”.

Rules

Rules are used to support all of the following functions: view management, triggers, integrity con-
straints, referential integrity, protection and version control. The rule consists of commands to be

executed when an event such as retrieve, delete, append, replace takes place on an object.

Storage System

The storage manager employs a mechanism of “no-overwrite”, where the old record remains in place
whenever an update occurs and serves the purpose of a write-ahead log. Hence, the log in POSTGRES
just consists of two bits per transaction indicating whether the transaction has committed, aborted or
is active. As a result, crash recovery is instantaneous as no updates are undone. The previous records
are readily available. The second benefit of this approach is the notion of time travel. Time travel is
supported by maintaining two different physical collections of records, one for current data and another
for historical data. However, these mechanisms result in the accumulation of a large amount of data.
Users, who do not require historical data have to periodically run the vacuum cleaner, that moves the

historical records from the disk containing current records to archival storage.
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3.2.2 Illustra

Mlustra [IUGY5] is a commercial Object-Relational DBMS based on the POSTGRES database system.
It supports object oriented features, provides a declarative query language (based on SQL), and has a
comprehensive set of library routines that can be used for developing applications.

The client-server architecture of Illustra consists of several processes. The midaemon is the main
server process. An instance of the miserver process is spawned for every client process. The client
processes can be the query interface or an application using the programming interface.

The object oriented features of Illustra include the support for complex objects which map to
tables of a relational database. Composite attributes such as arrays, sets are stored in separate tables
automatically created by Illustra. Illustra allows users to create functions written using SQL or C.
These functions can be used to build iterators for traversing set-valued attributes.

For increased concurrency, Illustra supports different levels of isolation: read uncommitted, read
committed, repeatable read, and serializable. Application programs can monitor the occurrence of
asynchronous events, using alerters. Illustra provides an event-driven rules’ system. A rule can be
specified for an attribute of a class or the entire class. When a database event occurs, and particular
conditions based on the rules are satisfied, it takes specific actions. Users can request data current
at a particular point in time or between a time interval. This is similar to the concept of time travel
supported in POSTGRES.

3.2.3 STARBURST

Another example of an extended relational database system is Starburst [Sch+90]. In addition to
providing built-in extensions to the relational model, it allows the advanced user to augment the
functionality of the DBMS.

The Starburst query language extends the relational algebra, and supports pre-defined extensions
to query analysis, optimization, execution, and access methods. The user may also define new literal
data types with associated procedures that encapsulate type semantics. It also supports recursive
queries and structured-result queries which are similar to POSTGRES. It also provides the capability
for triggers.

There are two different type systems and languages, one for the DBMS and one for the application
program. Starburst parses queries into a semantic net representation called the Query Graph Model
(QGM). The query analysis phase is driven by rewrite rules on the QGM, traversing and translating
the query graph into equivalent, more optimal representations. The query optimizer translates the
QGM representation into an execution plan of LOw LEvel Plan OPerators, or LOLEPOPs. Examples
of LOLEPOPs include access method scans, joins and sorts. The sophisticated user can extend the
Starburst query language with table functions, which are pseudotables that are not stored in the

database but are computed on the fly.

3.3 Database System Generators

The approaches to object data management discussed so far have been designed to provide extensibility

in the implementation and definition of types and operations provided by the DBMS. However, database
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system generators, such as EXODUS and GENESIS, go further in this regard allowing for extensions
in the data model.

There is no single data model for a database system generator. The data model is defined by
a special user called the database implementor (DBI). Both the logical and the physical data model
need to be described. The logical data model specifies the query and representation capabilities of
the system such as keys, relationships and query syntax. The physical data model specifies the access
methods and the ways in which logical data schemas can be mapped onto them.

There are two variations of database system generators, according to the architecture chosen:

1. Toolkit approach: In the database toolkit approach, the database system generator provides a
powerful language for writing a DBMS together with prewritten packages for the most commonly
used capabilities required in a DBMS, such as a B-tree package, query optimizer and storage

manager.

2. Constructors: In the database constructor approach, the database system generator provides a
formalization of database architecture, allowing a DBMS to be generated by linking together
existing modules in different ways and using tools and high-level languages to generate DBMS

modules automatically.

We shall consider three systems which are database system generators. Of these, EXODUS and
SHORE are examples of the database toolkit approach while GENESIS is an example of the constructor
approach.

3.3.1 EXODUS

In the EXODUS toolkit [Car+90], the major facilities provided to aid the DBE (Database Engineer)

in the task of generating an application specific database system are:
e The Storage Manager
e The E programming language compiler
e A library of type independent access and operator methods
e A rule-based Query Optimizer generator
e Tools for constructing query language front-ends

A DBMS generated by EXODUS consists of a parser and query optimizer, both generated automatically
from a description of the target query language and operators, the E compiler, required because the
output of the query optimizer is an E program, a catalog (data-schema) manager, partially or wholly
written by the database implementor in E, and the database engine itself. The database engine consists
of three layers: the operator methods (implementation of language operations), access methods and the
storage manager. The database implementor may choose the operator and access methods from the
libraries provided by E, or may implement his own using E. The storage manager can also be modified

by the database implementor, but is normally left unchanged.



CHAPTER 3. OODBMS PLATFORMS 23

The basic representation of data in the storage manager is a variable length uninterpreted sequence
of bytes. In the simplest case, these storage objects are implemented as a contiguous sequence of bytes.
As the objects grow, they are represented using a B-tree of leaf blocks, each containing a portion
of the sequence. Objects are referenced using structured OIDs. On these basic storage objects, the
storage manager performs buffer management, concurrency control, recovery and a versioning mecha-
nism that can be used to provide a variety of application-specific versioning schemes. Transactions are
implemented using a shadowing and logging technique. The database implementor’s language E is a
superset of C++4, providing generic classes, iterators and support for persistent object types. Refer-
ences to persistent objects look much like those for ordinary C++ objects. The E compiler generates
calls to the storage manager for buffer management. As a trial run, the EXODUS system was used
to develop an object oriented DBMS, consisting of the data model, EXTRA, and the query language,
EXCESS. EXTRA, includes support for persistent objects, type inheritance, automatic maintenance of
inverse attributes for relationships and bulk types such as lists, sets and arrays. EXCESS, is designed
to provide a uniform query interface to sets, arrays and tuples and individual objects, all of which can
be composed and nested. Subsequently, more than 350 groups have used EXODUS and it forms the
storage manager for MediaDB, a commercial multimedia DBMS.

3.3.2 SHORE

SHORE (Scalable Heterogeneous Object REpository) [Zwi+94] is a recent persistent system developed
at the University of Wisconsin, Madison. It is the successor to EXODUS, and is the result of a merger

of file system and object database technologies.

Object Oriented Database Features

SHORE (or Shore) is intended to allow databases built by an application written in one language to
then be accessed and manipulated by applications written in other object oriented languages as well.
The SHORE Data Language, SDL, is the language in which SHORE types are defined. The methods
associated with the types written earlier in SDL can be written using any of the languages for which a
SHORE language binding exists. Apart from these features, SHORE provides regular database system
services such as concurrency control and recovery. It also provides for clustering and lower levels of

transaction consistency.

File System Features

SHORE provides a tree-structured UNIX-like namespace in which all persistent objects are reachable
from a distinguished root directory. Each Shore object may optionally designate a range of bytes as its
Text field. A file then becomes a Shore object with only one field, the Tezt field. Existing applications
can treat these objects as if they were files.

For applications that do not tolerate even minimal changes, an NFS file server is available. An
entire subtree of the SHORE name space can be mounted on an existing UNIX file system. When
applications attempt to access files in this portion of the name space, the UNIX kernel generates NFS
protocol requests that are handled by the NFS value added server.

We present the features of Shore in greater detail in Chapter 4.
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3.3.3 GENESIS

The GENESIS database system generator [Bat+90] has concentrated on the development of an en-
compassing and practical theory of DBMS implementation. The theory provides a framework in which
the basic components of DBMS software are modules that realize simple files (file structures), linksets
(record linking structures), and elementary transformations (conceptual-to-internal mappings). The
storage architectures of commercial DBMSs are explained by compositions of these building blocks.

GENESIS is based on providing high level tools for constructing a DBMS from a library of existing
modules. Once the storage architecture for the new system is designed, only the modules that are not
present must be written.

Files and records are fundamental concepts in databases. A file is a set of records that are instances
of a single record type. A relationship between two or more files is a link. Files and links are logical
concepts; their implementation is still unspecified. To explain their implementations, two models, the
Transformation Model and the Unifying Model are used. The TM formalizes the notion of conceptual

to internal mappings and the UM codifies file structures and record linking mechanisms.

Overview

The Database Implementor (DBI) is responsible for designing a storage architecture for the target
DBMS. The DBI specifies this architecture by writing an architecture program, which compiles con-
ceptual schemas using the DDL compiler and maps the data definitions of conceptual files and links
to their internal counterparts. The mappings are accomplished by prewritten procedures called trans-
formers which realize the abstract-to-concrete data definition mappings of elementary transformations.
Different storage architectures are realized by different architecture programs. The Database Admin-
istrator (DBA) is responsible for database design. The DBA develops conceptual schemas in terms of
the GENESIS data definition language and runs the architecture program to convert these schemas
to an internal representation called storage architecture tables. Database users write transactions to
process database retrievals and updates. The host language is C. The record types that can be de-
fined in GENESIS are more general than those supported in C, with routines to read and manipulate
buffer-resident GENESIS records. These are the routines of the trace manager. Records are trans-
ferred between main memory buffers and secondary storage by file operations which are accessed via
the Grand Central module. Modules called ezpanders define the abstract to concrete mapping for each
transformation. Abstract operations are eventually mapped to operations on internal files, which are
processed by Jupiter, the file management system of GENESIS.

A key feature of the GENESIS work is the formalization of database architecture on which it is
based. The formalization is made possible by “standardization” and “layering”. Layering refers to
dividing an architecture into interacting portions that implement mappings between successive levels
of data representation. It must be possible to design and implement the different layers independently.
Standardization refers to finding a “simplest common interface” between layers that permits many
different implementations of each layer’s functionality. For example, a common interface may be
designed that allows different alternatives for transaction recovery such as shadowing, logging etc.
GENESIS allows a mixture of record structuring capabilities, including fixed-length and variable length

fields, scalar and set-valued attributes, nested records and arrays. It also incorporates transactions and
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a variety of physical access methods including several variations of indexing. A preconstructed library of
the common functions required in a DBMS is assembled by GENESIS’s graphical database implementor
tool known as the Database Type Editor, DaTE.

3.4 Object Managers

The last category of OODBMS we consider is object managers. These systems generally have less
functionality as compared to the others we have discussed so far. They minimally provide a persistent
object store with concurrency control and they generally do not provide a query language. An object
manager typically provides a simple data model, sometimes patterned after a programming language
for which it might serve as an object store. They also provide concurrency control and disk management
capabilities. We shall consider two examples of object managers, Mneme and POMS. The first was
built to serve as a storage manager for any application language or DBMS; the second was designed
for the persistent language PS-ALGOL.

3.4.1 Mneme

Mneme [MoSi88], developed at the University of Massachusetts, provides object identifiers, persistence,
concurrency control and recovery. The client interface to Mneme is a set of procedures. The goal of
the system is to achieve very high performance with this minimal functionality. The Mneme data store
is simply a heap of untyped objects. It is not aware of the internal structure of objects, except for
attributes containing OIDs. An object consists of an OID, an array of data bytes and an array of
references. Objects are grouped into pools that can have different storage management policies. The
policy (for example, for caching and clustering) is defined by the database administrator writing a
policy module. One or more pools are stored in one operating system file. OIDs occur in two forms,
called client IDs (CIDs) and persistent IDs (PIDs). PIDs are the form actually stored in reference
arrays, and are valid only within the file where they are stored. To reference an object outside the file,
an artificial forwarding object is created within the file, which identifies the file and remote PID in
that file. Thus, local references are short and fast, but remote references require a level of indirection.
CIDS are valid only for the duration of a database session, but they may reference an object in any
open file.

Mneme, thus, is a good example of the object manager approach. It provides the minimum require-

ments of an object store with the thrust being on high performance.

3.4.2 POMS

The Persistent Object Management System [Coc+89], or POMS built for the persistent Algol project
at the University of Edinburgh in UK, is an example of an object manager motivated by a particular
programming language. It provides persistent objects, object identifiers, transactions for concurrency
control and recovery, translation of persistent Algol objects to and from a disk representation, and
general storage management and allocation. The kernel of the POMS system is a process for translating
OIDs to memory addresses when a reference is followed to an object not in memory, and back again
when an object is flushed to disk. This is achieved with a two way hash table that allows lookups by
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OIDs or by memory addresses. Transactions are implemented using shadow pages, using a rewrite of
the logical-to-physical page map as a means of atomicity. Special optimizations are made in the use
of storage allocation on disk. An effort was made to store sequential elements of lists in the same disk
page. Record types (structures) are also grouped on disk pages according to type.

In POMS, both program object code and databases carry detailed descriptions of the classes de-
clared or stored within them. This is done by tagging a header in the front of each object. A POMS
database contains a named collection of PS-algol objects: strings, structures and vectors. At an im-
plementation level, a database effects mappings between disk block based address space to a high level
language object address space and between relative disk block numbers to physical disk block numbers

so that a set of non-contiguous disk blocks may be made to look like a single contiguous address space.

In summary, all the systems we have considered are representative object oriented database systems.
These provide additional features compared to relational database systems and are especially suited to
specific application domains such as CAD, CASE, Al, office information systems, etc. where relational

database systems are inadequate.

3.5 Choice for DIAS

The commercial object oriented database systems, though robust, do not offer much scope for cus-
tomization for a specific domain. For example, they usually do not allow for easy incorporation of new
access methods. The extended relational systems are suitable for adding additional functionality to
existing applications developed on relational systems. They do not completely overcome the drawbacks
of relational systems as the data is finally stored in the form of relations. The object managers do not
provide all the features of an OODBMS. In contrast to all these systems, database system generators
are particularly attractive as they allow the development of a customized system tuned to the needs of
a specific domain. Of these, EXODUS is a robust, powerful system that has been tried and tested the
world over and also forms the storage mechanism for some commercial DBMSs. The SHORE system
is the successor to EXODUS, and continues to support the features of extensibility using the toolkit
approach. Moreover, SHORE provides file system features in addition to database system features.
This is specifically useful in the VLSI CAD parasitic domain since a number of legacy file based tools
exist that interact with the stored data. In view of all these features, we have selected SHORE as
the backend database platform on which to build our DBMS for management of VLSI CAD parasitic

analysis information.
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SHORE

The SHORE (Scalable Heterogeneous Object REpository) system represents a merger of file system
and object oriented database technologies. In this chapter, we describe features of the SHORE (or
Shore) system, which forms the backend database server of the database system for storing VLSI CAD

analysis data and parasitics related information.

4.1 Introduction

While the past few years have seen significant progress in the OO databases area, most applications

have not chosen to leave file systems behind in favour of OODBMSs. Some of the reasons are:

1. Many current OODBMSs are restricted to a single language while large scale applications often

require multilingual data access.

2. With most current OODBMSs, application programmers face an either/or decision - either they
put their data in the OODBMS, in which case all their file based applications must be rewritten,

or they leave their data unchanged in files.

3. Most current OODBMSs have strong client server architectures, and are thus inappropriate for

execution in peer-to-peer distributed systems.

The Shore system addresses these issues. The Shore Data Language (SDL) provides a single lan-
guage neutral notation for describing the types of all persistent data. Shore has a symmetric, peer-to-
peer structure. The design is scalable; it can be run on a single processor, a network of workstations
or a large parallel processor. It also provides a Unix-compatible interface for legacy software tools.
Apart from these features, it supports the traditional database services such as associative data access,

indexing and clustering.

4.2 Basic Shore Concepts

Shore is a collection of cooperating data servers, with each data server containing typed persistent
data objects. To organize this, a Unix-like namespace is provided. As in Unix, named objects can

be directories, symbolic links or individual typed objects (the counterpart of Unix files). Shore allows
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each object to be accessed by a globally unique Object Identifier (OID). The OID consists of an 8-
byte volume identifier and an 8-byte serial number. The former is designed to be large enough to be
globally unique, while the latter is large enough to avoid reuse of values under any operating conditions.
Shore also introduces a few new types of object classes, including types and pools. The type system is
language neutral, supporting applications in any programming language for which a language binding
exists. For objects whose primary data content is textual or untyped binary data, Unix file system

calls are provided to enable legacy applications to access their data content in an untyped manner.

4.3 Shore Object Basics

The Shore object model consists of objects and values. Every persistent datum is an object and an
object is a container for a value. Every object has a type, and all Shore objects are tagged with a
reference to a type object that captures this information.

The core of an object is described by its type. To support the flexibility of dynamic structures
with the efficiency of logically contiguous blocks on secondary storage, Shore allows each object to be
extended with a variable-sized heap. The heap is used by the system to store variable-sized components

of its value such as strings, variable arrays and sets.

4.4 File System Features

From a file system standpoint, Shore provides two major services: First, to support object naming and
space management in a world with many persistent objects, Shore provides a flexible object namespace.
Second, to enable legacy Unix file based applications to continue to exist while new Shore applications
are being developed, mechanisms are provided that permit Shore object data to be accessed via Unix
file system calls. However, this method of access does not guarantee the database system features of

concurrency control and recovery.

4.4.1 Shore Object namespace

Shore provides a tree-structured, Unix like namespace in which all persistent objects are reachable
either directly or indirectly from a distinguished root directory. The namespace extends the set of
familiar Unix object types (directory, symbolic links, regular files) with cross references, pools, modules
and type objects. Directories and the objects they contain are called registered objects. Each registered
object contains a superset of the Unix attributes: ownership, access permissions, and timestamps.
Shore also introduces a new kind of registered object called a pool. Typically, the contents of one pool
form a single database. Members of a pool, called anonymous objects, are clustered near one another.
Anonymous objects do not have path names, but they can be accessed by OID like any other object.
The registered property is orthogonal to type: any kind of object can be created either in a pool (as an
anonymous object) or in a directory (as a registered object). In a typical SHORE database, the vast
majority of objects will be anonymous, with a few registered objects serving as entry points to graphs
of anonymous objects. By introducing these object types, Shore gives users a framework in which to

register both individual persistent objects as well as the roots of large persistent data structures. Thus,
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Shore provides a much richer naming environment than the single-level “persistent root” directory
found in current OODBMSs.

Shore introduces three more fundamental kinds of objects, modules, type objects and cross refer-
ences. Modules and type objects are similar to pools and anonymous objects, respectively, but have
different deletion semantics to preserve the existence dependency from objects to their types. Cross
references are similar to symbolic links in that they provide a way to insert an alias for an object into
the directory name space. While a symbolic link contains a path name for a registered object, a cross

reference contains the OID of an arbitrary object.

4.4.2 Legacy Unix tool support

While Shore provides a richer environment than traditional file systems, there are many situations
where tools designed to be used on files need to be invoked on database objects. The solution followed
in Shore is to provide a special Unix compatibility feature. The Unix compatibility feature may be
utilised by designating a range of bytes as its text field. A compatibility library provides versions of
Unix file system calls.

For applications that cannot even be relinked, Shore provides an NF'S file server. An entire subtree
of the Shore namespace can be “mounted” on an existing Unix file system. When applications attempt
to access files in this portion of the name space, the Unix kernel generates NFS protocol requests that
are handled by the Shore NFS value added server.

4.5 Object Oriented Database System features

4.5.1 The Shore Type System

The Shore type system is embodied by the Shore Data Language, SDL, the language in which Shore
types are defined. SDL is quite similar to the Object Definition Language (ODL) proposal [Catt94]
from the ODMG consortium, which is descended from OMG’s Interface Description Language (IDL),
a dialect of the RPC interface language used in OSF’s Distributed Computing Environment.

All objects are instances of interface types, types constructed with the interface type constructor.
Interface types can have methods, attributes and relationships. The attributes of an interface type can
be one of the primitive types (e.g., integer, character, real) or they can be of constructed types. Shore
provides the usual set of type constructors: enumerations, structures, arrays, and references (which are
used to define relationships). In addition, Shore provides a variety of bulk types, including sets, lists
and sequences, that enable a Shore object to contain a collection of references to other objects. Finally,
Shore provides the notion of modules, to enable related types to be grouped together for name scoping

and type management purposes.

4.5.2 Shore Language Bindings

Shore is intended to allow databases built by an application written in one language (e.g., C++) to
then be accessed and manipulated by applications written in other object-oriented languages as well
(e.g., CLOS). This capability will be important for large scale applications such as VLSI CAD; C++
might be used for efficiency in simulating large chips, while CLOS (or perhaps Smalltalk) might be
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more convenient for writing the associated design rule checking and user interface code. In Shore, the
methods associated with SDL interfaces can therefore be written using any of the languages for which
a Shore language binding exists. Currently, only the C++ binding is operational.

4.5.3 Other OODB-Like services

Shore provides support for concurrency control via locking and crash recovery through logging. Shore

provides users also with a choice of lower levels of consistency and recovery.

4.6 The Shore Architecture

Shore executes as a group of communicating processes called Shore servers. Shore servers constitute
exclusively of trusted code, including those parts of the system that are provided as part of the standard
Shore release, as well as code for Value Added Servers (VASs) that can be added by sophisticated users
to implement specialized facilities (e.g., a query shipping SQL server). Application processes manipulate
objects, while servers deal primarily with fixed-length pages allocated from disk volumes, each of which
is managed by a single server.

The Shore server plays several roles. First, it is the page-cache manager. Second, the server acts as
an agent for local application processes. When an application needs an object, it sends an RPC request
to the local server, which fetches the necessary pages and returns the object. Finally, the Shore server
is responsible for concurrency control and recovery. A server obtains and caches locks on behalf of its
local clients. The owner of each page is responsible for arbitrating lock requests for its objects as well

as logging and committing changes to the page.

4.7 Shore Software Components

The main software components of Shore (Figure 4.1) constitute the Shore server and the Language

Independent Library. We next discuss these components in greater detail.

4.7.1 The Language Independent Library

The process of converting object references on disk to main memory addresses is called swizzling.
When an application attempts to dereference an “unswizzled” pointer, the language binding generates
a call to the object-cache manager in the language independent library (LIL). If the desired object is
not present, the LIL sends an RPC request to the local server, which fetches the necessary pages by
reading from the local disk.

To reduce paging, the object cache manager locks the cache in memory and uses LRU replacement
if it grows too large. All OIDs in the cache are swizzled to point to entries in an object table. This level
of indirection allows objects to be removed from memory before the transaction commits, without the
need to track down and unswizzle all pointers to them. Finally, the LIL is responsible for authenticating

the application to the server using the Kerberos authentication system.
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Figure 4.1: Application - Server Interface

4.7.2 The Shore server

The Shore server (Figure 4.2) is divided into two main components: a Server Interface, which com-
municates with applications, and the Storage Manager (SM), which manages the persistent object
store.

The Server Interface is responsible for providing access to Shore objects stored using the SM. It
manages the Unix-like namespace. When an application connects to the Shore server, the server asso-
ciates Unix-like process state with the connection such as user ID and a current directory name. User ID
information is checked against registered objects when they are first accessed to protect against unau-
thorized access. As in Unix, the current directory name information provides a context for converting
path names into absolute locations in the name space.

The Shore server code is modularly constructed so that users can build application-specific servers,
thus supporting the notion of “value-added” servers (VAS). The Server Interface is an example of one
such VAS. Another VAS is the NFS file server described earlier. Each VAS provides an alternative
interface to the storage manager. They all interact with the storage manager through a common
interface that is similar to the RPC interface between applications and the server. It is thus possible
to write a new VAS as a client process and then migrate it into the server for added efficiency. Below
the server interface lies the Storage Manager (SM). The SM can be viewed as having three sub-layers.
The highest is the VAS-SM interface, which consists primarily of functions to control transactions
and to access objects and indexes. The middle level comprises the core of the SM. It implements
records, indexes, transactions, concurrency control and recovery. At the lowest level are extensions

for distributed server capabilities. In addition to these layers, the SM contains an operating system
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Figure 4.2: System Architecture

interface that packages together multithreading, asynchronous I/O and inter-process communication.

4.8 Conclusion

Shore is an integration of file system and OODB concepts and services. From the file system world,
Shore draws object naming services and an object access mechanism for use by legacy Unix file-based
tools. From the OODB world, Shore draws data modeling features and support for associative access

and performance acceleration features.
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Object Oriented Methodologies

5.1 Introduction

A Methodology is defined as comprising of a set of concepts, a notation(s), a process and pragmat-
ics [Booc94]. Object oriented methodologies usually consist of Object Oriented Analysis (OOA) and
Object Oriented Design (OOD) phases. Having chosen the object oriented model as the data model
for our database system, the next step involves the choice of a suitable methodology to develop the
system.

In this chapter, we consider some of the popular object oriented methodologies that are presently
in use and compare the major ones. Finally, we choose a particular methodology suited for our system

and outline the broad steps that will be followed to build the system according to the methodology.

5.2 Traditional Approaches

The structured analysis/structured design (SA/SD) approach [YoCo79, Your89] has been employed for
software analysis and design for over two decades, and can be considered representative of traditional
approaches to software development. The structured analysis phase has traditionally employed some

of the following:
1. Data flow diagrams
2. The data dictionary
3. State transition diagrams
4. Entity-relationship (ER) diagrams

The structured design phase involves a top-down design consisting of grouping the processes from
the data flow diagrams into tasks and converting the tasks into programming language functions.
However, there has been a shift in this fundamental approach to software development propelled by
the need to create systems that are easy to develop and maintain. This has resulted in the emergence
of the more flexible and reusable object oriented approach. The object oriented paradigm relies on
modeling the real-world domain naturally using the class and object as the building blocks in contrast

to the structured design methods that use algorithms as fundamental elements. We next summarise
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the three major object oriented methodologies for software development: James Rumbaugh’s Object
Modeling Technique, the Booch technique of OOA and OOD, and the Fusion Method.

5.3 The Object Modeling Technique

The OMT methodology [Ru+91] consists of the following major phases: Analysis, System Design,
Object Design, and Implementation. It employs three kinds of models as part of the analysis phase:
the Object Model, describing the objects in the system and their relationships; the Dynamic Model,
describing the interactions among the objects in the system; and the Functional Model, describing the
data transformations of the system. These three models are considered as orthogonal views of the
system.

An object model is considered as the first step in analyzing the problem. As part of the object
model, classes are defined for abstractions that are relevant in the particular context. Object diagrams
are created using the graphical notation to express these classes and the associations among objects.
These diagrams are improved upon by adding more detail with attributes and use of inheritance.

The dynamic model is employed to specify temporal constraints. The sequences of events, the
states of events, and the operations that are important are all included in the dynamic model. The
dynamic model is important for applications where the user interface makes the application “event-
driven”. User-interaction sequences are created and their effect on objects is described in the form of
state diagrams. Events that initiate interactions among objects are also identified.

The functional model is represented by data flow diagrams (DFD), where the processes correspond
to activities or actions on classes, and the flows correspond to objects or attribute values in an object
diagram. Thus, the DFDs are used to express the different states of objects and the state transitions
taking place due to operations on the object.

The next phase, the system design phase, involves making high level decisions about the overall
architecture. During system design, decisions regarding the performance characteristics to optimize, the
resources to allocate, etc. are taken. The object design phase of software development that follows this
phase incorporates design approaches to minimize execution time, memory and other resources. The
object design phase is when the operations identified during analysis must be expressed as algorithms,
and when the classes, attributes and associations from analysis must be converted to appropriate data
structures. Finally, in the implementation phase, the object classes and relationships developed during

object design are translated into a particular programming language.

5.4 The Booch Method

This methodology [Booc94] is one of the first of the complete object oriented methodologies to be
formulated. Booch proposes different views to describe an OO system. These views are organized
along two dimensions: one comprising the logical/physical view and the other the static/dynamic
view. For a given problem, the products of analysis and design are expressed through logical, physical,
static, and dynamic models. For each dimension, a number of diagrams are defined that denote a view
of the system’s models.

For the static view, the following diagrams are introduced:
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e (Class diagrams: The main elements of class diagrams are the classes and their relationships.
During analysis, they represent the roles of the entities that provide the system behaviour while

during design, they show the classes that form the system architecture.

¢ Object diagrams: An object diagram shows a snapshot in time of the system over a configuration

of objects. It comprises of objects and their relationships.

e Module diagrams: A module diagram shows the allocation of classes and objects in the physical

design of the system through modules and dependencies.

e Process diagrams: A process diagram is used to show the allocation of processes to processors.
The three elements of a process diagram are the processors, devices and the connections among
them.

The first two diagrams represent the logical model while the remaining two the physical model of the
system.

The dynamic view of the system is represented by:

¢ State Transition diagrams: The state of an object represents the cumulative results of its be-
haviour. At any given point in time, the state of an object encompasses all its properties (the
object’s attributes and relationships) and the values of each of these properties. A state transition
diagram shows the state space of a given class, the events that cause the transition from one state

to another, and the actions that result from a state change.

e Interaction diagrams: An interaction diagram is used to trace the execution of a scenario in the
same context as an object diagram. The interaction diagram gives the sequence of messages in the
scenario. It restructures the essential elements of an object diagram and shows the relative order
of passing of messages for a scenario. To a large extent, it is simply another way of representing

an object diagram.

5.5 The Fusion Method

The Fusion method [Cole+94] is a recent approach to object oriented software development. It has
integrated and extended existing approaches to provide a direct route from a requirements definition
to a programming language implementation. It consists of three main phases: Analysis, Design, and
Implementation.

The goal of the analysis phase is to start from the requirements definition document containing
details of the problem, probable solutions and how a system that solves the problem ought to work. At
the end of analysis, we have the Object Model and the Interface Model, which consists of the Operation
Model and the Life-Cycle Model.

The Object Model captures the concepts that exist in the problem domain and their interrelation-
ships using an extended entity-relationship approach. It represents the static structure of the infor-
mation in the system consisting of classes and relationships between them, attributes of the classes,
aggregation and specialization/generalization. The System Object Model is a subset of the object

model excluding those that belong to the environment.



CHAPTER 5. OBJECT ORIENTED METHODOLOGIES 36

The Interface Model defines the input and output communication of the system. The description is
in terms of events and the change of state that they cause. A system is modeled as an active entity that
interacts with other active entities called agents. The agents may be human users, or other hardware
or software systems. An Interface Model uses two models to capture different aspects of its behaviour.
The Operation Model specifies the behaviour of system operations declaratively using Operation Model
Schema. It defines operation effects in terms of change of state and the events that are output. The
Life-Cycle Model describes how the system communicates with its environment from its creation until
its death. It consists of life-cycle expressions. A life-cycle expression defines the allowable sequences of
interactions that a system may participate in during the course of its lifetime.

The Design stage involves developing an abstract model of how a system implements the behaviours
specified by analysis. The designer chooses how the system operations are to be implemented and
the inheritance relationships among classes. The following four design models are developed: Object
Interaction Graphs, describing how objects interact at run-time to support the functionality specified in
the operation model in the analysis phase; Visibility Graphs describing the object communication paths;
Class Descriptions providing a specification of the class interface, data attributes, object reference
attributes and method signatures for all the classes in the system and, Inheritance Graphs describing
the class/subclass inheritance structures.

The Implementation phase involves the actual programming required to build the system. The
methods are defined by the preconditions and postconditions of the method. An error is defined as a
violation of a precondition. Error recovery takes place through exception handling. Finally, the system
undergoes testing.

Fusion borrows the object model and the development process from OMT while the design stage

partly follows Booch.

5.6 Other Object Oriented Approaches

Apart from the previous three methodologies, various others have been proposed. The Shlaer-Mellor
approach [ShMe88] advocates the development of three models, the Information Model, the State Model
and the Process Model. The Wirfs-Brock method [WiBr90] constitutes identifying classes and the
relationships. The relationships are recognised as a contract between two collaborating objects. In the
Object Oriented Design method of Coad and Yourdon [CoAd91], design involves four components, the
Problem Domain Component, the Human Interaction Component, the Task Management Component

and the Data Management Component.

5.7 Comparison of OO Methodologies

We compare the described methodologies using the following: concepts, notation, and the process.
The concepts term denotes the definition of object oriented concepts as defined by the methodology
and represents the “object orientedness” of the methodology. The concepts include class, object,
aggregation, inheritance, and association. The notation involves the graphical representation for the
models of the methodology. The process is the various steps involved in the analysis and design stages

of object oriented software development.
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All three models discussed are fully object oriented and hence support all object oriented concepts.
The Rumbaugh method offers a concise notation. The Booch method is descriptive, and hence there
is no well defined sequence of steps to follow the process in contrast to Rumbaugh’s OMT. The Fusion
method integrates other methods and is largely influenced by both Booch and OMT methods. The
distinction between Booch’s approach and the OMT approach is the emphasis the OMT places on as-
sociations. However, the similarities between the approaches are more striking than the differences and
the two complement each other. Shlaer and Mellor’s methodology like the OMT methodology, breaks
analysis down into three phases: static modeling of objects, dynamic modeling of states and events,
and functional modeling. A flaw in Shlaer and Mellor’s treatment is however their excessive preoccupa-
tion with relational database tables and database keys. Researchers at Hewlett and Packard [MoPu92]
have conducted a study of the differences between these OO methodologies. The study concluded that
the Booch, Rumbaugh and Wirfs-Brock methodologies fully support OO concepts. The Wirfs-Brock
methodology helps exploratory analysis and informal design, and might prove useful for analysis or
high-end design. Fusion uses various other models to show various aspects of the system. It is not
immediately obvious why one would need them all. With OMT for example, the concept of three
simple models is easier to get across than a number of interconnected models. Also, OMT models are

not as interconnected as Fusion and hence OMT models can be used separately.

5.8 Choice for DIAS

We choose the OMT methodology of software development for the following reasons. Our database
system will be used as a static repository of data and hence the object model is the most important. In
fact, dynamic modeling and functional modeling are not necessary for the development of our database
system [Ru+91] and we shall not be developing them. Of the methodologies considered, OMT is the
one which specifically emphasises the object model. The Fusion method, to a large extent borrows
the OMT technique for its object model. A striking feature of the OMT methodology is the major
role played by associations, a fact which fits in with the importance of associations among entities
modeled for representation in database systems. Another advantage is the simplicity and conciseness
of the notation compared to the Booch method. Moreover, the OMT technique has been successfully
applied to the development of database system applications earlier [BPR88]. Over the past few years,
the OMT technique has become so popular that now efforts are underway to merge the Booch method
with OMT.

The usual lifecycle for database system applications includes the following steps:

Design the application

Select a database engine to serve as the backend platform

Design the database

Write programming language code

Populate the database

Develop application specific features for the system
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Of the above tasks, the most important is the database design referred to as the schema. The standard
architecture that is usually followed is the three schema architecture, consisting of the external, con-
ceptual and internal schemas. The external schema is a view or abstraction of the overall conceptual
schema. The conceptual schema is the database design for a particular problem domain. The internal
schema, consists of the actual DBMS code required to implement the conceptual schema.

The development of our object oriented database system for VLSI interconnect parasitics involves
integrating the above steps with the OMT methodology to arrive at the stages of development. The
Object Model is used for the external and conceptual schema design. The internal schema now falls into
the Object Design and Implementation stages. We next discuss the stages that we shall be following

in developing the database system.

