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SUMMARY

In December 1997, the Indian Institute of Science undertook a six-month sponsored
project for Hitachi Ltd, Japan, under contract HITA/ESE/JRH/001. The project investi-
gator was Dr. Jayant Haritsa of the Supercomputer Education & Research Centre at the
Indian Institute of Science. The goal of the project was to develop efficient database mining
algorithms.

Over the last six months, a variety of data mining algorithms to discover association
rules have been developed by Dr. Jayant Haritsa and his students, and these algorithms are

described in this report. A summary of the new algorithms is given below:

Initial Mining : There have been been many algorithms proposed in the literature for
efficiently mining (for the first time) large historical databases. Virtually all of these
algorithms require making multiple scans over the entire database with the number
of scans required being proportional to the number of items in the biggest frequent
itemset. We present here TWOPASS, a new algorithm that is guaranteed to provide

all frequent itemsets in exactly two passes over the database.

Incremental Mining : For most business organizations, data mining is not a one-time
operation, but a recurring process, especially if the database has been significantly
updated since the previous mining exercise. Therefore, it is attractive to consider
the possibility of using the results of the previous mining operations to minimize the
amount of work done during each new mining operation. We present here DELTA,
a new algorithm for efficient incremental mining which finds the frequent itemsets of
both the current and incremental databases, handles “multi-support” environments
where there may be changes in the frequency thresholds between the original and the

current database, and also computes the new negative border.

Rule Generation : After frequent itemsets are discovered in the first stage of mining,
the second step is to derive “rules” from these frequent itemsets. We present here
RULEGEN, a new algorithm for efficient rule derivation that is linear in the size of

the biggest itemset, rather than the exponential cost incurred by previous algorithms.
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Chapter 1

Problem Statement

1.1 Introduction

Organizations typically collect vast quantities of data relating to their operations. For ex-
ample, the Income Tax department has several terabytes of data stored about taxpayers. In
order to provide a convenient and efficient environment for users to productively use these
huge data collections, software packages called “DataBase Management Systems” have been
developed and are widely used all over the world.

A DataBase Management System, or DBMS, as it is commonly referred to, provides
a variety of useful features: Firstly, business rules such as, for example, “the minimum
balance to be maintained in a savings account is 100 Rupees”, are not allowed to be violated.
Secondly, modifications made to the database are never lost even if system failures occur
subsequently. Thirdly, the data is always kept consistent even if multiple users access and
modify the database concurrently. Finally, friendly and powerful interfaces are provided to
ask questions on the information stored in the database.

Users of DBMSs interact with them in basic units of work called transactions. Transfer of
money from one account to another, reservation of train tickets, filing of tax returns, entering
marks on a student’s grade sheet, are all examples of transactions. A transaction is similar
to the notion of a task in operating systems, the main difference being that transactions are
significantly more complex in terms of the functionality provided by them.

For large commercial organizations, where thousands of transactions are executed every
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second, highly sophisticated DBMSs such as DB2, Informix, Sybase, Ingres and Oracle are
available and are widely used. For less demanding environments, such as managing home
accounts or office records, there are a variety of PC—based packages, popular examples being
FoxPro, Microsoft Access and dBase IV.

DataBase Management Systems typically operate on data that is resident on hard disk.
However, since disk capacities are usually limited, as more and more new data keeps coming
in, organizations are forced to transfer their old data to tapes. Even if these tapes are stored
carefully, the information resident in them is hardly ever utilized. This is highly unfortunate

since the historical databases often contain extremely useful information, as described below.

1.2 Database Mining

The primary worth of the historical information is that it can be used to detect patterns.
For example, a supermarket that maintains a database of customer purchases may find that
customers who purchase coffee powder very often also purchase sugar. Based on this infor-
mation, the manager may decide to place coffee powder and sugar on adjacent shelves to
enhance customer convenience. The manager may also ensure that whenever fresh stocks
of coffee powder are ordered, commensurate quantities of sugar are also procured, thereby
increasing the company’s sales and profits. Information of this kind may also be used bene-
ficially in catalog design, targeted mailing, customer segmentation, scheduling of sales, etc.
In short, the historical database is a “gold mine” that can be profitably used to make better
business decisions.

In the technical jargon, data patterns (of the type described above) are called “rules”
and the process of identifying such rules from huge historical databases is called database
mining. Those familiar with learning techniques will be aware that discovering rules from
data has been an area of active research in artificial intelligence. However, these techniques
have been evaluated in the context of small (in memory) data sets and perform poorly on
large data sets. Therefore, database mining can be viewed as the confluence of machine
learning techniques and the performance emphasis of database technology. In particular, it

refers to the efficient construction and verification of models of patterns embedded in large
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databases.

1.3 Rules

In normal usage, the term “rule” is used to denote implications that are always true. For
example, Boyle’s law Pressure * Volume = constant can be inferred from scientific data.
For commercial applications, however, this definition is too restrictive and the notion of
rule is expanded to denote implications that are often, but not necessarily always, true.
To quantify this uncertainity, a confidence factor is associated with each rule. This factor
denotes the probability that a rule will turn out to be true in a specific instance. For example,
the statement “Ninety percent of the customers who purchase coffee powder also purchase
sugar” corresponds to a rule with confidence factor 0.9.

In order for rules of the above nature to be meaningful, they should occur reasonably
often in the database. That is, if there were a million customer purchases and, say, only ten
of these customers bought coffee powder, then the above example rule would be of little value
to the supermarket manager. Therefore, an additional criterion called the support factor is
used to distinguish “significant” rules. This factor denotes the fraction of transactions in the
database that support the given rule. For example, a customer purchase rule with support
factor of 0.20 means that twenty percent of the overall purchases satisfied the rule.

At first glance, the confidence factor and the support factor may appear to be similar
concepts. However, they are really quite different: Confidence is a measure of the rule’s

strength, while support corresponds to statistical significance.

Formal Definition

Based on the foregoing discussion, the notion of a rule can be formally defined as:

X=Y | (¢9)

where X and Y are disjoint subsets of Z, the set of all items represented in the database, c is

the confidence factor, and s is the support factor. The factors, which are ratios, are usually
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Table 1.1: Vegetable Purchase Database

expressed in terms of their equivalent percentages.

To make the above definition clear, consider a vegetable vendor who sells potatoes, onions,
tomatoes, carrots and beans, and maintains a database that stores the names of the vegeta-
bles bought in each customer purchase, as shown in Table 1. For this scenario, the itemset Z
corresponds to the set of vegetables that are offered for sale. Then, on mining the database

we will find rules of the following nature:

Potatoes, Onions => Tomatoes | (75,60)

Beans = Potatoes | (80,40)

which translate to “Seventy-five percent of customers who bought potatoes and onions also
bought tomatoes. Sixty percent of the customers made such purchases” and “Eighty percent
of the customers who bought beans also bought potatoes. Forty percent of the customers
made such purchases”, respectively.

A word of caution: The rules derived in the above example are not truly valid since the
database used in the example is a “toy” database that has only ten customer records — it was
provided only for illustrative purposes. For rules to be meaningful, they should be derived
from large databases that have thousands of customer records, thereby indicating consistent

patterns, not transient phenomena.
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1.4 Rule Discovery

As mentioned in the Introduction, identifying rules based on patterns embedded in the
historical data can serve to improve business decisions. Of course, rules may sometimes be
“obvious” or “common-sense”, that is, they would be known without mining the database.
For example, the fact that butter is usually bought with bread is known to every shopkeeper.
In large organizations, however, rules may be more subtle and are realized only after mining
the database.

Given the need for mining historical databases, we would obviously like to implement
this in as efficient a manner as possible since searching for patterns can be computation-
ally extremely expensive. Therefore, the main focus in data mining research has been on
designing efficient rule discovery algorithms.

The inputs to the rule discovery problem are Z, a set of items, and D, a database that
stores transactional information about these items. In addition, the user provides the values
for sup,,;,, the minimum level of support that a rule must have to be considered significant
by the user, and con,,;,, the minimum level of confidence that a rule must have in order
to be useful. Within this framework, the rule mining problem can be decomposed into two

sub-problems:

Frequent Itemset Generation
Find all combinations of items that have a support factor of at least sup,,;,. These
combinations are called frequent itemsets, whereas all other combinations are called

rare itemsets (since they occur too infrequently to be of interest to the user).

Strong Rule Derivation
Use the frequent itemsets to generate rules that have the requisite strength, that is,

their confidence factor is at least con,,,.

In the following two sections, techniques for solving each of the above sub-problems are

presented.
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1.5 Frequent Itemset Generation

A simple and straightforward method for generating frequent itemsets is to make a single
pass through the entire database, and in the process measure the support for every itemset
resident in the database. Implementing this solution requires setting up of a measurement
counter for each subset of the set of items Z that occurs in the database, and in the worst case,
when every subset is represented, the total number of counters required is 2, where M is the
number of items in Z. Since M is typically of the order of a few hundreds or thousands, the
number of counters required far exceeds the capabilities of present-day computing systems.
Therefore, the “one-pass” solution is clearly infeasible, and several “multi-pass” solutions
have therefore been developed.

