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Abstract

Incremental mining algorithms that can efficiently derive the current mining output by utilizing
previous mining results are attractive to business organizations since data mining is typically a resource-
intensive recurring activity. In this paper, we present the DELTA algorithm for the robust and efficient
incremental mining of association rules on large market basket databases. DELTA guarantees efficiency
by ensuring that, for any dataset, at most three passes over the increment and one pass over the previous
database are required to generate the desired rules. Further, it handles “multi-support” environments
where the support requirements for the current mining differ from those used in the previous mining, a
feature in tune with the exploratory nature of the mining process. We present a performance evaluation
of DELTA on large databases over a range of increment sizes and data distributions, as well as change in
support requirements. The experimental results show that DELTA can provide significant improvements
in execution times over previously proposed incremental algorithms in all these environments. In fact,
for many workloads, its performance is close to that achieved by an optimal, but practically infeasible,
algorithm.
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1 Introduction

In many business organizations, the historical database is dynamic in that it is periodically updated with
fresh data. For such environments, data mining is not a one-time operation but a recurring activity, espe-
cially if the database has been significantly updated since the previous mining exercise. Repeated mining
may also be required in order to evaluate the effects of business strategies that have been implemented
based on the results of the previous mining. In an overall sense, mining is essentially an exploratory activity
and therefore, by its very nature, operates as a feedback process wherein each new mining is guided by the
results of the previous mining.

In the above context, it is attractive to consider the possibility of using the results of the previous
mining operations to minimize the amount of work done during each new mining operation. That is, given
a previously mined database DB and a subsequent increment db to this database, to efficiently mine db and
DB U db. Mining db is necessary to evaluate the effects of business strategies; whereas mining DB U db is
necessary to maintain the updated set of mining rules. Such “incremental” mining is the focus of this paper.
Practical applications where incremental mining techniques are especially useful include data warehouses
and Web mining since these systems are constantly updated with fresh data — on the web, for instance,
about one million pages are added daily [12].

We consider here the design of incremental mining algorithms for databases that can be represented as
a two-dimensional matrix, with one dimension being a (fixed) set of possibilities, and the other dimension
being a dynamic history of instances, with each instance recording a joint occurrence of a subset of these
possibilities. A canonical example of such a matrix is the “market basket” database [1], wherein the
possibilities are the items that are on sale by the store, and the instances record the specific set of items
bought by each customer. For ease of exposition, we will assume a market basket database in the remainder
of this paper.

Within the above framework, we focus in particular on the identification of association rules [1], that
is, rules which establish interesting correlations about the joint occurrence of items in customer purchases
— for example, “Eighty percent of the customers who bought milk also bought cereal”. Association rules
have been productively used in a variety of applications ranging from bookstores (e.g. when you purchase
a book at Amazon.com, the site informs you of the other books that have been typically bought by earlier
purchasers of your book) to health care (e.g. in detecting shifts in infection and antimicrobial resistance
patterns in intensive care units [7]).

Since the association rule problem is well-established in the database research literature (see [1, 18]
for complete details), we assume hereon that the reader is familiar with the concepts and algorithmic
techniques underlying these rules. In particular, we assume complete knowledge of the classical Apriori
algorithm [3].

1.1 The State-of-the-Art

The design of incremental mining algorithms for association rules has been considered earlier in [5, 8, 9,
10, 11, 17]. While these studies were a welcome first step in addressing the problem of incremental mining,

they also suffer from a variety of limitations that make their design and evaluation unsatisfactory from an



“industrial-strength” perspective:

Effect of Skew: The effect of temporal changes (i.e. skew) in the distribution of database values between
DB and db has not been considered. However, in practical databases, we should typically expect to
see skew for the following reasons: (a) inherent seasonal fluctuations in the business process, and/or
(b) effects of business strategies that have been put into place since the last mining. So, we expect

that skew would be the norm, rather than the exception.

As we will show later in this paper, the performance of the algorithms presented in [11, 17] is sensitive
to the skew factor. In fact, their sensitivity is to the extent that, with significant skew and substantial
increments, they may do worse than even the naive approach of completely ignoring the previous

mining results and applying Apriori from scratch on the entire current database.

Size of Database: The evaluations of the algorithms has been largely conducted on databases and incre-
ments that are small relative to the available main memory. For example, the standard experiment
considered a database with 0.1 M tuples, with each tuple occupying approximately 50 bytes, result-
ing in a total database size of only 5 MB. For current machine configurations, this database would
completely fit into memory with plenty still left to spare. Therefore, the ability of the algorithms to
scale to the enormous disk-resident databases that are maintained by most business organizations,

has not been clearly established.

Characterizing Efficiency: Apart from comparing their performance with that of Apriori, no quantita-
tive assessment has been made of the efficiency of these algorithms in terms of their distance from
the optimal, which would be indicative of the scope, if any, for further improvement in the design of

incremental algorithms.

Incomplete Results: Almost all the algorithms fail to provide the mining results for solely the increment,
db. As mentioned before, these results are necessary to help evaluate the effects of business strategies

that have been put into place since the previous mining.

Changing User Requirements: It is implicitly assumed that the minimum support specified by the user
for the current database (DB Udb) is the same as that used for the previously mined database (DB).
However, in practice, given mining’s exploratory nature, we could expect user requirements to change
with time, perhaps resulting in different minimum support levels across mining operations. Extending

the algorithms to efficiently handle such “multi-support” environments is not straightforward.

Hierarchical Databases: Virtually all the previous work is applicable only to “flat” databases where
the items in the database have independent characteristics. In reality, however, databases are often
“hierarchical”, that is, there exists a is-a hierarchy over the set of items in the database.! For
example, sweaters and ski jackets are both instances of winter wear. As pointed out in [15], such

taxonomies are valuable since rules at lower levels may not satisfy the minimum support threshold

!Flat and hierarchical databases are also referred to as “boolean” and “generalized” databases, respectively, in the mining

literature.



and hence not many rules are likely to be output if they are not considered. They are also useful to
prune away many of the uninteresting rules that would be output at low minimum support thresholds,

since a significant fraction of the rules at lower levels may be subsumed by those at higher levels.

