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Abstract

In a vertical representation of a market-basket database, each item is associated with a column of
values representing the transactions in which it is present. The association-rule mining algorithms that
have been recently proposed for this representation show performance improvements over their classical
horizontal counterparts, but are either efficient only for certain database sizes, or assume particular
characteristics of the database contents, or are applicable only to specific kinds of database schemas. We
present here a new vertical mining algorithm called VIPER, which is general-purpose, making no special
requirements of the underlying database. VIPER stores data in compressed bit-vectors called “snakes”
and integrates a number of novel optimizations for efficient snake generation, intersection, counting
and storage. We analyze the performance of VIPER for a range of synthetic database workloads.
Our experimental results indicate significant performance gains, especially for large databases, over
previously proposed vertical and horizontal mining algorithms. In fact, there are even workload regions
where VIPER, outperforms an optimal, but practically infeasible, horizontal mining algorithm.

*Contact Author: haritsa@dsl.serc.iisc.ernet.in



1 Introduction

The need for efficiently mining “association rules” from large historical “market-basket” databases has
been well established in the literature. Most of the algorithms developed for this purpose (e.g. [1, 2, 7])
are designed for use on databases where the data layout is horizontal. In a horizontal layout, the database
is organized as a set of rows, with each row representing a customer transaction in terms of the items that
were purchased in the transaction.

Of late, there has been considerable interest in alternative vertical data representations wherein each
item is associated with a column of values representing the transactions in which it is present. Since
association rule mining’s objective is to discover correlated items, the vertical layout appears to be a natural
choice for achieving this goal. Further, as explained later, vertical partitioning opens up possibilities for
fast and simple support counting, for reducing the effective database size, for compact storage of the
database, for better support of dynamic databases, and for asynchrony in the counting process. Based on
these observations, a variety of “vertical mining” algorithms have been proposed recently [3, 4, 6, 8, 10].
Performance evaluations of these algorithms has indicated that they can provide significantly faster mining
times as compared to their horizontal counterparts.

While the above-mentioned algorithms have served to highlight the utility of the vertical approach, they
all suffer from a common limitation in that they are rather “specialized” — that is, they are either efficient
only for certain database sizes, or assume specific characteristics of the database contents, or are applicable
only to special kinds of database schemas, or place restrictions on future mining activities. For example,
the ColumnWise algorithm in [3] is designed primarily for relations that are “wide” rather than “long”,
that is, where the number of items (i.e. columns) is significantly more than the number of transactions
(i.e. rows) in the database. Similarly, the MaxEclat and MaxClique algorithms of [10] assume that users
will be able to provide a lower bound on the minimum support used in all future mining activities. Finally,
the performance studies have mostly been evaluated on databases that completely fit into main memory.
Therefore, the ability of these algorithms to scale with database size, an important requirement for mining

applications, has not been conclusively shown.

1.1 Contributions

We present here a new vertical mining algorithm called VIPER (Vertical Itemset Partitioning for Effi-
cient Rule-extraction) that aims to address the above-mentioned limitations. No assumptions about the
underlying database or the mining cycle are made in its design — that is, VIPER is as “general-purpose” as
the classical horizontal mining algorithms. VIPER stores data in compressed bit-vectors called “snakes”
and integrates a number of novel optimizations for efficient snake generation, intersection, counting and
storage — these optimizations exploit the vertical data layout to a significantly greater degree as compared
to the prior algorithms.

Using a synthetic database generator, we compare the response time performance of VIPER against a
representative set of previously proposed vertical and horizontal mining algorithms. An important feature
of our experiments is that they include workloads where the database is large enough that the working

set of the database cannot be completely stored in memory. This situation may be expected to frequently



arise in data mining applications since they are typically executed on huge historical databases.

Our experimental results indicate that VIPER provides significant performance gains, especially for
large databases. Further, it shows close to linear scaleup with database size. Very interestingly, VIPER'’s
performance improvement is to the extent that there are workload regions where it can outperform even
an idealized horizontal mining algorithm that has complete apriori knowledge of the identities of all the
frequent itemsets and only needs to find their counts. This is a new result that clearly establishes the

power of vertical mining.