Analysis

Analysis, the first step of OMT methodology, is concerned with devising a complete model of the
application domain. First, it involves gathering all information about the problem domain. These
constitute the data required to be stored, the constraints and the relationships among the various
entities. The result is a problem statement defining the requirements of the system. From the problem
statement, the object model is developed using the graphical notation of OMT.

The following steps are performed in constructing an object model:

e Identify objects and classes

Identify associations and aggregations between objects

Identify attributes of objects and links

Organize and simplify classes using inheritance

Verify that access paths exist for likely queries

Iterate and refine the model

Group classes into modules, based on the degree of coupling and how close they are related

functionally

System Design

Once the analysis is done, system design is the high-level strategy for solving the problem and building
a solution. The overall system architecture is decided at this stage. Then, interfaces to store and
manipulate the database are designed. Mechanisms for interaction of existing tools with the data are

developed. All these subsystems are organized into a whole system.

Object Design

Based on the analysis model, a design model is built that incorporates implementation details. The
focus of object design is the data structures and algorithms needed to implement each class. The object

classes from analysis are still meaningful, but they are now augmented with computer-domain data
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structures and algorithms chosen to optimise important performance measures. During object design,

the following steps are performed.

e Obtain operations on classes designed earlier

Design algorithms to implement operations

Optimize access paths to data

Adjust class structure to increase inheritance

e Design associations

Package associations and classes into modules

The operations for classes must be formulated as algorithms. Data structures on which these algorithms
work on are declared next. Frequently, these algorithms require defining new auxiliary classes and
operations.

From a database viewpoint, for efficient query processing, optimization of access paths to data is
important. In relational database systems, this involves declaring new storage structures such as hash
tables and BT trees for accessing data quickly. In an object oriented database system, these access
methods are not sufficient and hence specialised access methods are designed.

Classes can be rearranged to increase inheritance among groups of classes. Packaging related classes
into discrete physical units such as source files improves coherence among entities and limits the scope

of each class. This stage marks the end of the design phase of the development process.

Implementation

The object classes and relationships developed during object design are finally implemented using the

programming language of the backend database system. The various steps involved are:

e (Class definitions

Creating objects

Implementing operations

Using inheritance

Implementing associations
e Implementing access methods

The design methodology is by nature an iterative one and several passes have to be made through
these phases to arrive at the final design of the database system. In the next chapter, we describe the
analysis phase. Chapter 7 describes the system design and object design phases while the implemen-

tation phase is covered in Chapter 8.



Chapter 6
Analysis

In this chapter, we look at the analysis stage of the development of the database system for managing
interconnect parasitics data. The analysis stage is concerned with devising a precise and correct model
of the problem domain. The initial stages of building the software system consist of understanding
the requirements along with the environment in which the software will be used. This leads to the
formulation of a problem statement.

As mentioned in the introduction, the study of interconnect parasitics calls for effective data man-
agement using a database system. The database system forms the hub of the system for interconnect
study. Various tools are used to input data into the system. The stored data must be accessed effi-
ciently for answering queries. Circuit simulation tools must be able to extract data from the database
system. Application programs which process the data must be capable of being developed quickly.

The various data can be classified into design-related data and analysis-related data. The design
data consists mainly of data regarding the various components of a circuit design. The analysis data
deals with the data introduced during the interconnect study of the designed circuit. Broadly, the data

falls into the following major groups:

o Netlist data: A netlist shows the electrical connectivity of the circuit. The data involved are

those comprising the design entities such as cells, ports, etc.

e Layout data: The layout related information regarding the design elements and the parasitic
data fall under this category. Some of the data stored include layout geometries, length, width

of various metal layers, etc.

e Characterization data: The library cells used in the design have characterization information.
These are used for subsequent calculations for a design. The data involved include the output

capacitance for the different ports of a cell, etc.

e Parasitic data: The main data that is stored in DIAS system deals with parasitics and hence
this forms the bulk of the data in the database. For each signal in the circuit, details about the
interconnect model are stored in the database. Also, using that interconnect model, the values
obtained for different parameters of interest such as slew at the output terminal, the delay due to
RC elements in the interconnect suffered by a signal while travelling from input port to output

port, etc. are stored.

40
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6.1 Problem Statement

Summarizing the above details, we have the following as the problem statement that characterizes the

requirements of the database system:

1. The database system should be capable of supporting all the different kinds of data discussed

earlier.
2. The system should be capable of speedily answering queries to retrieve a subset of data.

3. Existing tools should be capable of accessing and loading data without any changes to the tool

itself till completely new tools are written that can directly access the database.

4. A Programming Interface should be provided to facilitate the easy development of new application

programs around the database system.

The next step is to develop a comprehensive object model which captures all the information that

are required to be stored in the database.

The Object Model

As seen in Chapter 5, the development of an object model involves various stages such as identifying
the classes, associations, attributes and operations, simplifying the classes using inheritance and finally
verifying the existence of access paths for likely queries. We discuss here each of the steps in the object

model development. The model is pictorially represented using the OMT notation (Appendix B).

6.2 Identifying Classes

To model the complex data of the domain, we abstract common properties of entities in a class. The
Dias class represents any entity found in the domain. The Property class is used to denote a (name,
value) pair which can be attached to any design object. A Text class is used to represent design and
analysis management information.

The information that is stored in our DBMS is mainly concerned with interconnect parasitics data.
Apart from this data, we also need to store netlist related data, layout related data, and characterization
data. These form the basic design data. The details regarding the netlist are needed for storing the
connectivity of the design. The characterization information is necessary for calculating parametric
data. The layout geometries, location and other layout information are required for calculating the
interconnect parasitics and subsequently incorporating them as part of the designed circuit for analysis
using simulation tools. We next describe the classes designed for adequately representing these various

types of basic design data.

Basic design data

The class Cell is used to model the concept of a design entity. The classes LibraryCell and Design

represent a leaf cell (primitive element) and a complex design, respectively. The information about
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the transistors comprising a LibraryCell is modeled using the Transistor class. The intrinsic delays
suffered by a signal while travelling from the input port to the output port of a cell are stored using
an object of the InterPort Info class.

A Design object has several data associated with it. The data is divided into the following classes:
DesignParameters, ProgramStamp, Technology and Units. The DesignParameters class stores infor-
mation such as the date of creation, the directory in which it was created and so on. The ProgramStamp
class has similar details about the program which created it. The Technology class has information
regarding the technology to which the design belongs. The units for the various values used in the
design are stored in an object of the Units class.

Other basic entities such as the ports of a cell and the nets in a design directly map to the classes Net,
Port, etc. A collection of cells may have certain common characteristics such as the same technology.
The Library class groups together such a collection of cells.

A net could be physically divided into a number of disjoint interconnects. We make a distinction
between two kinds of nets: the ones that are connected to the boundary ports of a cell and those which
are fully internal. In case of the former, additional information regarding the port of the external cell
which is driving the IO-net is stored. This distinction results in the two classes, IONet and Signal
respectively.

The characterization data represent the properties of the library cells which are used in a design.
The structure of the characterization data is usually vendor-specific and hence shows frequent changes.
We now discuss how the characterization data for library cells is modeled.

The characterization data supplied with a library cell usually consists of the following: the informa-
tion about the ports (pins) of a library cell and the intra-cell timing information (buffer characterization
information). The information about the pins is captured by the PinInfo class. It contains a list of
entries, with each entry storing details about the pin name, direction and the capacitance value ob-
served at that pin. The buffer characterization information is composed of different Arc objects, with
each Arc object storing information about a particular property for all the pins of the library cell.
Each Arc is composed of the Group, OutputDelay and OutputSlew classes. The Group class abstracts
a logical grouping of all pins with the same information in the library cell. The details stored are the
two pins about which it stores the information, the timing sense (Low-High or High-Low), and the
Transition Type (one combination among the Low, Zero, and High transitions). The QutputDelay and
the OutputSlew classes are associated with a “look-up” table containing pairs of values of input slew
and output load. The OutputDelay class thus has a list of corresponding loading delay values for each
pair in the look-up table and similarly, the OutputSlew class has a list of corresponding output slew

values for each pair in the look-up table.

Interconnect Parasitics Data

We shall now describe the major classes designed for parasitics related data. A net is logically divided
into a number of Parasitic Nodes and Parasitic Devices. These fall into the ParasiticNode and Par-
asiticDevice class. Earlier, the Design class was broken into Net class and Device class. In a similar
manner, the Net class is broken into ParasiticNode and ParasiticDevice class. Also, parasitic effects

between nets are represented by the Coupling class.
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Interconnect Models

The interconnect parasitics information is modeled using electrical circuit equivalents. The following
are some of the major types of interconnect models with varying levels of accuracy. We discuss how

each of them is represented by means of classes.

e Single Lumped Capacitance
This is the simplest electrical equivalent. In this model, an interconnect of a net is represented
by a single capacitance from the interconnect to the ground. Thus, this ignores resistive effects.

This is modeled by means of a LumpedCapacitance class which stores the capacitance value.

e Resistance Capacitance (RC) Network
This includes the resistive effects also and hence a net is represented by means of an RC tree. An
RC tree comprises of several RC elements, each element representing a section of an interconnect.
We model the RC Network for a net by treating it as a graph modeled using the Node and Edge
classes. A Node object is connected to a set of Edge objects. An object belonging to the Edge
class stores the resistance and capacitance values of a section of the interconnect. In a model of a
long-branched interconnect, thousands of such Nodes and Edges are present in an RC tree. This
data tends to be too vast for analysis applications leading to delay in processing. As a result, at

the cost of accuracy, the number of nodes and edges is often reduced.

e Transmission Line Model
This is more accurate than the previous form since inductive effects of the interconnect parasitics
are also taken into account. Thus, a single signal is represented by means of a Transmission Line
model consisting of several uniformly distributed elements. Each such element is represented
using an object of the UnitElement class, that stores the information regarding the resistance,

capacitance, and inductance values for unit length of the transmission line.

The object model can be extended easily for other interconnect modeling techniques. The Intercon-
nectionModel class serves as the abstract base class which is derived by all these models.

The effects of the interconnect parasitics on the performance of a circuit are modeled by the Para-
metricInfo class. These include timing, crosstalk and power effects. The information obtained at the
Prelayout and Postlayout stages of a design are separately considered. Also, the effects are found at

different granularities of the circuit such as in a path of the circuit, at a physical point, etc.

6.3 Relationships

Relationships among the entities in the domain are modeled using associations. A link is an instance
of an association. We next discuss some special relationships among the entities and the modeling of

these relationships.

Aggregations

An aggregation represents the “is-a-part-of” relationship between objects. An aggregation hierarchy
is a hierarchy of instances. We now describe the various aggregation hierarchies used to model the

information in this domain.
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Figure 6.1: Example Aggregations in the DIAS object model

e Net hierarchies: A Net figures in two aggregation hierarchies. A net is physically composed
of disjoint Interconnect objects of the layout (Figure 6.1 (a)). From a parasitic viewpoint, the
parasitic extraction can be done on the basis of breaking down a Net class into logical parasitic
nodes belonging to the ParasiticNode class and logical devices belonging to the ParasiticDevice
class (Figure 6.1 (d)). The parasitic nodes map to specific points on an interconnect while the
parasitic devices map to sections of an interconnect. In case the parasitic device stores parasitic

information between two interconnects, then it does not map to any physical interconnect.

e Transistors: Though the LibraryCell is the leaf cell in a design hierarchy, we store details of the

transistors also as an aggregation using the Transistor class (Figure 6.1 (b)).

e Collection: A collection is a logical grouping of classes having some common features. A Library

class is a collection of Cell classes which have the same characterization information (Figure 6.1

(c))-
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e Delay information: The delay information regarding a signal is represented by means of the

sources and loads, represented using the Source and Load classes respectively (Figure 6.1 (e)).

Other aggregations used in describing the interconnect model and the characterization data are

dealt with separately in later sections.

Instantiation

Consider the following example. The design of an adder has four copies, called instances of an adder-
slice circuit. Each instance is distinct, that is, each has its own separate set of inputs, outputs, and
co-ordinate positions on a circuit diagram. However, each shares the same adder-slice features. Thus,
each of these instances are simply reproductions of a “master”, in this case, the adder-slice circuit.
Instantiation, leads to an implicit inheritance of attributes from the “master”, in addition to non-
inherited attributes. For example, in the above case, the non-inherited attributes are co-ordinate
positions, inputs and outputs specific to an instance.

We capture the instantiation concept by introducing the Device class. The Device class and the
Cell class are related by means of the “is-instance-of” relationship. Thus, an object belonging to the
class Design has several objects of the Device class, each of these being an “instance” of a Cell. Note,
that the term “instance” is also used in the context of an object being an “instance-of” a class. To
disambiguate the usage of the term in this thesis, whenever instance is used to mean the relationship

between the Cell and Device classes, it is surrounded in quotes.

Recursive Aggregation

A recursive aggregate contains, directly or indirectly, an instance of the same kind of the aggregate.
This leads to an aggregation hierarchy whose number of levels is potentially unlimited. For example,
a computer program is an aggregation of blocks of statements. Those blocks may be either compound
or simple statements. The compound statements recursively contain other blocks until the recursion

terminates with a simple statement.

Cell

Device Design Library Cell

Figure 6.2: Recursive Aggregation

In our domain, recursive aggregation is exhibited by a hierarchical design consisting of several levels
of nested subdesigns. The class Cell forms the superclass for two subclasses, LibraryCell and Design.

The LibraryCell forms the primitive element of a design which is not subdivided further. The Design
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class is composed of Device class, which is an “instance” of a Cell class. A Design object is in turn
composed of other Device objects and so on till a LibraryCell object. Here, the recursive aggregation is

indirect, with the Device class forming the implicit link. The relationships are depicted in Figure 6.2.

cdl o mepto
has @ - - - - . _ _ _ _ _ _ _ _______
Port e — - - - __ Terminal
map to
(b)

Figure 6.3: The Homomorphism relationship

Homomorphism

A homomorphism is a special relationship that maps between two associations. For example, in a
parts catalog for an automobile, a catalog item may contain other catalog items. Each catalog item
is specified by a model number that corresponds to thousands or millions of individual manufactured
items, each with its own serial number. The individual items are themselves composed of subitems.
Each physical item’s parts’ explosion tree has the same form as the catalog item’s parts explosion tree.
Thus, the contains relationship on catalog items is a homomorphism of the contains relationship on
physical items.

In general, a homomorphism involves four relationships among four classes as shown in Figure 6.3
(a). The homomorphism maps links of one general association (U) into links of another general rela-
tionship (T) as a many-to-one mapping. R is a many-to-one relationship from class B to class A and
S is a many-to-one mapping from class D to class C.

The concept of homomorphism can be used to represent the relationships between the Cell, Port,
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Dewvice, and the Terminal classes. A Cell has a set of Port objects which form the electrical interface
to the external circuit. A Device is an “instance” of a Cell. A Dewvice object has Terminal objects
which are “instances” of Port objects. Then, the links of the association between a Device and its
Terminal objects is mapped by a homomorphism into links of the relationship between a Cell and its
Ports as a many-to-one mapping. Thus, as shown in Figure 6.3 (b), the four relationships are:

e R: Device — Cell, a many to one relationship, is-instance-of

e S: Terminal — Port, a many to one relationship, is-instance-of

e T: Cell — Port, a one to many relationship, has-ports

e U: Device — Terminal, a one to many relationship, has-terminals

Then, the homomorphism maps links of relationship U into links of relationship T as a many to one
mapping, that is, U(Device, Terminal) = T(Device.R, Terminal.S).

6.4 Link Attributes

A class has properties represented as attributes. Link attributes are properties of links in an association.
Many-to-many associations provide the most compelling rationale for link attributes. Such an attribute
is a property of the link and cannot be attached to either object. Since these link attributes may be
subject to operations (methods), we model the association as a class.

Some of the link attributes which are used to model in our domain are the following.:

e Inter — net association: The effect of the signal in one net causes parasitic effects in neighbouring
signals. This is represented by the Coupling class. It may be denoted by a uniformly distributed
capacitance or by a single value denoting the lumped capacitance. The values of these are stored

in a Coupling object.

e Port - Port Delay: As noted earlier, a cell has a list of ports. The InterPortInfo object is a link
object connecting two Port objects. It stores information regarding the intrinsic delay suffered
by a signal in travelling between the input port and the output port. Similarly, the timing
information between any Source-Load pair of terminals is represented by the SourceLoadTiming

class.

Also, the node-to-node delay between two Node objects is depicted by the NodeToNodeDelay class.

Figure 6.4 shows these associations.

6.5 Other Relationships

We now discuss other general associations among classes. Because of strong interdependence, we see
many associations among classes. We briefly discuss the major ones here.

Typical layout details such as width, length of wire and geometries are stored in the LayoutDetails
class. A LayoutDetails class is associated with an Interconnect class for which the LayoutDetails class

stores layout details. Each Terminal object is associated with a Dewvice object which is its “owner”.
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Figure 6.4: Link Attributes in the object model

The Source and Load classes have associations, “map to”, to the Terminal class. Similarly, the node
of an RC Tree “may map to” the Terminal class if it is one of the boundary nodes of the RC Tree.
The LibraryCell class has associations to the classes which represent characterization data, namely the

TimingInfo and the PinInfo classes.

6.6 Attributes and Operations of Classes

The values of the attributes represent the state of an object and actually store the data. The attributes
of the Design class store information about the design as a whole. Because of the diverse nature of
the parasitic information, the data representing this information is distributed among the attributes
of the various classes that represent the structural interconnect model and the classes that represent
parametric information.

Operations (methods) are used to modify and retrieve the state of an object. Simple operations
get or set the attribute values. Others are used for querying. For example, given the name of a signal

of a design, a get operation retrieves the signal object.

6.7 Inheritance

Some of the classes defined so far exhibit similarities in their structure and behaviour. The inheritance

relationship defines a mechanism wherein one class refines the structure or behaviour of other classes.



CHAPTER 6. ANALYSIS 49

The following inheritance hierarchies are noted in the object model. Figure 6.5 shows some of these

hierarchies.
Dias Net
Net Cdll Port 10 - Net Signal
@ (b)
Interconnection Model Parametric Info
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Figure 6.5: Example Inheritances in the DIAS object model

e Base hierarchy: The Dias class forms the base class for all objects. Design Management Infor-
mation is stored in the form of free text in the Text class. A Property class is used to store one
or more name, value pairs with any object. The refinements of the Dias class form the basic

entities of the design domain, namely Net, Cell, and Port (Figure 6.5 (a)).

o Derivations of Net class: The Net base class is subsequently derived into I0-Net and Signal
classes (Figure 6.5 (b)). The IO-Net class represents those Net objects that connect Terminal
objects of a Dewvice to the boundary ports of the Design object that contains the Device object.
On the other hand, Signal objects connect only Terminal objects of Device objects. In all other
respects, the two are similar. In case of I0-Net objects, additional information regarding the
driving net that acts as input from outside the interface of the Design object is stored.

o Interconnection Model hierarchy: The abstract base class InterconnectionModel represents the
structural interconnect model used for modeling interconnect parasitics. The specific model used
forms a derivation of the base class. Examples are the widely used RCTree, TransmissionLine

and YParameter techniques (Figure 6.5 (c)).

o Parametric Information: The parametric information calculated using a specific interconnect

model is represented using the ParametricInfo class. The derivations of this class are the classes
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used to store different parameters such as power, crosstalk, and timing information (Figure 6.5
(d))-

o Timing Types: For different timing related data to be easily represented, we have two derivations
of the base class, the Coefficient class and the Delay class. The Delay class is used to represent
the different delays associated with the combinations arising among transitions of Low, High
and Zero states such as LH, LZ, ZH, ZL etc. For each of these transitions, we store a triplet of
Minimum, Nominal and Maximum values. The Coefficient class consists of a list of coefficient

values which form the coefficients of an equation used to calculate the delay values.

6.8 Normalization of the Object Model

Normalization, for relational databases, is the process of decomposing the relational schema by breaking
up their attributes into smaller relation schemas that possess certain desirable properties. Normaliza-
tion is performed because a poorly designed relation incurs the overhead of redundant data and the
risk of causing update anomalies. In short, a fully normalized relation is one whose only dependencies
are functional dependencies where every non-key attribute is determined by the key attribute and there
is no multi-valued dependency.

The normalization process takes a relation schema through a series of tests to “certify” whether or
not it belongs to certain normal forms. Codd [Codd72], proposed the three normal forms, the first,
second and third normal forms (1NF, 2NF, 3NF) and later a stronger version of the 3NF was proposed
by Boyce and Codd [Codd74], called the Boyce Codd Normal Form (BCNF'), based on the functional
dependencies among the attributes of a relation. Further normal forms, such as the 4ANF and 5NF
exist, based on multivalued and join dependencies respectively. However, in practical design cases, the
3NF and BONF are sufficient [Lee95)].

However, the object oriented data model differs substantially from the relational data model. The

following characteristics of an object class make its normalization distinct from that of a relation.
e Because of aggregation, an attribute of a class can be an instance of another class.
e The attributes of an object can be containers for other objects such as list, set, etc.

e Objects are uniquely identified by their object identifiers that are assigned by the system. Hence,

there is no need for the notion of a key attribute as in the case of relations.

As a result, there are no equivalent normal forms for an object class. Both complex attributes and
multi-valued attributes make an object class non-1NF. Even if all attributes are simple and single-
valued, the lack of a key attribute makes it violate 2NF. As pointed out in [Pratt94], some proponents
of the object oriented approach claim that there is no need to normalize. This claim is based on the
fact that there is no notion of a key attribute in an object class. In the succeeding paragraphs, we
observe that object classes also suffer from some of the anomalies of relational schemas and hence
require normalization. We then provide definitions of the object functional dependency and the object

normal form as proposed in [Lee95]. We then normalize the object model developed for DIAS.
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Update anomalies in object classes

Unlike the case of a relation, there is no insertion anomaly unless there exists a constraint prohibiting
a null value for the attributes. For example, we can create an object and insert only the pertinent
attributes. However, there are deletion and modification anomalies. The existence of these anomalies

is sufficient reason to justify the need for normalization.

Object functional dependency

Given two attributes X and Y that belong to the same object class C, Y is said to be object functionally

dependent on X, if and only if the value of Y is determined uniquely for each value of X.

Object Normal Form

An object class C is said to be in the object normal form if and only if the only functional dependencies
are those determined by the object identifier (OID) of the class C.

Steps for normalization to an object normal form

If an object class does not satisfy the object normal form, then, the following steps can be followed to

ensure that the resulting classes are in the object normal form.
1. Create a new class and introduce an attribute that refers to this class.
2. Check for attributes that form object functional dependencies with the new reference attribute.
3. Move these attributes to the referenced class, renaming the attributes if necessary.
The above steps are elucidated by the following example. Consider the following class:

class Employee
{
integer EmpCode;
string Name;
integer Salary;
string DeptName;
integer DeptBudget;
set<string> DeptLocations;

};

We can see that the Employee class suffers from deletion and modification anomalies. If we want
to delete all the information regarding the Department, then all employees have to be deleted. Also,
for a Department with only one Employee, we inadvertently lose the Department data if the Employee
object is deleted. Likewise, in order to change the data about the department, we have to change all
the objects of the employees working for the department.

Therefore, we apply the normalization steps to the class Employee. First, we introduce a new

class Department and create a new attribute Dept belonging to the class Department. It is now
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exposed that the modified Employee class is not in the object normal form because of the additional
object functional dependencies between dept (oid) and the attributes DeptName, DeptBudget, and
DeptLocations. Hence, these attributes are moved to the class Department and renamed as Name,

Budget, and Locations respectively. So, the final form of these two classes are:

class Employee

{
string EmpCode;
string Name;
integer Salary;
ref<Department> Dept;
};

class Department

{
string Name;
integer Budget;
set<string> Locations;
};

Thus, it can be seen that these anomalies exist because of the fact that during the design of the
classes, those attributes that should have actually belonged to an independent class are grouped as
part of the same class.

In our object model, we begin by examining each class to see if it violates the object normal form.
Then, each such class is subjected to the above three steps to ensure that it is normalized and hence does
not suffer from update anomalies. We find that the use of modeling concepts such as “instantiation”
results in classes that are normalized. The Cell and Device classes, the Port and Terminal classes are
examples. At the end of this stage, we have the object model that is fully normalized with respect to

the object normal form.

Summary

The object model we have proposed attempts to satisfy the modeling requirements mentioned earlier
in Section 6.1. The aggregation and inheritance features help in representing the complex nature of the
information directly in a natural manner. The entire model is shown in Appendix C. This concludes

the analysis stage.



Chapter 7

Design and Optimization

After the analysis stage, we next consider the overall design of the database system. As mentioned
in Chapter 5, system design includes the high-level strategy for solving the problem and building a
solution while the object design phase is concerned with the design of appropriate data structures and

algorithms. We discuss both these stages in this chapter.

QUERY PROGRAMMING TOOL
INTERFACE INTERFACE INTERFACE

OBJECT MODEL ACCESS
IMPLEMENTATION METHODS

KERNEL

DATABASE

Figure 7.1: DIAS System Architecture
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7.1 DIAS System Architecture

DIAS follows a three-layered architecture as shown in Figure 7.1. As seen in Chapter 3, the SHORE
system forms the lowermost layer of DIAS. On top of Shore is built the DIAS Kernel, that implements
the object model developed in Chapter 6. The interfaces provided by DIAS form the topmost layer
of the system and cater to the different user requirements. We next discuss briefly the components of
DIAS and then discuss the various optimizations during the design of DIAS.

SHORE Server

The Shore server forms the lowest layer of DIAS. The Shore Storage Manager (SSM) is responsible for
object management and transaction related features such as concurrency control and recovery. The
Value Added Server (VAS) uses these features of the Storage Manager and presents an interface targeted
at specific client applications. DIAS uses two such VASs: the Shore Value Added Server (SVAS) and
the Shore NFS server. The SVAS is mainly useful for applications using the object oriented database
features while the latter is useful for applications relying on the file system features of Shore.

DIAS Kernel

The DIAS kernel implements the object model described in Chapter 6 and uses the Shore server for
supporting both object based and file based applications. It contains the access methods used in query
processing. The access methods used in DIAS and the query processing system of DIAS are described

in detail later on in the present chapter.

DIAS Interfaces

The DIAS system provides a variety of interfaces to support ad-hoc querying, legacy CAD tools and
design of new CAD tools. These interfaces are called the Query Interface, the Tool Interface, and the
Programming Interface, respectively.

The Query Interface is used to retrieve specific data from the DIAS database. The Query Interface
serves as a front-end to the Query Processing System.

The Programming Interface forms a library of routines which abstracts away many of Shore’s
implementation dependent features to make it easier to write application programs. For example, the
Programming Interface can be used to write applications that convert data from specific file formats
to DIAS.

Existing file based tools can interact with the data using the Tool Interface. This does not require
any changes being made to the tool. For supporting this feature, the DIAS system uses the SHORE
NFS value added server to provide the tool-specific view of the objects. This form of access is specially
of use for migrating legacy data to the object store.

Chapter 9 covers each of these interfaces in greater detail.
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7.2 Object Design

As mentioned in Chapter 5, the analysis stage provides the framework for the implementation of the
system and the system design phase decides the overall architecture of the system. The object design
phase determines the full definitions of the classes and associations used in the implementation and
the algorithms used for implementing the operations. The object model described earlier in Chapter 6
during the analysis phase forms the basis for this stage. We now look at the various steps in the Object

Design phase.

7.2.1 Obtaining operations on classes

The operations of classes define the behaviour of objects belonging to that class. The operations are
used to retrieve the state and to modify the state of the object. The basic operations are used for
object creation and deletion. Others manipulate the state of an object by changing the attribute
values or by retrieving the data members. The operations also encapsulate the relationships by hiding

the implementation while providing an interface to the objects of other classes.

7.2.2 Designing algorithms to implement operations

In many cases, the algorithms for the implementation of operations of a class are evident from the
description of the properties (attributes and relationships) of the class. In some other cases, particular
algorithms may be chosen for efficiency. Data structures appropriate to the algorithms are used.

Frequently, new internal classes and operations are defined for delegation of tasks.

7.2.3 Design of associations

Associations provide access paths between objects. Most associations are inherently bidirectional,
but if some associations are only traversed in one direction, then the implementation is considerably
simplified by providing for only one - way traversal. Unidirectional associations are usually implemented
by pointers, persistent pointers in our case. However in case of two - way associations, there are different

ways of implementing them:

e The association is implemented as an one way association. This allows the associations to be
traversed in one direction. When the traversal is in the opposite direction, a search is performed.
This implementation is useful when the traversal in the forward direction is much more frequent

than in the backward direction.

e The association is implemented as two one way associations. The two associated objects have
object references to each other as attributes. This implementation has the disadvantage that to
maintain consistency and avoid dangling references in case of an update, both the references must

be changed immediately. However, the speed of access is the same in both directions.

e An association object is used. It is a table of pairs of object references to the associated objects
stored in a single association object. The number of entries in case of a m x n relationship is

mazx(m,n).
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7.3 Additional classes

The classes in the object model are the abstractions of the major entities in the application domain.
However, there is need for more classes for the implementation. We next discuss some of the other

classes introduced mainly to support database functionality.

Transaction class

We define a transaction class to serve as a wrapper over the macros and functions of Shore related to
transactions. All access, creation, modification and deletion of persistent objects must be done within
a transaction. The class has the following methods: begin, commit, abort, and checkpoint. The begin
operation creates a transaction. Transactions must be explicitly created and started once a database is
opened. The commit operation causes all persistent objects created or modified during a transaction to
become accessible to other transactions waiting to access the data. The transaction instance is deleted,
and by default all locks are released. The abort transaction operation causes the transaction instance
to be deleted and the state of the database to be returned to the state it was in prior to the beginning
of the transaction. This is done using the logging mechanism. In case of a system crash, all committed
transactions need to be redone. Frequently, checkpoints are taken when the effects of all data writes of
committed transactions are written to the disk. Hence, all transactions that have their commit entries
in the log before a checkpoint entry need not have their write operations redone in case of a crash.
The checkpoint operation commits all modified objects to the database and retains all locks held by
the transaction. The transaction instance is not deleted. The checkpoint method forces a commit
and continues with the previous transaction by chaining the transaction, that is, a new transaction is
started while retaining the locks acquired by the earlier transaction. Transactions can have degrees of

isolation [GrRe93] 2 and 3, with degree 3 granting the full serializability of transactions.

Database class

A database provides storage for persistent objects of a given set of types. The database consists of
instances of types defined in the schema. Each database is an instance of the type Database. It
supports the following operations: opening and closing of the database, and the lookup of a named
object.

In our domain, the major databases are the Design database and the Library Cell database. Each
Library Cell database contains a collection of cells, based on the same technology. The Design Cell
database consists of collections of designs which are composed of other designs and Library Cells. The
designs contain cross-references to the library cells that are found in the Library Cell database.

To facilitate navigation, certain named “root” objects are provided for each database. Each
database is stored under a separate directory in the Shore file system. The root objects are imple-
mented as cross-references to pools containing the anonymous objects belonging to a database. After
a database is opened, a transaction is then started. A lookup of a root object specified using a name
is used to start accessing the top-level object, using which further access is performed through method

invocations.
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7.4 Further optimization

The basic design model uses the analysis model as the framework for implementation. The analysis
model captures the logical information about the system while the design model adds further details
to it. During optimization, the model is further refined for efficient implementation. One way is to
add redundant associations to minimize access cost. Here a tradeoff is done between the update cost
of these redundant associations after every update and the benefit obtained while accessing the object.
For example, a signal connects a set of terminals. Given the terminal, to find the signal to which it

belongs, reverse pointers are added that connect the terminal to the signal.

7.5 Access methods

Access methods are a key feature of every database system. They help in improving performance by
retrieving a subset of the data in the database efficiently. We next discuss the various access methods
that are part of the DIAS system.

The Bt tree index

The BT tree index is used to retrieve objects based on the value of an attribute. Most of the design
entities have unique names and hence the name forms the primary key. Thus, BT tree indexes with
names as keys can be maintained. Methods are provided to insert, search and delete the members of
the index.

Indexes on collections: A design object has a collection of signals and io-nets which provide electrical
connectivity. There are also collections of devices and library cells which make up this design. Each
of these collections can be mapped into a set or list class. For ease of access, a B tree index is also
maintained for each of these collections. Thus, each design object has BT tree indexes on devices,
instances, cells and signals, with the name as the key. The indexes have search, insert, and delete

methods.

Indexing techniques specific to object oriented databases

As seen above, the BT tree indexes are used in conventional DBMSs to expedite the evaluation of
queries. Since an object oriented data model has many differences with respect to the relational model,

suitable indexing techniques are necessary for supporting querying. Some of these aspects are:

e Nested predicates: An attribute of an object can be another object, which in turn can have other
objects and so on till a simple value because of the property of aggregation. Due to such a nested
structure, most object oriented query languages allow objects to be accessed by predicates on

both nested and non-nested attributes of objects.

e Inheritance: The scope of a query may apply to a class or to the inheritance hierarchy rooted at

that class.

Thus, querying in object oriented databases involve queries on a hierarchy in addition to queries
on simple attributes of a class. In addition to the aggregation and inheritance hierarchies described in
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the above paragraph, relationships among classes not involved in aggregations, but just associations
also lead to a path traversal with the several objects along the path having links connecting each other.
In fact, such paths are a more general case of aggregation hierarchies, since an aggregation is also a
special kind of association.

In object oriented data models, relationships among entities are supported through object refer-
ences. The function that joins provide in the relational model to support relationships is provided
more naturally by “path expressions” (implicit joins). A query can be conveniently represented by a
“query graph”. The strategy used to traverse the query graph can be “forward traversal” — the first
class visited is the target class of the query, and “reverse traversal” — the traversal of the query graph
begins at the leaves and proceeds bottom-up along the graph.

The efficient processing of queries requiring the traversal of aggregation and inheritance hierar-
chies is facilitated by suitable access methods. We next discuss the various index organizations for

aggregation, and inheritance hierarchies and for path traversals of associations.

7.6 Index Organizations for Aggregation Hierarchies

In this section, we first present some preliminary definitions as defined in the literature. These def-
initions introduce certain terms that are used later in the context of different index organizations.
Then, index organizations for evaluations of queries along aggregation and inheritance hierarchies are
discussed.

Definitions
Given an aggregation graph H, a path P is defined as C1.4;1.A4,...,A,(n > 1) where:

e () is aclass in H;
e A; is an attribute of class C7;

e A; is an attribute of a class C; in H, such that C; is the domain of attribute A; 1 of class C;_1,
1< <m

with
e len(P) = n denoting the length of the path

e class(P) = C1 U{C;|C; is domain of attribute A; 1 of class C;_1, with 1 < ¢ < n} denotes the set
of classes along the path

e dom(P) denotes the class of attribute A, of class C,,.

Figure 7.2: An example of a path instantiation
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A path is simply a branch in a given aggregation path. A path instantiation is a sequence of objects
found by instantiating a path (Figure 7.2 shows one such path instantiation). Path instantiations may
be complete or partial . Complete instantiations start with an instance belonging to the first class of
the path, contain an instance for each class found in the path, and end with an instance of the last
class of the path. Partial instantiations are of two types: left partial and right partial. In left partial
instantiations, the first component of the path instantiation is not an instance of the first class of the
path, but rather an instance of a class following the first class along the path, whereas a right partial
instantiations ends with an object which is not an instance of the class that is the domain of the path.
That is, a right partial instantiation contains a null value for the attribute referenced in the path. Path
instantiations can also be both left and right partial.