A simple multi-pass solution works as follows: The algorithm makes multiple passes over
the database and in each pass, the support for only certain specific itemsets is measured.
These itemsets are called candidate itemsets. At the end of a pass, the support for each
of the candidate itemsets associated with that pass is evaluated and compared with sup,,;,
(the minimum support) to determine whether the itemset is frequent or rare.

Candidate itemsets are identified using the following scheme: Assume that the set of
frequent itemsets found at the end of the kth pass is Fj;. Then, in the next pass, the
candidate itemsets are comprised of all itemsets that are constructed as one-extensions of
itemsets present in Fj. A one-extension of an itemset is the itemset extended by exactly one
item. For example, given a set of items A, B, C, D and FE, the one-extensions of the itemset
AB are ABC', ABD and ABE. While this scheme of generating candidate itemsets works in
general, in order to start off the process we need to prespecify the candidate itemsets for the
very first pass (k = 1). This is done by making each individual item in Z to be a candidate
itemset for the first pass.

The basic idea in the above procedure is simply that “If a particular itemset is found to
be rare, then all its extensions are also guaranteed to be rare”. This is because the support
for an extension of an itemset cannot be more than the support for the itemset itself. So, if
AB is found to be rare, there is no need to measure the support of ABC, ABD, ABCD, etc.,

since they are certain to be also rare. Therefore, in each pass, the search space is pruned to



CHAPTER 1. PROBLEM STATEMENT 7

measure only those itemsets that are potentially frequent and the rare itemsets are discarded
from consideration.

Another feature of the above procedure is that in the kth pass over the database, only
itemsets that contain exactly k items are measured, due to the one-extension approach. This
means that no more than M passes are required to identify all the frequent itemsets resident

in the historical database.

1.6 Strong Rule Derivation

In the previous section, we described methods for generating frequent itemsets. We now
move on to the second sub-problem, namely that of deriving strong rules from the frequent
itemsets. The rule derivation problem can be solved using the following simple method:
For every frequent itemset F', enumerate all the subsets of F. For every such subset f,
output a rule of the form f = (F — f) if the rule is sufficiently strong. The strength is
easily determined by computing the ratio of the support factor of F' to that of the support
factor of f. If this value is at least con,,;,, the minimum rule confidence factor, the rule is
considered to be strong and is displayed to the user, otherwise it is discarded.

In the above procedure, the only part that is potentially difficult is the enumeration of

all the subsets of each frequent itemset.

1.7 Classification and Sequence Rules

The rules that we have discussed so far are called association rules since they involve finding
associations between sets of items. However, they are only one example of the types of
rules that may be of interest to an organization. Other interesting rule classes that have
been identified in the literature are classification rules and sequence rules, and data mining
algorithms for discovering these types of rules have also been developed in the last few years.

The classification problem involves finding rules that partition the data into disjoint

groups. For example, the courses offered by a college may be categorized into good, average
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and bad based on the number of students who attend each course. Assume that the atten-
dance in a course is primarily based on the qualities of the teacher. Also assume that the
college has maintained a database about the attributes of all its teachers. With this data
and the course attendance information, a profile of the attributes of successful teachers can
be developed. Then, this profile can be used by the college for short-listing the set of good
candidate teachers whenever new courses are to be offered. For example, the rule could be
“If a candidate has a master’s degree, is less than 40 years old, and has more than 5 years
experience, then the candidate is expected to be a good teacher”.

Organizations quite often have to deal with ordered data, that is, data that is sorted on
some dimension, usually time. Currency exchange rates and stock share prices are examples
of this kind of data. Rules derived from ordered data are called sequence rules. An example
rule of this type is “When the value of the US dollar goes up on two consecutive days and
the British pound remains stable during this period, the Indian rupee goes up the next day

75 percent of the time”.

1.8 Summary

The goal of Database Mining is to discover information from historical organizational
databases that can be used to improve their business decisions. Developing efficient al-
gorithms for mining has become an active area of research in the database community in the
last few years. Although commercial data mining packages are not yet available, there are
several research prototypes that have been developed. Examples are QUEST, constructed at
IBM’s Almaden Research Center in San Jose, California, U.S.A., and DISCOVER, available
from the Hong Kong University of Science and Technology. We expect that sophisticated
database mining packages will be available soon and that they will become essential software

for all organizations within a few years.
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1.9 Owur Work

In the remainder of this report, we present algorithms for efficiently mining association rules

on both fresh databases and on incremental databases.



Chapter 2
Initial Mining

2.1 Introduction

There have been been many algorithms proposed in the literature for efficiently mining (for
the first time) large historical databases, especially with regard to deriving association rules
(e.g. [AIS93, AS94, SON95, CHN+96, HKK97]). Virtually all of these algorithms require
making multiple scans over the entire database with the number of scans required being
proportional to the number of items in the biggest frequent itemset (one such algorithm was
described in the previous chapter). In the remainder of this chapter, we present TWOPASS,
a new algorithm that is guaranteed to provide all frequent itemsets in exactly two passes
over the database.

Before we describe the TWOPASS algorithm, we wish to mention that apart from com-
puting the set of frequent itemsets, an extremely useful auxiliary information that is usu-
ally produced out of the mining process is the negative border of the set of frequent item-
sets [Toi96]. The negative border contains the minimal itemsets that are not frequent, and

is used, for example, in sampling-based approaches to mining [Toi96]. This negative border

idea is also used in the TWOPASS algorithm.

10
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2.2 The TWOPASS Algorithm

In our scheme, the database is logically divided into partitions, not necessarily of equal size,
with the restriction being that each partition should completely fit into main memory. A
hashtree data-structure called L is used to store itemsets. Along with each itemset we also
maintain two integer fields — a count field and a partition field. Itemsets are brought into
and removed from L dynamically, at each partition. The count field contains the number
of occurrences of the itemset in the partitions over which it was counted. If an itemset was
brought into I during the n'® partition, then its partition field is n. The number of tuples
over which such an itemset has been counted so far is denoted by tuples(n). This could be
a simple function or a lookup table that is updated after each partition is processed. At any
time, the partial_support of an itemset is the ratio of its count field to tuples(partition field).

Each partition is read one by one. For each partition, we need to find all its local
frequent itemsets. This can be done efficiently as the partition is in main memory. In our
implementation, we used the Apriori [AS94] algorithm to find the frequent itemsets in the
first partition. For the remaining partitions, we use L, and its negative border N, as a set of
candidate itemsets. The counts in N are set to zero. If an itemset in N becomes frequent,
then a miss has occurred. The negative border closure of L U N is generated and its counts
over the partition are found. The partition fields of the new itemsets are set to the current
partition. If the partial support of any itemset in L becomes less than sup,,;,, it is removed
from L. At the end of the partition, L will contain (atleast) all the local frequent itemsets
and N will contain its negative border. Thus we don’t need to calculate the negative border
of L again for the next partition.

That ends the first pass over the database. L now contains all potentially frequent
itemsets. The hashtree N is no longer needed and is discarded.

In the second pass, each partition is again read one by one. Prior to each partition P,,
all itemsets in L whose partition field is n, are output as frequent itemsets, and removed
from L. If there are no more itemsets in L, the algorithm halts. Otherwise, the count fields
of the remaining itemsets in L are updated over P,. If the partial support of any itemset

becomes less than sup,in, it is removed from L. No new itemsets are added to L during the
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second pass. By the end of this pass, all frequent itemsets will be output.

12

In Figure 2.1, we show the generic algorithm, and in Figure 2.2, we show the detailed

steps of the TWOPASS algorithm.

XN OO W

— = e = O
WO

L=20
For each partition P, do /* first pass */
Read in the partition to main memory.
Update count fields of L over P,.
Remove itemsets with partial_support < supm, from L.
Find local frequent itemsets that are not in L and add them to L.
Set the partition fields of the new itemsets to n.
For each partition P, do /* second pass */

Output itemsets in L for which partition field is n, and remove them from L.

If L is empty, halt.

Read in P, to main memory.

Update count fields of L over P,.

Remove itemsets with partial_support < supm;, from L.

Figure 2.1: The Generic Algorithm
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N =

P NSO W

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

Read in the 1st partition P, to main memory.
Perform Apriori over P; to obtain local frequent itemsets L
and its negative border N.
Set partition fields of itemsets in L to 1.
For each remaining partition P, do /* first pass */
Read in the partition to main memory.
Set the count fields of N to zero and their partition fields to n.
Update count fields of L and N over P,.
Remove itemsets with partial_support < sup,, from L.
M = itemsets of N whose partial_support > sup,in-
L=LuUuM
C = Negative_Border_Closure( L U N )
Find counts of C over P,.
L = L U (itemsets of C whose partial_support > Supmin
N = N U (itemsets of C all of whose subsets are in L)
Discard N.
For each partition P, do /* second pass */

Output itemsets in L for which partition field is n, and remove them from L.

If L is empty halt.

Read in P, to main memory.

Update count fields of L over P,.

Remove itemsets with partial_support < sup,, from L.

Figure 2.2: The TWOPASS Algorithm
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2.3 Proof of Correctness

We now prove that the algorithm described above correctly generates all the frequent item-

sets.