1.2 Contributions

In this paper, we present and evaluate an incremental mining algorithm called DELTA (Differential
Evaluation of Large iTemset Algorithm). The core of DELTA is similar to the previous algorithms but
it also incorporates important design alterations for addressing their above-mentioned limitations. With
these extensions, DELTA represents a practical algorithm that can be effectively utilized for real-world

databases. The main features of the design and evaluation of DELTA are the following:

e DELTA guarantees that, for the entire mining process, at most three passes over the increment and
one pass over the previous database may be necessary. We expect that such bounds will be useful to

businesses for the proper scheduling of their mining operations.

e For the special case where the new results are a subset of the old results, and therefore in principle
requiring no processing over the previous database, DELTA is optimal in that it requires only a single

pass over the increment to complete the mining process.

e For computing the negative border [18] closure, a major performance-determining factor in the in-
cremental mining process, a new hybrid scheme that combines the features of earlier approaches is

implemented.

e DELTA provides complete mining results for both the entire current database as well as solely the

increment.

e DELTA can handle multi-support environments, requiring only one additional pass over the current

database to achieve this functionality.

e By carefully integrating optimizations previously proposed for first-time hierarchical mining algo-
rithms, the DELTA design has been extended to efficiently handle incremental mining of hierarchical

association rules.

e The performance of DELTA is evaluated on a variety of dynamic databases and compared with that
of Apriori and the previously proposed incremental mining algorithms for flat association rules. For
hierarchical association rules, we compare DELTA against the Cumulate first-time mining algorithm
presented in [15]. All experiments are made on databases that are significantly larger than the entire
main memory of the machine on which the experiments were conducted. The effects of database

skew are also modeled.

The results of our experiments show that DELTA can provide significant improvements in execution
times over the previous algorithms in all these environments. Further, DELTA’s performance is

comparatively robust with respect to database skew.



DB, db, DBUdb Previous, increment, and current database

sup,%gl, sup,%gfdb Previous and New Minimum Support Thresholds

SUPmin Minimum Support Threshold when sup?B = supPBUdb

LPB pdb [ DBUdb | GQet of large itemsets in DB, db and DB U db

NDPB ndb NDBUdb | Negative borders of LPB, L% and LPBUYdb

I LDBUd (DB (y NDB)

N Negative border of L

Small Set of small itemsets with known counts (during program execution)

Table 1: Notation

e We also include in our evaluation suite the performance of an an oracle that has complete apriori
knowledge of the identities of all the large itemsets (and their associated negative border) both in
the current database as well as in the increment and only requires to find their respective counts.
It is easy to see that this algorithm, although practically infeasible, represents the optimal since all
other algorithms will have to do at least the same amount of work. Therefore, modeling the oracle’s
performance permits us to characterize the efficiency of practical algorithms in terms of their distance

from the optimal.

Our experiments show that DELTA’s efficiency is close to that obtained by the oracle for many of the
workloads considered in our study. This shows that DELTA is able to extract most of the potential

for using the previous results in the incremental mining process.

1.3 Organization

The remainder of this paper is organized as follows: The DELTA algorithm for both flat and hierarchical
association rules is presented in Section 2 for the equi-support environment. The algorithm is extended
to handle the multi-support case in Section 3. The previously proposed incremental mining algorithms
are summarized in Section 4. The performance model is described in Section 5 and the results of the
experiments are highlighted in Section 6. Finally, in Section 7, we present the conclusions of our study and

outline future research avenues.

2 The DELTA Algorithm

In this section, we present the design of the DELTA algorithm. For ease of exposition, we first consider
the “equi-support” case, and then in Section 3, we describe the extensions required to handle the “multi-

support” environment. In the following discussion and in the remainder of this paper, we use the notation

b

given in Table 1. Also, we use the terms “large”, “small”, “count” and “support” with respect to the entire

database DB U db, unless otherwise mentioned.

The input to the incremental mining process consists of the set of previous large itemsets LPB, its

negative border NP8 and their associated supports. The output is the updated versions of the inputs,



[,DBUdb N DBUdb

namely, and along with their supports. In addition, the mining results for solely the

increment, namely, L% U N9, are also output.

2.1 The Mechanics of DELTA

The pseudo-code of the core DELTA algorithm for generating flat association rules is shown in Figure 1
— the extension to hierarchical association rules is presented in Section 2.2. At most three passes over the
increment and one pass over the previous database are made, and we explain below the steps taken in
each of these passes. After this explanation of the mechanics of the algorithm, we discuss in Section 2.3

the rationale behind the design choices.

2.1.1 First Pass over the Increment

In the first pass, the counts of itemsets in L”? and NP® are updated over the increment db, using the
function UpdateCounts (line 1 in Figure 1). By this, some itemsets in N8 may become large and some

LPB may become small. Let the resultant set of large itemsets be L. These large itemsets are

itemsets in
extracted using the function GetlLarge (line 2). The remaining itemsets are put in Small (line 3), and are
later used for pruning candidates. The algorithm terminates if no itemsets have moved from NPZ to L

(lines 4-5). This is valid due to the following Theorem presented in [17]:

Theorem 1 If X is an itemset that is not in LPB but is in LPBY®  then there must be some subset = of

X which was in NPB and is now in LPBYb,

Hence, for the special case where the new results are a subset of the old results, and therefore in
principle requiring no processing over the previous database, DELTA is optimal in that it requires only a

single pass over the increment to complete the mining process.

2.1.2 Second Pass over the Increment

On the other hand, if some itemsets do move from NPB to L, then the negative border N of L is computed
(line 6), using the AprioriGen [3] function. Itemsets in N with unknown counts are stored in a set N* (line
10). The remaining itemsets in N i.e. with known counts, are all small. Therefore, the only itemsets
that may be large (and are not yet known to be so) are those in N* and their extensions. If there are no
itemsets in N*, the algorithm terminates (lines 7-9).

Now, any itemset in N* that is not locally large in db cannot be large in DB U db. Further, none of its
extensions can be large as well. This is based on the following observation of [8]:2.

Theorem 2 An itemset can be present in LPBY® only if it is present in either LB or L% (or both).

Therefore, a second pass over the increment is made to find the counts within db of N* (line 11). Those
itemsets that turn out to be small in db are stored in a set called Small® (line 13), which is later used for

pruning candidates.

2This observation applies only to the equi-support case



DELTA (DB, db, LB, NPB  sup,.in)
Input: Previous Database DB, Increment db, Previous Large Itemsets LP5,
Previous Negative Border NP2 Minimum Support Threshold supy,in

Output: Updated Set of Large Itemsets LPBY% Updated Negative Border NP BUdb

begin

1. UpdateCounts(db, LPB U NPB);  // first pass over db
2. L = Getlarge(LPB U NP8, supmin + |DB U db));

3. Small = (LPP UNDPB) - L // used later for pruning
4. if (LPB == L)

5. return(LPB NDPB);

6. N = NegBorder(L);

7. if (N C Small)

8. get supports of itemsets in N from Small

9. return(L, N);

10. N* = N — Small;

11. UpdateCounts(db, N*); // second pass over db
12. C = Getlarge(N", suppmin * |db|);

13. Small® = N* - C // used later for pruning

14. if (]C] > 0)