1.2 Organization

The remainder of this paper is organized as follows: The various options for database layouts and the
merits of the vertical layout for association rule mining are discussed in Section 2. An overview of our
new VIPER algorithm is presented in Section 3, and the details of its main components are described in
Sections 4 through 6. Related work on vertical mining is reviewed in Section 7. The performance model and
the experimental results are highlighted in Section 8. Finally, in Section 9, we summarize the conclusions

of our study and outline future avenues to explore.

2 Background

The problem of mining market-basket databases for association rules was first formulated in [1] and since
then has attracted considerable attention. Due to space constraints and since the problem is well-known,
we do not describe it further here. Instead, we discuss the data layout possibilities and the merits of

vertical mining, which are the focus of this paper.

2.1 Data Layout Alternatives

Conceptually, a market-basket database is a two-dimensional matrix where the rows represent individ-
ual customer purchase transactions and the columns represent the items on sale. This matrix can be

implemented in the following four different ways, which are pictorially shown in Figure 1:

Horizontal item-vector (HIV): The database is organized as a set of rows with each row storing a
transaction identifier (TID) and a bit-vector of 1’s and 0’s to represent for each of the items on sale,

its presence or absence, respectively, in the transaction (Figure 1a).

Horizontal item-list (HIL): This is similar to HIV, except that each row stores an ordered list of item-

identifiers (IID), representing only the items actually purchased in the transaction (Figure 1b).

Vertical tid-vector (VTV): The database is organized as a set of columns with each column storing an
IID and a bit-vector of 1’s and 0’s to represent the presence or absence, respectively, of the item in
the set of customer transactions (Figure 1c). Note that a VTV database occupies exactly the same

space as an HIV representation.



Vertical tid-list (VTL): This is similar to VTV, except that each column stores an ordered list of only
the TIDs of the transactions in which the item was purchased (Figure 1d). Note that a VTL database

occupies exactly the same space as an HIL representation.

Virtually all the prior association rule mining algorithms, both vertical and horizontal, have opted
for a list-based layout since this format takes much less space than the bit-vector approach (which has
the overhead of explicitly representing absence) in sparse databases. We make the case in this paper,
however, that a special form of the bit-vector-based VTV layout results in both significant performance

improvements and reduced space requirements.
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Figure 1: Comparison of Data Layouts

2.2 Merits of Vertical Mining

As mentioned in the Introduction, the vertical layout appears to be a natural choice for achieving associ-
ation rule mining’s objective of discovering correlated items. More specifically, it has the following major
advantages over the horizontal layout:

Firstly, computing the supports of itemsets is simpler and faster with the vertical layout since it involves
only the intersections of tid-lists or tid-vectors, operations that are well-supported by current database
systems. In contrast, complex hash-tree data structures and functions are required to perform the same
function for horizontal layouts (e.g. [2]).

Secondly, with the vertical layout, there is an automatic “reduction” of the database before each scan
in that only those itemsets that are relevant to the following scan of the mining process are accessed from
disk. In the horizontal layout, however, extraneous information that happens to be part of a row in which
useful information is present is also transferred from disk to memory. This is because database reductions
are comparatively hard to implement in the horizontal layout. Further, even if reduction were possible,
the extraneous information can be removed only in the scan following the one in which its irrelevance is

discovered. Therefore, there is always a reduction lag of at least one scan in the horizontal layout.



Thirdly, bit-vector formats, due to their sequences of 0’s and 1’s, offer scope for compression. From this
perspective also, the vertical layout is preferred since a VTV format results in higher compression ratios
than the equivalent HIV format. This is because compression techniques typically perform better with
larger datasets since there is greater opportunity for identifying repeating patterns — in a VTV, the length
of the dataset is proportional to the number of customer transactions, whereas for HIV, it is limited to the
number of items in the database, usually a fixed quantity that is small relative to the number of tuples in
the database.

Finally, the vertical layout permits asynchronous computation of the frequent itemsets. For example,
given a database with items A, B, C, once the supports of items A and B are known, counting the support
of their combination AB can commence even if item C has not yet been fully counted. This is in marked
contrast to the horizontal approach where the counting of all itemsets has to proceed synchronously with
the scan of the database. We believe that asynchrony will prove to be an especially important advantage

in parallel implementations of the mining process.