Theorem 1: During the first pass, all itemsets that are frequent within a partition are
present in L at the end of that partition.
Proof:

Let count(i,n), region(i,n) and partial_support(i,n) denote the count field, region field
and partial_support of itemset i respectively, at the end of handling the n** partition during
the first pass. local_count(i,n) is the number of occurrences of itemset ¢ within the n'®
partition and part_size(n) is the size of the n'® partition.

If an itemset ¢ is frequent within the n** partition, then either it was present in L at the

beginning of the partition or not. If it was present, then,
partial_support(i,n-1) > Supmin < count(i,n-1) X SupPmin X region(i,n-1)
Since i is frequent in this partition,
local_count(i,n) > supmm X part_size(n)
Therefore,

count(i,n) > supmin X ( region(i,n-1) + part_size(n) )

> SUPmin X region(i,n)

Hence 7 will be present in L at the end of the partition as well.

If 4 was not in L at the beginning of the partition, then that would be indicated by a
potential miss. It would be present in N or would be generated in the closure step. In either
case, it will be counted over the partition. Since its support in the partition exceeds supmin,
it will be moved to L. Hence proved.

Theorem 2: During the first pass, let i be an itemset that is not present in (or is removed
from) L at the end of some partition P,. Let R be the region spanning partitions P, to P,,

for any u < v. Then 7 cannot be locally frequent within R.
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Proof: It is true when u = v, by the converse to Theorem 1. Let it be true when v —u < n.
Then we show it to be true when v —u = n+ 1.

By the inductive hypothesis, 7 is not locally frequent within the region spanning partitions
P, .1 to P,. If 7 is not locally frequent in P, also, then it cannot be frequent within R, hence
proving the theorem.

If 7 is frequent in P,, then by Theorem 1, it must be present in L after P,. An itemset
is removed from L only if its partial_support is less than sup,:,. Since i is not in L after
partition P,, either it was removed from L only at the end of partition P,, or it was removed
before that. If it was removed from L only at the end of partition P,, then it can’t be locally
frequent in R and the theorem holds true.

If 7 is removed from L at the end of some partition P,, w < v. Then i cannot be frequent
in the region of R prior to P,. If it is, then it wouldn’t be removed from L. By the inductive
hypothesis, it cannot be frequent in the region spanning partitions P, to P,. Thus 7 cannot

be frequent in the entire region. Hence proved.

Corollary: L contains all potentially frequent itemsets at the end of the first pass.

Theorem 3: If an itemset ¢ is removed from L in the second pass, and is not output, then
it cannot be frequent.

Proof: Let K be the total number of partitions in the database. The partition field of
1 cannot be 1, since all such itemsets are output at the start of the second pass. Let its
partition field be n. Let i be removed from L after the m'* partition during the second pass.
Then its local support in the region spanning partitions P, to Px and P; to P, must be
less than supp,. By Theorem 1, its local support in the region spanning partitions P,
to P, 1 is less than sup,,;,. Since these regions span the entire database, 7 can’t be globally

frequent. Hence proved.
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2.4 Negative Border Closure

The description of how to efficiently compute the negative border closure is given in the next

chapter on incremental mining — please refer there for the details.

2.5 Size of Partitions

One of the design issues for the TWOPASS algorithm is the number of partitions. However,
the performance is not sensitive to the size of partitions except for extreme cases. Very small
partitions may result in too many candidates from each partition which are not globally
frequent. But these candidates will be removed from L after a few more partitions are
traversed. Hence the algorithm is relatively free from skew as compared to the Partition
algorithm [SON95| which attempted to use the partition idea for parallel mining. Very large
partitions don’t cause any performance degradation, provided they can fit in main memory.
Note that the size of a partition must be atleast 1 / supy,, since otherwise there will not be
enough tuples in each partition for the definition of sup,;, to hold. A reasonable partition
size would be about ten to twenty times this minimum size. However some performance

improvement may be noticeable with very large partition sizes.

2.6 Number of Candidate Itemsets

It is easy to see that an itemset will be in L only if it is frequent in atleast one partition. Hence
the number of candidates which are generated is not more than that in Partition [SON95].
However since itemsets are continually removed from L, the number of candidates is actually
much less. Another advantage over Partition is due to the way we mine each partition. Here,
the information gathered from previous partitions is used to reduce processing during mining
each partition. Therefore, no tid-lists are maintained and no level-wise mining of individual

partitions is necessary.
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2.7 Incorporating Sampling

Instead of performing the Apriori algorithm over the first partition, we could perform sam-
pling to obtain the candidate set L. This would be desirable if the cost of sampling is low.
To benefit from sampling, the following change needs to be incorporated in the algorithm —

Each itemset has a pinned flag associated with it. If an itemset is pinned then it is not
removed from L even if its partial_support decreases below sup,,i,- The counts of pinned
itemsets in /N are not reset to zero at the start of each partition. All the itemsets in L and
N at the end of sampling must be pinned. If the sample is accurate, then more than one
pass will not be necessary. However, in the event that a second pass is necessary, itemsets in
L whose partial support decreases below sup,i, should be not removed from L during the
second pass. The proof of Theorem 3 will not hold any longer.

Sampling cost is not always low. Normally, the sample size required will be much larger
than the size of the first partition. Either a database pass or random access is required for
sampling — in the latter case, the database cannot be dynamically read from tape. Also,
since we cannot remove itemsets from L during the second pass, almost the complete second
pass will be necessary. Without sampling, it is likely that all itemsets will be removed from
L early in the second pass. The only additional advantage of sampling is that approximate
rules can be generated from the sample itself. If this is desired then sampling may be the

option of choice.
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Incremental Mining

3.1 Introduction

A common feature of most of the mining algorithms that have been previously proposed
is that they are designed for use on historical databases that are being mined for the first
time. In most business organizations, however, the historical database is “dynamic” that is,
it is periodically updated with fresh data. For such environments, mining is not a one-time
operation but may be a recurring process, especially if the database has been significantly
updated since the previous mining exercise. One obvious way to approach the dynamic
mining problem is to mine the entire database from scratch on each occasion, that is, as if it
were being mined for the first time. This approach would lead to considerable wasted effort
since much of the processing would be a repetition of what had already been done before.
Therefore, it is attractive to consider the possibility of using the results of the previous
mining operations to minimize the amount of work done during each new mining operation.
Such “incremental” mining is the focus of this chapter.

The dynamic database mining problem can be formulated as the following:

Requirement 1 : Given a previously mined database DB and a subsequent increment db

to this database, find the frequent itemsets in DB U db.

The important point to note here is that itemsets that were frequent in DB may no longer

be so in DB U db and, similarly, itemsets that turn out to be frequent in DB U db may not

18
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have been frequent in DB, making the incremental mining to be a non-trivial process.

We also anticipate that users will also often want to identify those rules that apply
locally to just the database increment, since comparing these rules with those that applied
on the original database provides insight into the temporal variations of customer purchase

behavior. This additional requirement can be formulated as follows:

Requirement 2 : Apart from finding the frequent itemsets of DB U db, also identify the

frequent itemsets that are local to the increment db.

An implicit assumption in the above formulations is that the minimum frequency thresh-
old specified by the user for the current database (DB Udb) is the same as that used for the
originally mined database (DB). However, this need not always be the case, thereby further

complicating the incremental mining effort. This leads to our third requirement:

Requirement 3 : The incremental mining algorithm should be able to efficiently handle
“multi-support” environments where there may be changes in the frequency thresholds

between DB and DB U db.

Next, from a use-ability viewpoint, we would like the performance of the incremental
mining algorithm to not be highly sensitive to the characteristics of the incremental database.

In particular, we would expect that:

Requirement 4 : The performance of the incremental mining algorithm should be reason-
ably robust with respect to (a) the skew between the data distributions in the original
database and in the increment database, (b) the size of the increment relative to the
size of the original database, and (c) the type of the increment — addition or deletion

(or a combination of these operations).

Finally, apart from computing the set of frequent itemsets, the new negative border of

the set of frequent itemsets has to also be computed.

Requirement 5 : The incremental mining algorithm should efficiently compute the new

negative border of the set of frequent itemsets.



CHAPTER 3. INCREMENTAL MINING 20

Within the framework of the above requirements, our goal ideally is to design incremental
mining algorithms that need to access, for computing the rules of the current database
(DB U db), only the results of the previous mining but not the corresponding database (DB)
itself. That is, in essence, we should be able to “throw away” the original database and rely
only on its mined results for the current processing. As can easily be anticipated, achieving
this ideal is possible only under a very few restricted circumstances, which we identify here.
In the more general case, we would like the incremental mining algorithm to minimize the

amount of reprocessing performed on the original database.

Previous Work

Although database mining research has been underway for over five years now, work in
the area of incremental mining algorithms has begun only lately. The first work that we
are aware of appeared in [CHNWO96], where an algorithm called FUP (Fast UPdate) was
proposed. The FUP algorithm is similar in structure to Apriori [AS94]. FUP operates on
an iterative basis and in each iteration makes a complete scan of the current database. At
the end of the k-th iteration, all the frequent itemsets of size k£ are derived. The mining
program terminates if the current iteration does not return any new frequent itemsets. A
performance evaluation of FUP showed it to perform much better than a direct application
of Apriori on the entire database, thereby confirming the utility of the incremental approach.