The queries targeted on aggregation hierarchies require retrieval of the objects that form the path
given the root node value or the leaf value, that is the forward traversal and reverse traversal respec-

tively. We next discuss indexes used for efficiently solving queries on aggregation hierarchies.

7.6.1 The Nested index

The nested index [Ber94a, Ber94b| provides a direct association between an object of the class at the
end of a path and the corresponding instances of the class at the beginning of the path. The nested
index is intended to facilitate reverse traversals, but can be used for forward traversals also. It uses the
leaf node of an aggregation hierarchy as the key value which is mapped to objects at the beginning of
all path instantiations that end in the key value.

The structure of the nested index consists of a BT tree with modifications to the leaf node. The leaf
node consists of a set of records. Each record has the following fields: record length, key length, key
value, the number of OIDs (object references), and the list of OIDs to the root nodes of path instantia-
tions. Partial instantiations consist of incomplete path instantiations. Right partial instantiations are
those that do not end in the leaf node. The nested index stores right partial instantiations by storing a
NULL as the key value and maps to the root node of all right partial instantiations. Figure 7.3 shows

a record in the leaf node of a nested index.

{o1} K

Figure 7.3: Nested index
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Operations

Insertions and deletions to the index consist of a pair < Key, Oi > where Key is the leaf node of the
path and Oi, the OID of the root node. Insertions are handled by updating the corresponding record by
including the OID in case the leaf value already exists. In case of a completely new path instantiation,
a new record is created and inserted in the appropriate place. Deletions of key values are similarly
handled by deleting the OID in the list or the record itself if no path instantiations exist ending in the
key value.

Retrieval under this organization is fast as it requires only one index lookup. The major problem of
this indexing technique is that updates on objects of the path require access to several objects in order
to determine the index entries to be updated. Update operations require both forward and reverse
traversals of objects. Forward traversals are required to determine not only the original value of the
indexed attribute but also that for the modified object. Reverse traversal is required to determine
the instances at the beginning of the path. The OIDs of those entries will be removed to the entry
associated with the original key value and added to that determined by the forward traversal. Note
that reverse traversal is very expensive when there are no reverse references among objects. Thus, the

nested index is suitable where data updates are rare.

7.6.2 The Path index

A disadvantage of the nested index is that it provides a direct lookup of objects only at the root of
the path instantiations and not to all the intermediate nodes of the path. The path index [Ber9%4a,
Ber94b] remedies this by providing an association between the object at the end of a path and all path
instantiations that end with that object. Thus, unlike the nested index, the path index can be used to

solve nested predicates against all classes along the path.

\

{01, 02, 03, 04} K

Figure 7.4: Path Index

The Path Index can be implemented using a BT tree as in the case of a nested index with modifica-
tions being made to the leaf node. Each leaf node record then consists of the following fields: the record
length, the key length, key value, the number of path instantiations and the list of path instantiations.
Both left and right partial instantiations can be stored in the index. Figure 7.4 shows a record in the

leaf node of a path index.
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Operations

Insertions are handled by adding the OIDs that constitute the path instantiation to be inserted and
then adding them to the appropriate leaf record. If a path instantiation ending in that key value
does not exist, then a new leaf record is created. Deletions are similar with the appropriate path
instantiation being deleted from the leaf node. Updates to the path index also require two forward
traversals to be made. However, unlike the nested index, no reverse traversals are required as the index
itself can be used to obtain the whole path instantiation. Thus, updates are less costly as compared
to nested index. Also, the path index can be used even when reverse references are not maintained.
The main disadvantage of the path index is that leaf nodes contain more information about every path
instantiation than in the nested index thus reducing the number of records in the leaf node. Thus, it
may be necessary to scan more leaf nodes than in the nested index for retrieval of the same information.

Thus, updates are costlier in the nested index while retrievals are costlier in the path index.

7.7 Index Organizations for Association Paths

The concept of path expressions can also be applied to a series of associations among classes. However,
each succeeding object is not an aggregate of the preceding object. The nested and path indexes can

also be used for such association paths with no change required to the storage structure.

7.8 Index Organizations for Inheritance Hierarchies

Inheritance or specialisation hierarchies are an integral part of object oriented systems. Inheritance
based queries may be against a particular class in the hierarchy or against all the classes in the hierarchy,
i.e., the hierarchy tree itself. A good query processing mechanism should be able to address both
varieties of queries efficiently.

The schema of an object oriented database consists of a forest of trees, with some of the trees being
inheritance hierarchies. Each object is in exactly one of the classes in this hierarchy. This partitions
the set of objects in the database into several blocks, one for each class. The block corresponding to
a single class is called its extent. The union of the extent of a class and all its descendants in that
hierarchy is called the full extent of the class. Thus, the scope of a query on an inheritance hierarchy
can be the extent or the full extent of the class.

To support queries on both the extent and full extent of a class, a simple way would be to maintain
a BT tree for each class of the hierarchy on the key attribute disregarding the fact that the classes are
part of a hierarchy. This is called Single Class (SC) indexing. The structure of the leaf node record
of a Single Class index is as shown in Figure 7.5 (a). The use of such a scheme has linear space usage
in the number of classes in the hierarchy, and good update performance. However, when querying the

full extent of a class, each additional class suffers from the overhead of retrieval of non-leaf nodes.

7.8.1 The CH tree

The Class-Hierarchy (CH) tree [KKD89] uses the alternative approach of maintaining one index for

the entire inheritance hierarchy. The CH tree is also a modification of the B* tree. The internal nodes
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Figure 7.5: Leaf Node Records in Single Class and Class Hierarchy indexes

of the CH tree are similar to the B* tree. The leaf node is however modified and the structure is as
shown in Figure 7.5 (b).

An important component of the leaf node record is the key directory. The key directory contains the
number of classes in the inheritance hierarchy that contain objects with the key value as the indexed
attribute. Each class in the indexed class hierarchy has an identifier called the class identifier (cid).
The key directory also contains pairs of the form < cid, of fset > for all the classes in the hierarchy. The
offset denotes the offset in the record from where the list of OIDs belonging to that class (represented
by cid) is stored. Thus, queries directed at a particular class in the hierarchy are answered by looking
up the cid corresponding to that class and then retrieving the OIDs using the offset for that cid.

Operations

Insertions are handled by inserting the new OID in the corresponding list of OIDs in the relevant
record. If the new OID is the first one for that class, a new list is created and appropriate entries
added to the key directory. Additional pages are maintained to accommodate overflow of the record.
Deletions are done likewise by deleting the OID from the corresponding list. Deletions of all instances
of a particular class is also possible because all the OIDs of a class are grouped together in the record.
Merging and splitting of pages in case of underflow and overflow respectively are handled as in the case
of B* trees.

Retrieval of OIDs satisfying the full extent of a class (root class and all the subclasses of the
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hierarchy) follows the same procedure as for retrieval of OIDs of the extent of a class. Performance
studies based on a cost model [KKD89] have shown that the CH tree performs better than single class
indexes maintained for the same hierarchy if the number of classes in the hierarchy is atleast two. For
the storage cost in terms of disk space used, conclusive results could not be obtained. For queries
directed at a particular class in the hierarchy, the index page containing the list of OIDs for that class
also has the OIDs for all the classes in the hierarchy, which is an overhead. Hence, in general, CH trees
perform better for queries targeted at the full extent of the root class rather than those targeted at the
extent of a particular class.

The disadvantage of both the above configurations is that in case of intermediate situations, (e.g.,
the hierarchy size is 15, number of classes in the scope of the query being 5), both CH and SC perform
poorly, because, the SC has too much overhead in terms of retrieval of non-leaf nodes and CH needs to
filter too much data. One simple way of getting around this problem is to maintain an SC index on each
class and maintain a CH index for the full extent of each class in the inheritance hierarchy. Though
this has optimal retrieval time, the cost in terms of storage and updates make such an organization
prohibitive. We next discuss another index organization that has average performance better than the

ones discussed so far.

7.8.2 The hcC tree

The hcC tree [SrSe94] is based on the BT tree and attempts to efficiently process both single-class
queries and hierarchical queries. The organisation of the non-leaf nodes is similar to the BT tree
with a minor modification in that the non-leaf nodes contain an additional bitmap that gives advance

information to prevent an unnecessary traversal of the tree till the leaf.

K No- of {oID1, ..., OIDk }
¥ | oibs
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Class| No. of Class | No. of
Key {OID1, ..., OIDK }| ... {oID1, ..., OIDk }
No.1| OIDs No.m OIDs
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Figure 7.6: hcC Tree

In addition to the leaf node of the tree, another node called the OID node is introduced which stores
the actual OIDs. The OID nodes are organized in two kinds of chains, the class chain and the hierarchy
chain. Each record of the class chain OID node has key value and OIDs belonging to a particular class
in the hierarchy while each record of the hierarchy chain OID node has key value and OIDs of all the
classes in the hierarchy (Figure 7.6 (a) shows a class chain OID node record and Figure 7.6 (b) shows
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a hierarchy chain OID node record). Each hcC tree consists of n class chains, one for each class in
the hierarchy and one hierarchy chain, where n is the number of classes in the hierarchy. All the OID

nodes belonging to a particular chain are chained together. Thus, there are n + 1 chains in the tree.

Key | Bitmap ‘ ‘

Pointer to
Hierarchy Chai
Oid Node

Pointersto
n Class Chain
Oid Nodes

Figure 7.7: Leaf node record of a hcC Tree

The structure of a leaf node record is as shown in Figure 7.7. The leaf node consists of the key value,
a bitmap, and a set of n + 1 pointers. Of these, n pointers point to the OID nodes of the class chains
whereas the last pointer points to an OID node of the hierarchy chain. In case there are no instances
corresponding to particular classes, the bitmap is not set for the corresponding class identifier, cid,

where the cid can take values from 1 to n.

Operations in the hcC tree

Insertions into the hcC tree involve inserting the value at both the class-chain OID node and the
hierarchy-chain OID node. Deletions are similar with OIDs being deleted from both the OID nodes.
The advantage of the hcC tree is that it facilitates the efficient retrieval of OIDs satisfying both the
single-class as well as hierarchical queries. In case of range queries that require a retrieval for a subset
of the classes in the hierarchy, the individual class chains are used following the links connecting one
OID node to another. For range queries targeted at the entire hierarchy, the hierarchy chain is used
following the same procedure.

The performance results obtained in [SrSe94] indicate that the hcC tree provides an efficient mech-
anism for point and range queries for single class as well as hierarchical queries. A disadvantage though
is the increase in storage space because of duplicate OIDs being maintained at the OID nodes of both

the class chain and the hierarchy chain.

7.9 Unified Index Organizations for Composite
Hierarchies
The index mechanisms considered so far deal with either aggregation or inheritance hierarchies in

isolation. However, frequently classes participate in both aggregation and inheritance hierarchies. For

example, consider the path P = C1.A;1.4, ... A, traversing n classes C1C5 ... C,, with the class C}
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forming the root of an inheritance hierarchy, H. The inheritance hierarchy, H, consists of classes, C1,
the root class, and Ho, Hs ... H,, the subclasses of the hierarchy. We call such a hierarchy a composite
hierarchy.

Now, consider a query requiring reverse traversal consisting of retrieving all instances A; whose
paths P end in the instance A,. The query was earlier solved by maintaining a nested index with key
being A,. Now, the problem involves scanning the full extent of the hierarchy, H. This can no longer
be solved using the nested index since this involves the full extent of the class C; as opposed to the
extent of the class earlier. Similarly, retrievals of instances in the middle of the path cannot be solved
using the path index considered earlier for the same reason. Thus, the indexes used for aggregation
hierarchies implicitly assume that the target of the query involves the extent of the class alone and not
the full extent of the class.

To efficiently solve the above problem, we now propose Unified Index Organizations that can solve
queries on both the extent and the full extent of a class efficiently.

Since A; is an attribute of C1, all the classes in H, Hy, Hs ... H,, inherit the attribute A;. As a
result, the path, P = C1.A1.As ... A,, is also inherited by all the classes in H, leading to several inher-
ited paths, such as P, = Hy.A1.Ay... A, P3 = H3.A1.As... A, and so on till P, = H,.A1.A>... A,.
Thus, a single path has now become N inherited paths.

Now, the problem is reduced to retrieving objects along these inherited paths. However, the fact
remains that the root of these paths are part of an inheritance hierarchy. Queries that are targeted
at the extent of a single class involve retrieval of objects corresponding to path instantiations of one
of these inherited paths. Those targeted at the full extent of the class involve retrieval of objects
corresponding to path instantiations of all the inherited paths. We next discuss unified configurations

that can be used to solve these queries.

SC Index CH index hcC index
Nested | ndex SCN CHN hcCN
Path Index SCP CHP hcCP

Figure 7.8: Unified index configurations

Figure 7.8 shows the various unified configurations that can be used to solve queries on a composite
hierarchy. The SCN index consists of a set of nested indexes SCN;,7 = 1,...,n, one for each of the
inherited paths, H;. The key is A, mapping to OIDs of class C; and H;, i = 2,...,n. However, this
configuration suffers from the drawbacks of SC index for full extent queries. Similarly, the SCP index
consists of a set of path indexes SCP;,i = 1,...,n, one for each of the inherited paths. This too suffers
from the same drawbacks of SC index for full extent queries.

The CHN index consists of a single CH tree with the only modification being that the key is now
A, instead of an attribute of the class C;. The CHP index, in addition to the key being A,,, has an
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A No. of
Paths

Set of Paths,
each path of the form
[OIDY, ..., OIDK ]

Figure 7.9: Class chain OID node record of a hcCP Tree

Class| No. of Class No. of

No.1| Paths No. m Paths

Set of Paths, Set of Paths,

each path of the form each path of the form
[OIDY, ..., OIDk] [OIDY, ..., OIDk]

Figure 7.10: Hierarchy chain OID node record of a hcCP Tree

additional modification in the record of a leaf node with the OID value being replaced by a list of OIDs
corresponding to a path instantiation.

The modification required to the hcC tree to transform it into a hcCN index is that the key needs to
be changed to A,, instead of an attribute of C;. The hcCP index, in addition to the above modification,
requires the OID in the OID node to be replaced by a list of OIDs representing a path. Figure 7.9
shows an OID node record of a class chain while Figure 7.10 shows an OID node of a hierarchy chain
in a hcCP tree.

The performances of these unified indexes are expected to be similar to their corresponding in-
heritance indexes. That is, the CHN is expected to perform similar to the CH tree and the hcCN is
expected to perform similar to the hcC tree as there are no major modifications to the storage struc-
ture. Moreover, the comparative performances of CHP versus hcCP and that of CHN versus hcCN

would be similar.
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7.10 Efficient execution of queries

We next discuss some sample queries and see how they are solved efficiently using the index mechanisms

discussed earlier.

e Simple Value based queries
Handling simple value based queries entails extraction of an object based on a simple attribute

value. An example query is
List the names of all signals used in the design FPU_206N.

In answering this query, it is sufficient to locate the design instance FPU_206N of a floating point
unit design. To speed up execution of the above query, a BT tree index is maintained on the
design objects for attribute DesignName. Once the reference to the design object is obtained,

signals used in the design are listed.

e Inheritance based queries
Inheritance based queries require the traversal of inheritance hierarchies and identification of all

instances along the inheritance path that satisfy the query predicate. An example query is
List all the Nets which have fanout greater than 17.

The Net class specialises into 10-Net class and Signal class and hence all the objects of these
classes which have the required fanout need to be located. A hcC tree maintained on the inheri-

tance hierarchy is used to identify all objects in the hierarchy satisfying the given predicate.

e Aggregation based queries
Aggregation based queries require either forward or reverse traversals of the aggregation hierarchy.

An example of a forward traversal aggregation based query is

List the source to load RC delays due to terminal RPO.IN5.OUT-3 in the signal SIM5AND_IN
of the design FPU_206N.

Answering this query consists in locating the design FPU_206N in the database, navigat-
ing the object reference to the particular signal SIM5AND_IN, picking the particular source,
RPO.IN5.0UT_3, and then listing the delays contained in the Timing objects for all the loads.

An example of a reverse traversal based aggregation query is
List all signals in design FPU_206N which suffer slew greater than 5 ns and their sources.

This query needs to access objects which form neither the root nor the leaf of the hierarchy. This

necessitates use of the path index on the path
Design. Signal.Source. Transition. Value

The query is processed by first identifying the Timing objects satisfying the constraint provided
in the query. Once this is done, the path index is used to get the respective signal names. The
source terminals can also be obtained with the same lookup since the path index indexes all

objects in an aggregation path.
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However, for queries targeted at the end points of a path, the nested index is more appropriate
since it eliminates the overhead of maintaining references to all instances along a path. An

example of such a query is
Give all nets with an effective capacitance greater than 10 pF.

A nested index keyed on capacitance values establishes direct connections with the respective net
objects. Thus, nets satisfying the above query for all designs in the database can be retrieved

efficiently.

e Queries involving both aggregation and inheritance
If the previous query were qualified as follows:

Give all i0-nets with an effective capacitance greater than 10pF.

the query can be solved by maintaining another nested index with keys as capacitances and
values as OIDs of io-net objects. However, if the query were changed to retrieve signals instead

of io-nets, then this would necessitate having another nested index.

An efficient way of solving all the three queries is to use the Unified Index organisation. Choosing
a hcC tree and a nested index as our combination, we maintain a hcCN index with key being
capacitance values and the OIDs pointing to objects of the net hierarchy. This ensures that all

the above queries are answered efficiently with just one index being maintained.

This concludes the Object Design phase of the development methodology. The next stage is the

implementation which is considered in the next chapter.



Chapter 8
DIAS Kernel Implementation

The implementation of the DIAS system is discussed in this chapter. As seen in Chapter 7, the Shore
server is the lower most layer of the system. The DIAS kernel is implemented on top of Shore. The
object model discussed earlier in Chapter 6 is implemented using Shore’s support for persistent objects.

The access methods described in Chapter 7 are then implemented.

8.1 Object Model implementation

The first step in the implementation of a database system is the definition of the schema. The Shore

Data Language (SDL) is used for this purpose. The major steps involved are:
e Identify the “interface” declarations.
e Organize groups of related classes into modules.
e Identify data that need to be exported to other modules.
e Declare operations of the interfaces.

Each class declared for storing persistent data has a corresponding interface declaration. The classes
that were identified in the object model are now converted into their corresponding interfaces. Associa-
tions among classes in the object model are implemented as either local references or remote references.
Local references are used for intra-object associations (such as between the elements of a linked list
attribute of an object) while inter-object associations make use of remote references. Each interface is
composed of declarations of properties and operations. The properties model the state of the object
while the operations model its behaviour. The properties constitute attribute declarations and rela-
tionship, ref declarations which are used to represent the data members and the associations. The
operations of the interface constitute the return type, the operation name, and a set of arguments. The
arguments may be of in, out or inout type. The in arguments are not modified inside the operation
while the out arguments are used for data that are changed as a result of the operation. The inout
operations may be used inplace of either the in or the out operation. An argument may also be tran-
sient (not persistent), in which case it is preceded by the keyword ezternal. Similarly, the attributes
and operations defined earlier in the model are converted into their corresponding SDL declarations.
Figure 8.1 shows a sample SDL declaration for the Cell interface. The Cell has a set of ports, belongs
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to a particular type, and is identified by the CellName. Appendix A has the SDL declarations for a

few important interfaces.

// This class holds all information that are associated with
// both Library Cell and Design.
interface Cell

{

private:
attribute string CellName; // name of the cell
attribute set<Port> Ports; // ports of the cell
attribute CellType Type; // type of the cell

public:

void Construct (in lref<char> NewName);// initializing function
void SetName (in lref<char> NewName); // set the cell name
lref<char> GetName(); // get the cell name
short NumberPorts() ; // get port count
ref<Port> GetPort(in short PortIndex); // get a specific port
CellType GetType() ; // get cell type
CellType SetType(in CellType NewType) ; // set cell type
ref<Delay> FindPath(in ref<Port> Input,

in ref<Port> Output); // get delay between ports

ref<Port> GetPort(in lref<char> Name) ; // get port with given name
void AddPort (in ref<Port> NewPort); // add a new port

};

Figure 8.1: Sample SDL declaration

A logical group of related interfaces form a module. Interfaces within the same module share data
variables and constant declarations. Sometimes, declarations of one module may need to be accessed
in some other module. This is done by ezporting those identifiers in the module in which they are
originally declared and then ¢mporting them in the other module which needs to access them.

The next step after declaring the interfaces in SDL is to generate the appropriate language binding,
in our case C++. The SDL compiler creates a persistent module object in the Shore database corre-
sponding to each module declaration. Each module has a collection of type objects, one for each SDL
interface declaration. Each type object stores information about the core and heap data requirements
for an object of that type. During runtime object access, this type object is checked to ascertain
whether the object is of that valid type and the operation invoked is permitted. In addition to creating
these module and type objects, the SDL compiler generates the C++ language binding in the form of
header files containing C++ class declarations for the corresponding SDL declarations.

After generating the header files, we next implement the definitions of the methods corresponding to
the operation declarations of interfaces declared earlier in SDL. This is similar to definitions of member
functions in C++, with some differences in the manipulation of persistent objects, as discussed in the
following section. The overall flow of the implementation follows the basic stages as shown in Figure 8.2.

Thus, the SDL declarations correspond to the Data Definition Language (DDL) statements in

conventional database systems. The result of compilation of these DDL statements is the metadata or
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Figure 8.2: Implementation Flow
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“data about data”. The metadata in our case are the type objects created by the SDL compiler.

8.2 Data Manipulation

Data manipulation includes the following: insertion of new information into the database, retrieval of
information from the database, modification of data stored in the database and deletion of information
from the database. These features are implemented using C++ as the database programming language
or the Database Manipulation Language (DML). The C++ to OODBMS language binding is based
on one principle: The programmer feels that there is one language, not two separate languages with
arbitrary boundaries between them, whether one is dealing with the database or with the transient
data structures of the program, thus avoiding the oft-quoted problem of “impedance mismatch”. This

principle has four corollaries [Catt94]:

1. There is a single unified type system across the programming language and the database. Indi-

vidual instances of these types can be transient or persistent; that is persistence is orthogonal to

type.

2. The binding is structured as a set of additions to the base programming language; it does not
induce sublanguage-specific constructions that duplicate functionality already present in the base

programming language.

3. The binding respects the syntax and semantics of the base programming language into which it

is introduced.

4. Expressions in the manipulation language freely compose with the base programming language

and vice versa.
In general, the object accessed may have one of the following lifetimes:
e coterminous with procedure
e coterminous with process
e coterminous with database

The first kind consists of instance variables defined locally in a procedure and are not visible outside
the procedure. The “coterminous with process” variables are global and static, heap variables which
are destroyed at the end of the execution of the program. The “coterminous with database” variables
are those whose contents survive the termination of the process that created them and can be accessed
by subsequent processes. The first two kinds constitute the transient data and the last the persistent
data. Transient data manipulation falls in the domain of all programming languages. The support for
persistence calls for adding new functionality in programming languages. We next discuss some of the

relevant features.
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Object References

Objects may refer to other objects using object references. Object references are instances of the
template class Ref<T> for any class T. The dereference operator — is used to access members of the
persistent object “addressed” by the object reference. Method invocations are through this Ref variable
which acquires a shared lock on the requested object, and then fetches the object into the object cache
after “swizzling the OID” and including an entry (OTE) in the Object Table. Updates to the object
are not possible and hence only “const” member functions can be invoked. However, updates can be
made by first calling the update() member function of class Ref<T> which obtains an exclusive lock
on the object. An alternative way is to directly obtain a shared lock through a variable of the class

WRef<T>. All these operations must be performed inside a transaction.

Object Creation

Objects are created using an overloaded form of the new operator. This form also allows the program-
mer to specify where the newly allocated object is to be clustered. Thus, the new operator can be used
to create an object of a class previously declared in SDL. The object may be registered, in which case
it is accessible through a fully qualified path in the Shore file system, or anonymous wherein it belongs

to a pool and cannot be accessed individually.

Object Deletion

The deletion of previously created objects is done through calls to Ref<T>::unlink() or

Ref< T>::destroy() member functions respectively for registered and anonymous objects.

Operations

Operations are defined as in C++. Operations with transient and persistent objects behave entirely
consistent within the operational context defined by standard C++. This includes all overloading,

argument passing and resolution, and other compile time rules.

Collection Classes

Collection templates are provided to support the representation of a collection whose elements are
of any persistent type. These are of type Set, Bag, etc. The declaration Set<T> declares a set of
elements of type T while Bag<T> declares a bag of elements which differ from a set in that it can

have duplicates.

Transactions

All access, creation, modification, deletion of persistent objects must be done within a transaction.
Transactions are implemented by providing a wrapper to Shore’s underlying transaction functions.
The class Transaction defines the operations for starting, committing, aborting and checkpointing

transactions.
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Database

An instance of the Database class as described in Chapter 7 is created. Its methods are used to open
a database, close a database, and to navigate to the desired object.

Populating the database involves creating persistent objects and invoking appropriate member
functions to set the attribute values. Accessing objects involves following inter-object references starting
from a distinguished root object in the Shore namespace. A database usually consists of collections of
persistent objects with each collection containing objects of a particular type. All objects of a particular
collection are clustered in the same pool. Thus, each database consists of several anonymous objects
with the root object being a registered object.

Database creation begins with creating a new pool in a particular directory of the Shore namespace.
Then, anonymous persistent objects which form the database are created in the pool. References to any
particular anonymous object in the pool are implemented using cross references. Subsequent database

accesses start with either the root object or the cross reference and then follow method invocations.

8.3 Access Methods

The implementation of the access methods for efficient query processing constitutes an important
optimization step in efficient data retrieval. We next discuss the details of the implementation of the

access methods described earlier in Chapter 7.

8.3.1 BT tree

The Bt tree forms the basic building block for all the access methods that are implemented. The
classes that implement the B tree are provided by Shore. Two variants of the BT tree are provided:

one with unique key values and another that accommodates non-unique key values.

8.3.2 Nested Index

The Nested Index was built using the BT tree with modifications to the leaf node. The leaf node
consists of several entries, with each record consisting of a key and a persistent reference to a Query
object. The class Query forms the root class that is inherited by every other class in the schema.
This helps in having a generic nested index whose OIDs may be dynamically resolved to any particular
class in the schema. Figure 8.3 shows the SDL declaration of the main interface for a nested index
maintained for an aggregation hierarchy ending with an attribute of type float. The methods of this

interface and other auxiliary interfaces are then implemented in C++.

8.3.3 Path Index

The Path Index is similar in construction to the Nested Index with modifications to accommodate the
whole path instead of a single OID. Each path is a set of pairs of the form < Class, OID >, where the

Class represents the particular class in the path to which the OID is an object reference.
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interface NestedIndex

{
private:
attribute index<float,Query> Tree;
// the index with key type float
public:
void Construct();
// the initializer function
void Insert( in float Key, in ref<Query> QueryRef );
// insert a key-value pair
void Delete( in float Key, in ref<Query> QueryRef );
// delete a key-value pair
short Delete( in float Key );
// delete all values for a key
ref<Query> Search( in float Key );
// retrieve the matching value
};

Figure 8.3: Nested Index SDL declaration

8.3.4 CH tree

The CH Tree also involves modifications to the BT tree. The leaf node consists of < key, C HPage >
pairs where the CHPage points to a page consisting of several Class Hierarchy Elements (CHE). Each
CHE is constituted of a key and a list of OIDs for each class in the hierarchy identified by its class
identifier as shown in Figure 8.4.

8.3.5 hcC tree

The implementation of the hcC tree involves changes to the leaf records of the normal BT tree. In
addition to the non-leaf and leaf nodes of the B tree, the OID node is introduced. The hierarchy chain
OID node consists of CONE (Class OID Node Entry) records and the class chain OID node consists
of HONE (Hierarchy OID Node Entry) records. Each CONE is made of a key and a set of OIDs
and stores the set of references to objects of a particular class. A HONE, on the other hand, stores
references to all the objects of the entire hierarchy corresponding to a key value. The leaf node consists
of pairs of the form < key, LONE > where the LONE forms a Leaf Node Entry. The LONE consists
of the Bitmap, a set of references to CONEPages, and a reference to a HONEPage (Figure 8.5). The
CONEPage implements the class chain OID node while the HONEPage, the hierarchy chain OID node.
The chained list of HONEPages forms the hierarchy chain while the chained list of CONEPages forms
a class chain. A CONEPage consists of several CONEs while a HONEPage consists of several HONEs.
The structure of a CONE and HONE is shown in Figure 8.6 (a) and Figure 8.6 (b) respectively.

The hcC tree is used for efficient retrieval of objects satisfying both range and point queries. The
queries may be targeted at any class in the hierarchy or a set of classes of the hierarchy. Consequently,
queries may be classified as SCP (single class point), SCR (single class range), CHP (class hierarchy

point) and CHR (class hierarchy range). The methods to implement these operations are based on
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algorithms given in [SrSe94].

8.4 Other implementation details

The object model implementation consisted of around 50 major classes. This was implemented in
around 7000 lines of code in SDL and C++. The access methods and other auxiliary classes totaled

approximately 9000 lines of code.
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Chapter 9

Interfaces

The main interface requirements of DIAS are support for efficient querying, an interface for tools to
input and retrieve data, and a programming interface which helps in the development of additional

applications such as other tools. In this chapter, we provide descriptions of each of these interfaces.

9.1 Tool Interface

Most CAD tools are file based with specific input and output file formats. The migration to a database
system introduces the following problems: First, the earlier file based applications can no longer be
used to retrieve or feed data. Second, the existing data resident in files must be moved to the new
system.

One solution is to keep the data permanently in files as it is and use the DBMS mainly to store
metadata such as file names in the database. This solution has the obvious disadvantage that the
DBMS is not utilised to its full extent. Another solution is to transfer the contents of the objects to
files, operate on them and then copy back the contents. This suffers from the drawback of runtime cost
in translation to and from files. Yet another solution is to change the applications themselves so that
they operate directly on objects instead of files. Though this solution is the most satisfactory in the
long run, it suffers from two disadvantages. The existing file based data must be converted to objects
and until the new applications are developed, the OODBMS cannot be used.

DIAS addresses this situation by allowing the existing file based tools to be used while completely
new tools are built that directly manipulate the database. This is facilitated by providing a tool
interface that utilises the file system features of Shore. This can be done in the following two ways.

e Converting to a “text” object:
Each file is converted into a Shore object with a single attribute of type “text” that stores all the
contents of the file. The file based applications can now access this object in the Shore namespace,
without any changes made to the application, by specifying the path name corresponding to the

Shore file system.

e Using the Shore NFS Value Added Server:
For applications that cannot be modified even slightly, the Shore NFS VAS can be used. An entire

subtree of the Shore namespace is “mounted” on an existing Unix file system. When applications
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attempt to access files in this portion of the name space, the Unix kernel generates NFS protocol
requests that are handled by the Shore NFS value added server.

In this case, the tool interface is used as follows. The legacy tools and other data are first moved
into the Shore namespace. This is done by copying these over to the mounted subtree. Hereafter,
existing tools can be used just as before with the only difference being that they are now part of

the Shore file system.

9.2 Programming Interface

Some of the advantages of the object oriented paradigm are reusability and extensibility. The pro-
gramming interface helps in developing new applications that can access the database. It provides a
level of abstraction by hiding the implementation details regarding Shore. It is organized as a library
of classes. The classes that were implemented from the object model provided the basic functionality
to store the persistent data. The programming interface uses these classes as the base and extends

their functionalities.

Uses of Programming Interface

e New applications: Application programs that process the stored data can be quickly developed.
Newer applications need to be written to support additional functionality. The programming
interface fills this need by hiding the details of Shore as much as possible and by keeping the

interactions to the stored data transparent to the user.

e Schema Evolution: The schema of the underlying data may require changes with time. For
example, a new attribute may be added to a class. The programming interface is used to derive
a new class from the parent class and add the new attribute. Then, all new instances that are
created are of the derived class. The instances of the parent class are duplicated with instances

of the new class and finally, the instances of the parent class are deleted.

e Intertool communication: The legacy data residing in files needs to be moved to the database
system. This requires applications that read in the data according to the input format and then
load them into the DBMS. Subsequently, the stored data in the database may be fed to analysis
tools that again require the data in a specific format. Thus, as long as replacement tools that
access the data directly from the database are not available, applications are needed that convert
data from the database to files of specific format and vice versa. These can be developed quickly

using the programming interface.

Categories of classes

Based on the data that objects of the classes will be storing, the library of classes can be divided into

the following categories:

e Classes for base entities

The base entities that are used repeatedly in the domain are the triplet class that stores a
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combination of three values, String which provides the string functionality, the Coefficient class,

and the Transition class for storing timing related information.

e Classes for design entities
The basic entities of a design fall in this category. These are the classes for the design entities

such as port, design, cell, library cell, etc.

e Interconnect Model related classes
The classes that describe the interconnect model fall under this category. For example, the Edges

and Nodes of an RC tree representing a signal.

e Parametric Info related classes
The effects of interconnect parasitic have been captured with classes. The notable ones are those
for Slew, RC Delay, etc.

e Characterization data related classes

These classes are the ones for storing and manipulating the pre-supplied characterization data.

Categories of functions

The member functions of these classes are again of the following types:

e Constructor and Destructor functions
SDL does not provide for constructors and destructors. Therefore, explicit Construct and De-
struct functions are provided. The construct function is invoked once every time a persistent
object is created. The destruct function is similarly invoked when an object needs to be de-
stroyed. This is necessary since Shore does not provide implicit means of garbage collection and

hence objects need to be explicitly deleted from the database.

e [terator functions
Persistent collections of objects such as sets are extensively used in the data model implementa-
tion. For traversing through the set in sequence, iterators are provided that retrieve one element

at a time.

e Output functions
The functions that can be used for printing the state of the object fall under this category. The

results of a query are displayed using these functions.

¢ Navigational functions
These functions provide a means of following associations among the objects in the database. For
example, from the design object, we can follow a particular signal, look at its sources and load

terminals, and the delay between them.

e Simple retrieval and update functions
These can be used to obtain the current value of the attributes or to change the value of the
attribute.
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Index Library

The DIAS system provides a library of specialised access methods as discussed earlier in Chapter 7.
The access methods for aggregation hierarchies, namely the path index and the nested index, and those
for inheritance hierarchies, the CH tree and hcC tree constitute the index library. These indexes can
be created as easily as that of creating an instance of any other class.

Thus, the Programming Interface is useful for retrieving the stored data through an application
program and can be used to extend the functionality of DIAS. As one of the first uses of the Program-
ming Interface, tools were developed for bulkloading of parasitic data from legacy text files to and from
DIAS.

9.3 Query Interface

The query language specification was inspired by OQL [Catt94], and implements a subset of the spec-
ifications that deal with retrieval of data. The query language built was however found sufficiently
powerful for data manipulation in the parasitics database. The language employs the SELECT-
FROM-WHERE statement which is similar to the popular SQL. The query can contain predicates
of the form < PathExpression,operator,value >. The operator is one of the comparison operators
(>,<,>=,<=,==,! =). The value is one of integer, double or string. The language itself is defined

as shown in Figure 9.1.