15. C=CuUlL

16. ResetCounts(C);

17. do // compute negative border closure

18. C = C U NegBorder(C);

19. C = C — (Small U Small®) // prune
20. until C does not grow

21. C=0C—(LUNY

22. if (|C| > 0)

23. UpdateCounts(db, C); // third and final pass over db
24. ScanDB = GetLarge(C U N*, supmn, * |dbl);

25. N' = NegBorder(L U ScanDB) — Small;

26. get supports of itemsets in N’ from (C U N*)

27. UpdateCounts(DB, N' U ScanDB); // first (and only) pass over DB
28. LPBYb — [, U Getlarge(ScanDB, supy, * |DB U db|);
29. NDBUd — NegBorder(LPBYdb),

30. get supports of NPBY® from (Small U N')

31. return(LPBVd NDBUdb),

end

Figure 1: The DELTA Incremental Mining Algorithm




2.1.3 Third (and Final) Pass over the Increment

We then form all possible extensions of L which could be in LPBYd® y NDPBUdb a1 store them in set C.
This is done by computing the remaining layers of the negative border closure of L (lines 15-20). (We
expect that the remaining layers can be generated together since the number of 2-itemsets in L is typically
much smaller than the overall number of all possible 2-itemset pairs.) At the start of this computation,
the counts of itemsets in C' are reset to zero using the function ResetCounts (line 16). Then, at every stage
during the computation of the closure, those itemsets that are in Small and Small®® are removed so that
none of their extensions are generated (line 19). After all the layers are generated, itemsets from L and
N* are removed from C since their counts within DB U db and db respectively, are already available (line
21). The third and final pass over db is then made to find the counts within db of the remaining itemsets
in C (line 23).

2.1.4 First (and Only) Pass over the Previous Database

Those itemsets of the closure which turn out to be locally large in db need to be counted over DB as well to
establish whether they are large overall. We refer to these itemsets as ScanDB (line 24). Since the counts
of NPBY need to be computed as well, we evaluate NegBorder(L U ScanDB). From this the itemsets in
Small are removed since their counts are already known. The counts of the remaining itemsets (i.e. N’ in
line 25) are then found by making a pass over DB (line 27).

After the pass over DB, the large itemsets from ScanDB are gathered to form LPBY (line 28) and
then its negative border NPBY4 is computed (line 29). The counts of NP?BY% are obtained from Small

and N’ (line 30). Thus we obtain the final set of large itemsets LPBY% and its negative border NPBYdb,

2.1.5 Results for the Increment

LDBUdb NDBUdb

Performing the above steps results in the generation of and along with their supports.
But, as mentioned earlier, we also need to generate the mining results for solely the increment, namely,
L% U N%_ To achieve this, the following additional processing is carried out during the above-mentioned
passes:

After the first pass over the increment, we have the updated counts of all the itemsets in LB U NPB,
Therefore, the counts of these itemsets with respect to the increment alone is very easily determined
by merely computing the differences between the updated counts and the original counts. After this
computation, the itemsets that turn out to be large within db are gathered together and their negative
border is computed.

If the counts within db of some itemsets in the negative border are unknown, these counts are determined
during the second pass over the increment. Subsequently, the negative border closure of the resultant large
itemsets (over db) is computed and the counts within db of the itemsets in the closure are determined during
the third pass over the increment. Finally, the identities and counts within db of itemsets in L% U N9 are
extracted from the closure.

In the above, note that a particular itemset could be a candidate for computing L% U N%  as well as

LPBUdby NDBUdb Ty engure that there is no unnecessary duplicate counting, all such common itemsets are



identified and two counters are maintained for each of them: the first counter initially stores the itemset’s
support in DB, while the second stores the support in db. After the support in db is computed, the first

counter is incremented by this value — it then reflects the support in DB U db.

2.2 Generating Hierarchical Association Rules

The processing steps described in the previous sub-section are completely sufficient to deliver the desired
mining outputs for flat databases. We now move on to describing how it is easily possible to extend the
DELTA design to also handle the generation of association rules for hierarchical databases.

The hierarchical rule mining problem is to find association rules between items at any level of a given
taxonomy graph (is-a hierarchy). An obvious but inefficient solution to this problem is to reduce it to a flat
mining context using the following strategy: While reading each transaction from the database, dynamically
create an “augmented” transaction that also includes all the ancestors of all the items featured in the
original transaction. Now, any of the flat mining algorithms can be applied on this augmented database.

A set of optimizations to improve upon the above scheme were introduced in [15] as part of the Cumulate
(first-time) hierarchical mining algorithm. Interestingly, we have found that these optimizations can be
utilized for incremental mining as well, and in particular, can be cleanly integrated in the core DELTA
algorithm. In the remainder of this sub-section, we describe the optimizations and their incorporation in
DELTA.

2.2.1 Cumulate Optimizations

Cumulate’s optimizations for efficiently mining hierarchical databases are the following:

¢ Pre-computing ancestors. Rather than finding the ancestors for each item by traversing the

taxonomy graph, the ancestors for each item are precomputed and stored in an array.

e Filtering the ancestors added to transactions. While reading a transaction from the database,
it is not necessary to augment it with all ancestors of items in that transaction. Only ancestors of

items in the transaction that are also present in some candidate itemset are added.

e Pruning itemsets containing an item and its ancestor. A candidate itemset that contains
both an item and its ancestor may be pruned. This is because it will have exactly the same support

as the itemset which doesn’t contain that ancestor and is therefore redundant.
2.2.2 Incorporation in DELTA

The above optimizations are incorporated in DELTA in the following manner:

1. The first optimization is performed only in routines that access the database and therefore do not
affect the structure of the DELTA algorithm.

2. The second optimization is performed before each pass over the increment or previous database.
Ancestors of items that are not part of any candidate are removed from the arrays of ancestors that

were precomputed during the first optimization.



3. The third optimization is performed only once and that is at the end of the first pass over the
increment. At this stage the identities of all potentially large 2-itemsets (over DB U db) are known,
and hence no further candidate 2-itemsets will be generated. Among the potentially large 2-itemsets,
those that contain an item and its ancestor are pruned. It follows that candidates generated from
the remaining 2-itemsets will also have the same property, i.e. they will not contain an item and its

ancestor. Hence this optimization does not need to be applied again.