As described above, the FUP algorithm requires & passes over the current database. Last
year, more efficient one-pass incremental algorithms, based on the negative border concept,
were proposed independently in [TBAR97] and [FAAMO97] and their performance studies
showed that these algorithms performed noticeably better than Apriori. They also provided
arguments for why they expected their algorithms to perform better than FUP.

The above studies were a welcome first step in addressing the problem of incremental
mining. However, they also have the following limitations with regard to the desired features

of incremental mining algorithms listed earlier:

1. The FUP algorithm design does not meet Requirement 2 (identifying the rules local to

the increment). If the user needs this information, then the increment has to be mined
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separately.

2. All the algorithms assume that the frequency threshold specified by the user for the
current database is the same as that for the original database. Therefore, Requirement

3 is not addressed at all.

3. The performance experiments only considered situations where DB and db were iden-
tically distributed. However, as noted earlier, in practice the increment may have
considerable variation with respect to the original database. In fact, it is these tem-
porally varying databases that are typically of most interest to users. Further, most
of their experiments considered increments that were only a small percentage of the
original database in size. In practice, however, increments may be of arbitrary size
depending on the environment in which data is being produced. In short, Requirement

4 is not fully explored.

4. The one-pass algorithms generate complete closures of the negative border, and under
certain situations this may result in either memory space problems or wasted compu-
tational effort due to generating too many candidate itemsets. Therefore, Requirement

4 may not always be met in this regard.

5. The one-pass algorithms compute the new negative border “from scratch” without
utilizing the already available negative border of the original database. This means

that Requirement 5 is violated.

Contributions

In this chapter, we present a new incremental mining algorithm called DELTA (Differen-
tial EvaLuation of Frequent iTemset Algorithm) for the incremental mining of association
rules. DELTA has been designed to largely satisfy the above-mentioned requirements on
incremental mining algorithms.

Using a synthetic database generator, we analyze the performance characteristics of
DELTA on a variety of dynamic databases and compare it with that of Apriori, FUP and

the one-pass algorithms. Two kinds of dynamic databases are evaluated in our experiments:
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Identical and Skewed. In Identical, the increment db has the same data distribution as that
of the original database DB, whereas in Skewed, there is significant change between the
frequent itemsets of DB and db. For each of these workloads, we consider a variety of incre-
ment sizes that range from where the increment is a small fraction of the original database
to increments that are of the same size as the original database. Further, we consider both
equi-support and multi-support environments.

The above database workloads were created by extending the synthetic database genera-
tor described in [AS94] to generate increments of the required sizes and skews. The results of
our experiments show that DELTA can provide significant improvements in execution times

over the previously proposed algorithms in all these environments.

3.2 Incremental Mining

In this section, we analyze the incremental approach to mining the basket database environ-
ment for association rules. For ease of exposition, we will assume for now that the support
threshold specified by the user (sup,,;,) for the current database is the same as that used
in mining the original database, and that the increment is a set of insertions — later, in Sec-
tion 3.5, we will return to these issues. We also assume that the list of all frequent itemsets
in the original database and their associated supports are available, as also the negative
border of the set of frequent itemsets. In the following discussion and in the remainder of

this chapter, we use the following notation:
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1 Set of items in the database
DB, db, DB U db Original, increment, and current database
| DB |, | db|, | DBUdb | Sizes of the original, increment and current database

count?B, count®?, countQPY® | counts of itemset X in DB, db and DB U db

supRP, sup®, supfBUdb supports of itemset X in DB, db and DB U db
LPB, L& [PBUd Set of frequent k-itemsets in DB, db and DB U db
LPB [ [DBUdb Set of frequent itemsets in DB, db and DB U db
NDPB db  NDBUdb Negative borders of LPZ, L4 and LPBUYd®

CcpPB, o CPBUd Set of candidate k-itemsets in DB, db and DB U db
ScanDB Set of itemsets that need scanning against DB

From the standard definition of frequent itemsets, it is straightforward to prove the following
observations [TBARI7]: (1) An itemset in DB U db can be frequent only if it is frequent
in either DB or db, and (2) If an itemset is frequent in both DB and in db, then it is also
frequent in DB U db. Based on these observations, we can identify three different categories

of frequent itemsets in DB U db, that model different aspects of customer behavior:

Persistent : Itemsets frequent in DB U db, in DB and in db — these itemsets are always

popular.

Waning : Itemsets frequent in DB U db, in DB but not in db — these itemsets are fading

from the market.

Waxing : Itemsets frequent in DB U db, in db but not in DB — these itemsets are gaining
in popularity.

The first two categories of frequent itemsets (Persistent and Waning) can be generated
without having to access the original database DB by using the following strategy: Mine
the increment database db using one of the “first-time” mining algorithms (e.g. Apriori)
after incorporating the following modification — add each element X in LPB to the set

of candidate itemsets while mining db and store all the resulting counts, count%. Then,

DBUdb

DBUdb a5 the sum of count®? and count®. If the resulting supQBY% is greater

calculate count

than sup,,,;,, include X in LPBYdb,
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In the above mining of the increment, note that all the optimizations developed for
first-time algorithms such as “remaining tuples optimization” [AIS93], “pruning function
optimization” [AIS93], etc., can be applied to minimize the processing for itemsets that are
known early on to definitely not be frequent.

Generating the third category (X frequent in db but not in DB) of frequent itemsets in
DB U db causes problems, however, since the associated countQP values are not available.
In this case, it becomes necessary to access the original database. Note that this access is
necessary even in the special case where count® is so frequent that even if count2? were to
be zero, X would be a frequent itemset in DB U db. The reason for this is twofold: First,
users expect the actual rule supports to be provided to them, not just the information that
the rule exceeds the threshold support. Second, in order to compute the confidence of each
rule, it is necessary to know the exact support values of each frequent itemset.

From the above discussion, we conclude that in general it is not possible to fully achieve
the ideal goal of completely dispensing with the original database, but that reprocessing of
the original database is necessary for some of the rules. Our goal then shifts to minimizing
the extent of this processing. In the following sections, we present algorithms that attempt

to achieve this goal.

3.3 Previous Incremental Algorithms

In this section, we describe two representative algorithms, FUP and TBAR, from the family
of incremental algorithms that have been developed over the last two years [CLK97, FAA+97,
FAAM97, LC97, TBAROI7].

3.3.1 The FUP Algorithm

As mentioned in the Introduction, the FUP (Fast UPdate) algorithm [CHNW96] is the first
algorithm proposed for incremental mining of association rules. FUP operates on an iterative
basis and in each iteration makes a complete scan of the current database, beginning with
the increment and then moving on to the original database. The detailed description of the

algorithm is shown in the Figure 3.1).
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/* find L;”P“® the set of all large 1-itemsets in DB U db */
CpBud — . [PBUd — o PS = ¢: /* PS is the prune set
for all ¢t € db do /* scan db
for all 1-itemset X € ¢t do
if X € LPB then count¥® + +;
else if X ¢ CPBY% then { CPBY® = CPBY® y {X}; count® = 1; }
else count® + +;

for all X € LP® do /* put winners into LPBY®
if countPBY%® > sup,inx | DB U db | then LPBYd = [ DBUdb [ X1

for all X € CPBY% do /* prune candidate sets in CPB-4
if count¥® < suppin* | db | then { CPBY® = CPBY® _ [X}, PS=PSU{X};}

for allt € DB do /* scan DB
for all 1-itemset X C ¢t do
if X € CPBY% then count®®? + +;

if X € PS then remove X from t; /* Transaction t is reduced
for all X € CPBY% do /* put winners into LPBYU®
if countPBY% > supinx | DBUdb | then LPBY = [DBUdb [ X1,
return [PBUd /* end of the 1st iteration
/* for k > 2 repeat to find LPPY4® yntil either LPBY® = ¢ or db = ¢ */
LDBUdb qs’ CDBUdb AprlorlGen(LD_BUdb) LDB

for all k-itemset X € LPB do /* prune losers in LPB
for all (k — 1)-itemset Y € LPB — [PBY® do
if Y C X then { LB = LDB {X}; break; }
for all t € db do /* scan db
for all X € Subset(LPB t) do count¥® + +;
/* Subset(X,t) returns all sets in X that are contained in ¢
for all X € Subset(CPBY® t) do count® + +; /* find counts of all X € CPBU®

Reduce_db ( t); /* some items in db can be removed
for all X € LP? do /* put winners from LP® into LPBY4
if count®PY% > supin* | DBUdb | then LPBYd = [DBUdb X1
for all X € CPBY do /* prune candidate sets in CPB-4
if count¥® < suppin* | db | then CPBY® = CPBUd _ [X1.
for allt € DB do /* scan DB
for all X € Subset(CPBY® t) do countR®? + +;
Reduce DB (t); } /* some items in DB can be removed
for all X € CPBY do /* put winners from CPBY% into [,PBY4b
if countZPY® > sup,,ix | DB U db | then LPBYb = [PBUdb | (X}
return [PBUd /* end of the k-th iteration

*/
*/

*/
*/
*/
y
*/

*/

*/
*/
*/
*/
*/
*/
*/

*/
*/

*/

Figure 3.1: The FUP Incremental Mining Algorithm



CHAPTER 3. INCREMENTAL MINING 26

In this algorithm, itemsets that are frequent in DB U db are termed “winners” while
itemsets that were frequent in DB but cease to be frequent in DB U db are termed “losers”.
During the first iteration, the set of all frequent 1-itemsets in DB U db is found. This is
done by first scanning db for all 1-itemsets X € LP® and updating their counts count5-%.
LPBUD

The winners among these are included in During the scan of db, the counts for

CPBYd  that are not part of LPB are also evaluated. Among

all candidate 1-itemsets,
these, only those whose local support is greater than sup,;, can potentially be frequent in
the overall database (by virtue of Observation 1 in Section 3.2). For this restricted set of
itemsets, the original database DB is scanned to derive the overall support. The winners
among these are included in LPBY%®.