A careful algorithmic design is required to ensure that the above-mentioned inherent advantages of the
vertical layout are translated into tangible performance benefits — we attempt this in the VIPER algorithm,
which is described in the following sections.

2.3 Notation and Assumptions

For ease of exposition, we will use the following notation in the remainder of this paper:

T Set of items in the database
D Database of customer purchase transactions

minSup | User-specified minimum rule support

F Set of frequent itemsets in D
Fy, Set of frequent k-itemsets in D
Cy, Set of candidate k-itemsets in D

Table 1: Notation

Without loss of generality, we assume that each itemset is always represented as a lexicographically ordered

sequence of items. Similarly, a set of itemsets is also always maintained in lexicographic order.

3 The VIPER Algorithm

In this section, we overview the main features and the flow of execution of the VIPER algorithm — detailed
descriptions of its internal components are deferred to the following sections.

VIPER uses the vertical tid-vector (VIV) format for representing an item’s occurrence in the tuples
of the database. The bit-vector is stored in a compressed form, taking advantage of the sparseness that is

typically exhibited in large databases. Exactly the same format is also used for storing the itemsets that are



dynamically constructed and evaluated during the mining process. While this format is consistently used
for disk storage, it is converted on-the-fly into alternative representations during main-memory operations,
for efficiency reasons.

We will hereafter refer to an itemset and its associated compressed tid-vector as a “Snake”. Further, we
use the term “frequent snake” to mean that the corresponding itemset is frequent, and the term “i-snake”
to refer to a snake corresponding to an itemset comprised of ¢ items.

An example snake layout is shown in Figure 2 (the details of the compression technique are given in
Section 4).
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Vertical Tid Vector Equivalent Snake
Figure 2: An Example Snake

At a macro level, VIPER is a multi-pass algorithm, wherein data (in the form of snakes) is read from
and written to the disk in each pass. It proceeds in a bottom up manner and at the end of the data mining,
the supports of all frequent itemsets are available. Each pass involves the simultaneous counting of several
levels of candidates via intersections of the input snakes. A variety of techniques, described below, are

implemented to improve the efficiency of this mining process.

3.1 Efficiency Features

To minimize the computational costs, VIPER implements a new candidate generation scheme called FORC
(Fully ORganized Candidate-generation), partly based on the technique of equivalence class clustering [10].
The FORC scheme avoids the expensive searching associated with AprioriGen [2], the predominant candi-
date generation algorithm for both horizontal and vertical mining.

VIPER also incorporates a novel snake intersection and counting scheme called FANGS (Fast ANding
Graph for Snakes). The FANGS scheme is based on a simple DAG structure that has a small footprint
and efficiently supports concurrent intersection of multiple snake-pairs by using a pipelined strategy.

At first glance, VIPER’s writing of intermediate results to disk may appear to represent an additional
overhead, especially since virtually all the prior horizontal and vertical mining algorithms are “read-only”.
However, we claim that this is a positive tradeoff since the data that is written is utilized to significantly
speed up the subsequent mining process. Moreover, the disk traffic is minimized in a variety of ways —
with these optimizations, VIPER turns out to have, in our experiments, less overall disk traffic than the

read-only algorithms. The optimizations include ensuring that each processed snake is read only once;



counting the support for candidates of several levels in a single pass, resulting in a logarithmic reduction
in the number of passes over the database; writing only a carefully chosen subset of processed snakes to
disk; and snake compression through a process called Skinning.

Finally, the space reduction resulting from the snake compression is augmented by automatically and

immediately deleting snakes that are no longer relevant to the remainder of the mining process.

3.2 The Mining Process

We now move on to discuss the flow of execution in the VIPER mining process, whose pseudocode is
shown in Figure 3. Assuming the most general case where the original database is stored in the standard
horizontal item-list (HIL) format, the following sequence of passes (over continually shrinking databases)

is executed. !