2.3 Rationale for the DELTA Design

Having described the mechanics of the DELTA design, we now provide the rationale for its construction:
Let L be the set of large itemsets in LPZ U NP8 that survive the support requirement after their
counts have been updated over db, and N be its negative border. Now, if the counts of all the itemsets in
N are available, then the final output is simply L U N. Otherwise, the only itemsets that may be large
(and are not yet known to be so) are those in N with unknown counts and their extensions — by virtue of

Theorem 1. At this juncture, we can choose to do one of the following:

Complete Closure: Generate the complete closure of the negative border, that is, all extensions of the
itemsets in N with unknown counts. While generating the extensions, itemsets that are known to be
small may be removed so that none of their extensions are generated. After the generation process
is over, find the counts of all the generated itemsets by performing one scan over DB U db. We now

have all the information necessary to first identify LPBY4% and then the associated NPBUdb,

Layered Closure: Instead of generating the entire closure at one shot, generate the negative border “a
layer at a time”. After each layer is computed, update the counts of the itemsets in the layer by
performing a scan over DB U db. Use these counts to prune the set of itemsets that will be used in

the generation of the next layer.

Hybrid Closure: A combination of the above two schemes, wherein the closure is initially generated a
layer at a time, and after a certain number of layers are completed, the remaining complete closure is
computed. The number of layers upto which the closure is generated in a layered manner is a design

parameter.

The first scheme, Complete Closure, appears infeasible because it could generate a very large number
of candidates if the so-called “promoted borders” [11], that is, itemsets that were in NP8 but have now
moved to LPBY%  contain more than a few 1-itemsets. This is because if p; is the number of 1-itemsets in
the promoted borders, a lower bound on the number of candidates is 2°*(|L| — p;1). This arises out of the
fact that every combination of the p; 1-itemsets is a possible extension, and all of them can combine with
any other large itemset in L to form candidates. Therefore, even for moderate values of p;, the number of
candidates generated could be extremely large.

The second strategy, Layered Closure, avoids the above candidate explosion problem since it brings a
pruning step into play after the computation of each layer. However, it has its own performance problem

in that it may require several passes over the database, one per layer, and this could turn out to be very



costly for large databases. Further, it becomes impossible to provide bounds on the number of passes that
would be required for the mining process.

Therefore, in DELTA, we adopt the third hybrid strategy, wherein an initial Layered Closure approach
is followed by a Complete Closure strategy. In particular, the Layered Closure is used only for the first layer,
and then the Complete Closure is brought into play. This choice is based on the well-known observation
that pruning typically has the maximum impact for itemsets of length two — that is, the number of 2-
itemsets that turn out to be large is usually a small fraction of the possible 2-itemset candidates [14]. In
contrast, the impact of pruning at higher itemset lengths is comparatively small.

To put it in a nutshell, the DELTA design endeavors to achieve a reasonable compromise between
the number of candidates counted and the number of database passes, since these two factors represent
the primary bottle-necks in association rule generation. That our choice of compromise results in good

performance is validated in the experimental study described in Section 6.

3 Multi-Support Incremental Mining in DELTA

In the previous section, we considered incremental mining in the context of “equi-support” environments.
As mentioned in the Introduction, however, we would expect that user requirements would typically change
with time, resulting in different minimum support levels across mining operations. In DELTA, we address
this issue which has not been previously considered in the literature. We expect that this is an important
value addition given the inherent exploratory nature of mining.

For convenience, we break up the multi-support problem into two cases: Stronger, where the current

threshold is higher (i.e., supgglu‘ﬂ’ > supfzgl), and Weaker, where the current threshold is lower (i.e.,
supPBUd < gypDB) We now address each of these cases separately:

3.1 Stronger Support Threshold

The stronger support case is handled almost exactly the same way as the equi-support case, that is, as

though the threshold has not changed. The only difference is that the following optimization is incorporated:

DBUdb

DB :
min " are removed from L~® and the corresponding

Initially, all itemsets which are not large w.r.t. sup
negative border is then calculated. The itemsets that are removed are not discarded completely, but are
retained separately since they may become large after counting over the increment db. They may also be
part of the computed negative border closure (lines 15-20 in Figure 1). If so, then during the pass over
DB their counts are not measured since they are already known. If the counts of all the itemsets in the

closure are known, the pass over DB becomes unnecessary.

3.2 Weaker Support Threshold

LPEB set now needs to be ezpanded but

The weaker support case is much more difficult to handle since the
the identities of these additional sets cannot be deduced from the increment db. In particular, note that

Theorem 2, which DELTA relied on for pruning candidates in the equi-support case, no longer holds when

10



DeltaLow (DB,db, LPB, NPB guypDB ' gypDBUdb)

Input: Previous Database DB, Increment db, Previous Large Itemsets LPB,
DB

Previous Negative Border NP, Previous Minimum Support Threshold SUP i

D BUdb
min

Output: Updated Set of Large Itemsets LPBY%® Updated Negative Border NPBUYdb

Present Minimum Support Threshold sup

begin

1. UpdateCounts(db, LPB U NP5B); // pass over db

2. L = GetLarge(LPB U NPB supPBYdb « |DB U db));

3. N Between = NegBorder(L) — (LP8 U NPB);

4 // perform lines 2-31 of DELTA for equi-support case using sup28 with

// the following modification: find the counts of itemsets in N Between also
// over (DB Udb). Let (L', N') be the output obtained by this process.

5. L' = L' U GetLarge(N Between, supPB % « |DB U db));
6. Small = N'U (N Between — L');

7. if (NegBorder(L') C Small)

8. get supports of itemsets in NegBorder(L') from Small
9. return(L’, NegBorder(L'));

10. C =1L,

11. ResetCounts(C);

12. do // compute negative border closure

13. C = C U NegBorder(C);

14. C = C — Small /] prune

15. until C' does not grow

16. C =C — (L'USmall)
17. UpdateCounts(DB U db, C); // additional pass over DB U db

18. LPBYb — 11 GetLarge(C, supPB % « |DB U db));
19. NDBUb — NegBorder(LPBY),

20. get supports of itemsets in NP?BY% from (C U Small)
21. return(LPBUdb NDBUdb).

end

Figure 2: DELTA for Weaker Support Threshold (DeltaLow)

the support threshold is lowered since we cannot deduce that a candidate is small over DB just because it

is not present in LPB U NPB,

However, it is easy to observe that the output required in the weaker threshold case is a superset of

what would be output had the support threshold not changed. This observation suggests a strategy by
which the DELTA algorithm is executed as though the support threshold had not changed, while at the

same time making suitable alterations to handle the support threshold change.

In DELTA, the above strategy is incorporated by generating extra candidates (as described below)

11



based on the lowered support threshold. It is only for these candidates that Theorem 2 does not hold.
Hence, it is necessary to find their counts over the entire database DB U db. This is done simultaneously
while executing equi-support DELTA.

The pseudo-code for the complete algorithm is given as function DeltaLow in Figure 2, and is described
in the remainder of this section. The important point to note here is that the enhanced DELTA requires

only one additional pass over the entire database to produce the desired results.