We now move on to describing how FUP behaves in the k-th (£ > 1) iteration, whose goal
is to compute LPBY%  Here, some of the losers are identified even before scanning db. That
is, based on the set of losers LPB — LPBY% identified in the previous (k — 1) iteration, all
itemsets in L;’® that contain these loser itemsets are removed from L}? (since any subset of
a frequent itemset must also be frequent [AIS93]). For this updated set LY, the increment
db is scanned to evaluate the counts. During the scan of db, the counts for all candidate
k-itemsets CPBY% that are not part of LP? are also evaluated. This set is generated by
applying the AprioriGen function [AS94] on LPBY%. Then, just like in the first iteration,
after pruning CPBY® to eliminate those itemsets that are not frequent locally, the original
database DB is scanned to find the counts for all X € CPBY% The winners among these

are included in LPBY%.

3.3.2 Database Size Reduction

FUP employs the techniques proposed for the DHP (Direct Hashing and Pruning) mining
algorithm [PCY95] to reduce the size of both the original and the increment databases. In
the first iteration, all items that do not have enough support in db are stored in a “prune-
set” PS. During the subsequent scan of DB, all items in PS are removed from all the
transactions in DB.

In the k-th (k > 2) iteration, during the scan of db, for each item purchased in transaction

t, the number of sets which contain this item is calculated. If this number is smaller than £,



CHAPTER 3. INCREMENTAL MINING 27

then I cannot possibly belong to any frequent (k + 1)-itemset. Hence, I is removed from all
the transactions in db. Further, any item in DB which does not belong to any set in LPZ or
CPBY% will not belong to any frequent (k + 1)-itemset. Therefore, in the scanning of DB
to compute the supports of sets in CPBY%_ all items that do not belong to any set in LP?

or CPBY are also removed.

3.3.3 The TBAR Algorithm

As described above, the FUP algorithm requires k£ passes over the current database. More
efficient one-pass algorithms, based on the negative border concept, were proposed indepen-
dently in [TBAR97] and [FAAM97]. Since these algorithms are very similar, we restrict our
attention to the description given in [TBAR97] — we will use TBAR to refer to this algorithm
in the sequel.

In the TBAR algorithm, first the frequent itemsets in the increment db are found. Si-

LDB

multaneously, the counts of itemsets in , and their negative border NPB are updated

over db. All the frequent itemsets that are in L?Z and N”? are added to LPBY%_ [f [[PBUdb
is not the same as LPB, then the new negative border NPBY% is calculated, otherwise, the
new negative border is the same as NP2, Now, if there are itemsets in LPBY4® or NDPBUdb
whose counts are unknown, new candidates are generated by computing the negative border
closure of LPBY%  During the computation of the closure, any itemsets that are not frequent
in db are omitted. The counts of the candidates are then obtained by making a pass over
DB U db. Thus all itemsets in LPBY% and NPBY% are finally obtained.

While the above approach is attractive by virtue of being a one-pass algorithm, a signifi-
cant drawback is that too many candidates may be generated in the negative border closure
resulting in and increase in the overall mining time. Also, the negative borders are computed
from scratch, by applying the AprioriGen function [AS94] repeatedly. Further, the TBAR al-
gorithm does not address the multi-support threshold problem, where the new minimum
support threshold may be different from that used over DB.

We address all the above-mentioned limitations of FUP and TBAR in our design of
the DELTA algorithm. Before we describe DELTA itself, we first present techniques for

incremental computation of the negative border in the following section. These techniques
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are subsequently used in the DELTA algorithm.

3.4 Incremental Computation of the Negative Border

The negative border Ny, of a collection of itemsets L can be defined as follows: an itemset [ is
present in Ny, iff it is not in L but all its subsets are in L. In [TBAR97], the negative border
for the current database is computed by repeated applications of the AprioriGen algorithm of
[AS94]. This approach is inefficient, however, in the context of incremental mining since it
essentially computes the negative border “from scratch” without using the already available
LPB and its negative border NP5,

We present now a technique for efficiently computing the incremental negative border.
Our technique is captured in the NBGen function presented in Figure 3.2, the inputs to which

are LPP and MoveN L, the set of itemsets which have moved from the negative border NP8

to LDBUdb

NBGen(L”2 MoveNL )
begin

Candidate = ¢

for all X € MoveNL

forallY € L
if (| X |=|Y |) and (X and Y differ in exactly 1 item) then
c=XUY

if c ¢ L and if all (| ¢ | —1)-subsets of ¢ are in L then
Candidates = Candidates U { ¢ }
return Candidates
end

Figure 3.2: Generating Negative Border Incrementally

Theorem: The NBGen function computes the new negative border NP8,

Proof: Let I be an itemset which has to be added to NPBY® je. it was not in NPB
previously. Then, all (| I | —1)-subsets of I must now be in LPPY%_ Since I was not in
NPB previously, it means that there must be some (| I | —1)-subset of I which has just
been added to LPBY%. That subset must therefore be in MoveNL. Hence it is sufficient to

consider all 1-extensions of itemsets in MoveN L.
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Now consider some 1-extension I’ of any itemset X in MoveNL. I' can be in NPBU®
only if all its subsets are in LP?B“%_ Hence there would be some itemset Y in LPBY% which
is a (| I' | —1)-subset of I and which differs from X in exactly one item. Since the NBGen
function seeks all such itemsets X and Y, it is guaranteed to find all those itemsets that

have to be added to N. O

3.4.1 Computing the Negative Border Closure

One method for computing the negative border closure is to repeatedly apply the NBGen
function on LPBY4 At each stage of the computation, the result obtained is added to LPBY®
and the NBGen function is applied again, and this process is continued until LPBY% does
not grow. This approach is taken in the TBAR incremental algorithm as well as in earlier
sampling-based algorithms [T0i96].

A problem with the above approach is that the negative border closure of a set of frequent
itemsets can grow exponentially when the itemsets in MoveN L, have been added to it. For
example, consider the case when a significant number, say n, of 1-itemsets are in MoveN L.
This is possible since we would expect that most 1-itemsets would, if they are not already
frequent, in course of time move from the negative border to the set of frequent itemsets. In
such a case, there would be 2" itemsets in the closure due to these n 1-itemsets, which may
turn out to be too large to process efficiently.

A related problem is that generating too many candidate itemsets can slow down the
pass over the database, as has been pointed out by the performance evaluation in [AS94].
It is due to this reason that the Apriori algorithm chooses to perform multiple passes over
the database, generating only the next layer of candidate itemsets in each pass, rather than
generating candidate itemsets for all the layers at one go. Therefore, even if it is possible to
fit the complete negative border closure in main memory, it may be better to generate only
a few layers, especially in the initial passes. However in later passes, when the number of
candidates generated is small, the complete closure may be small as well. This is especially
because 1-itemsets will not be candidates in the later passes. In such circumstances, it would
be feasible and efficient to generate the complete closure.

While performing incremental mining, the initial set of passes would have been executed
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anyway during the original mining. Hence the closure would typically not be subject to the
exponential explosion scenario described above. However, it is important that if the situation
does happen to arise, the incremental mining algorithm should continue to perform well and

not suffer drastic degradation.

3.5 The DELTA Algorithm

In this section, we present our new incremental algorithm, DELTA (Differential EvaLuation
of Frequent iTemset Algorithm), for identifying association rules in basket databases. The
detailed description of the algorithm is shown in Figure 3.3.

The DELTA algorithm operates in three phases. At the outset, two variables L and N are
initialized to LP2 and NP2, respectively. These variables will finally contain the itemsets of
LPBYd and NPBYD respectively. In the first pass of the first phase, the counts of itemsets
in L and N are updated with respect to the increment db. At the end of this pass, the
itemsets in N that have now become frequent are added to both MoveNL and to L. Also
those itemsets in L which have become small are removed from L and added to N if all their
subsets are in L.! Extensions of itemsets in MoveNL are found using the NBClosureGen
function, shown in Figure 3.4. This function takes a limit (ClosureLmt) and if the number
of candidates generated at any layer of the closure exceeds this limit, no further layers are
generated. This is meant to check the explosive growth of the closure. Interestingly, note
that even if some itemsets move from N to L, it is still possible that no new candidates may
be generated [TBARI7].