SELECT <PathExpression>
FROM <TopLevelObject> in <TopLevelClass>
WHERE ( <expression> OP ... OP <expression> );

Figure 9.1: Query Language Syntax

The language consists of the SELECT operator which performs the object projection operation,
which is essentially extracting attributes from the objects. The FROM operator is used to define the
toplevel class name which represents the type of the root node of the path expression. In DIAS, the
Design class is the toplevel class and has been implicitly assumed in all path expressions for the sake
of convenience. Thus, it is enough to specify only the design instance for the FROM operator. The
WHERE operator is used to define predicates that the result objects of a query must satisfy. The
WHERE clause is abstracted as a series of ezpressions separated by the OP logical operator (which
could be an AND or OR). Each expression contains predicates and an arbitrary number of them can
be linked with the AND and OR operators. The path expressions in the predicates have the root node
implicitly assumed to be the design instance specified in the FROM operator clause. The expression
clause can also contain other SELECT-FROM-WHERE operators thus forming a nesting hierarchy.
Thus, the expression may be deep in two orthogonal dimensions — one dependent on the number of
predicates, and the other dependent on the number of nesting levels of expressions. An example query

is given below and its query language specification is given in Figure 9.2.

QUERY
List the names of nets in the design FpuDesign that have low to high transition delay greater than
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20 ns and have greater than 4 terminals associated with them and the estimated prelayout wire

capacitance is less than 0.5 pF.

SELECT Signals.NetName
FROM  FpuDesign
WHERE ( Signals.Sources.SLTimings.Transitions.LHValue > 20
AND Signals.NumTerminals > 4
AND Signals.PreWireCap < 0.5
);

Figure 9.2: An Example Query Specification

The relevant classes for the above query are the Design class representing a design entity, the Signal
class representing signals in a design, the Source class for the source terminal, the SLTimings class for
representing the source to load timing, and the Transition class that stores the values for the various
combinations among low, high, and zero transitions. Note that all the predicates contain the toplevel
object (in this case, FpuDesign), implicitly specified for user convenience. The details of the Query

Processing System are covered in the next chapter.

Summary

DIAS provides several interfaces to cater to the wide spectrum of users. To enable existing tools to
continue to access the data, it supports a Tool Interface. For retrieving a subset of the stored data,
users can ask queries using the query interface. To develop applications that manipulate the database
directly, a Programming Interface is provided. Thus, these interfaces support the various functional

requirements of the system for data management of VLSI CAD parasitic data.



Chapter 10

Introduction to Query Processing

10.1 Motivation

The late eighties and early nineties saw the emergence of problem domains dealing with inherently
complex data. Application domains such as Computer Aided Design (CAD) for VLSI, Geographical
information systems (GIS), and Biodiversity database systems are some of the many application do-
mains which process inherently complex data. Relational database systems were initially used for data
management in these applications but proved inadequate due to their lack of modeling power. Complex
systems that are inherently hierarchical could not be captured naturally because the relational model
represented information as records. Hence, it became necessary to flatten the hierarchy in order to
map these systems into the relational model. This gave rise to inefficiencies in data management and
subsequent performance problems. A complex entity had to be represented as a series of records and
subsequently a series of algebraic operations had to be performed on the series of records to retrieve
the object. Though relational systems had extremely efficient and well developed mechanisms for data
retrieval, they could not be exploited due to the unnatural manner in which the complex entities were
represented. The solution did not seem adequate and the search for innovative systems to handle
complex problem domains resulted in the emergence of object oriented database systems.

Object orientation refers to the concept of representing entities with the preservation of associated
semantics. This is accomplished by strongly binding the state and behaviour of a real-world or abstract
entity into a single structure called an object. Object orientation provides various features that aid
system development — Abstraction facilitates focusing on the essential aspects of an entity while ignoring
other properties. Encapsulation hides the internal implementation details of an object from other
objects. Polymorphism allows for multiple definitions of an operation. Inheritance allows sharing of
state and behaviour between objects. Aggregation allows the containment of one object within another.
Object oriented database systems, in addition to these features, provide persistence that enables the
type and state of an object to transcend time and space. These features provide a powerful set of tools
which can be used to model complex domains in a natural manner.

Thus, the object oriented database model addresses the issue of modeling of complex problem do-
mains. However, they still lack query processing capabilities that compare in efficacy with its relational
counterpart. This is because object oriented query processing throws up several new challenges as

compared to relational database systems. The rich variety of added base types, parameterised types
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and user defined types introduce a heterogeneous environment necessitating specialised treatment ac-
cording to type. Also, new types may have to be created at runtime since the result of a query may not
belong to the existing classes that constitute the schema. Object oriented systems, in addition to asso-
ciative access (as in relational systems), also provide for navigational access (i.e., pointer chasing). This
leads to implicit joins in aggregation hierarchies requiring specialised techniques for efficient processing.
Moreover, the scope of a query may include in addition to the referenced class, all classes belonging
to the inheritance hierarchy rooted at that class. The possibility of method definitions being used
to implement query operators leads to enrichment in the number of operators in the query language.
However, the inability to accurately estimate the cost of methods makes the task of query optimization
much more difficult. Finally, the presence of complex objects in object oriented systems requires more
sophisticated access methods than those present in relational systems. Thus, query processing in such

systems has been a focus of research in the past decade.

10.2 Goals and contributions

We first look at issues that need to be addressed during the development of an object oriented database
system. The database designer needs to address three major issues — object representation, object
population and object manipulation(as shown in Figure 10.1). Object representation refers to the
problem of capturing the semantics of a problem domain with the help of the object model. Object
population refers to populating the database and object manipulation refers to the query processing
capabilities with the help of which users manipulate data. The object representation issue has been
addressed and various methodologies developed [Rumb+91, Booc94]. However, object oriented systems

lack established techniques for object population and object manipulation.

Object

Representation Population Manipulation

Figure 10.1: Database system issues

Thus, the aim of this project is to get a better understanding of the problems of query processing
in object oriented database systems and to address some of the issues in building an object oriented
query processing engine. Another aspect of the project is to address the problem of bulkloading in
object oriented database systems. Bulkloading refers to the mass transfer of data from legacy files to
the object oriented database and addresses the issue of data population.

As part of the project, we have evaluated the features of query processing systems in currently
available object oriented database systems and identified issues that need to be addressed in building a

query engine. We defined a query model to capture the semantics of operations performed during the
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processing of a query. The query model incorporated some features of an available query model [Kim89]
and added new ones to capture additional semantic information of the domain such as simple associ-
ations in an object data model. We designed a generic query processing engine based on this query
model that offers features such as ad-hoc declarative querying and schema independence. The design
also incorporates specialised access mechanisms for the object oriented domain to provide efficient
query processing.

In order to test the efficacy of the design, the query processing engine was implemented and inte-
grated into an ongoing object oriented database project called DIAS (Database for interconnect analysis
Systems). The DIAS database project is a joint venture between our institute and Texas Instruments,
Inc. and aims at providing an object oriented solution to the problem of management of large volumes
of parasitic data generated during the VLSI design process. The DIAS system, thus, provided a test
bed for the query processing engine which in turn provided DIAS with a vehicle for efficient data
management.

We have also dealt with the problem of bulkloading in an object oriented database. We have
identified issues in bulkloading in an object oriented system and addressed them in the construction
of a bulkloader for the DIAS database system. The DIAS bulkloader is now operational and serves to

move large amounts of legacy data into the DIAS system.

10.3 Interface to DIAS

The DIAS database system is an object oriented database system that implements a parasitic data
model. The DIAS system is composed of several components that include the dias kernel and the query
processor. The bulkloader adds functionality to the system by providing mass-population capabilities.
Figure 10.2 shows the architecture of the DIAS system. The contributions of our effort to the DIAS
database project is shown with shaded boxes and amount to around 25000 lines of C++ code.

The DIAS database system uses the SHORE [Zwil+94] database server which provides object
management and transaction related features such as concurrency control and recovery. The DIAS
parasitic data model is implemented as part of the DIAS kernel. The DIAS kernel also implements
access methods to provide associative access mechanisms for efficient retrieval and a schema manager
that provides schema independence. The query processor is built on top of the DIAS kernel and provides
a declarative interface to query processing. DIAS also provides a programmer’s interface called the
Application Programmer’s Interface (API) which provides an interface from which applications can be
built. A bulk loader has also been built above the DIAS kernel which aids in moving legacy data from
files into the database and also provides the facility of a textual dump. In the following section, we

briefly introduce the query processing components and the bulkloader.

10.4 Query Processor

In this section, we present a brief overview of the query processor that is a core component of the query
processing engine. The query processor was built using the framework provided by the query model
incorporates common requirements of object oriented database systems (for example, a declarative

query language). The architecture of the query processor is shown in figure 10.3.
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Figure 10.2: DIAS System architecture

The query processor consists of an interface server which is essentially a manager module and
interfaces with the external world. It takes in a query description by providing a query language
interface. The interface server passes the language description to the query evaluator which translates
the query into an parse tree through a series of operations and does a series of checks to ensure
correctness of query. The evaluated query in its internal form is then used by the query executor to
execute the query. The query executor generates the sequence in which the desired operations need
to be performed, fetches the objects, evaluates them against the given predicate and passes them onto
other operators for further evaluation. The query executor also includes runtime optimisations to

provide efficient query processing.

10.5 Bulkloader

Bulkloading is the process of mass-populating a database with collected data. The bulkloading popu-
lates the DIAS database system with parasitic information available in a file based format. It is also
capable of performing the reverse operation of dumping data from the database into the file in the
specified format. The architecture of the DIAS bulkloader is shown in Figure 10.4.

The files containing the data are organised by a specified grammar and hence the bulkloader needs to
understand the grammar. The parser extracts the information from the file and builds main memory
data structures. The translator uses these structures to resolve object relationships and create the
corresponding persistent objects with calls to the data model interface. The reverse process of the

textual dump involves the persistent objects being read by the extractor from the model interface. The
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Figure 10.3: Query processor architecture

semantic information extracted is used to convert the relationships into a form compatible with the
file format. The formatter reads this information and recreates the text file by incorporating grammar
tokens and representing relationships in the file format. In both the cases, the model interface makes

calls to the SHORE server which does the actual data manipulation on disk.

10.6 Schema Manager

The schema manager module of the query processing system is responsible for the management of the
schema. It stores information about the classes and relationships in the schema. Semantic information
linking an attribute of a class to the set of methods that operate on it are also stored. The schema
manager uses this information to help the query processor in evaluating ad-hoc queries by providing
the names of methods that have to be dynamically bound in order to retrieve specified objects from
the database. It also aids the semantic evaluation stage of the query processor by providing schema

information.

10.7 Access Methods

The access methods module supplements the access methods provided by SHORE with mechanisms
that provide efficient data retrieval for queries directed at specific types of relationships. It provides
the nested index and path index for queries directed at aggregation hierarchies and the hcC tree for
queries directed at inheritance hierarchies. The BT tree provided by SHORE is used to index objects
based on simple values. It is also used to index collections of objects. The access methods are invoked

by the query executor using information provided by the schema manager.
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Chapter 11
Related Work in Query Processing

The next generation database systems that have been prototyped use a variety of mechanisms to
provide good performance. In this chapter, we discuss some of these systems and highlight their
features. Object oriented database systems can be broadly classified into two types — monolithic and
extensible. Monolithic object oriented database systems (simply, monolithic database systems) provide
a complete end-user database management system, in that, they have a predefined internal structure.
These systems aim at providing a data management solution that is independent of any particular
problem domain. Monolithic database systems are also referred to as database programming languages
in the literature. Extensible database systems, on the other hand, believe in providing a basic set of
tools with the help of which a database system designer can build a database customised to a particular

domain. Extensible database systems are sometimes called database system generators.

11.1 Monolithic database systems

This architecture represents database systems that extend existing programming languages, such as
C++, to provide persistence, concurrency control and other database capabilities. These systems
provide a query language which also operates in the application program environment sharing the

same type system and data workspace. We now discuss some systems that fall under this category.

11.1.1 O,

The O2 database system [Deux90], a research prototype that has been transformed into a commercial
product, was developed at GIP Altair, in Le Chesnay, France.It is object oriented database system based
on a client server architecture. The goal of this project was to design and implement a next generation
database management system. This system supports a set of database programming languages, COs
and BasicOs, a set of user interface generation tools called LOOKS and a programming interface called
OOPE. The structure of O2 can be broadly classified into OOPE, LOOKS, the query interpreter, the
schema manager, the object manager and the disk manager.

The query language implemented in Oy is powerful at the same time being declarative in nature.
It can access attributes or execute methods as part of its ad-hoc query facility. It is also possible
to restrict operations to execution of methods when it is important to preserve encapsulation. The

query interpreter has a complete set of operations on a wide range of parameterised types. The query
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language itself can be used anywhere in the COy database programming language thus providing the
user with a powerful system with the ability to embed a declarative query and use control constructs
on the result. Oy also implements access methods for efficient retrieval. The multi index organisation
is used to index aggregation hierarchies while a variation of the CH tree is used to index inheritance
hierarchies. These access methods are described in chapter 7.5. B-trees and hash indices are also

provided to manipulate collection of objects.

11.1.2 ObjectStore

The ObjectStore database system [LLOWY1] is a commercial object oriented database system devel-
oped by Object Design, Inc. The first version (version 1.0) was released in 1990. Its goals are to provide
a tightly integrated language interface to reduce the impedance mismatch between programming lan-
guages and database programming languages apart from providing a unified programming interface
for persistent as well as transient objects. Its goal is also to provide object access speed of persistent
data equal to that of an in-memory dereference of a pointer to transient data. It incorporates various
features such as clustering of frequently referenced objects.

Query processing in ObjectStore includes parsing the query from its query language definition into a
parse tree. Path information is propagated up the tree to the nodes that represent the queries. During
code generation, a function implementing a scan based strategy and another implementing an indexed
strategy are associated with the nodes representing the queries. This allows for considerable flexibility
at runtime. ObjectStore offers three interfaces - a C library interface, a C++ library interface and an
extended C++ interface available with the help of ObjectStore C++ compiler. Using the ObjectStore
C++ interface ensures parsing and optimisation are done at compile time itself. Queries using the
library interfaces are optimised at runtime. Access methods such as the B* tree, hash indices (for
collections) and other improvised associative access mechanisms for hierarchies are used to provide

associative access.

11.1.3 ORION

The ORION database system [KGBW90] is a result of a next-generation database project initiated
as part of the Advanced Computer Technology (ACT) program at Microelectronics and Computer
technology Corporation (MCC). The goal of this project is to design a next generation database system
and to integrate programming languages and databases. Various versions of the ORION system have
been implemented.

Query processing in ORION includes parsing of the query language and construction of the language
tree. Different varieties of nodes are identified with each node and semantics attached. As pointed out
in [KGBWY0], traversal can be done in a bottom up fashion or a top down fashion. Depending on the
nature of the query, either the top down or the bottom up traversal is used in query execution. ORION
implemented the query model in [Kim89]. ORION extends LISP with object oriented capabilities,
with database calls for navigational or query access and for the definition of data types. ORION also

implements the CH tree index for class hierarchies.
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11.2 Database system generators

This architecture represents systems that allow implementation of a database system that is tailored
to specific needs. These systems do not have a specified conceptual and internal data models and
these can be defined by the implementor. Conceptual data model refer to the query and representation
capabilities of the system such as query syntax. The internal data model refers to the access methods
and how the conceptual data schema can be mapped to them. Examples of database system generators
are GENESIS, EXODUS and SHORE. We now describe some features of these systems.

11.2.1 GENESIS

The GENESIS extensible database management system [Bato+90] was a prototype system developed
at the University of Texas at Austin. The goals of this project were to introduce the tool-kit approach
to the construction of database systems and to provide the system with powerful components to aid in
the construction of a full fledged customised database system in minimal time.

The GENESIS project analyses the challenges to query processing presented by the layered approach
used in building a tool-kit system. As pointed out in [Bato+90], the layered nature of the system implies
that known query processing algorithms must be decomposed into layers to clearly separate concerns
among the various layers of the implementation. It is important to preserve this layered hierarchy
in order to preserve the advantages gained by being able to plug and place components to form a
customised database system. A query specified at the external level has to be mapped by the system
to its internal layers. The GENESIS system defines several such mappings. For example, the ezternal-
to-conceptual mapping maps the resolved views and maps the external queries into their conceptual

counterparts. The prototype supports BT tree and hash indices.

11.2.2 EXODUS

The EXODUS extensible database system [Care+90] was developed at the University of Wisconsin.
The goals of this project were to facilitate the fast development of high-performance, application-specific
database systems.

EXODUS allows the construction of compiled queries by providing a mechanism to specify queries
which are then parsed into a tree. Rule based query optimisation optimises the query and produces
output code in E programming language which is a persistent version of C++ [Stro94]. The E compiler
is then used to compile the query into object code. The user can also build custom access methods
which can be used during the query execution phase as is done in OSHADHI database system [Vidy95].
It can be seen that EXODUS provides compiled queries but does not provide a facility for interpreted
queries. EXODUS provides a library of type independent access methods such as the BT tree, Grid
Files [NHS84] and linear hashing [Litw80].

11.2.3 SHORE

The SHORE database system [Zwil+94] is a persistent object system developed at the University of
Wisconsin and is a successor to the EXODUS database system. SHORE represents a merger of database

and file system technologies and allows file based applications to continue to operate without being
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rewritten. The need for multilingual access to data, especially in large databases, has been recognised
and a language neutral solution provided. SHORE has a symmetric peer to peer architecture and
provides a unix-like name space and access control model. The design itself is scalable. It can run on
a single processor, a network of workstations or a large parallel processor. SHORE provides BT tree

and other spatial access methods.

11.3 Our work

In this section, we describe the differences between our approach and those of the systems discussed in
the preceding sections. The SHORE system, in its current implementation, does not provide high level
query processing capabilities such as a declarative query language. We have attempted to build a query
processing engine on SHORE which provides query capabilities, at the same time, preserving the stated
goals of SHORE such as providing system extensibility. The query engine uses a query language that
implements a subset of OQL [Catt94], which is an evolving standard for object query languages and
can be considered to be the object oriented version of the popular SQL. The query processing engine
uses recently developed high-performance techniques for object access that were unavailable at the time
the earlier systems were built. The engine has been developed using public-domain technology, which
permits easy porting and enhancement of the system functionality. We have designed the engine based
on a formal query model which aids in efficient query evaluation and execution. We also provide a
facility for interpreted queries rather than compiled queries, in the current implementation, to provide

flexibility at runtime.



Chapter 12

Object Oriented Query Processing

A query is a means of retrieving or updating information in the database. Query processing refers
to the steps involved in executing the actions specified by the query. Query processing in object
oriented database systems throws up new challenges due to their powerful modeling capabilities. In
this chapter, we present some fundamental concepts of object orientation, evaluate the differences
between traditional and object oriented systems, provide an insight into the general steps involved in
query processing and identify major components that have to be designed while building a good query

processing system.

12.1 Object oriented Concepts

The basic abstraction provided by an object oriented system is an object, which is an encapsulation
of the state and behaviour of a real or abstract entity. The properties of all real world and abstract
entities are captured in the abstraction that is an object. Thus, all query processing systems operating
in the object oriented framework must deal with this abstraction. Thus, in this section, we review some

of the fundamental concepts which form the basis for any object oriented query processing system.
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o Object Identifiers

The object oriented modeling paradigm suggests the modeling of every real world entity as an
object. Each object has an unique identifier called an object identifier (OID) associated with
it to differentiate it from other objects. Object oriented database systems provide objects with
persistent and immutable identifiers: an object’s identifier does not change even if the object

modifies its state.

The OIDs can be logical or physical in nature depending on the system requirements. Physical
OIDs represent disk addresses of objects and have the advantage of having no administrative
overhead in fetching an object once its identifier is known. However, movement of objects causes
problems in the OID maintenance. It maybe necessary to update all objects having a reference
to the object in question in the event of relocation of the object. Logical OIDs, on other hand,
are independent of the object’s actual location on disk and hence can be used irrespective of the
object’s location on disk. The disadvantage, however, is an extra level of mapping of logical OIDs

to disk addresses.

e State and Behaviour

Each object is characterised by its state and behaviour. The state of an object is described by
a collection of attributes and their values. Attributes themselves maybe literals or composed of

other objects. Furthermore, an attribute of an object may represent a collection.

The behaviour of an object is characterised by a collection of methods that define the set of
operations that are possible on the object. This representation of an object provides several

advantages (for example, encapsulation).

o (lass

In object oriented terminology, a class groups various objects having the same structure and
behaviour. Instances represent the state of various objects belonging to a class. Thus, a class
can be thought of as a blueprint representing a set of similar entities in the database. Just as a
relational database query was framed against a relation or a set of relations, an object oriented
database query is framed against an object or a set of objects. A class maybe a primitive class
(also called a literal). A primitive class (for example, integer) captures the existence of primitive

types in the object oriented framework.

o Inheritance

An object can inherit the structure and the behaviour of another object in addition to having
its structure and behaviour. This relationship leads to a specialisation hierarchy (or sometimes
called subtyping) wherein inheritance leads to specialisation of structure or behaviour or both.

Inheritance provides extensibility which is an integral requirement of every complex system.

e Association

An object interacts with other objects. This interaction defines a relationship between objects
also called as an association. For example, the relationship between a Student class and an

Instructor can be modeled as a simple association.
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e Aggregation

An aggregation is a complex association which represents the part-of relationship between ob-
jects. An object is allowed to contain an attribute whose domain is that of another object. This
gives rise to nesting of objects resulting in aggregation hierarchies. It is common to find aggrega-
tion hierarchies in most object oriented systems since most complex objects represented by these

system are naturally modeled this way.

12.2 Object oriented and relational query processing

In this section, we try to assess the fundamental differences between relational and object oriented query

processing. The differences arise due to the rich modeling environment in object oriented systems.

o Added Types

Relational systems provide a relation as the basic level of abstraction which is constrained by the
first normal form to contain only literals. This homogeneity facilitated uniform treatment of all
relations which was exploited to provide efficient processing. However, object orientation brings
with it features such as added base types and user defined types. These added types prevent a
uniform treatment of all entities thus necessitating specialised handling.

o Formalisms

Relational systems had sound formalisms to express their queries. The operations and the oper-
ators were well defined and formed an exhaustive set of operators that the system had to deal
with. Formal languages (for example, relational algebra) were able to capture the semantics of
queries and defined operations among operators which helped in rule based algebraic optimisation.
Object oriented systems lack a formal object oriented algebra which impedes the optimisation
process. Most of the object oriented algebras that exist are mere extensions of relational alge-
bra and do not take into account all operators that have been added due to added types and

operations on them.

o Result typing

The result of a query expression in these two systems differ in a fundamental way. In relational
systems the result of an operation (for example, join) on a relation (or a set of relations) results
in another relation which contains only primitive types. A relation can thus be viewed as a weak
binding of primitive types and the relational schema a collection of such relations. The primitive
types are thus used in the context of all schema definitions and are hence independent of any

particular schema.

However, in object oriented databases, the result of an equivalent operation on a class (or a set
of classes) results in a type whose structure is dependent on the class (or classes) against which
the query is directed and most importantly the result may be a user defined type which may in
turn contain other user defined types. The schema itself is a collection of all user defined types

and as such the types are not universal in nature and are tied to particular schemas.
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Operations on objects can cause new types to be created. Since such an operation is defined only
at runtime, it requires dynamic typing, which is essentially creation of types at runtime. Some
systems like ENCORE [ZM91], try to support this feature with the help of parameterised types
used to contain intermediate types which have no static definition. Thus, it can be seen that
there is a need for the creation of dynamic types, which are new types generated at runtime,

unlike static types which are defined at compile time itself.

o Traversal along aggregation hierarchies

The domain of any attribute of a relation in a relational system is that of one of the primitive
types (due to the first normal form). However, in object oriented databases, a class can have
attributes whose domain can be that of another class. This leads to aggregation relationships
between classes. This relationship leads to what is called implicit join between classes where the
join is based on object equality and is not specified explicitly by the user. This is in contrast to
explicit joins which are similar to relational joins in that two objects are explicitly compared on

the values of their attributes.

Some systems support only implicit joins based on the argument that explicit joins are needed in
relational systems to recompose entities broken down during the process of normalisation. Such a
decomposition does not feature in object oriented systems since the models directly support com-
plex objects. Relationships in object oriented systems are maintained with the help of references

thus further reducing the necessity of explicit joins.

It can be noted that the implicit join is different from the relational join in that the join is defined
by the schema itself. Also, the implicit join implies a unidirectional join in that the join order
is predetermined. Specialised techniques maybe required if the query is specified againist the

direction of the join.

Aggregations also lead to recursive querying. This is not possible in relational systems since any
relation contains only primitive types. In object oriented systems, a class can refer to itself either

directly or indirectly thus causing the possibility of having recursive queries.

o Parameterised types

Relational systems generally do not allow the presence of multi valued attributes which are
eliminated during the process of normalisation. However, attributes of classes in object oriented
systems can be single-valued or multi-valued thus necessitating specialised handling (for example,

iteration).

Also, the presence of parameterised types (sets, bags, lists) to represent multi-valued attributes
imposes additional requirements on the type inferencing mechanism since operations can be

performed on collections of different types.

e Scoping and subtyping

An object oriented database may contain a hierarchy of classes which may represent various levels
of specialisation. This hierarchy, also called inheritance hierarchy, leads to subtyping (speciali-
sation). This property has a significant impact on query processing in object oriented systems

and is totally absent in relational systems. The existence of subtypes necessitates the definition
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of the scope of any query directed at such a hierarchy rooted at a class. It becomes necessary to
determine whether all instances of the class and its subclasses need to be retrieved or the scope
should be limited to the class at which the query is directed at. The result of a query directed
against a class hierarchy is composed of a heterogenous collection of objects as a consequence of
scoping. Thus, elaborate type inferencing schemes need to be devised because universal operators

in object oriented databases may now operate upon a heterogenous collection of objects.

e Dynamic operator definitions

The possibility of method definition in object oriented database systems allows extensibility in
the query language. A new operation can be introduced into a class by adding a corresponding
method by which the predefined set of operators present in the query language can be augmented.
However, this requires query languages to handle methods as well. Such a possibility does not
exist in relational database systems where such an enrichment in the query language would require

additions to the query processor itself.

o Optimisation

In relational systems, query optimisation depends on the knowledge of access paths which es-
sentially represents the knowledge about the physical representation of data. Cost based query
optimisation evaluates various query plans based on cost of access and produces the best query
plan. The encapsulation provided by object oriented systems requires cost estimation of methods
which maybe difficult to estimate especially if the methods are implemented in a general purpose

programming language. Also, storage information is obscured by the encapsulation.

o Access Methods

Efficient query processing demands the necessity of specialised access methods. The presence of
complex objects in object oriented systems necessitates more sophisticated access mechanisms

than were present in relational systems.

12.3 Stages in Query processing

In this section, we describe the various stages in query processing. The stages described give a general
overview of the steps implemented by any query processing engine, be it relational or object oriented.
Thus, the stages outlined in this section help discuss the fundamental aspects of query processing that
are necessary to build any query processing system.

Figure 12.1 shows the general stages in processing a query. This figure is similar to the one presented
in [Grae93]. We believe that the stages hold in the context of both relational as well as object oriented
query processing. The only difference being in the way each of the operations are performed in these

two systems.

o Query
The query itself is represented by means of a query language which is usually a high level declar-
ative language. The query is then parsed and converted to a suitable internal form whose design

is based on the operations that are required at later stages.
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Figure 12.1: Stages in query processing

o Validation

Next, the query is checked for errors. This process is usually accomplished with the help of schema
information. This validation process helps to check if the referred entities are valid entities present
in the schema. This step is important in preventing runtime errors which may occur as a result

of a request for a non-existent entity.

o View resolution

Views are macro functions used to define frequent operations (for example, a query that uses
two relations in a relational system). Though physically separate, the relations can be viewed as
a single logical entity as far as queries are concerned. Views are also used to restrict access to
targeted entities in the schema.

At the view resolution stage, a mapping of these logical entities is done to the actual storage
structure of the entities. Object oriented systems may use views for restricting access to entire

objects in a system.

o Optimisation
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Optimisation is a process that tries to finetune the system with respect to a performance measure.
The performance measure may vary from one system to another depending on their constraints.

Examples of performance measures include memory costs and response time.

Optimisation involves generation of possible execution plans (also called query evaluation plans)
for the given query and determining the best solution among them. The optimiser generally has
a knowledge of the operators and their properties (for example, commutativity). The optimiser

also considers available access methods while generating the best query plan.

e Plan Compilation

Query evaluation plans generated by the optimisation process are converted to a form suitable
for the query execution engine. This stage essentially involves the traversal of the operator tree
by employing relevant tree traversal algorithms. The result of this phase could be machine code

or even an interpreted language.
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e FEzxecution

The Execution phase involves the actual execution of the query evaluation plan. The results
of the execution maybe a formatted display or another target entity. Object oriented systems
pose several problems due to the presence of typed objects and possibly new types generated at

runtime as discussed in section 12.2.

12.4 Issues in Query processing

Efficient query processing involves addressing various issues which aid in increasing the performance
level of the system. In this section, we attempt to identify major issues in query processing. We believe
that such a process helps in finetuning the system. Figure 12.2 shows the major issues involved in

building a query processing system. We briefly look at each issue.

QUERY
ISSUES
QUERY ACCESS QUERY
MODEL FORMALISMS OPTIMISATION METHODS L ANGUAGE

Figure 12.2: Issues in query processing

o Query Model

A query model tries to capture the query processing environment in order to be able to tackle
the complexities of ad-hoc query processing in advanced databases. This provides a formal tool
to analyse and implement a query processing system. Query Modeling has become an important
aspect of a query processing system in an object oriented environment due to the additional
complexities that have to be handled by it. Many Query Models have been suggested in the
literature [BKK88, Kim89, CM84, KKD89a] which address various query modeling issues in a

query processing environment.

e Formalisms

Formalisms aid algebraic optimisation, which uses algebraic properties to transform queries into
semantically equivalent, but cheaper ones. Thus, formalisms aid the query optimisation process
by providing certain algebraic transformations. Formalisms define operators and their properties
at a logical level independent of any system. Thus, the algebra is sometimes referred to as a

logical algebra and the operators defined as logical operators.

o Optimisation
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Optimisation itself is a mapping from the logical operators provided by the query language to
the actual physical operators that implement these logical operators. The mapping process it-
self maybe complex since logical and physical operators frequently do not map directly into one
another. For example, a duplication removal algorithm implements a part of the projection oper-
ator. Also, different systems may implement the same logical operators but maybe quite different
in their physical implementation. For example, a system may implement hashing technique while
another does not and hence the operation is quite different in these two systems. Due to these
problems, the optimisation process is complex and is usually executed by supplying cost functions

for the physical operators.

o Access Methods

Access methods provide associative access and are an extremely important component of any
query processing system. For example, a query processing system that implements a spatial
access method is far superior to one that does not if the system is being used to store spatial
data. In the object oriented domain, the selection of access methods to be implemented maybe
domain dependent unlike in relational systems. For example, if a domain that is modeled has
primarily aggregation hierarchies, the query processing system must implement an access method

for aggregation after considering the semantics of data involved, their frequency of updates, etc.

o Query Language

Navigational access is supported in all object oriented systems where objects can be retrieved by
traversing a graph of objects. However, experience with relational systems has shown that high
level, declarative and powerful query languages are an extremely important component. Thus,
most object oriented systems provide a query language interface in addition to the navigational
(program) interface. In reality, these two forms of access are complementary. A query may select

a set of objects whose constituent objects may then be retrieved through navigational access.

The design of a query language may not be simple. The query language itself, while provid-
ing a declarative interface, should have well defined and simple constructs. Relational systems
saw the emergence of SQL as a standard. Standards of object oriented languages (OQL) are
evolving [Catt94].

In this chapter, we discussed fundamental object oriented concepts, evaluated the differences in
query processing in relational and object oriented systems, identified stages in a query processing

systems and described the issues in query processing. We now address these issues in more detail.
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Query Model

A real world problem domain is captured with the help of an object oriented data model. Such
a model disambiguates differences in interpretations and provides a single consolidated view with
the help of various modeling constructs. Many such models have been proposed for object oriented
modeling [Rumb+91, Booc94]. These models attempt to accurately capture real world problems in a
representation that can be directly converted to a persistent model. These models provide the user
with the power to accurately and naturally capture real world entities. Thus, these models address
only representation issues. That is to say, a good object oriented model does not necessarily mean
efficient data processing. To address the problem of efficient data processing, a query model is required

which tackles issues related to data manipulation as opposed to data representation.

13.1 Overview

A Query Model is a tool to capture the working of any query processing system. It creates a basic
framework on which algebraic formalisms can be built which can be used to finetune the system.
Though it is derived from the constructs provided by the data model itself, it provides a concrete way
to represent queries by capturing the semantics of a query in a deterministic fashion. Many systems
provide an object oriented shell which essentially uses the power of the relational query model through
a process of transformations [BKK88]. However, such an approach may prove counter productive in
that such a transformation process may lead to inefficiencies. Object oriented databases thus require
a query model that can preserve the advantages gained through powerful modeling techniques offered
by such systems.

As pointed out in [Kim89], some query models [CM84, RS87] proposed in the context of object
oriented systems neglect some of the features (for example, the effect of class hierarchy on queries).
Some of the models also depend on value equality as opposed to equality based on OIDs. This is
important in the context of defining the semantics of operators. We have chosen the model proposed
in [Kim89], which is an improvement over the models suggested in [BKK88, KKD89a), as the basis and
have attempted to add more functionality by introducing new constructs. We describe this modified

model in this chapter.
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13.2 The Query Model Representation

In this section, we describe the entire query model, its representation and operations on the graph
itself.

13.2.1 Nodes and Edges

The query model is basically constructed as a graph of nodes and edges. The nodes represent classes
(or parameterised types) while the edges represent the relationship between any pair of classes (or
parameterised types). We further qualify the edges to be of three types — a composition (aggregation)
edge, a generalisation (inheritance) edge and an association (reference) edge. We refer to the third type
as a reference edge in order not to confuse the usage of terms since inheritance and aggregation are also
forms of associations. The reference edge denotes the existence of a relationship between classes that
are simple relationships that are neither aggregations nor inheritance. The graph itself is a directed

(possibly cyclic) graph.

13.2.2 Direction of an edge

We define the direction of an edge in the context of the different types of edges. In the case of
aggregation hierarchies, the direction of the edge is from the parent type to the type that is in its
domain (we refer to this as the aggregate of its parent). In the case of inheritance hierarchies, the
direction of the edge is in the direction of specialisation, that is, from the parent type to the subtype.
It can be seen that the direction of the the aggregation and inheritance edges are determined by the
schema itself. This definition is consistent with the one found in [Kim89]. We define the direction of
a reference edge dynamically, that is, dependent on the query. In the case of the reference edge, the
direction of the edge is so as to aid in the formation of a single directed graph for a query (for example,

in the direction of an implicit join).