3.2.1 First Pass over the Increment

As in the equi-support case, the counts of itemsets in LP® and NP8 are updated over the increment db

(line 1 in Figure 2). By this, some itemsets in N”Z may become large and some itemsets in LP® may

DBuUdb

i ) be L. These large itemsets are

become small. Let the resultant set of large itemsets (w.r.t. sup
extracted using the function GetLarge (line 2). Itemsets in the negative border of L with unknown counts
are computed as NegBorder(L) — (LPB U NPB). We refer to this set as N Between since these itemsets
are likely to have supports between sup2B DBudb

hold due to the lowered support threshold.

and sup. (line 3). For these itemsets, Theorem 2 does not

3.2.2 Remaining Passes of Equi-Support DELTA

The remaining passes of equi-support DELTA are executed for the previous support sup28 . A difference,

however, is that the counts of itemsets in N Between over DB U db are simultaneously found (line 4).
Among the candidates generated during the remaining passes of equi-support DELTA, some may al-

ready be present in N Between. To ensure that there is no unnecessary duplicate counting, all such common

itemsets are identified and only one copy of each is retained during counting.

3.2.3 Additional Pass over the Entire Database

At the end of the above passes, the counts of all 1-itemsets and 2-itemsets of LPBYdby NDBUdb yre gyailable.
The counts of 1-itemsets are available because LPZ U NPB contains all possible 1-itemsets [17], while the
counts of all required 2-itemsets are available because L contains all large 1-itemsets in DB U db and
N Between contains the immediate extensions of L that are not already in (LPZ U NP8B). Therefore, it
becomes possible to generate the negative border closure of all known large itemsets without encountering
the “candidate explosion” problem described for the Complete Closure approach in Section 2.3.

Let L' be the set of all large itemsets whose counts are known (line 5), and let Small be the set of
itemsets with known counts which are not in L' (line 6). If the counts of the negative border of L' are
already known, then the algorithm terminates (lines 7-9). Otherwise, all the remaining extensions of L'
that could become large are determined by computing the negative border closure (lines 10-16). (As in
the equi-support case, we expect that the remaining layers of the closure can be generated together since
the number of 2-itemsets in L' is typically much smaller than the overall number of all possible 2-itemset
pairs.) The itemsets of the closure are counted over the entire database (line 17), and the final set of large

itemsets and its negative border are determined (lines 18-20).
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4 Previous Incremental Algorithms

In this section, we provide an overview of the algorithms that have been developed over the last two years

for incremental mining of flat association rules on market basket databases.

4.1 The FUP Algorithm

The FUP (Fast UPdate) algorithm [8, 9, 10] represents the first work in the area of incremental mining. Tt
operates on an iterative basis and in each iteration makes a complete scan of the current database. In each
scan, the increment is processed first and the results obtained are used to guide the mining of the original
database DB. An important point to note about the FUP algorithm is that it requires k- passes over the
entire database, where k is the cardinality of the longest large itemset. Further, it does not generate the
mining results for solely the increment.

In the first pass over the increment, all the 1-itemsets are considered as candidates. At the end of
this pass, the complete supports of the candidates that happen to be also large in DB are known. Those
which have the minimum support are retained in LPPY%®_ Among the other candidates, only those which
were large in db can become large overall due to Theorem 2 (Section 2). Hence they are identified and
the previous database DB is scanned to obtain their overall supports, thus obtaining the set of all large
1-itemsets. The candidates for the next pass are calculated using the AprioriGen function, and the process
repeats in this manner until all the large itemsets have been identified.

After FUP, algorithms that utilized the negative border information were proposed independently in
[11] and [17] with the goal of achieving more efficiency in the incremental mining process. In the sequel,
we will use Borders to refer to the algorithm in [11], and TBAR to refer to the algorithm in [17]. Since
these algorithms are based on the negative border concept, they will be described in terms of the DELTA

design.

4.2 The Borders Algorithm

The original Borders algorithm differs from DELTA in that it computes the entire negative border closure
at one shot, that is, it uses the Complete Closure option, which could potentially result in the candidate
explosion problem mentioned in Section 2.3,

A new version of the Borders algorithm was recently proposed in [5]. This version goes to the other
extreme of the closure computation, adopting a Layered Closure approach. As mentioned in Section 2.3,
this strategy could result in significantly increasing the number of database passes, and may therefore be
problematic for large databases.

A variant of the new algorithm was proposed to handle multi-support mining. The applicability of this
algorithm, however, is limited to the very special case of zero-size increments, that is, where the database
has not changed at all between the previous and the current mining.

Finally, like FUP, Borders also does not generate the mining results for solely the increment.
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4.3 The TBAR Algorithm

The TBAR algorithm differs from DELTA in two major respects: First, it initially completely mines the
increment db, that is, L UN® is computed by applying the Apriori algorithm on the increment. We expect
that this strategy would prove to be inefficient for large increments since the previous mining results are
not used at all in this mining process.

Second, it adopts the Complete Closure approach. The complete closure is however computed only
after having mined the increment. Therefore, unlike Borders, the candidate explosion problem is unlikely
to occur because more candidates can be pruned. After computing each level of the closure, itemsets in
N% are excluded from further candidate generation. However, even with this pruning, there are likely to
be too many unnecessary candidates in TBAR, especially for skewed increments since it relies solely on

the increment for its pruning.

4.4 Other Algorithms

Recently a new algorithm for first-time mining called CARMA was proposed in [13] where its applicability
to incremental mining was also briefly mentioned. Although the algorithm is a novel and efficient approach
to first-time mining, we note that it suffers from the following drawbacks when applied to incremental
mining: (1) It does not maintain negative border information and hence will need to access the original
database DB if there are any locally large itemsets in the increment, even though these itemsets may not
be globally large. (2) The shrinking support intervals which CARMA maintains for candidate itemsets
are not likely to be tight for itemsets that become potentially large while processing the increment. This
is because the number of occurrences of such itemsets in DB will be unknown and could be as much as
SUPmin * | DB|.

An incremental mining algorithm, called MLUp, for updating “multi-level” association rules over a
taxonomy hierarchy was presented in [10]. While MLUp’s goal is superficially similar to the incremental
hierarchical mining discussed in this paper, it has the following major differences: Firstly, a different
minimum support threshold is used for each level of the hierarchy. Secondly, MLUp restricts its attention
to deriving intra-level rules, that is, rules within each level. In contrast, our focus in this paper is on the
formulation given in [15] where there is only one minimum support threshold and inter-level rules form

part of the output.