In the other passes of the first phase, the candidates generated in the previous pass
are counted over db. The candidates are separated into two sets: the last layer of candi-
dates generated are placed in a set called Last/NB while the other candidates are placed in
NBC'losure. This is done because only the candidates that become frequent in LastN B
can be extended to form new candidates. By maintaining those itemsets separately, the
next layers of candidates can be computed more efficiently. The candidates which become

frequent are added to L', a temporary copy of L, because these candidates don’t have the

'In the context of sampling-based mining, itemsets that move to L from N are called “misses” [To0i96].
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/* Initialize */
L=LPB N = NDB
/* First Phase: Passes over db */
for ( k = 1; k==1 or (LastNB U NBClosure # ¢ and | ScanDB |< ScanLmt); k++ )
for all ¢t € db
for all X C ¢t do
if £ =1 then
if X € L UN then count{B ¥4
if k # 1 or supPB < supPBY% then
if X € NBClosure U LastN B then count%®-++;

if t =1 then /* First Pass */
L' = getFrequent(L, supm* | DB Udb |);
Small =L — L' L=L—-Small [* Negative Border from Small */

N = N U ExtractNB(Small, L);
MoveN L = getFrequent(N, supmi* | DB Udb |);
L=LUMoveNL L'=L"UMoveNL N =N - MoveNL
if supPBYb < gypPB then  /* Weaker Threshold */
ScanDB = ScanDB U NBClosure U LastN B
L' = L'U getFrequent(NBClosure U LastN B, supyi,* | db |);
MoveNL = MoveN LU getFrequent(LastN B, supm,* | db |);
else /* Other Passes */
L' = L'U getFrequent(NBClosure U LastN B, suppin* | db |);
MoveNL = MoveNLU getFrequent(LastN B, supmn* | db |);
Small = NBClosure U LastNB — L'
ScanDB = ScanDBU ExtractNB(Small, L');
ScanDB = ScanDBU getFrequent(N BClosure U Last N B, supyi,* | db |);
NBClosureGen (L', MoveN L, N BClosure, LastN B, ClosureLmt);

/* Second Phase: Pass over DB */
for allt € DB
for all X C t and X € ScanDB do countQBY® 4+
MoveN L = getFrequent(ScanD B, supmin* | DB U db |);
L =LUMoveNL N = NU ExtractNB(ScanDB, L);

/* Third Phase: Passes over DB U db if necessary */
while MoveNL # ¢ do
NBClosureGen (L, MoveNL, N BClosure, LastN B, ClosureLmt);
if NBC'losure U LastN B # ¢ then
for allt € dbU DB
for all X C ¢t and X € NBClosureU LastNB do count{JBY%# 4+
L = LU getFrequent(NBClosure U LastN B, supmn,* | db U DB |);
MoveNL = getFrequent(LastN B, supmin* | db U DB |);
Small = NBClosureU LastNB — L
N = NUExtractNB(Small, L);

Figure 3.3: The DELTA Incremental Mining Algorithm
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NBClosureGen( L, MoveNL, NBClosure, LastNB, ClosureLmt )

begin
NBClosure = ¢
LastNB = ¢
L' = L /* make a duplicate of L */
do

NBClosure = NBClosure U LastN B
L'=L"ULastNB
MoveNL =L

while MoveNL # ¢and | MoveNL |< ClosureLmt

end

Figure 3.4: Generating the Negative Border Closure

complete counts over the entire database. They are also added to ScanD B, which is the set
of itemsets whose counts have to be updated over DB. The itemsets which are part of the
new negative border are also added to ScanDB.

In principle, passes over the increment db during the first phase could go on till there are
no candidates left. However, we have included another termination condition by which the
iteration would stop when the size of ScanD B becomes too large. The reason for this is that
there may cases in which many candidates turn out to be frequent in the increment but are
not actually frequent overall. Such would be the case, for example, when both the increment
and the support are rather small resulting in almost every itemset from the increment being
identified as frequent. If the termination condition is activated, the remaining candidates
that have been left out from ScanDB are generated later and counted in the third phase
described below.

In the second phase, the candidates in ScanDB are counted over DB. Those that are
evaluated to be frequent are added to L, whereas among the others, those that have all their
subsets in L are added to N.

As mentioned above, the third phase is necessary only if the first phase was terminated
due to an oversized ScanDB.? The candidates which turned out to be frequent at the end
of the second phase are used as the seed to generate new candidates using the NBClosureGen

function. The new candidates that are generated are counted over the entire database. The

2This is true for the equi-support case; for the multi-support environment, as discussed in Section 3.5.1
the third phase becomes necessary in other circumstances as well.
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candidates which become frequent are again used to generate new candidates for the next

pass.

3.5.1 Change in Support Threshold

Until now, we have considered incremental mining in the context of “equi-support” environ-
ments, that is, where sup,,;,, the support threshold, is the same for both DB and DB U db.
In practice, however, it is quite possible that the support levels required by the user currently
may differ from that utilized originally. We can support such “multi-support” environments
too by incorporating the enhancements described below in the DELTA algorithm design.

It is helpful to break up the multi-support problem into two cases: Stronger, where
the current threshold is higher (i.e., sup2BY%® > sypPB) and Weaker, where the current

threshold is lower (i.e., sup2BY% < supPB) We now address each of these cases separately:

Stronger Threshold : This case is handled almost exactly the same way as the equi-
support case, that is, as though the threshold had not changed. The only difference
is that more itemsets will move from L to N than the other way, as they no longer
remain frequent. Hence it is unlikely that many itemsets would move from N to L,

resulting in much fewer candidates.

Yet another optimization is to identify all locally frequent itemsets X such that

t% + supPB x | DB |< supPBYdy | DBUdD |. Tt is easy to see that it is impossible

coun im

for such sets to become frequent in D BUdb and therefore these sets can also be removed

from the ScanDB set.

Finally, note that if db+ sup22 x DB < sup?BY%x | DBUdb |, there is no need to scan
DB at all, since there will be no Category 3 (Waxing) frequent itemsets appearing in
LPBYd Tp this situation, we can achieve our ideal goal of “throwing away” the original

database DB.

db
It is easy to show that for the above condition to be true, ﬁ, the size of the
1-— supmm

o — 1). For example,

increment relative to the original, should be less than (
1 — supi,
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DB
min

DBUdb _

if sup,,;; = 0.1 and sup,,;;”* = 0.2, all increments that are less than 12 percent of the

original database can be processed without accessing DB.

Weaker Threshold : This case is much more difficult to handle since the LP?Z set now
needs to be expanded but the identities of these additional sets cannot be deduced
from the increment db. However, any globally frequent itemset must be in LP® or in

NPB or must be an extension of some itemset in NPB. Hence it is sufficient to find

extensions of itemsets that move from NP to LPB. Such extensions are identified by

incorporating the code segment shown in Figure 3.5 before the first pass of the first
phase in DELTA. The extensions are obtained again using the NBClosureGen function.

Note that this function may not generate the complete closure. It generates layers of

the closure as long as the number of itemsets in the current layer is less than a limit.

Having the limit is especially important here because under weaker thresholds, the

closure may explode exponentially. This is because there can be a large number of

itemsets which move from N to L.

if supPBUdb < gyplB then

/* Extract frequent itemsets from N */
NewFrequent = getFrequent(N, sup?B * | DB | );
L = LU NewFrequent
N = N - NewF'requent
NBClosureGen (L, NewFrequent, NBClosure, LastN B, ClosureLmt);

Figure 3.5: Addition to DELTA for Multi-Support Case

3.5.2 Transaction Deletion

Till now, we have considered incremental mining in the context of insertion increments,
where new transactions are added to the database. In practice, however, it is quite possible
that the update to the database may be in the form of deletion of transactions. We can
support such decrement environments too by making minor modifications, described below,
in the DELTA algorithm design (these modifications suffice for both the equi-support and

the multi-support cases).
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For each itemset X in LPB and NP2, we compute its new support by making one pass
over the decrement and reducing the original count by the count in the decrement.> That
is, countPBY% = count?® — count®. All itemsets whose count is still above the minimum
are retained in LP2B. Some itemsets from LP® may move to NP8 and vice versa. For those
itemsets that move from NP8 to LPB, we apply the NBClosureGen function on them to get
their extensions. It is easy to see that at this point the state of the system is the same
as if there were no deletions, except that the counts of some extensions have to be found.
These extensions are added to LastNB and N BClosure, just as in the weaker threshold

case, shown in Figure 3.5.

3.5.3 Advantages of DELTA

We now qualitatively outline the reasons due to which the design of DELTA appears to have
several advantages over that of FUP and TBAR:

1. As described in the previous sub-section, DELTA can handle the multi-support envi-
ronment whereas this issue is not addressed by both FUP and TBAR.

2. DELTA requires much fewer passes than FUP over the original database DB. Al-
though a single pass would suffice under most conditions, just like TBAR, there could
be cases when such a single pass algorithm results in too many candidates and lot
of wasted effort. Under some conditions, especially when considering multi-support
environments, such a single pass approach will not even be feasible due to exponential
memory requirements. Therefore, DELTA judiciously chooses the appropriate number

of passes required to properly handle the specific increment on which it is operating.

3. DELTA incorporates techniques to ensure that only as many candidate itemsets as can

be handled efficiently are generated.

4. DELTA computes new negative borders incrementally and efficiently by utilizing in-

formation from the already existing negative border.