(Parent) (SuperType)
All | (AL) Cl1 | (1,L) Ell | (RL)
OO
(Aggregate) (SubType)
@) (b) ©

Figure 13.1: Nodes and edges in a query model
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13.2.3 Notation

The graph constructs are shown in Figure 13.1. Figure 13.1(a) shows the representation of an aggre-
gation relationship wherein a class A is composed of class B. Figure 13.1(b) shows the representation
of a inheritance relationship wherein class C is a generalisation of class D. Figure 13.1(c) shows the
representation of a relationship through a reference wherein class E is associated with class F through
a reference. The direction of the reference is shown to be from class E to class F in this example.

Classes (or parameterised types) are represented by circles. The relationships are represented by
the edges. The edge qualifying the aggregation relationship between two classes also has the name
of the attribute from the parent class which is used in the implicit join (attribute Aq; in the Figure).
Primitive attributes which form ends of aggregation hierarchies are represented by their attribute name
without an enclosing circle to differentiate them from non-primitive attributes. The attribute which
is used as a reference to another object (attribute Ej; in the Figure) is represented along the edge
representing the relationship. In the case of an inheritance relationship, the attribute being inherited
which is in the focus of an analysis is represented along the edge (attribute C1; in the Figure).

The symbol pair (also called edge qualifiers) (such as (A,L) in the Figure) qualifies the edge and
denotes the possibility of complex relationships at the nodes of the graph. The first symbol in the pair
represents the type of relationship that exists between the two classes related by the edge in question
and the second denotes the existence (or absence) of a dual relationship at the parent node. The dual
relationship refers to the possibility of a node being involved in an aggregation graph on one dimension

and an inheritance relationship on another orthogonal dimension.

‘ Symbol ‘ Meaning ‘

A Aggregation
I Inheritance
R Reference

B Bridge

L Local

G Global

Table 13.1: Symbols used in the query graph

The symbols used in the representation of the edges are summarised in table 13.1. While the
symbols A,ILR and B signify the type of edge (arrowheads also depict the same information), the
symbols L and G help in defining the scope of the query. Local scope is used to denote the target of
the query is the class itself while global scope is used to denote the target of the query is the class
hierarchy rooted at that class. We describe the various combinations and their implications on the

query engine which will eventually operate on the query graph in the next few subsections.

13.2.4 Aggregation Edge Qualifiers

The symbol pairs (A,L) and (A,G) qualify edges which represent the aggregation relationship between
two classes on the query graph. (A,L) implies that the parent node is not involved in a generalisation

hierarchy and hence processing of this edge would be similar to a normal navigational access. (A,G)



CHAPTER 13. QUERY MODEL 105

on the other hand, implies that the parent node is involved in a generalisation hierarchy and hence
the explicit edges represented in the query graph maybe insufficient to express the semantics. In this
case, the query graph can be thought of as having virtual edges connecting each of the nodes in the
generalisation hierarchy to the aggregate node that the edge connects. A simple example is shown in
Figure 13.2 which has classes A,B,C and F forming an aggregation hierarchy while classes C,D and
E form an inheritance hierarchy. Virtual edges (represented by dashed lines in Figure 13.2) specify
to the query engine the additional paths that it has to process due to the presence of relationships
not indicated directly, but implicit in the query. It can be seen that these virtual paths convert

generalisation hierarchies into purely aggregation hierarchies.

Figure 13.2: Virtual edges in a query graph

13.2.5 Inheritance Edge Qualifiers

The symbol pairs (I,LL) and (I,G) qualify edges which represent the generalisation relationship between
two classes on the query graph. (I,L) implies that the parent node is not involved in an aggregation
either directly or indirectly (through a reference). (I,G) represents the fact that an entire aggregation

has been inherited and hence requires the generation of virtual edges to capture the semantics of the
query.

13.2.6 Reference Edge Qualifiers

The symbol pairs (R,L) and (R,G) qualify edges which represent a general association between two
classes. (R,L) signifies a simple association, while (R,G) signifies that the parent node of the reference
may be a leaf node of an aggregation hierarchy or a root node of an inheritance hierarchy. If the
referenced node is also part of a hierarchy, then the reference itself can be called a bridge. Hence the
bridge is a special case of a reference which connects two hierarchies creating what the query engine
would look at as one wirtual hierarchy. Such an edge is represented by the pair (B,G). An example of
a virtual hierarchy is shown in Figure 13.3. The inheritance hierarchy formed by the classes A,B and
C is linked to the aggregation hierarchy formed by the classes D,FE and F with the attribute L forming
the leaf.

The concept of the bridge is extremely useful in defining virtual hierarchies which provide con-

siderable performance improvements if access methods look at them as such. It can be easily seen
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Aggregation hierarchy

Inheritance hierarchy

Figure 13.3: Virtual hierarchy

that a bridge can be involved in creating a virtual hierarchy in four different ways — two aggregation
hierarchies may be linked, two inheritance hierarchies may be linked, or an aggregation hierarchy may

be linked to an inheritance hierarchy or vice versa.

13.3 Definitions

This section defines some terms which are used in the context of query graphs.

1. Node Compatibility

Two nodes are said to be node compatible when either both are of the same type (class) or they

participate in subtype-supertype relationship with each other.

2. Adjacency

Two nodes are adjacent if they are related with each other by a single edge. In the query
model, three types of adjacency can exist depending on the type of the edge. Thus, adjacency
due to aggregation is called aggregate adjacency, adjacency due to inheritance is called subtying

adjacency and adjacency due to a reference is called referential adjacency.

3. Edge Equivalence
Two edges of different query graphs are said to be edge equivalent if and only if they connect the
same nodes and are of the same type and scope.

4. Component

A Component of a query graph is a set of adjacent nodes and their connecting edges in the query
graph. This definition of a component of a query graph helps in understanding a query graph as
a set of such components. A node that is involved in relationships with two or more nodes would
participate at the most in that many number of components. A basic component is one that has

two adjacent nodes and its connecting edge. A Component is also called a subgraph.

5. Complete path
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A path is a sequence of classes involved in an aggregation relationship. A complete path in the
data model is one that is maximal in the sense that no more nodes can be added to the path
while preserving the semantic meaning implied by the data model. A root node is the node at
the beginning of a path (not necessarily a complete path) while the leaf node is the node at the
end of a path.

6. Path Expression

A path ezxpression is defined as a series of nodes of the query graph built on a path in the data

model defined as
Ci1.A1. Ay ... Ay (n>1),

where (' is a type of the root node in the query graph, A; is an attribute of class C; represented
by a node which is aggregate adjacent to the node represented by C4, A; is an attribute of class
C; represented by a node which is aggregate adjacent to the node represented by A; 1, such that
C; is the domain of attribute A;_1 of class C;_1.

It maybe noted that the definition of path expression implies the constraint that path expression
maybe only along the implicit joins defined in the schema and captured by the query graph.
The concept of path expression is important since most query languages use some form of path

expression to imply navigational access through an aggregate of objects.

The length of the path is the number of edges along the path in the query graph specified by the
path expression. The domain of the path is the domain of attribute A,, of class C,,.

7. Path Instantiation
A path instantiation refers to the sequence of objects obtained by the instantiation of the path.

A path instantiation is said to be complete if it contains an instantiation of the root node of a
complete path as well as that of the leaf node in the path.

A path instantiation is said to be a left-partial instantiation if the path instantiation does not
include the root node in a complete path. Similarly, a path instantiation is said to be a right-
partial instantiation if the path instantiation does not contain the node representing the domain
of the path (leaf node). These definitions of path instantiations are consistent to the definitions
found in [FMV94].

It can thus be seen that a query graph may represent a complete, left or right partial instantiation

of a path.

8. Forward Traversal

Forward Traversal of a query graph implies the traversal of the query graph along a path instanti-
ation in the direction of the path, that is, along the direction of the implicit joins. Thus, forward
traversal refers to the traversal of a path in the query graph which starts at the root node of the

graph and ends at the leaf node.
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9. Reverse Traversal

Reversal Traversal of a query graph implies the traversal of the query graph along a path given
by the path expression against the direction of the path. Such a traversal implies the traversal

from a leaf node of the path to a root node specified by the path expression.

13.4 Operations on the query graph

This section describes some basic operations on the query graph. Then, we can define the operations

on the query graph as follows. These operations are used by the query processor.

1. Union

The union of two components is obtained by merging compatible nodes and equivalent edges to
form a resultant component. The total number of nodes and edges in the resultant component
is reduced by the number which is equal to the sum of the nodes and edges in the two source
components reduced by the number of merges. If the two components are disjoint, that is, the
components have no compatible nodes (and hence equivalent edges), the resultant component
consists of both the input components without any merging. The total number of nodes and

edges is thus the sum of the nodes and edges of the two input components.

2. Intersection

The Intersection of two components is obtained as a component having compatible nodes and
equivalent edges from both the input components. If both the nodes are incompatible, the result

is a NULL component.

3. IsSubComponent

A component x is said to be a subcomponent of another component y if and only if all the nodes
of x are compatible each with atleast one node of y, and all the edges in x are equivalent each

with atleast one edge in y.

A set of components A is said to be a subset of another set of components B if all the components

of A are subcomponents of at least one component of B.

13.5 Benefits

The benefits of a query graph representation of a query are many and are analogous to the benefits
obtained with the help of a data model.

e A query model helps in formalising the representation of a query. It also helps in capturing
various components (for example, a path expression) involved in a query expression in the form
of a uniform graph model. The operations defined on the query graph help not only in building

a query graph from a query language but also during evaluation and semantic checking.

e Building a query processing engine in the background of a query model helps in exhaustive con-

sideration of various combination of query constructs. This is an extremely important ingredient
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especially in ad-hoc query processing where the user, while having enormous expressive power,
can generate a variety of combinations which the query processing engine should be able to
handle.

e The query model is used to construct a query graph at runtime, besides it can be used at design
time as a simple representation for analysis. It can also be seen that the model itself is directly

implementable since the symbols can be directly mapped to corresponding data structures.

e Apart from query representation, the graph has the ability to express scoping in a simple way.
Scoping is implemented with the help of virtual edges and hence provides a mechanism wherein

local and global scoping is allowed by the system dynamically.

e Semantic checking can now be implemented as graph constructs thus providing an abstraction.
For example, if an explicit join is attempted by the user against a query processing system that
does not support such a join, the query graph constructed for the query would have two root

nodes. A simple check of uniqueness of the root node is sufficient to catch this condition.

e The concept of a bridge and virtual hierarchies help in identifying such hierarchies which can
be used in systems to provide specialised handling. It can be seen that such hierarchies can be
identified in the static data model itself, but the query graph repeatedly instantiates the paths
along such hierarchies thus creating statistical information (for example, the number of times
a bridge is instantiated) which could be used to build certain indices dynamically to speed up

aCCess.

e The query graph provides a single view of the entire query, that is, the semantics of the predicate
set are correlated. For example, this helps in deciding the objects along a path that need to be

stored which will be used to produce the final result.

In this chapter, we described the query model which is extensively used in the construction of
the query processor. We described the query model representation and the various constructs. Our
contribution includes the model structure definition, a symbolic representation with the ability to
represent scoping and references, the concept of virtual edges and virtual hierarchies, added definitions

to aid in the development of formalisms and the definition of operations on the query graphs.
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Access Methods

In object oriented database systems, query processing involves traversing complex structures repre-
sented by the object oriented query model. For example, object oriented query processing systems
need to support queries on objects forming a hierarchy. The hierarchy itself maybe a result of special-
isation or aggregation and queries based on each of these hierarchies need to be processed differently.
The traditional access methods such as Bt tree [ComeT79], which gave relational database systems
performance benefits by providing associative access to data, are not powerful enough to deal with
complex data. Thus, the search for methods to deal with the properties of complex data has led to a
variety of access techniques appearing in the literature.

In this chapter, we attempt to classify these access methods and provide a survey of access methods

that are specific to a classification but independent of any problem domain.

14.1 Classification of queries

In this section, we classify queries based on the various associations that can be identified in any object
oriented model. The classification provides a direct mapping to the type of queries or a combination
of them that the database system maybe called upon to handle. Queries can be broadly classified as

shown in Figure 14.1.

o Simple Value based queries

Simple Value based queries are queries that essentially have simple literals or base types in their
search predicates. It can be seen that all queries in relational database systems fall under this
category due to the absence of complex relationships (for example, hierarchies). Thus, techniques

used in the context of relational database systems can be exploited for simple value based queries.

o Inheritance based queries

To a query processor, a query based on the inheritance relationship between classes, poses a
number of problems. It maybe necessary for the query processor to recognize all objects with a
specified value for an attribute which is at the base of an inheritance hierarchy. If this attribute
has been inherited by other objects, it becomes necessary to identify all such objects as well.
Thus, any access method that deals with inheritance based queries needs to be able to answer

queries based on attribute values which are part of a hierarchy. These queries can thus be called
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Figure 14.1: Classification of Queries

inheritance based class hierarchy queries. It also maybe a requirement in some systems to be able
to answer pinpoint queries which are directed at a particular class in the inheritance hierarchy.

These queries can be called inheritance based single class queries.

Thus, in general, the query processor in an object oriented system must be capable of han-
dling both hierarchy based queries as well as single class based queries targeted at inheritance

relationships in the data model.

e Aggregation based queries

An aggregation hierarchy is rooted at one object and a forward (top down) traversal of the
hierarchy is required to extract an object at the leaf of the hierarchy in the absence of any
access method. It can be seen that a path exists for the navigational retrieval of the required
object. Navigational retrieval maybe expensive especially when object accesses are expensive. A
potentially more difficult problem is to have a reference to an object at the leaf of the hierarchy
and then attempt to find the root object of the hierarchy which requires a reverse (bottom up)
traversal of the aggregation hierarchy. This problem is further amplified in systems that do not

maintain reverse references along an aggregation hierarchy.

14.2 Simple value based queries

Simple value based queries in object oriented databases are similar to the queries seen in the context of
relational database systems where queries were based on a single attribute or key value. In this section,
we briefly highlight the characteristics of some of the popular indexing mechanisms used in relational

databases systems and which can be exploited in the context of object oriented systems.

14.2.1 BT tree

The B* tree [ComeT79] is a n-ary tree which indexes all the records with the help of a balanced tree

structure. The nodes of the tree are stored on disk and hence to access a record would require disk
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accesses proportional to the height of the tree. Being a balanced n-ary tree, it has rules associated with
it for inserting or deleting records from the index. Since the organisation of data indexes is similar
to the principles of the binary tree, it can be seen that the data appear in a sorted manner as the
leaf nodes are traversed from left to right if the leaf nodes are chained. This property of the BT tree
makes it extremely useful for range queries wherein data records whose indexed attributes fall within a
certain range are required by the query. Since most commercial applications have such requirements,

the BT tree is widely used in relational database systems.

14.2.2 Extendible hashing

Extendible hashing [Fagi+79] is another method used to index data records. In this method, attributes
on which the records are indexed are hashed onto buckets which in turn point to disk addresses. The
hash structure itself is capable of dynamically changing in size in proportion to the size of the database
without the need to change the hashing function thus avoiding problems associated with static hashing.
Also, only a single disk access is required to retrieve the indexed record. However, hashing in general
destroys the order of data and hence it is cumbersome to obtain a sorted order using the hash table.
Thus, this structure is unsuitable for range queries and its utility remains limited to exact match

queries.

14.3 Aggregation based Access Methods

In this section, we present a collection of access methods to address the problem of handling aggregations
in an object oriented model. We survey nested indices, path indices, multi index organisation and
multi index with path configuration. A detailed survey of some of the access methods maybe found
in [FMV94].

A sample query graph is shown in Figure 14.2(a) which will be used for the purpose of illustra-
tion in this section. It shows the class relationships that exist which form the aggregation hierarchy.
Figure 14.2(b) shows a path instantiation O;.02.03.04.L; of the path C1.A411.A21.A31.A441 where O;
is an instance of C;, 2 = 1,...,4, and L, is a literal. A path in the query graph which is of interest is
depicted with a representation similar to the one used in [BK89]. The problem, is therefore to be able
to retrieve all objects of type C) given a value for Os. Normally, this requires an exhaustive search,

but the presence of access methods facilitates efficient retrieval of the required objects.

14.3.1 The Nested Index
Structure

The nested index [BK89] addresses the problem of traversals along a complete path instantiation by
providing a direct link between the root and the leaf node of the path instantiation. The nested index
was originally designed to facilitate queries that require reverse traversals of query graphs, but can be
adapted to facilitate forward traversals as well. The nested index basically uses the leaf node of an
aggregation hierarchy (which is usually a literal) as the key for a search and maps this value to the
objects at the beginning of all path instantiations that result in having the required value for the leaf

node. This idea of a nested index is best represented pictorially as shown in Figure 14.3.
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Figure 14.2: Sample query graph and a path instantiation

It can be seen that the key value is the value of Os and the index contains the set of objects
that contains this value through an aggregation hierarchy. The Figure 14.3 shows only one element
of the set, that is O;. The number of path instantiations that lead to attribute A4; having value Os
determines the cardinality of the set.

The collection of such nodes representing the associations between the leaf and root of path in-
stantiations can be maintained in a BT tree with key value as the leaf nodes’ value. This organisation
wherein a BT tree is used to organise the nodes gives additional power in that range queries can also be
addressed by taking advantage of this organisation and the capability of a B tree to preserve order.
The leaf node of such an organisation can be modeled as a node containing the record length, key
length, key value, the number of elements in the set containing references to the root nodes of path

instantiations and the list of OIDs of the objects which form the root nodes of the path instantiations.

Insertions and Deletions

Insertions are handled by updating the entries in the leaf node wherein the new OID of the root object
of a path instantiation having the key value for the leaf object is inserted into the list of OIDs and the
number of elements of the set updated. If a nested index node does not exist on an insertion, a new
node is created and appended at the appropriate location in the BT tree. Deletions can similarly be
handled by deleting the corresponding OID of the root object from the list and updating the count of
elements in the set. The node itself is deleted in the case where the cardinality of the set becomes zero.
Notice that if the path is of length one, the nested index organisation becomes identical to the simple

BT organisation used in most relational database systems.
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Figure 14.3: Nested index

Partial Instantiations

The nested index structure also stores objects at the root of right partial instantiations apart from
storing objects of complete path instantiations. The right partial instantiation, by definition, does not
have the leaf object of the path in its instantiation and hence is represented by a NULL key value.
Thus, all instances of the class at the root of a path are mapped by the nested index organisation.
However, from the index it is not possible to determine the nature of the right partial instantiation in
that it is not possible to determine the actual length of the complete path instantiation of which it forms
a subset. The nested index organisation does not record any left partial instantiations since it stores

only the root nodes of a path instantiation which by definition is absent in left partial instantiations.

Retrievals and Updates

It can be seen that nested index facilitates speedy retrievals. However, updates cause a problem.
Updates refer to an operation where the value of an attribute (which could be an object reference in
the aggregation hierarchy) is changed. In this case, one forward traversal is made to ascertain the leaf
value with the original attribute value, another is made to ascertain the leaf value with respect to the
new attribute value and a reverse traversal is made to obtain the object reference (OID) of the object
at the beginning of the path instantiation. The nested structure is then updated using the result of
these traversals. It can be seen that reverse references need to be maintained for this configuration to
facilitate reverse traversals. Thus, the nested index configuration is most suitable for systems which

primarily serve data retrieval requirements and where data updates are rare.

14.3.2 The Path Index
Structure

The path index [BK89] addresses the problem of traversals along a complete path instantiation by
providing direct links between the objects of the path instantiation. The path index, like the nested
index, uses the leaf node of an aggregation hierarchy as the key for a search and maps this value to all
path instantiations that result in having the said value for the leaf node. This idea of a path index is

shown in Figure 14.4.



CHAPTER 14. ACCESS METHODS 115

X7

{ 01.02.03.04 } 05

Figure 14.4: Path index

The key value used to map the path instantiations is the value of O5 and the index itself contains
all path instantiations that lead to the value of Os (The Figure 14.4 shows one such path). It can be
seen that the path index contains a set of paths each path identified by a set of references (OIDs).

The collection of such nodes mapping the key values to the path instantiations can be maintained
in a BT tree with key value as the leaf nodes’ value (as in the case of the nested index). The leaf node
in such an organisation can be modeled as a node containing the record length, key length, key value,
the number of path instantiations and the list of path instantiations. A possible leaf node structure is
shown in Figure 14.5. It maybe necessary to order the list of OIDs in each path instantiation depending

on the implementation.

< Record =
Record Key Key Number Other
Length | Length Value Pator]:s {Path[1] ,......, Path[N]} Records
oid[1] | Gid[2] | .......... Oid[N] oid[1] | Gid[2] | .......... Oid[N]

Figure 14.5: Leaf node in a path index

Insertions and Deletions

Insertions are handled by first finding the OIDs that contribute to a path instantiation to be inserted
and then inserting this set of OIDs into the set of path instantiations. The count of path instantiations
and other parameters are then updated. If a path index node does not exist on an insertion, that
is, a path instantiation for the given mapping key value does not exist, a new node is created and
appended at the appropriate location in the B tree according to the rules of the BT tree insertion.

Deletions are similarly handled by deleting the set of OIDs representing the path instantiation and
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decrementing the count of the path instantiations. The other parameters are also updated. If the set
of path instantiations for a given key value becomes zero as a result of a deletion of a path instantiation,
then the node itself is deleted from the BT tree following the rules for deletion in a BT tree. As in the
case of the nested index, if the path is of length 1, the path index organisation becomes identical to

the simple BT tree organisation used in most relational database systems.

Partial Instantiations

The path index, unlike the nested index, stores left and right partial instantiations in addition to
storing complete instantiations. A NULL key value specifies a right partial instantiation while a left
partial instantiation can be detected by the cardinality of the set of OIDs in a path instantiation. The
path index, holds the OIDs of all the objects involved in a path instantiation and hence can be used
to answer queries against nested objects with a single index lookup. It can be seen that this is not
possible in a nested index. This retrieval of the entire path instantiation enables a special kind of
operation known as path projection. This operation can be used to project certain objects from a path
instantiation instead of the whole path instantiation in order to address queries that require such an
arrangement. This operation itself can be done dynamically depending on the nature of the query and

the nature of the path instantiations (left partial, right partial or complete).

Retrievals and Updates

Updates in a path index do not possess the disadvantages faced by the nested index configuration.
Two forward traversals are necessary to determine the key value with respect to the new path. and
with respect to the old path. Since the entire path instantiation is available in the index node itself,
the root node of the path instantiation can be determined from the index itself. It can be seen that
no reverse traversal is required in order to update the index. Thus, this configuration can be used in
database systems that do not maintain explicit reverse references as well. The main disadvantage of
the path index configuration is in the fact that the leaf nodes now contain more information about
every path instantiation thus reducing the number of such records that can be stored in a node. Thus,
it maybe necessary to scan more leaf nodes than if a nested index were maintained in order to retrieve
information. In summary, retrievals in the path index is more costly than the nested index while

updates are cheaper.

14.3.3 Multi index
Structure

The multi index [MS86] is an organisation that essentially breaks a path into its basic components
and uses a separate index (for example, a BT tree) to maintain all path instantiations of each basic
component. Therefore, given a path Cy.41.45... A, (n > 1), traversing n classes C1C1Cs...Cy, a
multi index is defined as a set of n simple indices (called index components) I, Is,..., I, where I; is
an index defined on C;.4;,(1 < i < n). All indices I, Is,...,I,—1 are identity indices, that is, they
have OIDs as key values. This definition is similar to the one found in [FMV94]. The last index, I,,,

may or may not be an identity index depending on the domain of the attribute A,. Thus, the multi
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index tries to provide an index at every basic component of the path thus indexing the entire path
and hence the all path instantiations. Each of the indices are generally B tree indices but could use

other techniques as well depending on the nature of the path instantiations. A sample multi index

o
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organisation is shown in Figure 14.6.
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Figure 14.6: Multi index

Thus, a lookup requires reverse traversal of a number of indices equal to the path length of the path
instantiation. Consider the single path instantiation as shown in Figure 14.6. Performing a lookup
involves traversing the index keyed on value O5 and obtaining the object references (OIDs) to instances
which satisfy the criterion. For each OID in this set obtained (in this case, only O4) a lookup is make in
the adjacent index to obtain the set of references satisfied by the lookup. A similar process is followed
backwards until the root node of the path instantiation is encountered. Now, the set of instances
obtained from the root index gives the resultant set of all objects that satisfy the criterion of having

the value equal to that in Os.

Insertions and Deletions

Insertions of a path instantiation are handled by updating the entries along all the indices along the
path to accomodate the new set of values. Thus, the insertion operation requires the insertion of a
value in a number of indices which is equal to the path length of the path instantiation. The deletion
operation is similar in that, it requires the deletion of the corresponding entries in all the indices that
have information about the path instantiation being deleted. Thus, deletion also requires traversal of

a number of indices equal to the path length of the path instantiation being deleted.

Partial Instantiations

The multi index organisation stores information about both left and right partial instantiations in
addition to complete path instantiations. Right partial instantiations are recorded with the help of a
NULL key value mapped to instances of the last class in the path. Left partial instantiations, however,
require no such special identifier and are accomodated by the respective indices which span the partial

instantiation.
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Retrievals and Updates

Updates in the multi index organisation are the least expensive among the organisations discussed.
This is because it requires updation of only a single simple index unlike in the cases of the path and
nested index which required traversals along the path instantiation. An object updation thus is done
locally in the sense that it is local to the basic component of the path in question and is independent of
the other components that make the path. However, it can be seen that retrievals are costly due to the
necessity of traversal of a number of indices equal to the length of the path instantiation in question.

It may also be noted that this organisation facilitates queries that require reverse traversal.

14.3.4 Multi index with path configuration
Structure

To motivate the necessity of a path configured multi index, we summarise the characteristics of the
nested, path and multi index. Nested and Path indices have high update costs especially if the path
indexed is of length greater than 3. However, they have low retrieval costs. In contrast, the multi
index has high retrieval costs while having low update costs. Thus, it can be seen that an intermediate
solution can be obtained by splitting the path into subpaths and if these subpaths are optimal for the
given path, the lowest cost solution can be obtained.

An algorithm for finding the optimal configuration can be found in [Bert94]. This algorithm takes
as input the frequency of various operations (insertion, deletion, retrieval) for the classes along the
path besides taking into account whether reverse references are maintained along the path. Then the
algorithm outputs the optimal subpath configuration for the given path and also assigns the type of
index (nested, path or simple) that should be assigned to each subpath. Most importantly, the algo-
rithm decides if some subpath does not require any index. The algorithm also identifies circumstances
under which the absence of indices along a path may turn out to be an optimal configuration. This
happens when there is minimal sharing of subpaths between various paths and reverse references exist
along the path. Thus, reverse references maybe the best solution in systems that possess the above
characteristic and are constrained in terms of space which is a primary requirement in order to be able

to build indices.

|
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Figure 14.7: Multi index with path configuration

For the purpose of illustration, Figure 14.7 shows indices allocated to subpaths as a possible result of

application of the algorithm to a path having a higher frequency of operations on the entire right partial
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instantiation represented by the subpath C;.A4;.45.A3. The subpath represented by C3.43.44.A5 has
a low frequency of operations on the entire subpath. Thus, it can be seen that the right partial
instantiations mentioned in this example are indexed by a path index while the left partial instantiations

are indexed by a nested index.

Insertions and Deletions

Insertions require addition of the subpaths of the path instantiation into the respective indices allocated
for the path instantiation. Deletions, similarly, require the subpaths (of the path instantiation being

deleted) to be deleted from the corresponding indices.

Partial Instantiations

This multi index organisation may store left partial or right partial instantiations depending on the
path organisation. They differ from the simple multi index organisation in that all nodes along a path

may not be indexed. Thus, the entire partial instantiation may not be stored.

Retrievals and Updates

Retrievals are cheaper than in the multi index case since the number of indices that need to be traversed
in the retrieval is smaller in this case. The retrieval operation itself is similar to the one in the multi
index case where the key value for the search is used to obtain the list of OIDs of instances (along
path instantiations that map to this key value) from the index at the end of the path instantiation.
This list is then used on the relevant index at this portion of the path instantiation to obtain OIDs
that further aid in the backward construction of the path. This process is continued till the root of
the path instantiation is obtained. Updates are cheaper than in the case where only a nested or a
path index has been used. This is because any update requires forward (and possibly reverse) traversal
only on the subpath indexed and not on the entire path instantiation. Thus, it can be seen that the
multi index with path configuration provides a structure wherein a tradeoff is obtained with respect to
retrievals and updates. The main disadvantage of this organisation is that, to obtain a optimal path
configuration, statistical data is required which may not be readily available or may not be a precise

indicator of the frequency of operations.

14.4 Inheritance based access methods

In this section, we survey techniques used to address the a problem orthogonal to the problem of
indexing aggregation based queries. The data model allows a hierarchy of classes to be involved in such
a relationship. Since an attribute of a class C is inherited by all classes in the hierarchy rooted at C,
the scope of a query directed at the class C is, in general, an inheritance hierarchy rooted at C. An
example of such an inheritance hierarchy is represented as a query graph shown in Figure 14.8.

It can be seen from the figure that an attribute A1l of the class C1 is inherited by all subclasses
of C1 and subsequently their subclasses. A solution to index such an organisation of instances is to
maintain a separate index for instances of each class. This organisation is called a multi-level single-

class index. However, this organisation does not take into account the relationships that exist among
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Figure 14.8: A query graph of an inheritance hierarchy

the objects and hence more sophisticated mechanisms exist some of which are surveyed here.

14.4.1 The CH tree
Structure

The CH tree [KKD89b] or the class-hierarchy tree is an index organisation that attempts to maintain
an index on an attribute for all instances of all classes in a class hierarchy rooted at a particular class.
Thus, unlike in the single-class index, one index is maintained for an entire inheritance hierarchy.

The CH tree is essentially a modification of the BT tree. The internal nodes of the CH tree are
similar to that of the BT tree. The leaf nodes differ from that of the BT tree in that they attempt to
store information about an entire hierarchy. The structure of a leaf node of the CH tree is shown in
Figure 14.9.

Figure 14.9: Leaf node in a CH tree

== Record =
Record Key Key Key | No. Set | No. Set Other
Length | Length | Vaue Dir | Oids | Of Oids Oids | Of Oids | Records
NO. CI % ------------- CI %
Classes | No.1 Offset No. N Offset

The leaf node consists among other information a key directory. The key directory contains the
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number of classes that contain objects with the key value in the indexed attribute. For each such class,
the class identifier and the offset of the list of OIDs of objects of the class are specified. The OIDs are
themselves grouped according to their types. This organisation facilitates queries directed at particular

classes in the hierarchy as well.

Insertions and Deletions

Insertions are handled by inserting the OID into the corresponding list if one exists. A new list is
created if no list is found. If the size of the index record becomes greater than that of an index page,
additional pages are allocated to it and an overflow page pointer is maintained in the first page (not
shown in the figure). Deletions are done by deleting the corresponding OID from the list. It can be
seen that this organisation facilitates deletion of all instances belonging to a particular type as well.
Merging of index pages can be done if the size of an index record is greater than an index page before

a deletion and becomes less than an index page after the deletion.

Retrievals

Performance studies based on a cost model [KKD89b] have shown that the CH tree performs better
than a single-class index if the number of classes in the hierarchy is at least two. In terms of disk space
used for the storage structure itself, a conclusive result could not be found. The CH tree organisation
itself is uniform in its treatment of queries against class hierarchies and against single classes in the
class hierarchy. Queries that are directed against a particular class in the class hierarchy follow the
same retrieval procedure as those for retrieving an entire hierarchy. Hence, the index page containing
the list of OIDs for the class in question is obtained along with all the other classes in the hierarchy
which is an overhead for this nature of queries. Hence, in general, CH trees perform efficiently against
queries directed at the hierarchy itself and may not be a cost effective solution for queries directed at

particular classes in the class hierarchy.

14.4.2 The H-tree
Structure

The H-tree [LOL92] attempts to alleviate some of the disadvantages of the CH tree. The H-tree organ-
isation tries to preserve the superclass-subclass relationship while trying to improve the performance
for single-class queries. A H-Tree structure is maintained for each class of a class hierarchy and the
trees are nested according to their superclass-subclass relationship.

The H-tree itself is a modification of the simple BT tree index. The internal nodes of the H-tree
differ from that of the BT tree in that they contain pointers to nodes of H-trees of subclasses in addition
to storing key and the corresponding node pointers. The leaf node itself is similar to that of the BT
tree node. The internal node of an H-tree is shown in Figure 14.10.

The internal node has all the fields that can be seen in a BT tree and in addition to those is present
a count of the number of references to corresponding nodes of other H-trees representing the subclasses
and the pointers themselves. Two classes involved in a superclass-subclass relationship would thus

have two such trees allocated for them with added associations among the trees to facilitate hierarchy
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Figure 14.10: Internal node in a H tree

traversals. The internal node of the tree representing the superclass would have a direct link to a
corresponding internal node in the tree representing the subclass. These links thus create a hierarchy
of index trees. The range of values that fall under the subtree rooted at the referenced node can be
determined from its parent node. This extra reference is generally avoided by maintaining the minimum

and maximum values of the node along with the reference in the superclass tree node itself.

Insertions and Deletions

Creation of the H-tree begins with the creation of the tree component for the most specialised class and
so on till the most generalised class. Insertions are made in a manner similar to the B* tree and nodes
may split which may require readjusting in the set of pointers it contains in addition to readjustment
in the set of pointers in the superclass tree node that references this node. Deletion causes similar

readjustments if it results in merging of nodes.

Retrievals

Retrieving instances along a hierarchy involves complete traversal of the index maintained on the
class at the root of the hierarchy and partial traversal of indices maintained on the subclasses taking
advantage of the links provided. Queries directed at single classes are handled by referencing the
corresponding index for the class.

This organisation essentially improves on the single-class index by providing links between the trees
of classes involved in a superclass-subclass relationship. While the single-class index made no special
provision for class hierarchy queries, the H-tree provides such an access which only requires partial
traversal of trees for the subclasses involved. The H-tree removes the disadvantage of the CH tree
which read and discarded information about irrelevant classes (in a query directed against a single
class). For such queries, only the relevant class tree is accessed and hence no irrelevant information
is read. However, for queries on entire hierarchies, the H tree organisation may need to make more

accesses than with the CH tree.
14.4.3 The hcC tree

Structure

The hcC tree [SS94] is an index structure proposed which can handle both single-class based as well as
hierarchy based queries efficiently. The hcC tree is a modification of the BT tree index. The internal
nodes are very similar to those of the BT tree except for an additional bitmap at each node giving

advance information and to prevent an unnecessary traversal of the tree.