5 Performance Study

In the previous sections, we presented the FUP, Borders and TBAR . incremental mining algorithms,
apart from our new DELTA algorithm. To evaluate the relative performance of these algorithms and to
confirm the claims that we have informally made about their expected behavior, we conducted a series
of experiments that covered a range of database and mining workloads. The performance metric in these
experiments is the total execution time taken by the mining operation. (Note that, as mentioned in
Section 4, both FUP and Borders do not compute the mining results for solely the increment, and hence

their execution times do not include the additional processing required to generate these results.)
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5.1 Baseline Algorithms

We include the Apriori algorithm also in our evaluation suite to serve as a baseline indicator of the
performance that would be obtained by directly using a “first-time” algorithm instead of an incremental
mining algorithm. This helps to clearly identify the utility of “knowing the past”.

Further, as mentioned in the Introduction, it is extremely useful to put into perspective how well the
incremental algorithms make use of their “knowledge of the past”, that is, to characterize the efficiency of
the incremental algorithms. To achieve this objective, we also evaluate the performance achieved by the
ORACLE algorithm, which “magically” knows the identities of all the large itemsets (and the associated
negative border) in the current database and increment and only needs to gather their corresponding sup-
ports. Note that this idealized incremental algorithm represents the absolute minimal amount of processing
that is necessary and therefore represents a lower bound?® on the (execution time) performance.

The ORACLE algorithm operates as follows: For those itemsets in LPBY%® y NPBUD whose counts
over DB are currently unknown, the algorithm first makes a pass over DB and determines these counts.
It then scans db to update the counts of all itemsets in LPBY4 y NPBUd  Dyring the pass over db, it also
determines the counts within db of itemsets in L% U N%. Duplicate candidates are avoided by retaining
only one copy of each of them. So, in the worst case, it needs to make one pass over the previous database
and one pass over the increment.

For evaluating the performance of DELTA on hierarchical databases, we compared it with Cumulate
and ORACLE as no previous incremental algorithms are available for comparison. We chose Cumulate
among the algorithms proposed in [15] since it performed the best on most of our workloads. The hierar-

chical databases were generated using the same technique as in [15].

5.2 Database Generation

Parameter | Meaning Values

N Number of items 1000

T Mean transaction length 10

L Number of potentially large itemsets 2000

I Mean length of potentially large itemsets | 4

D Number of transactions in database DB | 4 M (200 MB disk occupancy)
d Number of transactions in increment db | 1%, 10%, 50%, 100% of D

S Skew of increment db (w.r.t. DB) Identical, Skewed
DPis Prob. of changing large itemset identity | 0.33 (for Skewed)

Dit Prob. of changing item identity 0.50 (for Skewed)

Table 2: Parameter Table

The databases used in our experiments were synthetically generated using the technique described in [3]

and attempt to mimic the customer purchase behavior seen in retailing environments. The parameters

3Within the framework of the data and storage structures used in our study.
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Parameters | Meaning Values
R Number of roots | 250

L Number of levels
F Fanout 5
D Depth-ratio

Table 3: Taxonomy Parameter Table

used in the synthetic generator are described in Table 2. These are similar to those used in [3] except
that the size and skew of the increment are two additional parameters. Since the generator of [3] does not
include the concept of an increment, we have taken the following approach, similar to [8]: The increment
is produced by first generating the entire DB U db and then dividing it into DB and db.

Additional parameters required for the taxonomy in our experiments on hierarchical databases are

shown in Table 3. The values of these parameters are identical to those used in [15].

5.2.1 Data Skew Generation

The above method will produce data that is identically distributed in both DB and db. However, as
mentioned earlier, databases often exhibit temporal trends resulting in the increment perhaps having a
different distribution than the previous database. That is, there may be significant changes in both the
number and the identities of the large itemsets between DB and db. To model this “skew” effect, we
modified the generator in the following manner: After D transactions are produced by the generator, a
certain percentage of the potentially large itemsets are changed. A potentially large itemset is changed as
follows: First, with a probability determined by the parameter p;s it is decided whether the itemset has to
be changed or not. If change is decided, each item in the itemset is changed with a probability determined
by the parameter p;;. The item that is used to replace the existing item is chosen uniformly from the set
of those items that are not already in the itemset. After the large itemsets are changed in this manner, d

number of transactions are produced with the new modified set of potentially large itemsets.

5.3 Itemset Data Structures

In our implementation of the algorithms, we generally use the hashiree data-structure [3] as a container
for itemsets. However, as suggested in [2], the 2-itemsets are not stored in hashtrees but instead in a
2-dimensional triangular array which is indexed by the large 1-itemsets. It has been reported (and also
confirmed in our study) that adding this optimization results in a considerable improvement in performance.

All the algorithms in our study are implemented with this optimization.

5.4 Overview of Experiments

We conducted a variety of experiments to evaluate the relative performance of DELTA and the other

mining algorithms. Due to space limitations, we report only on a representative set here. In particular,
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the results are presented for the workload parameter settings shown in Table 2 for our experiments on
non-hierarchical (flat) databases.

The parameters settings used in our experiments on hierarchical databases are identical except for the
number of items (N) and the number of potentially large itemsets (L) which were both set to 10000. The
specific values of additional parameters required for the taxonomy are shown in Table 3.

The experiments were conducted on an UltraSparc 170E workstation running Solaris 2.6 with 128 MB
main memory and a 2 GB local SCSI disk. A range of rule support threshold values between 0.33% and
2% were considered in our equi-support experiments.

The previous database size was always kept fixed at 4 million transactions. Along with varying the
support thresholds, we also varied the size of the increment db from 40,000 transactions to 4 million
transactions, representing an increment-to-previous database ratio that ranges from 1% to 100%. For our
experiments on hierarchical databases, the performance was measured only for supports between 0.75%
and 2% since for lower supports, the running time of all the algorithms was in the range of several hours.

Two types of increment distributions are considered: Identical where both DB and db have the same
itemset distribution, and Skewed where the distributions are noticeably different. For the Skewed distri-
bution for which results are reported in this paper, the p;s and p;; parameters were set to 0.33 and 0.5 as
mentioned in Table 2. With these settings, at the 0.5 percent support threshold and a 10% increment, for
example, there are over 700 large itemsets in db which are not large in DB, and close to 500 large itemsets
in DB that are not large in db.

We also conducted experiments wherein the new minimum support threshold is different from that used
in the previous mining. The previous threshold was set to 0.5% and the new threshold was varied from
0.2% to 1.5%. Therefore, both the Stronger Threshold and Weaker Threshold cases outlined in Section 2

are considered in these experiments.

6 Experimental Results

In this section, we report on the results of our experiments comparing the performance of the various

incremental mining algorithms for the dynamic basket database model described in the previous section.

6.1 Experiment 1: Flat / Equi-support / Identical Distribution

Our first experiment considers the equi-support situation with identical distribution between DB and db
on flat databases. For this environment, the execution time performance of all the mining algorithms is
shown in Figures 3a—d for increment sizes ranging from 1% to 100%.