3.2.1 Pass1

In the first pass over the database, the snakes for all the individual items are created and stored on the
disk. That is, the database is converted from the HIL layout to the snake format. During this process, the

supports of these items are counted and F; is determined.

3.2.2 Pass 2

In the second pass, an obvious mechanism to compute F5 is to intersect and count the supports of all
F;

( | 21 | ) snake pairs. However, this would be prohibitively expensive as it requires numerous snake

intersections. Therefore, Fy is determined using the following alternative approach, suggested in [10]:
Temporary horizontal tuples (in list format) are sequentially created in main memory from the disk-
resident collection of frequent 1-snakes. To make this clear, assume that A, B and C are the frequent
1-snakes and that the first bit (after decompression) in each of them is a 0, 1 and 1, respectively. Then,
the equivalent horizontal tuple is “{TID=1},{IID of B},{IID of C}”. Now, given this effectively horizontal
database, for each tuple, all pairs of items in the tuple are enumerated, and their counts are simply updated
in a 2-D triangular array (dimension F}) of counters.

An important point to note in the above process is that no snakes are constructed during this pass. This
is because writing out the snakes of all the pair-wise combinations would not only be extremely expensive,
but also quite wasteful given that many of the combinations may eventually turn out to be infrequent.

Generalizing this observation, there are two features of VIPER’s snake writing (after the first pass):

e The only snakes ever written to disk are frequent snakes; further, only a useful subset of the identified
frequent snakes, that is, those snakes that are potentially relevant for future passes, are written to
disk.

1f the original database is already in the vertical format, Pass 1 simply consists of counting the supports of all the 1-snakes.



Algorithm VIPER(D, Z, minSup){
Input: Horizontal Database (D), Set of items (Z),
Minimum Support (minSup)
Output: Set of Frequent Itemsets with Supports (F')

// Pass 1: Write all 1-snakes to disk and identify F;
F = countLevelOne(D);
// Pass 2: Identify F;
F = F U countPairs(F});
// Subsequent Passes
i =2 ; until (isEmpty(F;)) {
// Create a new DAG for this level
candDAG = createDAG(level = i);
C; = Fj;
// Candidate Generation for levels k+1 to 2k
for k in i to 24 do {
Ck+1 = FORC(Ck),
if (isEmpty(Cl+1)) break;
candDAG = candDAG U Cj41;
}

if (isEmpty(candDAG)) break; // Terminate

// List of snakes to be read

readList[i] = findReadList(candDAG);
// Trim the list of snakes to be written
writeList[i] = writePrune(candDAG);

// Snake intersection, counting and writing
FANGS(candDAG, readList[i], writeList[i]);

// Update F from levels i+1 to 2i
for kini41 to 27 do
F = F U frequentltems(candDAG,k);

// Delete the snakes written in previous pass
DeleteSnakes(writeList[i/2]);

// Increment the mining level
1 =1x%2;

Figure 3: The VIPER Algorithm

e The writing of a frequent snake always lags one pass behind the pass in which the snake is identified

to be frequent. Therefore, the “unwritten” snakes that are required as inputs to the current pass are



dynamically generated using the snakes written out in the previous pass.

3.2.3 Subsequent Passes

In each subsequent pass P (P > 2), the first step is to generate the candidate itemsets of the current
level, based on the immediately previous level’s frequent itemsets, using the FORC candidate generation
procedure. That is, Cjy1 = FORC(F;). The candidate itemsets of levels i + 2,7 + 3,...,2i are then
computed using the same FORC procedure, except that now the candidate set of each level is used to
generate the candidate set of the next level. That is, Cx11 = FORC(Cy) for i +1 <k <2 — 1.

We note here that our counting scheme is capable of counting candidates of length 7 4+ 1 to ¢ + k for
any k, 1 < k <+4. This is useful in the last pass when there may not remain any candidates beyond level
i+ k (k <1), or in case the number of candidates turns out to be unmanageably large. In the latter case,
the counting is truncated to consider only candidates upto length i + & (k < %) — the appropriate value of
k depends on the amount of available memory.