CHAPTER 14. ACCESS METHODS 123

No Of Next
Key Oids {0Oid1,..,0idk} | Pointer

@
Next
Class | No Of . ; Class | No Of . )
K 0Oid1,..,0idk} | .... 0id1,..,0idn .
% | No1|oids | ) No N | oids |\ | Pointer
(b)
Bit ;
Bit Next
Keyl | saanl 110 | 1 | KeyM
V" va| ] | T vap | ] || Pointer

Set Of Pointers
Ton Class Chain
Oid Nodes

Pointer to
Hierarchy chain
Node

©

Figure 14.11: Nodes in a hcC tree

This bitmap stores information on whether a particular class has any instances at all. If not, a
complete traversal of the tree is not required to find a null answer. The leaf node of the tree maintains
the key value, the bitmap and a set of n+1 pointers. Of these n+1 pointers, n pointers point to
the instance list of classes that make the class hierarchy and one pointer points to the instances that
make the hierarchy itself. The nodes that the n+1 pointers point to are called OID nodes. OID
nodes representing single class instantiations are called class-chain OID nodes while the OID nodes
representing the hierarchy are called hierarchy-chain OID nodes. These OID nodes themselves form
the last level in the hcC tree and corresponding OID nodes are chained together. That is, the OID
nodes representing a class C are all chained together and all the hierarchy nodes are chained together
as well. The Figure 14.11(a) shows a class-chain OID node, Figure 14.11(b) shows a hierarchy chain
OID node and Figure 14.11(c) shows a leaf node of the hcC tree.

Insertions and Deletions

Insertions into the hcC tree involve inserting the value at the class-chain OID node as well as the
hierarchy-chain OID node. Deletions cause a similar operation where the entry is deleted from the
class-chain as well as the hierarchy-chain node. The advantage of the hcC tree is that it facilitates

both single class queries as well as hierarchy queries. Both types of queries require the traversal of one
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index tree (unlike the H trees) and retrieval of the corresponding hierarchy or a subset of the classes

in the hierarchy.

Retrievals

The performance results obtained in [SS94] showed that the H-trees, in general performed poorly
against the hcC tree in the context of hierarchy based queries while the CH tree performed poorly in
the context of single class based queries. Thus, it can be seen that the hcC tree provides a efficient

mechanism in systems which encounter both types (hierarchy and single class based) queries.



Chapter 15
The Query Processing System

The query processing system has been designed to cater to any object oriented framework running
with SHORE. It consists of three components — the query processor, the schema manger and the access
methods. These components work in tandem to provide the query processing capabilities. Queries are
modeled with the query model described in chapter 13. It maybe noted that the design is generic in
nature and the implementation is independent of any particular data model representing a domain.
The query processing system has been used in the construction of the DIAS system, which aims to
provide efficient data management for the vast amount of data generated during the parasitic analysis
phase of the VLSI design process. The DIAS system project is being executed at the database research
lab at our institute and aims at reengineering the data storage structure of parasitic data at Texas
Instruments. Thus, the DIAS model implementation can be viewed as an application which uses the
query processing system and hence we use it as an example while describing the query processing

system and its components.

15.1 System Architecture

In this section, we describe the query processing architecture and its relation to other components of
the system. Though the architecture is the DIAS system architecture, we expect all the components
to exist in any system that uses the query processor. Figure 15.1 shows the architecture of the DIAS
system relevant to the discussion and is a reproduction of a portion of Figure 10.2. The components
that are part of the query processing system are shown as shaded boxes. We briefly describe the
components DIAS system in this section.

SHORE forms the lowest layer of the system on which the DIAS data model is implemented. The
data model implementation contains interfaces (classes) declared in the SDL interface provided by
SHORE and the method definitions in a language binding provided by SHORE (SHORE provides a
C++ language binding). The Schema manager is also built using the SDL interface, and maintains
information about the types used by the object oriented model, their attributes and their methods.
The schema manager is responsible for providing the data model independence of the query processing
system. Access Methods are implemented in a similar manner (using the SDL interface) which can
be accessed by routines implemented in the model itself or directly by the query processor. The data

model implementation, the schema manager and the access method implementation form the core of

125
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Figure 15.1: DIAS System architecture

the system and is called the kernel.

The query processor provides a declarative query language interface through which a user can query
the database. The query processor translates this query with the help of the schema manager. The
query is then executed by the query processor with the help of the model interface using access methods
and making runtime optimisations. The methods of types in the object schema are used to query the
database and such calls are made through the SHORE server. The database itself is shown to have a
schema part and a data part. The schema manager interacts with only the schema while the method
definitions of the model access only the data part of the database. These interactions are made possible
by the SHORE server. This organisation prevents the user from interfering with the metadata (schema)

through queries. The sections to follow discuss the design of each of these components in detail.

15.2 SHORE Server

The lowest layer of the DIAS system consists of SHORE (Scalable Heterogeneous Object Repository),
a persistent object system developed at the University of Wisconsin [Zwil4+94]. SHORE forms the
lowest layer of the system and is responsible for object management and transaction related features
such as concurrency control and recovery. The Value Added Server (VAS) uses these features of the
Storage Manager and presents an interface targeted at specific client applications. DIAS uses two such
VASs: the SHORE Value Added Server (SVAS) and the SHORE NFS server. The SVAS is useful for
applications using the object oriented database features mainly while the latter is useful for applications

relying on the file system features of SHORE.
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SHORE was chosen as the backend engine for the following reasons: First, SHORE supports both
file system and object oriented features, thereby ensuring that legacy application tools can continue to
operate in the new environment. Second, it allows for databases built by an application written in one
language to be accessed and manipulated by applications written in other object-oriented languages
as well. This feature is especially important in the VLSI CAD domain where tools are implemented
in a variety of languages. Finally, Shore provides application independent features such as support for

transactions and object management.

15.3 DIAS data model

In this section, we give a brief idea about the design components in a circuit and then discuss the data
contained in the DIAS data model. A design consists of cells and interconnects. Cells are essentially
pre-characterised entities, that is, all information about them is readily available and hence needs no
further attention. Interconnects form the portion of the circuitry that establish connectivity between
various cells. A cell itself can include other cells (for example, a CPU design contains the design of a
ALU) and so on thus forming a hierarchy. A cell which is at the lowest level of hierarchy in a design
is generally referred to as a leaf cell or a library cell (for example, a NAND design). The port of a cell

forms its input or output interface.

D3
P2 N3 P2
D1 D2
| — | —
A Tr ATPL N1 N2
D4
c > c
P3 N4  P3
@ (b)

Figure 15.2: A sample design with parasitics

Parasitic effects are incorporated into a design in a three stage process which involves extraction of
the parasitics from the circuit netlist, modeling them with a suitable model (for example, the RC-tree
model) and incorporating them in the original circuit for analysis. The result of this exercise results
in parasitic nodes and parasitic devices being incorporated into the original netlist. Parasitic nodes
are logical points on the interconnect that serve as a endpoint for parasitic devices which are logical
components introduced to model the effects of parasitics. Figure 15.2(a) shows the connectivity between
cells A, B and C. The interconnect is represented by closely spaced parallel lines. Figure 15.2(b) shows
the interconnect after parasitics have been taken into account. Parasitic nodes are represented by filled
circles (N1,N2,N3,N4) while parasitic devices (D1,D2,D3,D4) are represented by filled boxes. Parasitic
nodes which also form the ports of a cell are shown with unfilled circles (P1,P2,P3).
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The data can be broadly classified under the following categories.

e Netlist data

The netlist shows the electrical connectivity of the circuit. Design entities such as cells, ports,

etc fall under this category.

o Layout data

The layout related information of the design elements and the parasitic data fall under this

category. Data stored include layout geometries, length and width of various metal layers, etc.

o Characterisation data

The library cells used in the design have characterisation information. These are used in subse-
quent calculations for a design using them. The data include the output capacitance for different

ports of a cell, etc.

e Parasitics data

The DIAS system mainly deals with parasitic data. For each signal in the circuit, details about
the interconnect model are stored in the database. Also, using the interconnect model, the values
obtained for different parameters of interest such as slew at the output terminal, the delay due

to the parasitic elements are stored in the database.

The DIAS data model captures the parasitic domain and uses the well known Rumbaugh notation

to depict the model. The entire model is given in Appendix C.

15.4 Schema Manager

The schema contains information about all the types in the model. It reconstructs the schema defined
by the model. This is necessary even though SDL constructs type information only because SDL has
no knowledge of the semantics that link the attributes to their methods in a class. This information
is important for ad-hoc querying as will become evident soon. The reconstructed schema is stored as
a sequence of records with each record describing information related to an attribute of a class. Thus,
the total number of records in the schema is equal to the sum of all attributes of all classes in the

object model. A schema record template is shown in Figure 15.3.

User System Class Coallection Set of Other
AttrName| AttrName| Name Type methods | Information

Figure 15.3: A Schema Record

The record contains attribute name as defined in the object model by the designer of the system and
the attribute name as referred to by a user of the system (these are represented by System AttrName
and User AttrName, respectively, in Figure 15.3). The User AttrName allows the user the flexibility of

using aliases to names of attributes of classes. It also contains the class to which the attribute belongs
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(referred to as Class Name). The Collection type of the attribute gives information about the collection
that it qualifies. The attribute name may qualify a set of objects, or maybe a reference to another
object or may refer to a base type. The Set of Methods field contains a set of method names that can
be used to perform operations on the attribute. Some other information such as maximum attribute
width may also be stored for purposes of formatting, etc.

The user can specify the attribute list and other information in the form of a table and an automated
tool called the schema loader transforms this textual information and stores it in the schema section
of the database. The Schema Manager reads this information from the database at runtime and stores
it in a hash table structure in main memory to reduce overheads. The schema manager also updates
information modified at runtime (for example, the maximum attribute width changing as a result of an
insertion). The schema manager also maintains a query graph of the entire schema (which is necessary

for semantic checking purposes at later stages) using the query model described in chapter 13.

15.5 Query Processor

This section describes in detail the construction of the query processor. Figure 15.4 shows the archi-
tecture of the query processor. The QUERY and the RESULT are input to and output from the query

processor respectively.
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Figure 15.4: Query Processor Architecture

The query processor takes as input the query in the form similar to OQL [Catt94]. The interface
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server transfers the query to the query evaluator which parses the query, creates a corresponding
parse tree and evaluates the query for semantic inconsistencies with the help of the schema manager.
The query evaluator discards the query if an error is found and informs the interface server. If the
query is semantically correct, the query evaluator transfers the parse tree to the query executor which
generates a flow, optimises it, and then executes it. The results of the query are transferred to the
interface server which then displays the results to the user in a specific format. We now describe each

of these components in greater detail.

15.5.1 Query Language

We describe the query language used to represent a query and highlight some of its capabilities. The
language specification is inspired by OQL and implements a subset of it. The query language built was
however found sufficiently powerful for data manipulation in the parasitics database. In the following
discussion, we refer to a path expression as complex if either its length is greater than 2 or if the length
is 2 and the leaf node is not a base type, else we call the path expression simple.

A predicate is a triple of the form < PathFExpression,operator,value >. The operator could be
one of the relational operators (>, <, >=,<=,==,! =). The value could be one of integer, double or
string. A predicate is complex if the path expression contained is complex, else the predicate is said to

be simple. The language itself can be broadly defined as shown in Figure 15.5.

SELECT <PathExpression>, ... , <PathExpression>
FROM  <TopLevelObject> in <TopLevelClass>
WHERE ( <expression> OP ... OP <expression> );

Figure 15.5: Query Language Syntax

The language consists of the SELECT operator which performs the object projection operation,
which is essentially extracting attributes from the objects. The FROM operator is used to define the
toplevel class name which represents the type of the root node of the path expression. In DIAS, the
toplevel class has been implicitly assumed for the sake of convenience. Thus, it is enough to specify the
instance name without specifying its class. However, the WHERE operator is used to define predicates
that the resultant objects of a query must satisfy. The WHERE clause itself can be complex and is
abstracted in the figure as series of ezpressions separated by the OP operator (which could be an AND
or OR). The expression can contain simple or complex predicates or both and an arbitrary number of
them can be linked with the AND and OR operators. The ezpression clause can also contain other
SELECT-FROM-WHERE operators thus forming a nesting hierarchy. Thus the expression maybe deep
in two orthogonal directions — one dependent on the number of predicates, and the other dependent
on the number of nesting level of expressions. An example query is given below and its specification is

given in Figure 15.6.

QUERY
List the names of signals in the design FpuDesign which have a low to high transition delay greater
than 20nS, and have greater than 4 terminals associated with it, and the estimated prelayout wire

capacitance is less than 0.5pF.
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SELECT Signals.NetName
FROM  FpuDesign
WHERE ( Signals.Sources.Timings.Transitions.LHValue > 20
AND Signals.NumTerminals > 4
AND Signals.PreWireCap < 0.5
);

Figure 15.6: An Example Query Specification

For the following discussion, the path expressions in this query are referred to by symbols as shown

below.
o P1: Signals.Sources. Timings. Transitions. LH Value
e P2 : Signals. NumTerminals
e P3: Signals. Pre WireCap

All the predicates contain the toplevel object (in this case, FpuDesign) implicitly specified for user
convenience. With this observation, it can be seen that the predicates are all complex since the the
path length of the path expression is greater than 2 in all cases. The grammar for the language can be
found in Appendix D.

15.5.2 Interface Server

The interface server module is intended to provide a user-friendly interface. This module takes the
input specification and transfers it to the query evaluator. If the query evaluation results in the query
specification being found incorrect, the query evaluator signals the server to report the error. The
interface server is also responsible for tasks such as interpreting the path expressions in the top level
SELECT clause and applying them to the result objects of the query. The interface server, thus,
iterates through the result objects of a query, and formats the output. The iteration process itself may
need to traverse query graphs. This is necessary because dynamic typing is not implemented and hence
object projection cannot be done by the query executor itself. The interface server, while performing

the tasks mentioned, can be viewed to be a place holder for a more sophisticated interface in the future.

15.5.3 Parser and Tree Generator

The Parser module of the query evaluator is responsible for the parsing of the input query specification
and the creation of a parse tree. The query language grammar itself is specified as input to a parser
generator tool (yacc) and a parser is generated. The lexical analyser to feed the parser is generated
using a token specification specified to the lexical analyser generator (lex). Thus, at runtime, the lexical
analyser inputs tokens read from the query specification to the parser, which ascertains the correctness
in syntax of the specification. Thus, syntax checking is done as part of the parsing operation. As the
parser scans the input query specification, it builds internal data structures which transforms the input
query into an internal format. The path expressions specified in the SELECT clause are stored as a

set for each level of nesting. The information of the top level object name is also stored for each level
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of nesting in the query. The predicates which the resultant objects should satisfy are stored in the
form of a parse tree. The parse tree is built by a series of operations which essentially entails building
subtrees for each predicate and merging them with the corresponding operators for each level of nesting
in the query. The parse tree built for each level of nesting is then combined into a single parse tree by
a series of merge operations preserving the semantics expressed by the query. Thus, at the end of the
parse operation, the nesting in the query specification is converted to a tree structure which enables
easier processing of the query. However, the information about the level of nesting is maintained to
aid semantic checking, propagating results up the tree, etc. Figure 15.7 shows the parse tree generated

for the predicates in the query specification of Figure 15.6.
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Figure 15.7: An Example Parse Tree

The Parse tree consists of three types of nodes. Leaf nodes (represented by rectangles) store either
path expressions or values. The internal nodes represent operators and they could in turn be either the
comparison operators (represented by ellipses) or logical operators (represented by rectangles). This

differentiation is made because of the inherent difference in their implementations.

15.5.4 Semantic Evaluator

The semantic evaluator is responsible for evaluating the correctness of the query. The semantic eval-
uator module builds a query graph for its semantic checking. The query graph is built in stages. For
each leaf node representing a path expression in the parse tree, a query graph is constructed. The
query graph formed by the union of the query graphs of all the path expressions represents the query.
The query graph constructed in this way for the example query specification of Figure 15.6 is shown
in Figure 15.8.

Once the query graph is constructed, semantic evaluation is initiated. Some example evaluation

operations process are listed below.

e The paths specified by the query are checked for consistency with the schema. This verification is
done by checking whether this graph is a subgraph of the query graph maintained by the schema
manager. If it is not a subgraph, it implies that there exists classes that are referred whose

definition do not feature in the schema.
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Figure 15.8: Query graph for specification in Figure 15.6

e Explicit joins are disallowed by the query processor in its current implementation. Attempted
explicit joins are detected by examining the query graph constructed for uniqueness of the root
node of the subgraph representing a particular level of nesting. If two root nodes exist for a
subgraph constructed for the level of nesting, an explicit join error is signaled to the interface

server.

e A query graph for the path expression in the SELECT clause is constructed. If the intersection
of this graph with any of the subgraphs representing the predicates in the query result in a null
graph, a warning is generated for a possible semantic error wherein a constraint clause has been

specified that has no effect on the result.

e The left hand sides in the predicates are allowed to have only path expressions and the right hand
sides are allowed to have only base values. This is ensured by examining the predicates. Type

mismatches between the left and right hand side of a predicate are also detected.

e Though the query language grammar allows for representation of multiple path expressions to
be expressed in the SELECT clause, the system enforces only a single path expression to be

specified due to the absence of dynamic typing.

e Relational operators are defined on only the base types and hence results of nested statements

can only be base types in the current implementation.

15.5.5 Flow Generator

The flow generator module is responsible for implementing the order of evaluation of operators in the
parse tree. The generator, thus, decides on the associativity of operations depending on the rules built
into it. Normally, the predicates are evaluated left to right, but this order may need to be modified
depending on the availability of operands. This situation is especially true if the parse tree is left deep
or right deep which occurs when nesting of queries is involved. Thus, to summarise, the flow generator
is responsible for deciding the order of evaluation of the subtrees (a subtree here is used to depict one
operator node and its immediate children). In the current implementation, the flow generator generates
the subtrees by detecting subtrees in a postorder fashion. Thus, for the parse tree of Figure 15.7, the
subtree representing the predicate < P1,>,20 > is evaluated first, followed by the subtrees representing
< P2,>,4 >. The subtree rooted at the AND operator that is the root for both the predicates is then
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evaluated followed by the subtree representing the predicate < P3,<,0.5 >. The subtree at the root

node of the parse tree is evaluated last.

15.5.6 Optimiser

The optimiser is responsible for speeding up operations at the internal nodes and currently concerns
itself mainly with the logical operators. The optimiser thus deals with subtrees whose root is a logical
operator. The operator uses logical OIDs of the operands, which are usually collections of objects. The
optimiser first sorts the OIDs in the respective sets in the operand nodes using a sorting technique
such as quicksort using the logical OID as the key to sort on. Once the lists are sorted, the optimiser
implements the logical operation on the logical OIDs itself without requesting for the objects on disk.
This operation on surrogates instead of the actual objects themselves can be implemented in main
memory itself thus speeding up the evaluation of the query. The AND operator is implemented by
performing a surrogate intersection of the sets that form the operands and the resultant set of identifiers
are propagated up the tree. The OR operator is implemented by performing a surrogate union operation

and the resultant set of identifiers propagated up the tree.

15.5.7 Executor

The executor module actually uses the other modules and executes the query. Each subtree generated
by the flow generator is used to execute a portion of the query. The executor uses the optimiser to
perform the optimisation operations when logical operators are involved. The executor uses the query
graph constructed by the semantic evaluator to evaluate path expressions. The query graph is traversed
node by node with method information supplied by the schema manager. Since the query graph nodes
can contain parameterised types, the executor has to to be able to traverse portions of the query graph
multiple times. Thus, the executor maintains information about the portion of the path to traverse
repeatedly. For the example graph shown in Figure 15.8, the node representing the class Signal can be
considered to be a set of Signal, since the attribute Signals is implemented as a set. Thus the executor
has to repeatedly traverse the subgraph rooted at Signal in order to fetch the required values for all
the signals in the design. The value fetched is then compared using the relational operator specified
in the subtree. The query graph may also contain references which have to be handled as a separate
case by the executor. These references however, do not cause repeated traversals of the query graph
by themselves. Access methods are used by the executor if available for the path in consideration.
The executor also decides from the select expression, the object in the path expression that needs to
be stored as the result and which should be propagated up the tree. This is determined by marking
the schema graph at the point at which the class representing the object to be propagated exists. In
the case of the example of Figure 15.6, it can be seen that the marker would be placed at the node
representing Signal in the query graph since these objects are required by the select expression to
project the relevant attribute. This resultant object itself is determined by an intersection of the query
graphs representing the select expression and the predicates at a given nesting level. The intersection
gives the maximal path that is common to both the select expression and the predicates. The resultant

objects obtained are transferred to the interface server which handles the output to the user.
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15.6 Access Methods

The DIAS kernel implements some of the access methods described in chapter 14. The access methods
were chosen after analysis of the pattern of possible queries that DIAS would be called upon to handle.

In the current implementation, paths that need to be indexed have to be identified at compile time

itself.
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Simple Value Based access methods

To answer queries based on simple values (literals) the Bt tree index provided by SHORE is
used extensively. The trees were built on explicit attributes in the domain as well as some
parameterised types such as sets used in the implementation. Since exact match queries were not

expected to be frequent, extendible hashing was not implemented.

Aggregation based access methods

The DIAS model contains a number of aggregation hierarchies some of which are virtual hierar-
chies created through references in the model. The presence of virtual hierarchies are taken into
account while deciding the paths to be indexed. For the DIAS domain, updates were expected to
be infrequent, while retrievals were expected to be frequent. This is so because entire designs are
loaded and then used by various tools to analyse them. Therefore, the bottleneck was expected
to be in the retrievals. Hence, the nested index was chosen. However, the path index was also
implemented as some paths in the graph required retrieval of intermediate nodes as well. It was
felt that the path index would also cater to updates in the future in the absence of reverse pointers

being maintained along paths in the database.

Inheritance based access methods

The hcC tree was implemented to address the issue of inheritance based queries in the DIAS
database. This was done since the hcC tree performs well against both single class and class
hierarchy queries which is a primary requirement since queries could be directed at a single class

or a hierarchy in the DIAS domain.

We looked at the design of the query processing system in this chapter. Specifically, we looked at the
interactions that existed among the query processor, the schema manager, the model implementation
and the access methods module. In the next chapter, we discuss the implementation of the query

processing system.



Chapter 16

Implementation of the Query

Processing System

In this chapter, we discuss some implementation issues involved in the development of a query processing
system.
16.1 Schema Manager

The schema manager has been implemented with the SDL interface provided by SHORE. The schema
information consists of a set of records, each record maintaining information about an attribute. The

SDL declaration for the schema is shown in Figure 16.1.

interface Schema

{
protected :
attribute set<SchemaRecord> Records;
// set of SchemaRecords
public
void Construct();
// the constructor
void AddRecord( in ref<SchemaRecord> Rec );
// add record to schema
ref<SchemaRecord> GetRecord( in short Num ) ;
// get a record from schema
short GetNumRecs();
// the number of records
};

Figure 16.1: SDL declaration of the schema

The Figure only shows the declaration of the schema interface and does not show the declaration

of the SchemaRecord interface and other subsidiary interfaces required for the schema manager.
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The schema loader takes as input a text file specification of the schema and loads the schema with
the information. The loader consists of a parser which is generated by yacc whose grammar is trivial
and hence not given. The loader does certain checks for consistency in the input and then enters the
data into the schema by making calls to the SHORE server.

16.2 Parse Tree

In this section, we describe the parse tree construction. The parse tree is constructed as the parser
scans the query specification and is constrained by having no knowledge about the predicates that have
not yet been read and hence about the nesting levels. Thus, the parse tree construction is done in
stages for every level of nesting and then combined into a single parse tree while unrolling the nesting.
The intermediate parse trees are stored in table structure called the Parse Table. Figure 16.2 shows a
snapshot of a portion of the parse tree in construction. The figure also shows the contents of a node
in the parse tree. The parse tree for every level is constructed by maintaining their constituents on a

stack. The figure shows a list implementation of the stack.
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Figure 16.2: Snapshot of Parse tree under construction

The first column in the parse table contains a flag pair that is used to denote the state of each
record in the table. The first flag, called the OperandFlag, denotes the operand that the parser has not
yet seen for the current record entry. This could be the left operand (L), the operator (C) or the right
operand (R) of a predicate. The second flag, called StatusFlag, denotes the status of the record entry.
This denotes whether the record has a complete subtree for the current level (in which case it is said
to be ready for a merge of levels and denoted by R) or an subtree that is waiting for a an operand to
be evaluated at a higher nesting level (in which case it is denoted busy (B) ). The second field contains
a list of subtrees representing constructs seen by the parser until this stage. The example is of a query

with a nesting level of 4. The figure, thus, shows the subtree at level 4 to be complete while that of



CHAPTER 16. IMPLEMENTATION OF THE QUERY PROCESSING SYSTEM 139

levels 2 and 3 are waiting for a left operand, while that of level 1 is waiting for a right operand. At
this point, the merge of levels 3 and 4 is done using the flags at level 3. A left node is inserted for level
tree with the subtree from level 4 and parsing continues to find the operator for this operand and its
right sibling. A merge of nodes at level 3 is done to get the subtree for level 3 and it is then inserted
at the appropriate location at level 2. This operation continues till the parse is complete at the end of

which only one tree at level 1 exists which is the desired parse tree for the query.

16.3 Query graph

The query graph representation had two main entities, the node and the edge. Thus, the implemen-
tation of the query graph contains two types of structures, one to represent the node and the other to
represent the edge. The structure representing the node contains the class name, and a set of pointers
to edges that it connects. The structure representing the edge has pointers to two nodes and has
attribute and the symbol information as present in the query graph. This organisation, while being
simple, facilitates the graph operations such as union, intersection and subgraph detection. These
operations then represent simple traversal of these data structures and manipulation of the structures.
Virtual edges and virtual hierarchies are detected with the help of the edge qualifiers and are incorpo-
rated into the query graph at the appropriate place. Scoping in queries is implemented by the traversal

along the virtual edges.

16.4 Subtree generation

The Flow generator described in section 15.5.5 generates subtrees which are then used in the execution.
The subtree generation algorithm is described in this section. The tree itself is built as a template,
and has its corresponding tree iterator which is responsible for returning one node of the tree at a time
following some order. The flow generator incorporates postorder traversal of the tree. This iterator
is implemented in a non-recursive way which is necessary in order to be able to store the state of the
traversal between consecutive calls to the iterator. The generator is thus responsible for generating
subtrees rooted at an operator that have both its operands ready. For this purpose, a stack is used to
contain the nodes. Figure 16.3 shows the function to compare two nodes while Figure 16.4 shows the
algorithm used for subtree generation. The PUSH and POP represent the familiar stack operations,
while the NEXT-TREE-NODE represents the iterator operation.

16.5 Optimisation

The optimisation in the logical operations is performed by the implementation of the result list as a
linked list. The linked lists representing the sets of the two children of the subtree being evaluated are
sorted on the basis of their logical OIDs. The AND and OR operators are implemented using the union
and intersection operation, respectively, on the linked lists. The resultant object’s OIDs are stored in
the result list of the root of the subtree and propagated up the tree. A further optimisation is done if

the operator is an AND. In this case, when the subtree to be evaluated has a parent as the operator
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Function CompareNodes: args Nodel, Node2

begin
if Nodel.parent = Node2.parent // if parent of the two nodes
Marker = NEXT-TREE-NODE // are equal, the next node in
PUSH Marker // the post order traversal is
else // the parent node and a subtree
PUSH Nodel Node2 // is generated, else the nodes
Marker = NONE // are stacked till the siblings
return Marker // are found.
end

Figure 16.3: Node comparison for siblings

Algorithm GenerateSubTree

begin
if NumStackedNodes >= 2 // Compare the nodes on
Marker = CompareNodes POP,POP // the stack. This condition
if Marker != NONE // is necessary to check
return Marker // for internal nodes forming
Node = NEXT-TREE-NODE // a subtree.
if Node = NONE
return NONE // the termination condition
PUSH Node
while TRUE
Marker = CompareNodes POP, NEXT-TREE-NODE
if Marker != NONE // Iterate till a subtree is
break // found by finding two
return Marker // consecutive nodes with the
end // same parent.

Figure 16.4: Subtree generation algorithm

AND and its left tree has been evaluated, the subtree evaluation process is done on the objects obtained

from the left tree evaluation.

16.6 Execution

The execution of the subtree can be broadly classified as those that need traversal of the query graphs
and those that do not. The first set of subtrees form the leaf nodes of the tree and hence contain path
expressions that have to be traversed in order to retrieve objects. The second set of subtrees essentially
have the objects at their nodes and need only to operate on them. We describe the evaluation of a
subtree involving the query graph traversals. Consider the query graph example of Figure 15.8. The
Signal class node represents a set and so does the SLTiming class. The number of path instantiations
that need to be traversed due to these two sets can be seen to be the product of the instances of these

two sets. Thus, the query executor has to be able to dynamically traverse all paths instantiations
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which implies that it should be able to generate all the instantiations along any query graph. It can be
seen that the generation of all the instantiations is a correctness issue. To perform this operation, the
query traversal is implemented by maintaining markers at each set valued node and generating paths
exhaustively. The algorithm shown in Figure 16.5 accomplishes this by iterating over the members of

a set while using recursion to traverse the query graph whose length can vary with each query.

Function TraverseGraph: args Marker
begin
while Marker != NULL
if Type = BASE
break
else if Type = REF
Use the REF to get next object using dynamic binding.
Store the result object.
else if Type = SET
Num = Cardinality of set using dynamic binding.
Set Marker to current node.
for I:1 to Num
Get Object[I] using dynamic binding.
TraverseGraph Marker
Restore Marker
Handle Base type comparison
Compare query graph of select expression with that of predicate.
Store the relevant object of the current path in result list.
end

Figure 16.5: Query graph traversal algorithm

The algorithm shows the core of the execution steps executed on a single subtree. The information
about the methods to be called to obtain the relevant information at each stage is obtained from the
schema manager. Once the methods are obtained, they are executed by dynamically binding them.

The result of the method execution is then used for further processing.

16.7 Heterogeneity

The problem of handling a heterogeneous collection of objects by a query was also addressed. This
problem was overcome by including an abstract base class from which all other classes inherit. This
inheritance provided the answer to referring to any object in the database with the reference to the
base class. Thus, the result list consists of a list of references to the base class. Since references to the
inherited classes are compatible with those of the base class, the list itself could consist of heterogeneous
collections of objects. This inheritance also allowed for the dynamic binding of methods wherein they
were declared virtual in the base class. Thus, it was possible to operate on objects in the result list,
wherein dynamic binding of methods was used for data manipulation.
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16.8 Other Detalils

The query processing system has been built in the C++ programming language. The schema manager
and the access methods module use SDL for the declarations and C++ binding provided by SHORE to
define the methods. Template classes, which are container classes for objects of other types, are imple-
mented for the linked list, the tree and the stack. Extensive use of operator and function overloading
has been made throughout the implementation. Dynamic binding features of C++ were employed to
provide ad-hoc query capability which uses runtime binding with information about the methods being

obtained from the schema manager.



Chapter 17

Bulkloading in OODBMS

17.1 What is BulkLoading?

Bulkloading is the process of mass-populating a database with collected data. As more and more
applications move to object oriented systems, bulk loading in object oriented systems has assumed
importance. Bulk loading techniques available in conventional database systems cannot be used since
the techniques rely on properties found in those systems which are absent in object oriented database
systems (for example, a primary key in relational databases). Thus, new techniques need to be evolved
to provide efficient bulk loading in object oriented database systems. Some algorithms maybe found
in [WN94].

The data in question maybe in any user defined format and maybe textual or binary in nature.
The bulkloader thus needs to have a knowledge of the input format and the corresponding database
format to represent the information. Sometimes, bulkloading also involves simultaneous creation of
certain indices for efficient access and may also incorporate semantic data checking depending on its
sophistication. Though the term bulkloading suggests a unidirectional movement of data from files
into the database, the term is also used to mean the reverse process of restoring a data file from the

database.

17.2 Necessity

e Object Oriented Database users are users whose problem domains are complex thus needing
powerful modeling techniques in order to capture the domain in a natural and efficient manner.
Until recently, in the absence of object oriented database systems, users had to use conventional
systems for their data management which proved inadequate for a variety of reasons. However,
vast amounts of important data were generated in this period which cannot be discarded or
regenerated. Hence, it becomes important for such users to be able to move all the legacy data

into the object oriented systems that is better suited for the problem domain.

e Most of the current object oriented database systems do not provide an explicit bulk loading
facility and database population is done with the help of statements in the database manipulation
language itself. This is a good solution for database population of small volume data but needs

more specialised loading mechanisms if the data to be loaded runs into megabytes of objects
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of data. Certain optimisations to access data can be done which may speed up subsequent
query processing (for example, indices maybe built on large set valued types automatically).
Additionally, a load utility can group certain operations, such as integrity checks, to dramatically
reduce their cost for the load [Moha93].

e Users of object oriented database systems sometimes need textual dumps of data or portions of
the data. This maybe done for automated debugging which operate on existing file based formats.
It maybe impossible in the short term to create automated debugging facilities on the database

itself and also due to the fact that many such tools may require to be rewritten.

e Objects may need to be reclustered for performance reasons. There may not be an efficient way
to recluster online especially if the database uses physical object identifiers which map to disk
addresses. In such cases, it might be easier to dump the objects in the order to be reclustered

and as such reclustering can be done on a reload.

e Users may feel the necessity to ascertain the accuracy and correctness of the data moved to the
OODBMS. This especially gains importance during development and initial installation of an
OODBMS. A textual dump often serves the purpose in a simple and convincing manner which

otherwise would have to be ascertained by queries on portions of the database.

17.3 Issues in bulkloading in OODBMS

o Surrogate identifiers

Objects are referenced with the help of object identifiers which are independent of the semantics
of the data contained in the objects. This is in contrast to the situation in relational databases
where each tuple is identified by a primary key and foreign keys are used to depict relationships.
Such keys are part of the data itself and as such are used during bulk loading to generate
relationships. However, in OODBMSs, relationships are represented through object identifiers.
Thus, the relationships in the data which is to be loaded must be represented by alternate means
since object identifiers are generated by the database at object creation time only. Thus, such
relationships are represented with the help of surrogate identifiers which essentially are pointers

to objects in a relationship. These pointers themselves maybe represented as strings or integers.

o Inverse relationships

Inverse relationships refer to the presence of bidirectional relationships between objects. This
implies a dependency from an object to another and necessitates update of one if the other is
updated. Such relationships are often created by OODBMS and as such needs to be handled
during the bulk loading of data. The problem in handling such relationships is that, during
sequential creation of objects from the data file, one object involved in the relationship may need
to be created which references another object not yet seen by the bulk loader. The object not
seen yet also needs to be intimated about the relationship. This maybe solved by immediately
creating an instance of the object not seen and updating only its inverse relationship. However,

this leads to performance problems.



CHAPTER 17. BULKLOADING IN OODBMS 145

o Circular relationships

Objects maybe involved in a circular relationship which maybe a direct or indirect relationship
between two objects. A special case of a direct circular relationship is an inverse relationship.
Apart from resolving surrogate identifiers as in the case of inverse relationships, the bulk loader

must be able to break cycles while scanning the input data.

o Implicit relationships

Coupled with the above problems, there may also be some text based data files that store data
having a definite and well defined structure wherein relationships are represented implicitly. For
example, the levels of nesting in the representation of one object with respect to another may
define a containment relationship between the two. Such relationships are referred to as implicit
relationships. Implicit relationships also include implicit inverse and implicit circular relation-

ships.

o Memory Constraints

The bulk loading of an OODBMS is not a value adding activity in a commercial setup. Hence,
it maybe an activity forced to run in parallel with other value adding activities (for example, a
SPICE analysis of a VLSI circuit). Being a low priority job, it maybe forced to limit memory usage
in order not to slow down other memory intensive jobs. This puts the additional burden on the
design of the bulk loader to be able to perform efficiently with limited memory availability. Thus,
the bulk loader may require direct control on the buffer management policies of the OODBMS.