Focusing first on FUP, we see in Figure 3 that for all the increment sizes and for all the support
factors, FUP performs better than or almost the same as Apriori. Moving on to TBAR, we observe that it
outperforms both Apriori and FUP at small increment sizes and low supports. At high supports, however,
it is slightly worse than Apriori due to the overhead of maintaining the negative border information. As
the increment size increases, TBAR’s performance becomes progressively degraded. This is explained as
follows: Firstly, TBAR updates the counts of itemsets in L?B U NP8 over db — these itemsets are precisely

the same as the set of all candidates generated in running Apriori over DB. Secondly, it performs a
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Figure 3: Flat / Equi-support / Identical Distribution
complete Apriori-based mining over db. When | db | = | DB |, the total cost of these two factors is the

same as the total cost incurred by the Apriori algorithm. However, TBAR finally loses out because it needs
to make a further pass over DB.

Turning our attention to Borders, we find in Figure 3a, which corresponds to the 1 percent increment,
that while for much of the support range its performance is similar to that of FUP and TBAR, there is
a sharp degradation in performance at a support of 0.75 percent. The reason for this is the “candidate
explosion” problem described earlier in Section 4. This was confirmed by measuring the number of candi-
dates for supports of 1 percent and 0.75 percent — in the former case, it was a little over 1000 whereas in
the latter, it had jumped to over 30000!

The above candidate explosion problem is further intensified when the increment size is increased, to
the extent that its performance is an order of magnitude worse than the other algorithms — therefore we
have not shown Borders performance in Figures 3b—d.

Finally, considering DELTA, we find that it significantly outperforms all the other algorithms at lower
support thresholds for all the increment sizes. In fact, in this region, the performance of DELTA almost
coincides with that of ORACLE. The reason for the especially good performance here is the following —
low support values result in tighter values of k, the maximal large itemset size, leading to correspondingly
more iterations for FUP over the previous database DB, and for TBAR over the increment db. In contrast,

DELTA requires only three passes over the increment and one pass over the previous database. Further,
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because of its pruning optimizations, the number of candidates to be counted over the previous database
DB is significantly less as compared to TBAR — for example, for a support threshold of 0.5 percent and a
50% increment (Figure 3c), it is smaller by a factor of two.

We note that the marginal non-monotonic behavior in the curves of TBAR, Borders, DELTA and
ORACLE at low increment sizes is due to the fact that only sometimes do they need to access the original

database DB and this is not a function of the minimum support threshold.

6.2 Experiment 2: Flat / Equi-support / Skewed Distribution
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Figure 4: Flat / Equi-support / Skewed Distribution

Our next experiment considers the Skewed workload environment, all other parameters being the same as
that of the previous experiment. The execution time performance of the various algorithms for this case
is shown in Figures 4a—d. We see here that the effect of the skew is pronounced in the case of both TBAR
and Borders, whereas the other algorithms (including DELTA) are relatively unaffected.

The effect of skew is noticeable in the case of TBAR since it relies solely on the increment to prune
candidates from its computation of the closure and therefore many unnecessary candidates are generated
which later prove to be small over the entire database. Borders, on the other hand, is affected because the
number of 1-itemsets that are in the promoted border tends to increase when there is skew. For instance,
for a minimum support of 0.33% and an increment of 10%, there were nine 1-itemsets among the promoted

borders and the number of large itemsets was 4481, resulting in over 2 million candidates.
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In contrast to the above, Apriori and FUP are not affected by skew since the candidates that they
generate in each pass are determined only by the overall large itemsets, and not by the large itemsets of
the increment.

DELTA is not as affected by skew as TBAR since it utilizes the complete negative border information to
prune away candidates. That is, all itemsets which are known to be small either over D B Udb or over db are
pruned away during closure generation, and not merely those candidates which are small over db. Hence,
DELTA is relatively stable with respect to data skew. As in the Identical distribution case, it can be seen
in Figures 4a-b that for small increment sizes, its performance almost coincides with that of ORACLE. Tt
however degrades to some extent for large skewed increments because of two reasons: (1) the number of
itemsets in LPB — [PBYd jpcreases, resulting in more unnecessary candidates being updated over db, and

(2) the number of itemsets in LPBY® _ [ DB

increases, resulting in more promoted borders followed by
more candidates over DB. Even in these latter cases it is seen to perform considerably better than other
algorithms. For example, for a minimum support of 0.33% and an increment of 100%, its performance is

more than twice as good as that of TBAR.

6.3 Experiment 3: Flat / Multi-Support / Identical Distribution
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Figure 5: Flat / Multi-Support / Identical Distribution [Previous Support = 0.5%)]

The previous experiments modeled equi-support environments. We now move on to considering multi-

support environments. In these experiments, we compare the performance of DELTA with that of Apriori
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and ORACLE only since, as mentioned earlier, FUP, TBAR and Borders do not handle the multi-support
case.

In this experiment, we fixed the initial support to be 0.5% and the new support was varied between
0.2% and 1.5%, thereby covering both the Weaker Threshold and Stronger Threshold possibilities. For this
environment, Figures 5a—d show the performance of DELTA relative to that of Apriori for the databases
where the distribution of the increments is Identical to that of the previous database.

We note here that at either end of the support spectrum, DELTA performs very similarly to Apriori
whereas in the “middle band” it does noticeably better, especially for moderate increment sizes (Figures 5a—
b). In fact, the performance gain of DELTA is maximum when the new minimum support threshold is the
same as the previous threshold and tapers off when the support is changed in either direction. At very
low support thresholds, the number of large itemsets increases exponentially, and therefore the number
of candidates generated in the negative border closure in DELTA will be a few more than the number of
candidates generated in Apriori. Most of the candidates will have support less than the previous minimum
threshold, and hence all of them have to be counted over the previous database. Therefore, the performance
of DELTA approaches that of Apriori in the low support region. In the high support region, on the other
hand, most of the candidates do not turn out to be large and hence both algorithms perform almost the

same amount of processing.

6.4 Experiment 4: Flat / Multi-Support / Skewed Distribution

Our next experiment evaluates the same environment as that of the previous experiment, except that
the distribution of the increments is Skewed with respect to the original database. The execution time
performance for this case is shown in Figures 6a—d. We see here that the relative performance of the
algorithms is very similar to that seen for the Identical workload environment. Further, as in the equi-
support skewed case (Experiment 2), DELTA is stable with respect to skew since it uses information from
both DB and db to prune away candidates. Only when the increment size is 100% do we notice some
degradation in the performance of DELTA. However, it performs slightly better than Apriori even for this

large increment.