The generated list of candidates is inserted into the DAG structure which is the basis of the FANGS
snake intersection and counting scheme. After employing a variety of pruning techniques, the set of snakes
to be read (ReadList) and to be written (WriteList) in this pass are identified. The snakes in ReadList
are then sequentially scanned into memory and the counts of all the candidate itemsets generated in this
pass (Cit1,.-.,C2) are concurrently computed using the FANGS procedure. Simultaneously, the snakes
in WriteList are written out to disk. When the database scan is over, all frequent itemsets F;; through
F5; will have been identified.

The last operation of the pass is to delete all the snakes that were written out in the previous pass

since they are no longer required, thereby minimizing the disk space overhead.

3.2.4 Termination

The above process is repeated until there are no more candidate itemsets. Finally, the complete set of
frequent itemsets, F', is returned along with the support of each of its elements. With this information,

the desired association rules can be easily determined [2].

In the following sections, the details of the main components of VIPER — Skinning for snake compres-
sion, FORC for candidate generation, and FANGS for snake merging — are described.

4 Snake Generation and Compression

The snake generation process operates in the following manner: During each pass, a (page-sized) buffer
is maintained in main memory for each itemset whose snake is currently being “materialized”. The snake
portions corresponding to these itemsets are first accumulated in these buffers — when a buffer is full, it is

written to a disk-resident common file.? Within the file, the pages associated with each individual snake

2The option of writing each snake into a separate file is presently not feasible since current operating systems do not permit
applications to have more than a limited number of file descriptors simultaneously open. Further, there may be an actual
advantage to writing them to a common file in that correlated frequent snakes may tend to have their data blocks close to



are chained together using a linked list of pointers. The specific set of operations in each pass is given

below:

First Pass: In the first pass, the original HIL database is sequentially scanned and for each item that
occurs in a transaction, the associated TID is passed to a routine which first generates 0 bits for all
the tuples between the last TID in which the item occurred and the current TID and then adds a 1
bit for the current TID. This bit-sequence is then compressed (using the Skinning technique described
below) and added to the buffer associated with the item.

Second Pass: In the second pass, the frequent 1-snakes are decompressed to dynamically create horizontal

tuples in memory, but no output snakes are constructed (as described earlier in Section 3).

Subsequent Passes: In subsequent passes, where the vertical format is exclusively used, new snakes are
generated by “ANDing” of existing snakes. For example, the snake for the itemset ABC may be
generated by intersecting the AB and AC snakes. This process requires decompression of the input
snakes but is computationally inexpensive since it only requires simple arithmetic. For ANDing, a
straightforward option is to decompress the snakes into tid-vectors and then to AND these vectors.
However, as discussed later in this section, tid-vectors typically take more space than tid-lists. So, as
the tid-vectors are being produced in memory, they are converted on-the-fly into tid-lists. Therefore,
the ANDing reduces to “joining” tid entries, and the output is a tid-list. This tid-list is, as for the
first pass described above, converted on-the-fly into a bit-vector and then a snake.

We emphasize again here that all of the above transformations between snakes, tid-vectors, and tid-lists

are done only in memory — what is stored on disk is always a snake.

4.1 Skinning

At first glance it may seem that the classical and simple to implement Run-Length Encoding (RLE) would
be the appropriate choice to compress the bit-vectors. However, we expect that while there may be long
runs of 0’s, runs of 1’s which imply a consecutive sequence of customers purchasing the same item may be
uncommon in transactional databases. In the worst-case, where all the 1’s occur in an isolated manner,
the RLE vector will output two words for each occurrence of a 1 — one word for the preceding 0 run and
one for the 1 itself. This means that the resulting database will be double the size of the original HIL
database, which would have only one word associated with each 1 (since 0’s are not explicitly represented).
In short, it would result in an ezpansion, rather than compression.