3Information about the decrement may be obtained from the log files [LC97].
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Parameter | Meaning Values
N Number of items 1000
| | Mean size of potentially frequent itemsets | 4
| L | Number of potentially frequent itemsets | 10
| T | Mean size of the transaction 1000
| DB| | Number of transactions in database DB | 100000
| db | Number of transactions in increment db 1000, 10000, 50000, 100000
S Skew of increment db (w.r.t. DB) Identical, Skewed

Table 3.1: Parameter Table

5. DELTA handles deletion of transactions from the original database in both the multi-

support and equi-support environments.

3.6 Performance Study

In the previous sections, we presented the FUP, TBAR and DELTA incremental mining
algorithms and informally motivated as to why we expect DELTA to perform better than
the other algorithms. To confirm this expectation and to quantify the improvement obtained,
we conducted a set of experiments that covered a range of database and mining workloads.
We also included the Apriori algorithm in our algorithm evaluation suite to serve as a baseline
indicator of the performance that would be obtained by directly using a “first-time” algorithm
instead of an incremental algorithm. The performance metric is the execution time taken by
the mining operation.

The databases used in our experiments were synthetically generated using the technique
described in [AS94] and attempt to mimic the customer purchase behavior seen in retailing
environments. The parameters used in the synthetic generator are described in Table 3.1.
These are similar to those used in [AS94| except that the size and skew of the increment
are two additional parameters. We do not describe the basic data generation process here
but refer the reader to [AS94, Shri97] for the details. Since the generator of [AS94] does
not include the concept of an increment, we have taken the following approach, similar to
[CHNW96]: The increment is produced by first generating the entire DB U db and then
dividing it into DB and db.
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The above method will produce data that is ¢dentically distributed in both DB and db.
As mentioned in the Introduction, databases often exhibit temporal trends resulting in the
increment perhaps having a different distribution than the original database. That is, there
may be quite a few changes between the number and identities of the frequent itemsets
in DB and db. To model this effect, we modified the generator in the following manner:
After DB transactions are produced by the generator, a certain percentage of the potentially
frequent itemsets are changed. A potentially frequent itemset is changed as follows: First,
it is decided whether the itemset has to be changed or not. If change is decided, each item
in the itemset is changed to its “mirror image” with a certain probability (the mirror image
of an item 7 is the item N — 4). After the frequent itemsets are changed in this manner, db
number of transactions are produced with these changed frequent itemsets.

For our study, the specific values chosen for the various generator parameters are given in
Table 3.1. The database generator was written in C++ and the experiments were conducted
on UltraSparc 170E workstations running Solaris 2.5. A range of rule support threshold
values between 0.75% and 6% were considered. (For the databases used in our experiments
support thresholds greater than 6 percent resulted in the mining usually stopping after
the very first iteration itself since there were very few frequent itemsets that satisfied this
minimum frequency).

Along with varying the support thresholds, we also varied the size of the increment db
from 1000 transactions to 100000 transactions. Since the original database size was always
kept fixed at 100000 transactions, these increment values represented a increment-to-original
ratio that ranged from 0.01 to 1.

Finally, two types of increment distributions were considered: Identical where both
DB and db had the same itemset distribution, and Skewed where the distributions were
noticeably different.

To help characterize the inputs completely from the mining perspective, we counted for
each input workload the frequent itemsets based on the Persistent, Waxing and Waning
categories described in the Introduction. In addition, we also included the following two

additional categories of frequent itemsets:

New: Itemsets that are frequent only in db — these itemsets have recently become popular.
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Old: Itemsets frequent only in DB — these itemsets have almost disappeared from the

market.

Finally, on a related dimension, we also counted the number of frequent itemsets in LPBY,
in LP® and in L%, respectively.

We also conducted experiments wherein the new minimum support threshold is different
from that used in the original mining. The original threshold was varied from 0.6% to 6% and
for each value of the original threshold, the new threshold was also varied in the same range.
Therefore, both the Stronger Threshold and Weaker Threshold cases outlined in Section 3.5
were considered in these experiments.

The limit for the size of the ScanDB set (ScanLmt) is set to 10000. If this limit is
exceeded during the first phase of the DELTA algorithm, no more itemsets are added to
ScanDB and the second phase of the DELTA algorithm is activated. The limit used in the
NBClosureGen function (ClosureLmt) is set to 50 in our experiments. This means that if the

number of itemsets generated at any layer is more than 50, the next layer is not generated.

3.7 Results

In this section, we report on the results of our experiments comparing the performance of the
various mining algorithms for the dynamic basket database model described in the previous
section. We conducted two sets of experiments, one with Identical itemset distribution and
the other with Skewed itemset distribution for the increment, and their results are analyzed
in the remainder of this section. We first discuss these results in the context of the “equi-

support” environment and subsequently for the “multi-support” environment.

3.7.1 Identical Distribution

For the Identical distribution environment, Table 3.2 gives the breakdown of the various
kinds of frequent itemsets, for original-to-increment ratios of 100 : 1, 100 : 10, 100 : 50
and 100 : 100, and support thresholds of 0.75, 1, 2, 4, and 6 percent. As can be seen

from this table, the number of frequent itemsets decreases exponentially with increase in
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‘ | DB |:| db | ‘ Support ‘ Lpsua ‘ Lpg ‘ La ‘ Persistent ‘ Waxing ‘ Waning ‘ New ‘ Old ‘

6% 6 6 9 3 0 1 4 0

4% 39 39 48 34 0 ) 14 0

100:1 2% 178 177 | 185 156 1 21 28 0
1% 1238 | 1238 | 1603 986 3 249 614 | 3

0.75% 1950 | 1953 | 2366 1687 0 263 679 | 3

6% 6 6 3 3 0 1 0 0

4% 39 39 41 37 0 2 2 0

100:10 2% 178 177 | 173 170 1 7 2 0
1% 1227 | 1238 | 1244 1130 2 95 112 | 13

0.75% 1948 | 1953 | 2015 1828 4 116 183 | 9

6% 6 6 Y 3 0 1 0 0

4% 39 39 38 38 0 1 0 0

100:50 2% 176 177 | 176 173 1 2 2 2
1% 1232 | 1238 | 1226 1188 9 35 29 15

0.75% 1947 | 1953 | 1950 1894 17 36 39 | 23

6% 6 6 3 3 0 1 0 0

4% 39 39 38 38 0 1 0 0

100:100 2% 176 177 | 177 173 1 2 3 2
1% 1235 | 1238 | 1236 1203 17 15 16 | 20

0.75% 1945 | 1953 | 1951 1908 18 19 25 | 26

Table 3.2: Itemset distribution (Identical)

support threshold, as should be expected. Further, with increasing increment sizes, there is
an increase in the Waxing set and a decrease in the Waning set, since the increment plays
a larger role in determining the frequent itemsets. Similarly there is an increase in the Old
set and a decrease in the New set, for the same reason.

The execution time performance of the Apriori, FUP and DELTA mining algorithms for
the above set of input workloads is shown in Figure 3.6 (we defer the discussion of TBAR’s
performance to later). We first notice here that for all the increment sizes and all the support
factors, FUP outperforms Apriori and DELTA outperforms both FUP and Apriori. At low
support thresholds especially, there is a considerable difference between the performance of
DELTA and that of FUP — this is because these support values result in higher values of £,
the maximal frequent itemset size, leading to correspondingly more iterations for FUP over
the original database DB.

We also notice that the difference between the performance of the incremental algorithms
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100:1 100:10
Support DELTA TBAR Support DELTA TBAR
0.75 11.6 8.5 0.75 7.1 3
1.0 9.1 5.1 1.0 2.6 2.6
2.0 7.7 5.2 2.0 2.6 2.6

41

Table 3.3: DELTA vs TBAR

(FUP and DELTA) and that of Apriori decreases with increasing increment size. This
is because all three algorithms have to do essentially similar multiple iterations over the
increment db and the more the size of db, the lesser will the effect of optimization on DB
processing be felt on the overall performance. That is, the mining of db becomes a major
factor in the overall performance determination. But what is interesting to note is that even
when the increment is as large as the original database (the 100:100 case), FUP and DELTA
still do noticeably better than Apriori.

We have seen in the above that DELTA can perform significantly better than FUP. We
now move on to comparing DELTA’s performance to that of TBAR based on their published
results [TBAR97]. In Table 3.3 we show the relative speedups of DELTA and TBAR with
respect to that of Apriori for the 100:1 and 100:10 increment databases. We see here that
DELTA performs noticeably better than TBAR, especially for small-sized increments and

low supports. Further, its performance never becomes worse than that of TBAR.