Some loading algorithms which resolve surrogate identifiers and inverse relationships can be found
in [WN94]. The algorithms deal with the problem of surrogate identifiers and inverse relationships
using one or two passes of the data file. These algorithms deal with the problem in one of three
ways: The two pass algorithms create the objects in one pass and populate them in another pass. The
one pass algorithms, on the other hand, use todo-lists wherein object identifiers of objects involved in
relationships with objects not seen yet are stored and updated at a later stage. One pass algorithms also
exploit logical object identifiers which can be obtained from the database storage manager before the
actual object is created. Variants of this updation process exist taking into account various parameters

like clustering. However, these algorithms do not take into account the presence of implicit relationships.

17.4 The DIAS BulkLoading Architecture

The DIAS bulkloading architecture is discussed in this section. The problem is to populate the DTAS
database system with parasitic information available in a file based format. The files containing the
information are textual in nature and employ a definite grammar structure for compact representation.
The architecture of the DIAS Bulkloader is shown in Figure 17.1. We discuss the components of the

bulkloader in this section.

17.4.1 DIF Data File

The input text file containing the parasitic information, also called Delay Interchange Format (DIF)

file, contains parasitic information represented by a well defined grammar. It is mainly divided into
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Figure 17.1: Bulkloader Architecture

two sections - the CELL section and the DESIGN section. Each DIF file represents information about
a particular design.

The CELL section gives the list of all library cells used in the construction of the design and their
associations and characteristics. A portion of a sample DIF file has been extracted and shown in
Figure 17.2. Though the figure is by no means complete, it serves to demonstrate various aspects of
the DIF file. The figure shows a portion of the CELL section.

In the DIF file, actual data is generally preceded by tokens which serve to qualify the data. This
has been done due to the presence of variable length data against every such qualifier and hence making
it difficult to make the qualifier implicit. Examples of tokens as seen in Figure 17.2 are CELLS which
denotes the CELL section, PORTS which denote the ports of a cell. The NAME token denotes a name
or names and depending on context could denote the name of a cell, port, or other named objects.
The CAP token denotes values following it are capacitance values whose units are to be read from a
portion of the DESIGN section. The DIRECTION token qualifies the type of port.

Each cell is identified by the occurrence of a NAME at the topmost level of nesting. The name
string itself serves as a surrogate identifier for any future references to the cell object. Each cell contains
information characterising it. In this example, only the PORT information has been shown. The fact
that cells are associated with ports is represented by a implicit relationship defined simply by the level

of nesting. Each port also has a name which is identified by the occurrence of the NAME token and
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is differentiated from the NAME token of the cell name again by the level of nesting. Associated with
each port is information about the port such as its direction (for example, an input port), and the
loading capacitance represented here as a triplet of values which represent the minimum, nominal and
maximum values. The existence of many ports is recognized again with the level of nesting involved
when the NAME token is read. The cell and port names are usually defined by the designer during
the design phase itself.

(CELLS
(NAME "S3and2_a_BC"
(PORTS

(NAME "in[O0]"
(CAP 0.031823 0.031823 0.031823)
(DIRECTION INPUT))

(NAME "in[1]"
(CAP 0.031823 0.031823 0.031823)
(DIRECTION INPUT))

(NAME "out"
(DIRECTION OUTPUT))))

(NAME "S3inv_a_CC"
(PORTS

(NAME "in"
(CAP 0.025934 0.025934 0.025934)
(DIRECTION INPUT))

(NAME “"out"
(DIRECTION OUTPUT)))))

Figure 17.2: Sample DIF structure

The DESIGN section, which is not shown in Figure 17.2 contains information about the design
itself. This section contains information about various parameters used in the design (for example, the
units used for capacitance values). It also contains all the signals in the design. Each signal contains
information about the terminals involved, and the rctree associated with it which is represented by a
series of parasitic nodes and the parasitic values between consecutive nodes. Each signal also contains
information about the timing delays associated with each source terminal and also the timing delays
between each source and load pair. The representation is similar to the CELL section in that nesting
is used to specify implicit relationships both inverse and circular. The surrogate identifiers used can

be both names (for example, signal name) and numbers (for example, source port number).

17.4.2 Parser and Translator

The parser itself consists of a lexical analyser and a parser generator built using lex and yacc tools
respectively. The lexical analyser feeds the parser generator with tokens and the parser generator does
semantic checking using the defined grammar and produces the corresponding C file to be used in the
parsing. During parse, the data is extracted from the given DIF data file and stored in main memory
data structures. The main memory data structures were used to facilitate a certain amount of parallel

development with the DIAS API and also to have control on the order in which the data objects are
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clustered on disk which is now the order in which objects are converted to persistent objects.

The translator module, which forms the core of the bulk loader, actually does the semantic evalua-
tion and conversion from surrogate identifiers to object references. It includes the handling of implicit
inverse and circular relationships. The module actually uses information gleaned from the level of
nesting of an object to create the corresponding references in DTAS. The major issues addressed by the

translator module are dealt with in the next section.

17.4.3 DIAS API and SHORE

The DIAS Application Programming Interface (API) was successfully used and hence tested in the
bulk loading process. Though the DIAS API was used extensively, transaction management and
other transaction related issues were handled in the bulk loader itself to facilitate reconfiguration, if it
becomes necessary, as for example, change of working environment with decreased main memory. The
main memory data structures were converted to persistent objects as specified by the DIAS Object
model and the necessary references and links created in the process. Some system maintained links not
existing in the data but required by DIAS for efficiency reasons were also created in the translation.

SHORE was used to ultimately create and maintain the object repository.

17.4.4 Extractor and Formatter

Building elaborate printing mechanisms was required for the reverse process of extracting data from
the database and printing it in the format from which it was initially loaded. This required the
creation of surrogate identifiers as it existed in the original DIF file. Thus, it was necessary for the
bulkloading system to understand which of the attributes actually are used as surrogate identifiers
(for example, SignalName in the SIGNAL class). In other cases where no attributes represented the
surrogate identifier, and where an integer was used to specify the surrogate, the system had to generate
the identifier under the constraint that it match the surrogate identifier in the original DIF file. The
problem was handled by using an ordering mechanism on the non-attribute surrogates which was then
used in the reverse process to extract, by position, the surrogate to be used for a particular object.

The inverse and circular relationships had to be reconstructed as implicit inverse and circular
relationships in the data file. Thus, inverse and circular relationships had to be identified and the
technique of using levels of nesting used to specify such relationships. Most importantly, it required
the understanding of not outputting systems maintained references for efficiency which was not part
of the original DIF file.

The formatter module actually converts the semantic information that was recreated by the extrac-
tor module and takes care of formatting. Formatting here includes depiction of the nesting levels and
adding the necessary tokens to qualify the data obtained. It was important to recreate the original DIF
file without error either in a representation of a character or in the relative position of a attribute with
respect to another. This was necessary to facilitate future comparison of the original and the clone
DIF files to easily ascertain the correctness of the entire process of bulkloading.

The output of this module was helpful in evaluating the correctness of data loaded into the database

and also to evaluate performance.
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17.5 Handling Bulkloading Issues in DIAS

The issues raised in section 17.3 have been handled effectively in the construction of the DIAS Bulk-
loader.

The problem of surrogate identifiers was handled during the translation of main memory data struc-
tures into persistent objects. The absence of explicit forward references through surrogate identifiers
meant the loader had to handle references only to existing objects. Since references to objects created
exist, creating back references posed no problem. The DIF file, in general, did not exhibit explicit
inverse references.

Though explicit forward references and explicit inverse references were not encountered, a large
number of implicit references, some of which were nested, existed which had to be transformed into
object references. Implicit relationships were translated using a virtual stack of object identifiers which
formed top level objects at different nesting levels. The implicit relationships most often carried an
implicit inverse relationship and hence the inverse references also had to be created. This required
updating an object already existing thus causing the necessity of a read operation to fetch the object.
The other alternative is to pin the objects at different levels of nesting that are currently active. How-
ever, with the nesting levels not being deep, it was felt that performance levels will not be significantly
affected without pinning objects to memory.

The presence of implicit forward and inverse relationships create implicit circular relationships
which are broken taking advantage of the fact that nesting brings about the relationships. That is to
say, the recursion is broken at the object at the top most level of the nesting.

Memory requirements and constraints are taken care of with the help of a user modifiable resource
file which controls the extent to which the bulk loading problem maybe broken into depending on
current system constraints. Though the bulk loading process can normally be done in single long
transaction, it has been implemented as a series of transactions in the DIAS bulkloader and hence
users can control the length of the transaction thus having a virtual control over the buffer pages used
by the database. Users can specify the intervals at which translation should take place into persistent
objects or vice versa and also the intervals (in number of signals) at which the transaction should

commit thus flushing its buffer pages.
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Performance

The DIAS system has been completely implemented according to the details as described in the previous
chapters. We have conducted a preliminary set of tests to evaluate its performance. These tests were
done on real design data samples provided by Texas Instruments, Inc. The performance testing was
carried out in two dimensions: First, the performance of DIAS was compared to the earlier file based
system in terms of bulk population of data and retrieval of specific data. This helped to quantitatively
evaluate the benefits, if any, of moving from the current file based system to the DIAS system. Second,
we then quantitatively determined the impact of the several access methods on query processing in
DIAS. That is, the times taken to answer representative queries without the use of access methods
were noted. Then, the times for answering the same queries using appropriate access methods were
observed. These experiments helped in evaluating whether the benefits of the use of access methods
outweigh the disadvantages in terms of the extra storage space used. In this chapter, we present details

of the above performance study and provide a summary of the results.

Testing details

The performance evaluation of DIAS was conducted on a Sparc20 machine running Solaris2.4. The
response times indicated in the rest of the chapter represent wall-clock times. The file sizes considered
represent medium-sized designs and larger designs were not tested because of resource constraints such
as disk and main memory. Further testing will be done at Texas Instruments, Inc. We next discuss

the details of the performance study.

18.1 Bulk transfer of legacy data

Our first experiment investigated the time taken to load data from legacy text-based design files into
the DIAS database, and the time taken to subsequently dump (retrieve) the entire design contents from
this database. For this purpose, translators that were developed using the Programming Interface of
DIAS were used. The translators also monitored system resource requirements in terms of disk space
and main memory.

We evaluated the load time and dump time for different designs that represent varying degrees

of complexity. These results are presented in Table 18.1, which shows the designs, the size of the
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Design | FileSize(MB) | Terminals | Signals | Load Time | Dump Time

Designl 1.3 542 212 2:09 4:08
Design2 2.0 945 349 3:24 8:52
Design3 3.1 1583 542 7:16 16:11
Design4 5.2 2830 889 14:00 30:10
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Table 18.1: Load and dump times for varying design sizes (in minutes:seconds)

text files that contain their parasitic information, the number of terminals, the number of signals and
the corresponding load and access times. From these results, we observe that the times taken for
the transfer of data in either direction are relatively small compared to the overall time taken for all
the four stages of interconnect analysis, which is typically in the order of several hours. Thus, DIAS
provides efficient mechanisms for bulk transfer of data to and from the system. (The dump times are

higher than the corresponding loading times due to asynchronous I/0O in the cases of writes.)

18.2 Access of specific data

Frequently, the amount of data that needs to be accessed is restricted to a small subset of the whole
information, say a signal or a set of signals. We next compare the response times of DIAS with
respect to the legacy file-based querying mechanism. The query response times were recorded for
representative queries to retrieve a set of signals on the text files and the corresponding design stored
in DIAS. The results of this experiment are shown in Table 18.2. They show that DIAS provides a
significant improvement in query response time as compared to the file-based system. The main reason
for the performance improvement is that, in the file-based system, accessing the specific data requires
sequentially parsing the file until the data is located. This scan can take considerable amount of time
depending on the size of the file and the position of the required data in the file. In contrast, in DIAS,
data objects can be directly accessed by utilising the appropriate access methods. We expect that these

performance differences will increase even further for more complex designs.

| Design | FileSize (MB) | DIAS | File |

Designl 1.3 0.057 | 4.00
Design?2 2.0 0.057 | 6.29
Design3 3.1 0.063 | 11.29
Design4 5.2 0.066 | 18.71

Table 18.2: Query times for varying design sizes (in seconds)

18.3 Impact of access methods on query processing

Having established the utility of DTAS as compared to the file-based system, we now move on to study
the effect of access methods on query processing. As described in Chapter 9, users can submit queries
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using the Query Interface. The DIAS system uses a variety of access methods to help in executing
the query efficiently. We next describe the tests conducted to evaluate the performance of DIAS with

respect to the effect of access methods on the query response times.

18.3.1 Simple value based queries

To start with, we used a typical simple value based query and tested it on a set of designs of varying
sizes. We evaluated the query in terms of the time taken to execute the following query navigationally
(without using access methods) and associatively (using access methods). The representative query
chosen is

Query
Give the prelayout wire capacitance of the signal “OUT2” belonging to the design “Designl”.

with the query language specification as below:
SELECT Signals.PreWireCap

FROM Designl
WHERE ( Signals.SignalName == "QUT2" );

| Design | FileSize(MB) | Signals | Navigational | Associative |

Designl 0.1 13 1 0.06
Design?2 0.7 58 21 0.06
Design3 1.3 212 22 0.07
Design4 2.0 349 24 0.07
Designb 3.3 542 24 0.08

Table 18.3: Response times (in seconds) for a simple value-based query

Table 18.3 shows the times in seconds for answering the query for varying design sizes. It clearly
shows the performance gains achieved by the use of suitable access methods, in this case a BT tree

keyed on the names of signals of the design.

18.3.2 Queries targeted on hierarchies

The presence of hierarchies in object oriented database systems poses challenges to effective query
processing. We next evaluated queries requiring the reverse traversal of aggregation hierarchies.
A representative path corresponding to an aggregation hierarchy was chosen. The path is denoted

by the following path expression:
Design.Signals.RC Nodes.RC Edges.Resistance.NomV alue

The path chosen is significant because of the enormous number of path instantiations. This is because
a Design consists of a number of Signals, each of which has a RC tree composed of a number of RC
nodes. Each of these RC nodes are in turn connected to a number of edges. We subsequently use this

path in formulating queries to evaluate query processing for hierarchical queries.
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Point Queries

We consider the following query as a representative one to test the performance of DIAS with respect

to point queries requiring reverse traversal of an aggregation hierarchy:

Query
Retrieve the names of all signals in the design “Designl” with the nominal resistance value of a

node in the RC tree being equal to 20 units.

The corresponding query specification is as shown below:

SELECT Signals.SignalName
FROM Designl
WHERE ( Signals.RCNodes.RCEdges.Resistance.NomValue == 20.0 );

| Design | FileSize(MB) | Signals | Navigational | Associative |

Designl 0.1 13 0:12 0:01
Design?2 0.7 58 1:13 0:02
Design3 1.3 212 3:44 0:03
Design4 2.0 349 6:57 0:04
Designb 3.3 542 13:24 0:06

Table 18.4: Response time (in minutes:seconds) taken for point queries

In the absence of access methods, the query involves the forward traversal from each Signal object
down to the RCFEdge objects and testing the nominal value of the resistance for a match. In contrast,
the use of a nested indezr, keyed on the nominal value of resistances of all the signals in the design
makes it possible to retrieve directly the signal objects that match the predicate. This is evident from
the results in Table 18.4 for varying design sizes. The navigational times represent the time taken to
evaluate the query using forward traversals while the associative times are those obtained using the

nested index.

Range Queries

Range queries are more common while accessing the parasitic data of a design. For example, a typical
query would involve the retrieval of all signals that have the resistance value of an RC node falling in a
given interval. This could help in analysing a small critical portion of the circuit instead of the whole
circuit. To measure the performance with respect to such queries, the representative query shown
below is used.

Table 18.5 depicts the comparative results of forward path traversal with respect to the use of
access methods. The time taken in the former case is almost the same as the corresponding entries in
Table 18.4. This is because the query processor executes the query in a manner similar to the point
query by performing a forward path traversal for each signal and matching the predicate. The use of

a nested index, on the other hand, results in much faster response due to direct associative retrieval.
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SELECT Signals.SignalName

FROM Designl

WHERE ( Signals.RCNodes.RCEdges.Resistance.NomValue > 30.0 and
Signals.RCNodes.RCEdges.Resistance.NomValue < 200.0 );

| Design | FileSize(MB) | Signals | Navigational | Associative |

Designl 0.1 13 0:13 0:01
Design?2 0.7 o8 1:16 0:03
Design3 1.3 212 3:44 0:03
Design4 2.0 349 7:20 0:04
Designb 3.3 542 14:26 0:06

Table 18.5: Response time (in minutes:seconds) taken for range queries
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However, there is a marginal increase compared to point queries depending on the number of signals

satisfying the query predicate. Thus, we see that the use of the access methods for hierarchies leads to

significant speedup both for point and range queries.

Summary

We have conducted initial tests to investigate the performance of DIAS. The tests evaluated two aspects

of DIAS: First, its performance compared to its file-based counterpart. Second, the impact of specialised

access methods on query processing times was studied. The results have been encouraging and it

appears that DIAS shows significant gains over the file based system and that the use of specialized

access methods leads to considerable speedups.



Chapter 19
Summary and Future Work

The trend of increasing complexity of integrated circuits has led to the significant adverse impact
of interconnect parasitics. This makes it imperative that these effects of interconnect parasitics be
taken into account in chip design. The study of interconnect parasitics may be broadly considered
to have the following four stages: extraction of interconnect parasitics from the circuit, modeling
these using appropriate techniques, incorporation of these parasitics back into the original netlist, and
finally analysis of the circuit for various performance parameters. All these stages involve large and
complex data calling for effective data management. The file-based approach currently followed by
chip design systems is not satisfactory for various reasons and hence forms a serious bottleneck in the
chip design process in terms of both functionality and performance. To effectively manage the ever-
increasing vastness and complexity of this data, we have proposed an alternative database technology
based approach. A database management system overcomes the drawbacks of the file system by virtue
of its ability to handle vast and complex data effectively.

In this project, we have addressed the above issue by developing an object oriented database system,
DIAS, that is customized to supporting the needs of interconnect parasitics data. We first developed a
comprehensive object oriented model that captures the semantics of the domain. The model represents
the various aspects of design and analysis related data. We then designed and implemented the DIAS
system that implements the object model. The DIAS system architecture has the Shore server as
the backend. The server takes care of object management and transaction processing. The DIAS
kernel forms the core of the system and interacts with the Shore server. It implements the schema
for storing interconnect parasitic data. It incorporates various access methods for efficient object
access and has a complete query processing system. DIAS supports a variety of interfaces to meet the
different requirements of the system. A query interface is provided to access specific data. Existing
tools can continue to access the data using the tool interface. The programming interface helps in easy
development of new tools that access the database directly. To the best of our knowledge, this system

represents the first database-related work in the area of interconnect analysis.

19.1 Salient Features of DIAS

We next highlight the main features of the work described in this report.
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Integrated database system
We proposed a database solution for effective data management of VLSI interconnect parasitic
data replacing the existing file based approaches. The use of a database system provides a single

integrated system for all phases of interconnect study.

Object Model
The Object Modeling Technique was chosen as the methodology for software development. After
analysing the modeling requirements, we then presented a detailed object model for representing

interconnect parasitic data.

Implementation
The proposed object model was implemented on the Shore extensible database system, using a
combination of SDL (Shore Data Language) and C++.

Variety of access methods
The DIAS system incorporates a variety of access methods that are tuned to the pattern of queries
in object oriented databases. These include the CH tree, the hcC tree for inheritance hierarchies,
the nested index and the path index for aggregation hierarchies. We propose modifications to
these access methods in the form of unified indexes to efficiently answer queries targeted on a

combination of inheritance and aggregation hierarchies.

Support for legacy applications
A frequent concern for CAD applications is the migration from file based systems to object
oriented database systems. DIAS handles this issue by providing a Tool Interface that can be used

by file-based applications till new applications that directly access the database are developed.

Declarative Query Interface
A query interface that supports path expressions and aggregate types such as sets is an integral
part of DIAS. The query language employs SELECT-FROM-WHERFE statements similar to the
popular SQL.

Efficient query processing
The Query Processing System uses the appropriate access methods and performs other runtime
optimizations for the speedy execution of queries. The system is generic enough that it can

accommodate changes to the schema easily.

Easy extensibility
DIAS supports the development of various application programs through a library of classes that
forms the Programming Interface. The Programming Interface has been already used to develop

translators that convert existing design data from files to the object store.

Working Prototype
DIAS is a working prototype and currently runs to approximately 35,000 lines of code. It is
currently operational and is being field-tested at Texas Instruments, Inc. A significant aspect of
the software is that it is readily portable to a new platform having been completely developed on

public-domain software.
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19.2 Special Features of the Query Processing System

e The query processing system is built with the idea of providing a general query interface for
applications built using SHORE. The system is, thus, dependent on SHORE but independent of
any particular schema. This allows the system to be used on any application built using SHORE.

This is facilitated by the schema manager.

e The system provides a OQL-like query language interface and provides ad-hoc query capability.
The query interface implements basic features of OQL, and is sufficiently powerful to express
queries with multiple constraints. Nesting of queries is also permitted. The system also handles

parameterised types in an efficient manner.

e The query processing system uses the query model to model queries thus providing a concrete
means to express the semantics of a query. The query model helps in the representation of some

of the operations of query processing as a combination of operations on the query graph.

e The query system implements specialised access methods. BT trees provided by SHORE are used
to evaluate simple value based queries and also to index collections of objects. The nested index
and path index are used to facilitate queries on aggregation hierarchies while the hcC tree is used
to index inheritance hierarchies. The system also provides surrogate intersection as a means of

optimisation while evaluating queries to achieve a significant speedup.

19.3 Future Work on the DIAS Kernel

As mentioned above, the DIAS system is currently operational, but we feel the system can be extended
in several ways to support additional functionality and improved performance. We next outline some

suggestions for future research.

Parallelism

For efficient utilisation of resources such as main memory and CPU, DIAS can be extended from its
present centralized version into a parallel, distributed system. The Shore system has a symmetric
peer-peer server architecture that is readily scalable. An approach in this direction would be to use a
message passing library such as PVM [Sund90], for a network of workstations. An important issue then
is that of inter-object references. In the centralized case, these were easily resolved since all objects
reside on the local disk. Now, with a distributed system, two related objects may no longer reside on
the local disk. In the case where the data can be divided into isolated partitions, this problem does not
exist. However, in the general case, there must be a mechanism wherein on being presented an OID in a
global namespace, the server must be able to retrieve the object from a remote site, calling for location
transparency. Another area where parallelism may be exploited is in the area of query processing. The
existing Query Processing System may be scaled for parallel execution of queries, leading to significant

optimizations in query processing.



CHAPTER 19. SUMMARY AND FUTURE WORK 158

Extending the Object Model

The present system is designed to store mainly analysis related data. The object model could be inte-
grated with other models developed for representing VLSI design data to ensure a more comprehensive

representation of data in the VLSI design environment.

Multithreading

The Shore server provides multithreading features. These features could be put to a variety of uses.
For example, the query processing system could provide a query server that can support multiple users.

The server then spawns a thread to handle each user request.

DIAS Value Added Server

One of the features of Shore is the symmetric peer-to-peer architecture. Shore offers capabilities by
which a value-added server can be built by bundling additional features specific to the application
domain onto the Shore server itself. This feature can be utilised by developing a DIAS Value-Added
Server (DVAS). The DVAS may be built using TCL (Tool Command Language) with a customised

shell interface having a set of built-in commands.

Frameworks

Existing standardisation work in the area of VLSI CAD includes the development of frameworks. A
database system is an integral part of such a framework. DIAS could be extended by providing other
components for design methodology management so that it forms a framework integrating both design
and analysis aspects of VLSI CAD.

19.4 Future work on the DIAS QPS

Aggregate Operators
The query system, while providing ad-hoc query capabilities, does not implement aggregate
operators such as min, max, avg, etc. These operations are well defined for the base types but
may not be defined on user defined types. Also, the query system does not implement sorting
and grouping which could be used to implement the aggregate operators. Grouping is easily
accomplished by first sorting the input objects. The sort operation itself maybe costly in the
absence of BT tree indices with chained leaf nodes maintained on the attribute used as the key
for the sort. The sort operation in databases is generally implemented by merging where the
input data are written into initial sorted runs and then merged into larger and larger ones till no
more merges are possible. Aggregate operators may return scalar values or a set of scalar values.

The set of scalar values results from grouping similar items and has to be handled.

Methods in the query language
The query system currently has a facility to express queries based on attributes specified in the
schema. Methods are not captured by the query language and subsequent modules in the system.

This additional feature of being able to bind methods to the language would help in processing
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information within the query itself. This requires extensions to the query language and additional
information about methods to be stored in the schema manager. Handling the results of such a

method call is an issue that needs to be addressed. Also, type checking becomes more complex.

Dynamic typing
Dynamic typing can been implemented which enables the creation of new types at runtime. This
facilitates storing of the results of a query in the database which is useful if they were to be
used as operands in a query at a later stage. Dynamic typing involves the creation of new types
with exactly the same properties that they might have if they were statically created. This
implies preservation of properties such as encapsulation. A possible implementation could be
on the lines of dynamic typing built in ENCORE [ZM91]. Another issue to be addressed is the
insertion of the resultant type in the schema which should preserve the properties of relationships
that already exist. For example, it is necessary to ensure that insertion of a new type in an
inheritance hierarchy would actually preserve the semantic meaning of the hierarchy and inherit

the attributes of its ancestors.

Updates
The query system in operation currently is primarily a retrieval engine. A useful extension
would be to provide ad-hoc update facility. However, several issues need to be addressed in its
implementation. Versioning may be necessary if updates are allowed. Stricter type checking is
required to preserve the semantic consistency in the database. The query language needs to be
extended and so also the schema manager. The complexity of methods to be handled by the

schema manager increases and hence the sophistication of the schema manager.

Formalisms
Formalisms need to be defined for operations on objects and the subject of optimisation of queries
needs to be considered in more detail. A rule based optimisation process based on cost functions
for plan generation would be an asset to the system. This would require definitions of operators,

their properties and the relationship with the operands.

Compiled queries
The query system does not provide for the incorporation of compiled queries into the system. A
useful extension would be to build a optimiser generator on the lines of the EXODUS optimiser
generator. This facility would provide the system with prechecked, optimised queries which results
in faster response time which is a requirement in most commercial applications. This requires an
accurate estimation of cost of execution of methods. The query system now needs to understand
the cost functions and incorporate them during the optimisation phase. The Volcano optimiser

could be used to build such a system.

Performance
The performance of the query processing system needs to be evaluated. Performance metrics
need to be identified, representative query patterns generated and existing systems identified for

comparison.
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19.5 Final Remarks

In closing, we believe that our work has helped in gaining a better understanding of the issues of data
management for VLSI interconnect parasitic analysis. The development of the database system has
been influenced by the ideas and contributions of various researchers in the field of database systems
and VLSI CAD. We hope that DIAS would be a useful addition to the current efforts in the area of data
management for VLSI interconnect parasitic data and help in effective analysis of VLSI interconnect

parasitics.
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Appendix A

SDL Declarations

The following are declarations in the Shore Data Language, SDL of a few important classes.

///////// The basic design entities ///////////
interface Port
{
private:
attribute string PortName;
attribute nameset PortNames;
attribute ref<Triplet> PortCapacitance;
attribute set<Coefficient> Coefficients;
attribute ref<Transition> PortDtp;
attribute set<PathDelay> PathSet;
attribute PortDirType PortDirection;
attribute ref<Transition> OutSlew;
attribute short PortNumber;
attribute ref<Cell> OQOwnerCell;
public:
void Print( out ostream os, in lref<lref<char> > args,
in short numargs );
void Construct( in short Number);
void AddCoefficient( in ref<Coefficient> NewCoeff);
ref<Cell> GetOwnerCell() ;
ref<Cell> SetOwnerCell(in ref<Cell> NewOwner) ;
PortDirType GetDirection() ;
PortDirType SetDirection( in PortDirType NewDirection) ;
ref<Coefficient> FindCoefficient (
in lref<char> CoefName);
lref<char> GetName( in short Number );
void SetName( in lref<char> Alias);
short GetPortNumber() ;

void SetPortNumber( in short NewNum );
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};
interface Cell

{

private:

public:

};

ref<PathDelay> FindPath( in ref<Port> Source );
ref<PathDelay> GetPath( in short ind );
ref<Coefficient> GetCoefficient( in short ind );
void AddPath( in ref<PathDelay> NewPath) ;

void Capacitance(in ref<Triplet> NewRef);
ref<Triplet> Capacitance ( );

void SetDtp ( in ref<Transition> NewRef );
ref<Transition> GetDtp ( );

void SetOutSlew ( in ref<Transition> NewRef );
ref<Transition> GetOutSlew ( );

attribute string CellName;
attribute set<Port> Ports;
attribute DeviceType Type;
void Display( out ostream os, in short fieldWidth,

in short attrNumber );

void Print( out ostream os, in lref<lref<char> > args,
in short numargs );
void Construct ( in lref<char> NewName );
void SetName(in lref<char> NewName) ;
lref<char> GetName();
short NumberPorts() ;
ref<Port> GetPort(in short PortNumber) ;
DeviceType GetType() ;
DeviceType SetType(in DeviceType NewType) ;
ref<PathDelay> FindPath( in ref<Port> Input,
in ref<Port> Output);
ref<Port> GetPort(in lref<char> Name) ;
void AddPort( in ref<Port> NewPort );

interface LibraryCell : public Cell

{

private :

public :

attribute set<Transistor> Transistors;

attribute ref<TimingInfo> Timing;

short HowManyTransistors( );

ref<Transistor> GetTransistor( in short counter );
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};

interface Device

{

};

{

private:

public:

ref<Timimg> GetTiming();

attribute
attribute
attribute
attribute
attribute

attribute

void Print( out ostream os, in lref<lref<char> > args,

string DeviceType;

short DeviceNumber;

string ModelName;

string DevName;

ref<Cell> Master;

set<Terminal> PortInstances;

in short numargs );

void Construct( in lref<char> Dev, in ref<Cell>

ref<Cell>

MasterCell();

lref<char> Name();

short HowManyInstances( );

MasterTemplate) ;

ref<Terminal> AddPortInstance( in

ref<Terminal> NewPort ) ;

ref<Terminal> GetPortInstance( in short PortNum );

ref<Terminal> SetPortInstance( in short PortNum,

in ref<Terminal> NewPort );
short NumPorts ();

///////// The RC Tree related classes ///////////
interface RCTreeEdge

private:

public:

attribute
attribute
attribute

attribute

void Print( out ostream os, in lref<lref<char> > args,

ref<Triplet> Resistance;

ref<Triplet> Capacitance;
ref<Triplet> SmNC;

ref<RCTreeNode>

EdgeNodes[ 2 ];

in short numargs );

void Comnstruct(in ref<RCTreeNode> Nodel,

in
in
in

in

ref<RCTreeNode> Node2,
ref<Triplet> Res,
ref<Triplet> Cap,
ref<Triplet> SmNC) ;
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};

void Construct(in ref<RCTreeNode> Nodel,

in ref<RCTreeNode> Node2 );
ref<RCTreeNode> Partner (in ref<RCTreeNode>

CurrentNode) ;

void SetCapacitance(in ref<Triplet> NewRef );
ref<Triplet> GetCapacitance( );
void SetSmallerNodeCap(in ref<Triplet> NewRef );
ref<Triplet> GetSmallerNodeCap( );
void SetResistance(in ref<Triplet> NewRef );
ref<Triplet> GetResistance( );

interface RCTreeNode

{

};

interface Signal

{

private:

public:

attribute ref<Terminal> RCNodePort;
attribute set<RCTreeEdge> Edges;
attribute short NodeNumber;

void Display( out ostream os, in short fieldWidth,

in short attrNumber );

void Print( out ostream os, in lref<lref<char> > args,

in short numargs );
void Construct(in short Num) ;
void InputEdge( in ref<RCTreeEdge> NEdge );
ref<RCTreeEdge> GetEdge ( in short Num );
short GetNumber () ;
short HowManyEdges();
ref<Terminal> SetPort(in ref<Terminal>

NewRCNodePort) ;

ref<Terminal> GetPort();

///////// The Signal class ///////////

private:

attribute string SignallName;

attribute ref<Design> SignalOwner;
attribute set<SourceloadTiming> TimingSet;
attribute set<RCTreeEdge> RCEdgeSet;
attribute set<Terminal> Ports;

attribute set<RCTreeNode> Nodes;

attribute ref<Triplet> PreWireCap;
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};

{

public:

attribute short CriticalValue;

void Print( out ostream os, in lref<lref<char> > args,

in short numargs );
void Construct(in lref<char> Name);
lref<char> GetName();
void SetCritical( in short NewValue );
short GetCritical( );
ref<RCTreeEdge> AddEdge(in short Nodel,

in short Node2);
short AddPort (in ref<Device> Instance, in lref<char>

Name) ;
ref<RCTreeNode> MakeNode(in short NodelD);
ref<RCTreeEdge> GetEdge ( in short ind );
ref<RCTreeNode> GetNode ( in short ind );
ref<Terminal> GetTerminal( in short ind );
ref<SourcelLoadTiming> GetTiming( in short ind );
void InputTiming( in ref<SourcelLoadTiming> NewRef);
void InputNode( in ref<RCTreeNode> NewRef) ;
void InputEdge( in ref<RCTreeEdge> NewRef);
void InputTerminal( in ref<Terminal> NewRef);
ref<Terminal> SearchTerminal( in short Number );
ref<SourceloadTiming> CreateTiming(in
ref<Terminal> Source, in ref<Terminal> Load);
ref<SourceLoadTiming> FindTiming(in ref<Terminal>
Source, in ref<Terminal> Load);
short Attach(in short RCNodeID, in short PortID);
ref<Port> FindPort (in lref<char> Name,
in lref<char> Instance) ;

ref<RCTreeNode> FindNode(in short ID);
ref<Design> Owner() ;
ref<Design> Owner (in ref<Design> NewOwner) ;
short HowManyTerminals();
short HowManyTimings() ;
short HowManyEdges() ;
short HowManyNodes() ;
void SetPreWireCapacitance(in ref<Triplet> NewRef ) ;

ref<Triplet> GetPreWireCapacitance( );

////////////// The DESIGN class //////////////////

interface Design
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private:

public:

attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute

attribute

void Display( out ostream os, in short fieldWidth,

void Print( out ostream os, in lref<lref<char> > args,

string DesignDate;

string DesignDir;

string DesignLibrary;

string DesignName;

string Version;

short Loads;