We have, therefore, developed an alternative snake compression technique called Skinning, based on
the classical Golomb encoding scheme [5]. Here, runs of 0’s and runs of 1’s are divided into groups of size
Wy and W1, respectively — the W'’s are referred to as “weights”. Each such full group is represented in the
encoded vector by a single “weight” bit set to 1. The last partial group (of length R mod W;, where R is the
total length of the run) is represented by a count field that stores the binary equivalent of the remainder

length, expressed in logoW; bits — for reasons explained below, this field is stored even if the length of

each other since their buffers would fill up during similar time periods.



the last partial group is zero. Finally, a “field separator” 0 bit is placed between the last weight-bit and
the count field to indicate the transition from the former to the latter. Note that a “run separator” for
distinguishing between a run of 0’s and a run of 1’s, is not required since it is implicitly known that the run
symbol changes after the count field and the number of bits used for the count field (logoW;) is fixed.? It is
to support this implicit run separator feature that we need to represent the count field of even zero-length
partial groups. Since we may reasonably expect that non-zero-length partial groups occur much more often

than zero-length partial groups, the overall tradeoff is expected to be positive.

Example 4.1 To illustrate the Skinning technique, consider the 30-bit vector
(1)4(000) 2 (1) (0000)” (0000) ¥ (0)* (1)% (0000)# (0000)* (0)” (1) X (0000) = (0) M
to be encoded using weights Wy = 4 and W; = 1. The alphabetic superscripts are not part of the bit
vector but are included to indicate the groups associated with these weight settings.
After skinning, the resultant compressed vector is of length 25 bits:
(400 @n? (M0 @MPM*F o ©OHT (1o MDY 0017 (1)F0 (D)0 (01)M
where the alphabetic superscripts indicate the correspondence between the group in the original bit vector

and its encoded version, and the unclassified 0 bits are the field separators.* gndBox

In the above “toy” example, the compression is only from 30 bits to 25 bits — however, for practical values of
Wy and W1, much higher compression ratios are achieved. In fact, with appropriate choices of Wy and W7,
Skinning results in close to an order of magnitude compression from the VTV format to the snake format
for the databases considered in our experiments. Further, this high degree of compression is sufficient
to ensure that although a VTV usually takes much more space than a VTL (or HTL) representation for
sparse matrices, the snake database itself is only about one-third of the size obtained with these formats.

4.1.1 Frequent Snake Compression Bounds

While the above compression ratios have been empirically observed, we can go a step further in assessing
the compression ratio for frequent snakes. Note that these are exactly the snakes of interest since, as
mentioned before, VIPER is designed to only store frequent snakes.® Using the fact that a frequent snake,
by definition, has a minimum proportion (equal to minSup) of 1’s, we derive in the Appendix lower
bounds on the compression ratio which show that, for realistic mining environments, a frequent snake

always occupies less than half its corresponding size in a list-based format.

5 The FORC Candidate Generation Algorithm

We present here a new algorithm called FORC (Fully ORganized Candidate-generation) for efficiently
generating candidate itemsets. FORC is based on the powerful technique of equivalence class clustering

described in [10], but adds important new optimizations of its own.

3Without loss of generality, we assume that every bit vector starts with a run of 1’s, possibly of zero length.
4Note that the length of the count field for 1’s is zero since Wi = 1.
SWith the sole exception, of course, that all 1-snakes are stored during the first pass.
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The FORC algorithm operates as follows: Given a set Sy (which can be either a set of frequent itemsets
or a set of candidate itemsets) from which to generate Cy_ 1, the itemsets in Sy, are first grouped into clusters
called “equivalence classes”. The grouping criterion is that all itemsets in an equivalence class should share
a common prefix of length k — 1.5 For each class, its prefix is stored in a hash table and the last element
of every itemset in the class is stored in a lexicographically ordered list, called the extList.

With this framework, a straightforward mechanism of generating candidates is the following: For each
prefix in the hash table, take the union of the prefix with all ordered pairs of items from the extList of the
class (the ordering ensures that duplicates are not generated). For each of these potential candidates, check
whether all its k-subsets are also present in Sy, the necessary condition for an itemset to be a candidate.
This searching is simple since the k—1 prefix of the subset that is being searched for indicates which extList

is to be searched. Finally, include those which survive the test in Cgy.

5.1 Simultaneous Search Optimization

We can optimize the above-mentioned process by recognizing that since the unions are taken with ordered
pairs, the prefix of the subsets of the candidates thus formed will not depend on the second extension item,
which in turn means that all these subsets are shared and the same for each element in the extList. Hence,
repeated searches for the same subsets can be avoided and they can be searched for simultaneously, as

shown in the following example.