3.7.2 Skewed Distribution

For the Skewed environment, Table 3.4 gives the breakdown of the various kinds of
frequent itemsets for the same increment and support values as those used for the previ-
ous experiment. Note that there are many more Old and New category itemsets with the
Skewed distribution as compared to that for the Identical distribution. For example, with
an increment size 100:100 and support of 0.75%, the New and Old values for Skewed are 117
and 219, respectively, whereas for Identical they were 25 and 26, respectively. This is only to
be expected since having a skew implies significant change in the frequent itemset elements

between the original and the increment. The same effect is also observed by comparing the
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‘ | DB |:| db | ‘ Support ‘ Lpsua ‘ Lpg ‘ La ‘ Persistent ‘ Waxing ‘ Waning ‘ New ‘ Old ‘

6% 6 6 7 3 0 1 2 0

4% 38 39 44 30 0 9 14 0

100:1 2% 177 177 | 181 149 1 27 31 1
1% 1237 | 1236 | 1289 756 4 477 459 | 0

0.75% 1946 | 1952 | 2269 1512 1 433 756 7

6% 6 6 7 3 0 1 2 0

4% 38 39 32 29 0 9 3 1

100:10 2% 176 177 | 172 162 1 13 9 2
1% 1222 | 1235 | 1240 1029 6 187 205 | 19

0.75% 1914 | 1952 | 1904 1638 2 274 264 | 40

6% 6 6 6 3 0 1 1 0

4% 33 39 32 31 0 2 1 6

100:50 2% 175 177 | 170 164 2 9 4 4
1% 1114 | 1235 | 1193 1077 11 26 105 | 132
0.75% 1860 | 1952 | 1850 1679 25 156 146 | 117

6% 3 6 6 3 0 1 1 0

4% 33 39 30 28 0 3 2 6

100:100 2% 175 177 | 169 164 3 8 2 3
1% 1119 | 1234 | 1155 1078 19 22 o8 | 134
0.75% 1759 | 1952 | 1829 1686 26 47 117 | 219

Table 3.4: Itemset distribution (Skewed)

number of Persistent itemsets between the Identical and Skewed environments — at the 0.75
percent support threshold, for example, the Skewed setup always has about 200 itemsets
less.

The execution time performance of the Apriori, FUP and DELTA algorithms for the
Skewed workload is shown in Figure 3.7. In an overall sense, their relative behavior is
very similar to that seen for the Identical distribution — again for all the increment sizes
and all the support factors, FUP outperforms Apriori and DELTA outperforms both FUP
and Apriori. So, while the previous experiment had shown the robustness of DELTA’s
improved performance with regard to increment size, this experiment confirms the robustness

of DELTA’s improved performance with regard to increment distribution.
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3.7.3 Multi-Support Experiments

The previous set of experiments modeled equi-support environments. We now move on to
considering multi-support environments. In these experiments, we compare the performance
of DELTA to Apriori only since FUP and TBAR, as mentioned before, do not handle the
multi-support case. Although we conducted these experiments for a variety of increments
and support changes, due to space constraints we show the performance graphs here for only
a sample set of increments and change in support values (the performance behavior in the
other experiments was similar). In particular we consider two cases, one where the original

support threshold is high and the other where the original support threshold is low.

High Original Support

In this experiment, we fixed the initial support to be 4.0% and the new support was var-
ied between 1.0% and 7.0%. thereby covering both the Weaker Threshold and Stronger
Threshold possibilities. For this environment, Figures 3.8a and 3.8b show the performance
of DELTA relative to that of Apriori for the 100:1 and 100:50 increment ratios, respectively,
where the distribution of the increments is Identical to that of the original.

We see in Figure 3.8a that DELTA exhibits a huge performance gain in the Stronger
Threshold region (> 4.0%), upto as much as 25 times. Further, in the Weaker Threshold
region, although DELTA’s performance drops with decreasing threshold, the improvement
relative to Apriori is still observable. For example, for a new support of 1.0% percent, DELTA
takes about 25% less time than Apriori. In Figure 3.8b, a similar qualitative behavior is seen
but the magnitude of improvement is somewhat reduced. This is expected since both DELTA
and Apriori have to execute passes over a larger increment resulting in more commonality

in the work that is performed.

Low Original Support

In our second experiment, we fixed the initial support to be 0.8% and the new support
was varied between 0.6 and 1.0. For this environment, Figures 3.9a and 3.9b show the

performance of DELTA relative to that of Apriori for the same databases as those used in
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the High Support experiment,

We see in Figure 3.9a that DELTA exhibits large performance gains in the Stronger
Threshold region (> 0.8%), again upto as much as 25 times. Further, in the Weaker Thresh-
old region, although DELTA’s performance drops with decreasing threshold, the improve-
ment relative to Apriori is still quite significant. For example, for a new support of 0.6 %
percent, DELTA takes one-fifth the time taken by Apriori. A similar good performance is
seen in Figure 3.9b but with reduced magnitude — the reduction is for the same reason as
explained in the High Support experiment.

We now comment on why the performance advantage of DELTA increased in the Low
Support case as compared to the High Support case. The reason is the following: In the
low support case, much work has already been done in the previous mining and so DELTA
performs better. This is confirmed by the fact that DELTA and Apriori converge in perfor-
mance when the original threshold is high, say 6% and the present threshold is low such as
1%. This is expected since very few itemsets become frequent at 6% and DELTA and Apriori
have to do almost the same amount of work. It is to be noted that under such circumstances,
a large number of 1-itemsets from the negative border become frequent, 350 in this case. It

2350

is impractical to generate the closure of all these itemsets as that would be itemsets,

and this problem is avoided by DELTA by virtue of the limits incorporated in its design.

3.8 Conclusions

We considered the problem of incrementally mining association rules on basket databases
that have been subjected to a significant number of updates since their previous mining ex-
ercise. Instead of mining the whole database again from scratch, we try to use the previous
mining results, that is, knowledge of the itemsets which are frequent in the original database,
their negative border, and their associated counts, to identify the frequent itemsets in the
updated database. A list of desirable features for incremental mining algorithms was out-
lined and a new incremental mining algorithm called DELTA, which largely achieves these
requirements, was presented.

DELTA requires much fewer passes over the original database in contrast to previously
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proposed algorithms such as FUP [CHNWO96] that require as many passes as the number
of elements in the biggest rule in the current database. In addition, DELTA handles situa-
tions where the rule frequency threshold required for the current database is different than
that for the original database, and handles this for both insertion and deletion increments.
Unlike the previously proposed one-pass TBAR algorithm, DELTA is designed to efficiently
computation of negative borders and also to generate only as many candidates as can be
handled efficiently.

The performance of DELTA was compared against that of Apriori and FUP using a
synthetic database generator. Our experiments showed that for a variety of increment sizes,
increment distributions, and support thresholds, DELTA performs much better than both
Apriori and FUP. Further, a comparison with previously published results show DELTA to
perform visibly better than TBAR.

DELTA represents a first attempt at a “grand unified” incremental algorithm, as it
incorporates the positive features present in previously proposed incremental algorithms
and, further, handles all kinds of increments and support thresholds. In summary, DELTA
is a practical, versatile, robust and efficient incremental mining algorithm.

In our future work, we plan to study the growth of the negative border closure and find
bounds on its size. We also plan to study how the speed of a pass varies with respect to the
number of candidates to be counted. This will enable us to find a cost-benefit approach to
deciding on how many candidates to generate for a pass and thereby automatically set the

limit factors used in the DELTA algorithm.



Chapter 4

Rule Generation

4.1 Introduction

In the previous two chapters, we showed how to efficiently generate frequent itemsets for
both fresh databases and incremental databases. We now move on to the second phase of
mining, that is rule generation from the frequent itemsets.

For each frequent itemset I, rules are normally generated as follows: Consider all possible

subsets of this itemset. If A is any such subset, then
A= (I -4

is a rule if it has enough confidence. There could be many such rules. However, not all such

rules are interesting. Specifically, if the above ruls has minimum confidence, then any rule
B = (I — B)

also has minimum confidence (and minimum support), for any B that is a superset of A.
Thus, it is necessary to find only all the minimal rules: A rule is minimal if there is no
subset of its LHS which can also form a rule with minimum confidence. That is, rules such
as the second one above are not minimal — instead, they can be inferred. Among all rules
which can be inferred from a minimal rule, the minimal rule has the longest RHS and the

shortest LHS.

48
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Further, it pays to find only minimal rules because, given a set of frequent itemsets
with m being the length of the biggest itemset in this set, the number of rules that can
be generated is of order exponential in m. However, the number of minimal rules is linear
in the size of m. Such a drastic reduction in the number of uninteresting rules is certainly
worthwhile.

To address the above issue, we present the RULEGEN algorithm in Figure 4.1 — this
algorithm efficiently finds all minimal rules, given a set of frequent itemsets, L. The RULE-

GEN algorithm closely resembles the Apriori algorithm in its structure.

1 For each itemset I in L do

2 C, = set of all 1-itemsets of I

3 k=1

4 R = /* set of interesting rules */

5. while (Ck 75 @) do

6. for each itemset A in C) do

7 if A= (I — A) has enough confidence, then
8 remove A from C} and add it to R.

9. Crs1 = AprioriGen(Cy)

10. k++

Figure 4.1: The RULEGEN Algorithm



Chapter 5

Conclusions

In this project, we have attempted to design new algorithms for efficiently mining huge
historical databases. In particular, we have presented three new algorithms, TWOPASS,
DELTA and RULEGEN, which together address both the frequent itemset generation and
the rule generation problems for both fresh databases and incremental databases.

We recommend the above algorithms to the scientists at Hitachi since they could con-
siderably reduce the tremendous computational expense normally associated with mining

operations.
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