DesignType DesignType;
ref<Triplet> DesignVoltage;
ref<Triplet> DesignTemperature;
ref<Triplet> DesignProcess;
double DelayUnits;

double ResistanceUnits;

double CapacitanceUnits;
ref<Triplet> ConversionFactors;
double ThresholdValue;

string ProgramName;

string ProgramVersion;

string ProgramProperty;

string TechVersion;

short TechMetallLayers;
string<50> TechName;

short PVTFromCellLib;

boolean Designisreduced;
boolean Designiscollapsed;
short Designpcmultfactor;

float Designblockarea;
set<Cell> Cellset;

set<Device> Deviceset;
set<I0ONet> IONetset;
set<Signal> Signalset;
index<string,Cell> Cellindex;
index<string,Device> Deviceindex;
index<string,I0Net> IONetindex;
index<string,Signal> Signalindex;

in short attrNumber );

in short numargs );

void Construct();

void Destruct();
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ref<Triplet> GetConvFactors ( );
void SetConvFactors( in ref<Triplet> NewRef );
lref<char> SetTechName( in lref<char> name);
lref<char> GetTechName( );
lref<char> GetDate();
void SetDate( in lref<char> NewDate );
DesignType GetDesType() ;
void SetDesType( in DesignType NewDesignType );
lref<char> GetDesDirectory() ;
void SetDesDirectory(in lref<char> NewDesignDir);
lref<char> GetLibrary();
void SetLibrary(in lref<char> NewLibrary) ;
short GetLoads();
void SetLoads(in short NewValue );
lref<char> GetDesName();
void SetDesName ( in lref<char> NewName ) ;
lref<char> GetProgramName();
void SetProgramName(in lref<char> NewProgramName) ;
lref<char> GetProgramProperty() ;
void SetProgramProperty(in lref<char> NewProp);
lref<char> GetProgramVersion();
void SetProgramVersion(in lref<char> NewProgramVersion) ;
short GetTechnologyMetalLayers();
short SetTechnologyMetalLayers(in short NewMetalLayers) ;
lref<char> GetTechnologyVersion() ;
void SetTechnologyVersion(in lref<char> NewVersion) ;
double GetThreshold() ;
void SetThreshold( in double value );
void SetUnits(in double Res, in double Cap,

in double Del);
void GetUnits(in lref<double> Res, in lref<double> Cap,

in lref<double> Del);
double GetDelUnits();
double GetResUnits();
double GetCapUnits();
lref<char> GetVersion();
void SetVersion(in lref<char> NewVersion) ;
void SetProcess(in ref<Triplet> NewRef );
ref<Triplet> GetProcess( );
void SetTemperature(in ref<Triplet> NewRef );
ref<Triplet> GetTemperature( );
void SetVoltage(in ref<Triplet> NewRef );
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ref<Triplet> GetVoltage( );
void AddCell(in ref<Cell> Dev);
ref<Cell> FindCell(in lref<char> CellName) ;
void DeleteCell(in lref<char> CellName) ;
ref<Device> FindDevice(in lref<char> DeviceName) ;
void DeleteDevice(in lref<char> DeviceName);
ref<Device> AddDevice(in lref<char> DeviceName,
in lref<char> CellType);
ref<Device> AddDevice(in ref<Device> NewDevice );
ref<I0ONet> AddIONet(in lref<char> NetName) ;
ref<I0ONet> AddIONet(in ref<IONet> NewIONet );
void DeleteIONet(in lref<char> NetName);
ref<I0ONet> FindIONet(in lref<char> NetName) ;
void AddSignal(in ref<Signal> Sig);
void DeleteSignal(in lref<char> SigName) ;
ref<Signal> FindSignal(in lref<char> SigName);
ref<Port> FindPort (in lref<char> DeviceName,
in lref<char> PortName) ;
ref<Port> FindPort (in lref<char> DeviceName,
in short PNum);
short HowManyCells();
short HowManySignals() ;
short HowManyDevices();
short HowManyIONets();
ref<Cell> GetCell ( in short ind );
ref<Device> GetDevice ( in short ind );
ref<Signal> GetSignal ( in short ind );
ref<I0ONet> GetIONet ( in short ind );
ref<Cell> SearchCell ( in lref<char> Target );
};
////////////// HCC Txee [/////////////7/////////
//The main class declared for implementing the hcC tree
typedef ref<Query> OID;

interface HCCTree

{
private:
attribute index<string,LONE> Tree;
attribute ref<CONEPage> FirstCChainPage[ NumClasses ];
attribute ref<HONEPage> FirstHChainPage;
public:

void Construct();
ref<0IDSet> SCP( in short cid, in lref<char> vl );
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ref<ClassListSet> CHP( in ref<CIDSearch>
TargetList, in lref<char> vl );
ref<CONESet> SCR( in short cid, in lref<char> vi,
in lref<char> v2 );
void CHR( in ref<CIDSearch> TargetList, in
lref<char> v1, in lref<char> v2 ,
out ref<ClassCONESet> ResultPtrl,
out ref<HONESet> ResultPtr2);
void Insert( in lref<char> v, in 0ID NewOID,
in short Cid );
void Delete( in lref<char> v, in 0ID NewOID,
in short Cid );
void Print();
ref<CONEPage> SearchClass0IDNode( in lref<char> vi,
in lref<char> v2, in short Cid );
ref<HONEPage> SearchHier0IDNode( in lref<char> vi,
in lref<char> v2, in short Cid );
ref<CONEPage> ClassChain0IDInsert( in lref<char> v,
in OID oid, in short Cid, in ref<CONEPage> Page );
ref<HONEPage> HierChainOIDInsert( in lref<char> v,
in 0ID oid, in short Cid, in ref<HONEPage> Page );
ref<CONEPage> FindClassChainOIDNode( in lref<char> v,
in short Cid, in ref<CONEPage> Page );
ref<HONEPage> FindHierChain0IDNode( in lref<char> v,
in short Cid, in ref<HONEPage> Page );
ref<CONEPage> ClassO0IDInsert( in ref<CONEPage> Page,
in lref<char> v, in OID NewOID, in short cid );
ref<HONEPage> HierOIDInsert( in ref<HONEPage> Page,
in lref<char> v, in 0ID NewOID, in short cid);
ref<CONEPage> ClassDelete0ID( in lref<char> v,
in OID oid, in ref<CONEPage> Page );
ref<HONEPage> HierDeleteOID( in lref<char> v,
in O0ID oid, in ref<HONEPage> Page,in short cid );
lref<char> MaxKey( in ref<HONEPage> Page ) ;
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Appendix D

Grammar of query language

command_line : stmts

stmts

stmts select_stmt

select_stmt : select_clause
SEMI_COLON
| SEMI_COLON
| quit SEMI_COLON
| clear SEMI_COLON

select_clause : select
identifier_list
from design_name

opt_where_clause
design_name : identifier

identifier_list : identifier
identifier_list COMMA identifier

opt_where_clause
where
OPEN_PAREN
attributes
select_operator
attributes opt_clause
CLOSE_PAREN

attributes : attribute_value
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opt_clause

select_operator

set_operator

attribute_name

relop

attribute_value

double_or_integer

attribute_name
OPEN_PAREN
select_clause
CLOSE_PAREN

set_operator
attributes
select_operator
attributes

opt_clause

set_operator

relop

and

or

identifier

NE
LT
LE
GT
GE
EQ

double_or_integer

quoted_string

double

integer
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Application Programming Interface

We next provide a description of the major classes that form the Application Programming Interface
(API) of DIAS. The API is in the form of a library of classes. The classes are divided into the following

major categories:

e Basic classes - such as for storing Triplet values, etc.

Cell-related classes

Design-related classes

Signal-related classes

RC Tree-related classes

e Delay-related classes

The description for each class is as follows:

e CLASS: <class name>

e FILE: <source file containing the class implementation>

e DESCRIPTION: <a short description of the purpose of the class>

¢ MEMBER FUNCTIONS: <list of member functions with the name of the member function, its

arguments and the objects returned>

NOTE: The list of classes and the member functions for each class described in this document is
not exhaustive. Only those classes and functions which are important in terms of the persistent data

they represent are covered.

2k ok ok ok 2k k ok ok 2k ok 5k *k %k k 5k %k %k

* Basic Classes *

2k 3k 3k >k ok 3k 3k >k ok ok 5k >k >k k 5k %k *k
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CLASS: DIAS_Object
FILE: basic.C
DESCRIPTION:
It has a linked list of DIAS_Property objects.
MEMBER FUNCTIONS:
o Add_Property( Ref<DIAS_Property> NewProp )
- add a DIAS_Property object to the linked list
- return the DIAS_Property object which matches
- Property_Name
o Remove_Property( Ref<DIAS_Property> Prop )
- remove the DIAS_Property object that is identical
- to Prop

CLASS: DIAS_Property
FILE: basic.C
DESCRIPTION:
It is used to attach a <name,value> pair with any object.
MEMBER FUNCTIONS:
o Get_Name(): char *
o Set_Name( char * NewName )

- get and set the Property_Name

o Get_Value(): char *
o Set_Value( char * NewValue )
- get and set the Property_Value

o Get_Next_Property(): Ref<DIAS_Property>

o Set_Next_Property( Ref<DIAS_Property> New_Property )
- get and set the next Property in the linked list of
- Property objects attached to a DIAS_Object.

CLASS: DIAS_Triplet
FILE: basic.C
DESCRIPTION:
It stores the Min, Nom and Max values used for representing the
various parameters.
MEMBER FUNCTIONS:
o Construct( double Min, double Nom, double Max )
- initialize a new Triplet object with the given 3 values
o Copy( double * Min, double * Nom, double * Max )
- retrieve the Triplet values in the passed arguments

o Is_Zero(): short
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- return 0 if all the three values are zero.

o Get_Min_Value(): double
o Get_Nom_Value(): double
o Get_Max_Value(): double

- retrieve individual values of the Triplet.

CLASS: DIAS_Transition
FILE: basic.C
DESCRIPTION:
It stores six Triplet values - one each for
LH, HL, LZ, HZ, ZH and ZL transitions.
MEMBER FUNCTIONS:
o Construct( DIAS_Signal_Transition trans,
DIAS_Triplet NewTriplet )
- initialize the transition corresponding to
- trans with the new Triplet value. trans can
- be one of ( 1h, hl, 1z, zl, hz, zh )
o Copy ( DIAS_Signal_Transition trans, double * Min,
double * Nom, double * Max )
- retrieve the Triplet values in the passed arguments

- corresponding to the transition trans.

Get_LH_Triplet() : Ref<DIAS_Triplet>
Get_HL_Triplet() : Ref<DIAS_Triplet>
Get_LZ_Triplet() : Ref<DIAS_Triplet>
Get_ZL_Triplet() : Ref<DIAS_Triplet>
Get_HZ_Triplet() : Ref<DIAS_Triplet>
Get_ZH_Triplet() : Ref<DIAS_Triplet>

- get the individual triplet values corresponding

o O O O O o©o

- to the transition
o Is_Zero(): short
- Are all the triplet values zero? return non-zero if so,

- else a non-zero value

CLASS: DIAS_Coefficient

FILE: basic.C

DESCRIPTION:
A Coefficient object is identified by a name and stores 6 double
values.

MEMBER FUNCTIONS:
o Construct( char * CoeffName, double LH, double HL, double LZ
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double HZ, double ZH, double ZL )
- initialize a Coefficient object with its name and 6

transitional values

Get_Name(): char *

o

Set_Name( char * NewName )

(@]

- retrieve and set the name value of the coefficient

Get_Coefficient( Coefficient_Transition trans ): double

(@]

Set_Coefficient( Coefficient_Transition trans,
double NewValue )

[e]

- get and set individual coefficient values;
- trans can take one of the following:
LH_COEFF, HL_COEFF, LZ_COEFF

ZL_COEFF, HZ_COEFF, ZH_COEFF

sokokokokskok ko sokok ko kk ok kokokkkk END OF BASTIC CLASSES sk skoskookskok sk ok sk sk sk ok sk sk ok o o ok ok ok

3k k ok 3k 2k 3k 3k ok 2k 3k 3k >k >k ok dk 5k >k k k 5k >k k 5k 5k %k %k %k

* Classes related to CELL *

3k k 3k 3k ok 3k 3k 3k ok 3k 5k >k >k 3k dk 3k >k ok 5k 5k >k dk 5k 5k %k %k %k

class DIAS_Cell
class DIAS_Port
class DIAS_Path_Delay

CLASS: DIAS_Cell
FILE: cells.C
DESCRIPTION:
This class stores information about the Name of the cell,
a set of Ports that it has and the Type of the cell.
MEMBER FUNCTIONS:

o Set_Name( char * NewName )
o Get_Name() : char *

- set and get the name of the cell

o Number_Ports() : short
- return the number of ports of the cell
o Get_Port( short PortNumber ) : Ref<DIAS_Port>
- retrieve the port identified by the PortNumber
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o Get_Type() : Device_Type

o Set_Type( Device_Type NewType )
- get and set the type of the cell : can be one of
- ( COMMERCIAL_DEVICE, MILITARY_DEVICE,
-  INDUSTRIAL_DEVICE, UNKNOWN_DEVICE )

o Add_Port( Ref<DIAS_Port> NewPort )
- add a new port to the cell
0 Get_Port( char * PortName )
- get the port identified by PortName belonging to

- *this* cell

0 Find_Path( Ref<DIAS_Port> InputPort, Ref<DIAS_Port>
OutputPort ) : Ref<DIAS_Path_Delay>
- return the DIAS_Path_Delay object that stores delay
- information between the InputPort and OutputPort of
- *this* cell

CLASS: DIAS_Path_Delay
FILE: cells.C
DESCRIPTION:
This class stores the delay information between ports of a cell.
MEMBER FUNCTIONS:
o Construct( Ref<DIAS_Port> FromPort, Ref<DIAS_Port> ToPort )
- initializes the two ports for which *this* object

- stores delay information

How_Many_Coefficients() : short

o

- the number of coefficient objects that is attached
o Get_Coefficient( short count ) : Ref<DIAS_Coefficient>
- get the coefficient object that has index count
- from the set
0 Add_Coefficient( Ref<DIAS_Coefficient> NewCoeff )
- add a new coefficient to the set
o Find_Coefficient( char * CoeffName ) : Ref<DIAS_Coefficient>
- find the coefficient identified by CoeffName

o Get_Input_Port() : Ref<DIAS_Port>
- return the input port of *this* delay object
o Get_Output_Port() : Ref<DIAS_Port>

- return the output port of *this* delay object
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Get_Intrinsics() : Ref<DIAS_Transition>

(@]

Set_Intrinsics( Ref<DIAS_Transition> NewTransition )

(@]

- get and set the intrinsic delay values

o

Get_Dtp() : Ref<DIAS_Transition>
Set_Dtp( Ref<DIAS_Transition> NewTransition )

(@]

- get and set the Port Dtp values

CLASS: DIAS_Port
FILE: cells.C
DESCRIPTION:
This class represents a port of a cell. It stores details of the
port such as its name, number, etc. and other parametric
information such as slew, etc.
MEMBER FUNCTIONS:
o Construct( short PortNum )
- initialize the port number of the port
o Construct( short PortNum, char * PortName )

- initialize the port number and port name of the port

o Any_Coefficients() : short
- Does the port have any coefficients associated with it?
o Get_Coefficient_Set_Size() : short
- get the size of the coefficient set of this port
o Get_Coefficient( short ind )
- get the coefficient indexed by *ind* in the set of
- coefficients
o Add_Coefficient( Ref<DIAS_Coefficient> NewCoeff )
- add a new coefficient to the set of coefficients
- associated with the port.
o Find_Coefficient( char * CoeffName ) : Ref<DIAS_Coefficient>

- return the coefficient object which is named CoeffName

o Get_Owner_Cell() : Ref<DIAS_Cell>
o Set_Owner_Cell( Ref<DIAS_Cell> New_0Owner )
- get and set the *owner* cell of this port

o Get_Direction() : Port_Dir_Type

o Set_Direction( Port_Dir_Type New_Direction )
- get and set the direction of the port where
- direction is one of
- ( INPUT_PORT, OUTPUT_PORT, BIDI_PORT,
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VDD_PORT, GND_PORT, UNKNOWN_PORT )

o Names_Count() : short
- return the number of names associated with the port
0 Get_Name( short Number ) : char *
- return the name with index Number in the set of names

- associated with the port

o Get_Port_Number() : short
o Set_Port_Number( short NewNumber )

- get and set the Port Number of the port

o Get_Path_Set_Size() : short
- get the size of the set of DIAS_Path_Delay objects
- associated with this port
o Get_Path( short index ) : Ref<DIAS_Path_Delay>
- get the Path_Delay object corresponding to index in the
- set of Path_Delay objects
o Find_Path( Ref<DIAS_Port> Source ) : Ref<DIAS_Path_Delay>
- return the DIAS_Path_Delay object which stores
- information about the *Source* Port and other ports
o Add_Path( Ref<DIAS_Path_Delay> NewPath )
- add a new path delay object to the set

o Capacitance() : Ref<DIAS_Triplet>
o Capacitance( Ref<DIAS_Triplet> NewTriplet )

- get and set the port capacitance values

o Get_Dtp() : Ref<DIAS_Transition>
o Set_Dtp( Ref<DIAS_Transition> NewTransition )
- get and set the Port Dtp values

o Get_Out_Slew() : Ref<DIAS_Transition>
0 Set_0Out_Slew( Ref<DIAS_Transition> NewRef )
- get and set the output slew values of the port

sokokokokskokkok ok dokokkokkkkkokk END OF CELL RELATED CLASSES skokokskok sk soskookskok s ok o sk ok
sk s o o ook ok ok ok o ok ok sk ok ko o ok ok sk Kk ko ok ok ok K

* Classes related to DEVICE x*

3k 3k 3k 3k 2k 3k 3k ok ok ok 5k >k >k ok ok 3k >k >k k 5k >k >k dk 5k >k >k %k %k 5k
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CLASS: DIAS_Device
FILE: device.C
DESCRIPTION:
The DIAS_Device class is used to represent an *instance* of a
DIAS_Cell class. It is a copy of a template Cell which is its
*master*. It also stores a set of terminals which are instances
of ports of the cell.
MEMBER FUNCTIONS:
o Construct( char * DevName, Ref<DIAS_Cell> Master )
- initialize the Device with its name and *master* cell
o Master_Cell() : Ref<DIAS_Cell>
- return the Master cell
o Name() : char *
- return the name of the device
o How_Many_Instances() : short
- return the number of terminals associated with this
- device
o Get_Port_Instance( short PortNum ) : Ref<DIAS_Terminal>
- return the terminal indexed by PortNum in the set of

- terminals

CLASS DIAS_IO_Net:
FILE: io_net.C
DESCRIPTION:
An io-net is a net that connects the boundary ports of a
cell. The io-net connects a port of a cell and a terminal of a
device. The information stored include the name of the io-net,
the capacitive load, and information about the driving cell.
MEMBER FUNCTIONS:
o Construct( char * Name, char * CellType, char * Instance,
short CapLoad, short PortNum )

- initialize the attributes of the io-net

(@]

Get_Name() : char *

Set_Name( char * NewName )

o

- get and set the name of the io-net

Get_Driver() : char *

[e]

Set_Driver( char * )

(@]

- get and set the driver of the io-net
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(@]

Get_Loading_Cap() : short

(@]

Set_Loading_Cap( short NewLoad )
- get and set the loading capacitance value

- of the port

(@]

Get_Port_Number() : short
o Set_Port_Number( short NewNumber )

- get and set the port number of the driver

sodokokokkkkkokokokkkkkdkk DELAY RELATED CLASSES sk ok skokok skok sk ok sk okook ok ok ek s ok ok ok ok

CLASS DIAS_Source_Load_Timing
FILE: delay.C
DESCRIPTION:
This class holds the delay values between a source-load
pair of ports.
MEMBER FUNCTIONS:
o Construct( Ref<DIAS_Terminal> Source, Ref<DIAS_Terminal>
Load )
- initialise the Source and Load Terminals for which

- this object stores delay information

o Get_Load_Port() : Ref<DIAS_Terminal>
o Set_Load_Port() : Ref<DIAS_Terminal>
- get and set the load terminal

o Get_Source_Port() : Ref<DIAS_Terminal>
o Set_Source_Port() : Ref<DIAS_Terminal>

- get and set the source terminal

Get_Pre_Slew() : Ref<DIAS_Transition>
Get_Post_Slew() : Ref<DIAS_Transition>
Set_Pre_Slew( Ref<DIAS_Transition> transition )
Set_Post_Slew( Ref<DIAS_Transition> transition )

o O O ©

- get and set the PrelLayout and PostLayout Slew values

Get_Pre_RC_Delay() : Ref<DIAS_Transition>
Get_Post_RC_Delay() : Ref<DIAS_Transition>
Set_Pre_RC_Delay( Ref<DIAS_Transition> transition )
Set_Post_RC_Delay( Ref<DIAS_Transition> transition )

o O O ©

- get and set the PrelLayout and PostLayout RC delay

- values
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CLASS DIAS _Terminal

FILE: delay.C

DESCRIPTION:
This class stores all data associated with a terminal of a
device. This includes the information associated with the set
of loads to which it acts as a source or the information
associated with the set of sources to which this is the load.
It also stores the effective capacitance and total capacitance
associated with the terminal. It also stores the slew and
loading delays associated with this terminal and a unique

number associated with this terminal.

MEMBER FUNCTIONS:
o Construct( Ref<DIAS_Signal> Sig, Ref<DIAS_Device> Owner,
char * TermName, short TermID )
o Construct( Ref<DIAS_Signal> Sig, Ref<DIAS_Device> QOwner,
char * TermName )
- initialise the various attribute values of the

- terminal.

o Add_Load( Ref<DIAS_Source_Load_Timing> NewTiming )

- add a new load to the set of load ports;

- (meaningful only if this is a source terminal)
o Add_Source( Ref<DIAS_Source_Load_Timing> NewTiming )

- add a new source to the set of source ports;

- (meaningful only if this is a load terminal)

o Get_ID_Number() : short
- return the terminal ID
o Get_Number() : short
- return the port number which is the *master* of this

- terminal

o Get_Name() : char *
- return the name of the port which is the *master* of

- this terminal

o Get_Signal() : Ref<DIAS_Signal>
- return the Signal which is the *owner* of this terminal
o Get_Owner() : Ref<DIAS_Device>

- return the device which *owns* this terminal
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o How_Many_Sources() : short
- return the number of sources which feed this terminal;
- valid only if this is a load port

o Get_Source( short index ) : Ref<DIAS_Source_Load_Timing>
- get the Timing object corresponding to index from the
- set of Timing objects that store information about the

— Ssources.

o How_Many_Loads() : short
- return the number of sources which feed this terminal;
- valid only if this is a source port

o Get_Load( short index ) : Ref<DIAS_Source_Load_Timing>
- get the Timing object corresponding to index from the
- set of Timing objects that store information about the

- loads.

o Set_Node( Ref<DIAS_RC_Tree_Node> NewRCNode )

- set the RC Node which this terminal may map to
o Get_Node() : Ref<DIAS_RC_Tree_Node>

- get the RC Node which maps to this terminal

o Is_Ceffs_Zero() : short
- Is the effective capacitance of this terminal zero?
- return 0 if it is so.
o Set_Pre_Ceff( Ref<DIAS_Transition> NewRef )
o Get_Pre_Ceff() : Ref<DIAS_Transition>
- get and set the PRELAYOUT effective capacitance values
o Set_Post_Ceff( Ref<DIAS_Transition> NewRef )
o Get_Post_Ceff() : Ref<DIAS_Transition>
- get and set the POSTLAYOUT effective capacitance values

o Is_Ctotals_Zero() : short
- Is the total capacitance of this terminal zero?
- return O if it is so.
0 Set_Pre_Ctotal( Ref<DIAS_Triplet> NewRef )
o Get_Pre_Ctotal() : Ref<DIAS_Triplet>
- get and set the PRELAYOUT total capacitance values
o Set_Post_Ctotal( Ref<DIAS_Triplet> NewRef )
o Get_Post_Ctotal() : Ref<DIAS_Triplet>
- get and set the POSTLAYOUT total capacitance values
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o Has_Pre_Loading() : short
- Does the terminal have PRELAYOUT loading delays; if so
- return a non-zero value

o Get_Pre_Loading Delay() : Ref<DIAS_Transition>

o Set_Pre_Loading_Delay( Ref<DIAS_Transition> trans )
- get and set the PRELAYOUT loading delays

o Has_Post_Loading() : short
- Does the terminal have POSTLAYOUT loading delays; if so
- return a non-zero value

o Get_Post_Loading_Delay() : Ref<DIAS_Transition>

o Set_Post_Loading_Delay( Ref<DIAS_Transition> trans )
- get and set the POSTLAYOUT loading delays

o Has_Pre_Slew() : short
- Does the terminal have PRELAYOUT Slew; if so
- return a non-zero value
o Get_Pre_Slew() : Ref<DIAS_Transition>
o Set_Pre_Slew( Ref<DIAS_Transition> trans )
- get and set the PRELAYOUT Slew
o Has_Post_Slew() : short
- Does the terminal have POSTLAYOUT Slew; if so
- return a non-zero value
- set of Timing objects that store information about
the loads.
o Get_Post_Slew() : Ref<DIAS_Transition>
o Set_Post_Slew( Ref<DIAS_Transition> trans )
- get and set the POSTLAYOUT Slew

sokokokokokokkokkkokkkkkkk END OF DELAY RELATED CLASSES  skokokok skok skook ok ok sk ok sk okook ok ok ok

sokokokokkkkkkkkkkkkkkkkkkkkkkk RC TREE CLASSES skokokoksk ok ok ok ok sk ok ok sk ok s o ok o o s o ok o ok o
CLASS DIAS_RC_Tree_Edge
FILE: rc_tree.C
DESCRIPTION
This class stores the Resistance, Capacitance, and
SmallerNodeCap values of an edge in a RC tree. It is connected
to a pair of RC nodes in the tree.
MEMBER FUNCTIONS
o Construct( Ref<DIAS_RC_Tree_Node> Nodel,
Ref<DIAS_RC_Tree_Node> Node2)
- initialise the edge between the pair of RC Nodes.
o Construct( Ref<DIAS_RC_Tree_Node> Nodel,

193



APPENDIX E. APPLICATION PROGRAMMING INTERFACE 194

Ref<DIAS_RC_Tree_Node> Node2
Ref<DIAS_Triplet> Res,
Ref<DIAS_Triplet> Cap,
Ref<DIAS_Triplet> SmNC )
- initialise the edge between the pair of RC Nodes and
- the resistance, capacitance and smaller node cap

- values.

Get_Capacitance() : Ref<DIAS_Triplet>
Set_Capacitance( Ref<DIAS_Triplet> NewVal )

(@]

[e]

- get and set the capacitance values

o

Get_Resistance() : Ref<DIAS_Triplet>
o Set_Resistance( Ref<DIAS_Triplet> NewVal )

- get and set the resistance values

Get_Smaller_Node_Cap() : Ref<DIAS_Triplet>
o Set_Smaller_Node_Cap( Ref<DIAS_Triplet> NewVal )

- get and set the smaller node cap values

o

CLASS DIAS_RC_Tree_Node

FILE: rc_tree.C

DESCRIPTION
This class represents a node in the RC tree. It is identified
by a unique number within the tree and has a set of RC edges
associated with it.

MEMBER FUNCTIONS
o Construct( short Number )

- initialise the node identifier within the RC tree.

o Get_Port() : DIAS_Terminal
- get the Terminal which may map to this RC node
o Set_Port( Ref<DIAS_Terminal> Term )

- set the Terminal which may map to this RC node

o Get_Number() : short
- get the unique identfier within the RC tree of

- this node

o How_Many_Edges() : short
- get the number of RC edges to which this node is
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- connected
o Get_Edge( short Number ) : Ref<DIAS_RC_Tree_Edge>
- get the RC edge corresponding to index Number from the
- set of RC edges.
o Input_Edge( Ref<DIAS_RC_Tree_Edge> NewEdge )
- add an edge to the set of RC tree edges

sokokokokkok ok ok kokokokokkkkkokkkkk END OF RC TREE CLASSES  skoskokok sk sk sk sk ok sk ok ok ok ok sk sk ok ok ok ok ok ok o ok ok
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CLASS DIAS_Signal

FILE: signal.C

DESCRIPTION
This class represents a signal of a design. It stores information
regarding the name, criticality, PrelLayout Wire Capacitance
of the signal. It also stores the RC tree associated with the
signal as sets of RC tree edges and RC tree nodes. It stores the
delay information as sets of Terminals and Source_Load Timing
objects.

MEMBER FUNCTIONS
o Construct( char * SigName )

- initialise the name of the signal

o Get_Critical() : short
o Set_Critical( short Value )
- get and set the criticality of the signal

o Get_Pre_Wire_Capacitance() : Ref<DIAS_Triplet>
o Set_Pre_Wire_Capacitance( Ref<DIAS_Triplet> NewRef )
- get and set the PRELAYOUT wire capacitance of the

- signal

o How_Many_Terminals() : short
- get the number of Terminals in this signal
o How_Many_Timings() : short
- get the number of Sourceload pairs in this signal
o How_Many_Edges() : short
- get the number of RC edges in the RC tree for this
- signal
o How_Many_Nodes() : short
- get the number of RC nodes in the RC tree for this

- signal
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o Owner() : Ref<DIAS_Design>
o Owner( Ref<DIAS_Design> NewDesign )
- get and set the design that has *this* signal

o Input_Node( Ref<DIAS_RC_Tree_Node> NewNode )

- add an RC tree node to the set of RC nodes in the tree
o Input_Edge( Ref<DIAS_RC_Tree_Edge> NewEdge )

- add an RC tree edge to the set of RC nodes in the tree
o Input_Timing( Ref<DIAS_Source_Load_Timing> NewTiming )

- add a Timing object to the set of Timing objects
0 Input_Terminal( Ref<DIAS_Terminal> NewTerminal )

- add a Terminal to the set of Terminals

o Get_Edge( short ind ) : Ref<DIAS_RC_Tree_Edge>

- get the RC edge with index ind from the set of RC Edges
o Get_Node( short ind ) : Ref<DIAS_RC_Tree_Node>

- get the RC edge with index ind from the set of RC Nodes
o Get_Terminal( short ind ) : Ref<DIAS_Terminal>

- get the RC edge with index ind from the set of

- Terminals
o Get_Timing( short ind ) : Ref<DIAS_Source_Load_Timing>

- get the RC edge with index ind from the set of

- Source-Load Timings

o Add_Edge( short Nodel, short Node2 )
- add a new RC edge to the RC tree for this signal
o Make_Node( short NodeID )
- add a new RC node to the RC tree for this signal
o Create_Timing( Ref<DIAS_Terminal> Source, Ref<DIAS_Terminal>
Load ) : Ref<DIAS_Source_Load_Timing>
- create a new Timing object between the given source
- and load terminals
o Find_Timing( Ref<DIAS_Terminal> Source, Ref<DIAS_Terminal>
Load ) : Ref<DIAS_Source_Load_Timing>
- find the Timing object that connects the given source
- and load terminals
o Find_Node( short NodeID ) : Ref<DIAS_RC_Tree_Node>
- find the RC tree node that is identified by NodeID

sokokokok koK ok ok kokokkkkkkkokokkkkkk END OF STGNAL CLASS  skoskookokok sk ok sk sk sk ok sk ok ok ok s s ok ok ok ok o ok
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CLASS: DIAS_Design
FILE: design.C
DESCRIPTION
This class stores data regarding the main Design entity. Apart

from design parameters such as date, units, etc., it stores the

set of cells, signals, devices, etc that are part of the design.

It also has indexes for efficient retrieval of specific objects.

MEMBER FUNCTIONS
o Construct ()

- initialise the various parameters to defaul values

o Get_Des_Name() : char *
o Set_Des_Name( char * )

- get and set the name of the design

o Get_Conv_Factors() : Ref<DIAS_Triplet>
0 Set_Conv_Factors( Ref<DIAS_Triplet> NewTriplet )

- get and set the conversion factors for this design

o Get_Tech_Name() : char *
o Set_Tech_Name( char * )

- get and set the technology name for the design

o Get_Date() : char *
o Set_Date( char * )
- get and set the date of the design

o Get_Des_Type() : Design_Type
o Set_Des_Type( Design_Type NewType )
- get and set the type of the design; Design_Type is

- one of ( commercial, military, industrial, unknown )

o Get_Des_Directory() : char *
o Set_Des_Directory( char * )

- get and set the directory of the design
o Get_Library() : char *
o Set_Library( char * )

- get and set the library of the design

o Get_Loads() : short
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o Set_Loads( short )
- get and set the loads value of the design

o Get_Program_Name() : char *
o Set_Program_Name( char * )
- get and set the program that created the design

o Get_Program_Property() : char *

o Set_Program_Property( char * )
- get and set the property of the program that created
- the design

o Get_Program_Version() : char *
o Set_Program_Version( char * )

- get and set the program version that created the design

o Get_Technology_Version() : char *
o Set_Technology_Version( char * )

- get and set the technology version

o Get_Technology_Metal_Layers() : short
o Set_Technology_Metal_Layers( short NewNumber )
- get and set the number of metal layers in the

- technology used for creating this design.

o Get_Threshold() : double
o Set_Threshold( double NewValue )
- get and set the threshold value for *this* design.

o Get_Units( double * Res, double * Cap, double * Del )
o Set_Units( double Res, double Cap, double Del )
- get and set the units used for the resistance,

- capacitances of this design

o Get_Version() : char =*
o Set_Version( char * )

- get and set the version of DIAS in use

o Get_Process() : Ref<DIAS_Triplet>
o Set_Process( Ref<DIAS_Triplet> NewRef )

- get and set the process that created *this* design
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Get_Temperature() : Ref<DIAS_Triplet>
Set_Temperature( Ref<DIAS _Triplet> NewRef )

- get and set the value of temperature

Get_Voltage() : Ref<DIAS_Triplet>
Set_Voltage( Ref<DIAS_Triplet> NewRef )

- get and set the voltage values

How_Many_Cells() : short

- return the number of cells in the design
How_Many_Signals() : short

- return the number of signals in the design
How_Many_Devices() : short

- return the number of devices in the design
How_Many_IO_Nets() : short

- return the number of io-nets in the design

Get_Cell( short ind ) : Ref<DIAS_Cell>

- return the Cell indexed by ind from the set of cells

Get_Device( short ind ) : Ref<DIAS_Device>
- return the Device indexed by ind from the set of
- Devices

Get_Signal( short ind ) : Ref<DIAS_Signal>
- return the Signal indexed by ind from the set of
- signals

Get_I0_Net( short ind ) : Ref<DIAS_IO_Net>
- return the io—net indexed by ind from the set of

- io-nets

Add_Cell( Ref<DIAS_Cell> Dev )

- add the new cell to the set and the index
Find_Cell( char * CellName )

- find the cell using the index for cells
Delete_Cell( char * CellName )

- delete the cell from the set and index for cells

Add_Device( Ref<DIAS_Device> Dev )

- add the new device to the set and the index
Find_Device( char * DeviceName )

- find the device using the index for devices
Delete_Device( char * DeviceName )

- delete the device from the set and index for
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- devices

Add_I0_Net( Ref<DIAS_IO0_Net> IO_NetRef )
- add the new io—net to the set and the index
o Find_IO0_Net( char * IONetName )

- find the io-net using the index for io-nets

(@]

o Delete_I0_Net( char * IONetName )
- delete the io-net from the set and index for

- io-nets

o Add_Signal( Ref<DIAS_Signal> Sig )
- add the new signal to the set and the index

o

Find_Signal( char * SignalName )
- find the signal using the index for signals

(@]

Delete_Signal( char * SignalName )
- delete the signals from the set and index for

- signals

ek kookok sk ok ko sk skook ok sk sk ks kkokkkkokkkokk END OF DESTGN CLASS  skeokok skeok skosk ok ook sk ok sk sk ok sk ok ok o ok sk ok ok
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