Example 5.1 Consider a set Sy in which the only itemsets that begin with the prefix ABC are ABCD,
ABCH, ABCM and ABCR. These itemsets are grouped into a common equivalence class g, with the
class prefix being P, = ABC and the associated extension list being extList, = D, H, M, R. We now
need to find all the candidates associated with each of the itemsets in g, and we illustrate this process by
showing it for ABCH — the others are processed similarly.

To find the candidates associated with ABCH, we first identify the items that are lexicographically
greater than H in extListy, namely, M and R. Now, the potential candidates are ABCHM and ABCHR,
and we need to check whether all their 4-subsets are also in S;. That means we have to search for ABH7%,
ACHi and BCHi, where i is either M or R (we do not have to search for ABC'i although it is a 4-subset
because its prefix is the same as P, and therefore, by definition, will be present in Sy).

Now, to search for ABH M, for example, we access its group, say h, with prefix P, = ABH and then
check extList, — if M exists, it means ABHM exists in S;. The important point to note now is that,
having come this far, we can trivially also determine whether ABH R, which corresponds to the other

candidate ABCH R, exists in Sy by verifying whether R is present in extList,. gndBox

Generalizing the above instance, we can overlap the subset status determination of multiple candidates
by ensuring that all subsets across these candidates that belong to a common group are checked for with
only one access of the associated extList. This is in marked contrast to the standard practice of subset
status determination on a sequential (one candidate after another) basis, resulting in high computational

cost.

6As mentioned earlier, an itemset is always represented as a lexicographically ordered sequence of items.
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5.2 Implementation of Simultaneous Search

SetOfltemsets FORC (Sk){
Input: Set of k-itemsets (Sk)
Output: Set of candidate k + 1-itemsets (Ck1)

for each itemset 7 in Sj do
insert (i.prefiz) into hashTable;
insert (i.lastelement) into i.prefix —extList;

Ckt1=9;
for each prefix P in the hashTable do {
E = P —extlList ;
for each element ¢ in E do {
newP =PUt;
remList ={i |1 € E and i >t} ;
for each (k — 1) subset subP of newP do
remList = remList N (subP —extList);
for each element ¢ in remList do {
newCand = newP U {q} ;
Ck+1 = Cx41 UnewCand ;

}
}

return Ciy1 ;

Figure 4: Candidate Generation with FORC

FORC implements the simultaneous search optimization as shown in the pseudocode of Figure 4: For
each (P,e) combination, where P is a prefix in the hash table and e is an element in its extList, P is
extended with e to obtain the newP itemset. The items in the extList that are greater than e are copied
into another list called the “remnant” list, remList. The k — 1-length subsets of newP are enumerated and
the associated equivalence class of each of these subsets is determined from its prefix. For each of these
classes, the associated subset exists only if its last item is present in their own extList. Hence, intersecting
remList with extList gives the survivors after searching in this class and the survivors are reassigned to
remList. This remList updation process is executed across all the k& — 1 classes, and after completion, the
newP is extended with each of the elements in remList to obtain candidates of size k + 1.

All operations in the above implementation are done in lexicographic order. It is easy to see that this
feature ensures that an equivalence class, once processed, will never have to be referred to again while

processing the remaining classes.
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5.3 Discussion

As described above, while FORC is based on the equivalence class clustering technique proposed in [10], it
adds important optimizations for efficient representation and searching. Further, although we use FORC
as part of our new vertical mining algorithm, note that it can be used equally well for horizontal mining
too since there are no format-specific features in the generation process. That is, like AprioriGen|2], it
can be used for both vertical and horizontal mining. However, it scores over AprioriGen on the following
counts:

In AprioriGen, a hash-tree data structure is used for storing candidate itemsets and their running
counts. This results in scattering “joinable” itemsets (i.e. itemsets with a common prefix upto their last
element) across the hashtree, making identification of such itemsets a computationally intensive task since
all combinations have to be explicitly examined.