6.5 Experiment 5: Hierarchical / Equi-support / Identical Distribution

The previous experiments were conducted on flat databases. We now move on to experiments conducted
on hierarchical databases. In these experiments, we compare the performance of DELTA with that of
Cumulate and ORACLE only since, as mentioned earlier, no incremental algorithms are available for
comparison. The execution time performance of the various algorithms for this case is shown in Figures 7a—
d. Note that the time taken to complete mining is measured in hours here as compared to the minutes
taken in the previous experiments. The reason for this large increase is that the number of large itemsets
is much more (about 10-15 times) — this is because itemsets can be formed both within and across levels
of the item taxonomy graph.

For all support thresholds and database sizes, we find that DELTA significantly outperforms Cumulate,
and is in fact very close to ORACLE. We see that DELTA exhibits a huge performance gain over Cumulate,
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Figure 6: Flat / Multi-Support / Skewed Distribution [Previous Support = 0.5%)]

upto as much as 9 times at the 1% increment and 0.75% support threshold, and as much as 3 times on
average. In fact, the performance of DELTA is seen to overlap with that of ORACLE for small increments
(Figures 7a—b). The reason for this is the number of candidates in DELTA over both db and DB were only
marginally more than that in ORACLE. This is again because the set of large itemsets with its negative
border is relatively stable, and DELTA prunes away most of the unnecessary candidates in its second pass

over the increment.

6.6 Experiment 6: Hierarchical / Equi-support / Skewed Distribution

Our next experiment considers the Skewed workload environment, all other parameters being the same as
that of the previous experiment. The execution time performance of the various algorithms for this case
is shown in Figures 8a—d.

As in the Identical distribution case, it can be seen in Figures 8a—b that for small increment sizes, the
performance of DELTA almost coincides with that of ORACLE. The stability of DELTA with regard to
data skew is again attributed to the fact that all itemsets that are known to be small either over DB U db
or over db are pruned away during closure generation, and not merely those candidates which are small
over db. The performance of DELTA however degrades to some extent for large skewed increments. This is
because of the same reasons as in the Flat/Equi-support/Skewed Distribution case (Experiment 2): (1) the

_ LDBUdb

number of itemsets in LPP increases, resulting in more unnecessary candidates being updated
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over db, and (2) the number of itemsets in LPBY4 — [ DB

increases, resulting in more promoted borders
followed by more candidates over DB. Even in these latter cases it is seen to perform considerably better
than Cumulate. For example, for a minimum support of 0.75% and an increment of 100%, its performance

is more than 35% as good as that of Cumulate.

6.7 Experiment 7: Hierarchical / Multi-support / Identical Distribution

The previous two experiments modeled the equi-support environment for mining over hierarchical
databases. We now move on to considering multi-support environments over these databases.

In this experiment, we fixed the initial support to be 1.5% and the new support was varied between
0.75% and 2.5%, thereby covering both the Weaker Threshold and Stronger Threshold possibilities. For
this environment, Figures 9a—d show the performance of DELTA relative to that of Cumulate and ORACLE
for the databases where the distribution of the increments is Identical to that of the previous database.

We note here that at either end of the support spectrum, DELTA performs very similarly to Cumulate
whereas in the “middle band” it does noticeably better, especially for moderate increment sizes (Figures 9a—
b). This is similar to the relationship between DELTA and Apriori in the Flat/Multi-support/Identical
Distribution case (Experiment 3). The performance gain of DELTA is maximum when the new minimum
support threshold is the same as the previous threshold and tapers off when the support is changed in

either direction. At very low support thresholds, the number of large itemsets increases exponentially, and
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Figure 8: Hierarchical / Equi-support / Skewed Distribution

therefore the number of candidates generated in the negative border closure in DELTA will be a few more
than the number of candidates generated in Cumulate. Most of the candidates will have support less than
the previous minimum threshold, and hence all of them have to be counted over the previous database.
Therefore, the performance of DELTA approaches that of Cumulate in the low support region. In the high
support region, on the other hand, most of the candidates do not turn out to be large and hence both

algorithms perform almost the same amount of processing.

6.8 Experiment 8: Hierarchical / Multi-support / Skewed Distribution

Our next experiment evaluates the same environment as that of the previous experiment, except that the
distribution of the increments is Skewed with respect to the original database. The execution time perfor-
mance for this case is shown in Figures 10a—d. We see here that the relative performance of the algorithms
is very similar to that seen for the Identical workload environment. Further, as in the Hierarchical/Equi-
support/Skewed case (Experiment 6), DELTA is stable with respect to skew since it uses information from
both DB and db to prune away candidates. Only for large increment sizes (Figures 10c-d) do we notice
some degradation in the performance of DELTA. However, it performs slightly better than Cumulate even

for these increments.
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7 Conclusions

We considered the problem of incrementally mining association rules on market basket databases that have
been subjected to a significant number of updates since their previous mining exercise. Instead of mining
the whole database again from scratch, we attempt to use the previous mining results, that is, knowledge of
the itemsets which are large in the previous database, their negative border, and their associated supports,
to efficiently identify the same information for the updated database.

We proposed a new algorithm called DELTA which is the result of a synthesis of existing algorithms,
designed to address each of their specific limitations. It guarantees completion of mining in three passes
over the increment and one pass over the previous database. This compares favorably with previously
proposed incremental algorithms like FUP and TBAR wherein the number of passes is a function of the
length of the longest large itemset. Also, DELTA does not suffer from the candidate explosion problem
associated with the Borders algorithm owing to its better pruning strategy.

DELTA’s design was extended to handle multi-support environments, an important issue not previously
addressed in the literature, at a cost of only one additional pass over the current database.

Using a synthetic database generator, the performance of DELTA was compared against that of FUP,
TBAR and Borders, and also the two baseline algorithms, Apriori and ORACLE. Our experiments showed
that for a variety of increment sizes, increment distributions and support thresholds, DELTA performs

significantly better than the previously proposed incremental algorithms. In fact, for many workloads
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Figure 10: Hierarchical / Multi-support / Skewed Distribution [Previous Support = 1.5%]

its performance approached that of ORACLE, which represents a lower bound on achievable performance,
indicating that DELTA is quite efficient in its candidate pruning process. Also, while the TBAR and
Borders algorithms were sensitive to skew in the data distribution, DELTA was comparatively robust.

In the special scenario where no pass over the previous database is required since the new results are a
subset of the previous results, DELTA’s performance is optimal in that it requires only one pass over the
increment whereas all the other algorithms either are unable to recognize the situation or require multiple
passes over the increment.

Finally, DELTA was shown to be easily extendible to hierarchical association rules, while maintaining
its performance close to ORACLE. No prior work exists on extending incremental mining algorithms to
handle hierarchical rules.

In summary, DELTA is a practical, robust and efficient incremental mining algorithm. In our future
work, we plan to extend the DELTA algorithm to handle quantitative rules [16] and also to develop
incremental algorithms for sequence [4] and classification rules [6].
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