Another drawback of the AprioriGen approach is that it traverses the hashtree afresh even when
multiple candidates either have common subsets or have subsets with a common prefix. So, for example,
if {ABCDE}, {ABCDF} and {ABCDG} are potential candidates, then their subsets {BCDE}, {BCDF}
and {BCDG} are searched for by traversing from the root in every instance although the {BCD} initial

segment of the hash route is the same for all of them.

6 The FANGS Snake Processing Algorithm

The FANGS (Fast ANding Graph for Snakes) algorithm is based on the observation that any candidate of
length between ¢ + 1 and 2¢ can be represented as the union of some pair of frequent ¢-itemsets. That is,
its support can be calculated by intersecting the corresponding i-snakes. Hence, given the set of frequent
i-snakes as input, the support for all candidates of length i 4+ 1 to 24 can be computed in a single pass by

simultaneously intersecting all the associated pairs.

6.1 The Graph Structure

In each pass over the database, a DAG of the candidate itemsets (generated by the FORC algorithm
described in the previous section) is first created. The “leaves” of the DAG are the frequent itemsets at
level 7. Each intermediate node at height r is a candidate of length 7 4 r, and is pointed to by some pair of
its subsets at height » — 1. This is easy to arrange since if an itemset is a candidate, all its subsets are also
either candidates or frequent itemsets. Finally, each of the candidate snakes in the DAG has an associated
“latest TID” (LTID) variable and a “currentCount” (CCNT) variable, both of which are initialized to zero
(the functions of these variables are explained later).

The intuition behind the DAG structure is as follows: We know that the union of any two i +r — 1-
subsets of a ¢ 4+ r-candidate is the candidate itself. In this sense, the pair of child nodes “covers” the
candidate itemset in that these nodes can be intersected to generate (and count) the candidate. Further,
an itemset has to be counted only if its immediate subsets are also present in the transaction. Hence, for
an i + r-length candidate, we choose a pair of i + r — 1-subsets to cover it, instead of other smaller subsets.

The above concepts are illustrated in the “conceptual picture” box of Figure 5, which shows a sample
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Figure 5: The DAG of Candidate Snakes

portion of the complete DAG structure. Here, the leaves of the DAG are the frequent 2-itemsets AB, AC),
BD, CD and DE. At the next level, each of the 3-candidates is pointed to by some pair of leaves — for
example, ABC and BCD are pointed to by (AB, AC) and (BD,CD), respectively. Similarly, pairs of the
3-candidates point to the candidates at level 4, namely, ABCD and BCDE.

6.2 The Counting Process

With the above structure, the counting scheme is simple: The snakes corresponding to all the leaf itemsets
are concurrently read, a page at a time, from disk into memory. During this process, as mentioned earlier
in Section 4, they are dynamically converted into equivalent tid-lists. Each of these lists is processed a
single TID at a time, and the processing is co-ordinated so that the TIDs are processed in sorted order.”
During the course of counting, the LTID and CCNT variables of the candidate itemsets are continuously
updated.

The counting starts from the tid-lists of the leaves, and when a TID is read for a leaf, the LTID variable
of its immediate parents are updated with this information. If a parent’s current marking is a smaller TID,
then it is simply marked with the new TID instead. However, if it is already marked with the same TID,
its CCNT is incremented, and its parents are in turn updated with this TID. Intuitively, this corresponds

to generating the subset-snakes of a candidate on-the-fly, and intersecting them at the node. The upward

"This process is similar to the classical MergeJoin algorithm for computing joins on sorted relations, except that there it

is based on attribute value, whereas here it is based on tuple position.
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propagation of the updates at a node correspond to that node’s participation in further intersections.
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Figure 6: Snake Intersection and Counting

A pictorial example of the counting scheme is shown in Figure 6a-c.® Here, the snakes AB, AC and
AD are being read from disk. They are read in a TID at a time, and in sorted order. The first update is
from the snake AD upwards — all its parents are marked with the TID 2. In the next step, AB is read, and
the candidate ABC updated with the TID 3. The third step involves reading in AC’s TID, and updating
the candidates ABC and ACD with this TTID. At this step, since ABC has already been marked with the
TID 3, its counter is incremented, and the update is propagated to the candidate ABCD. At the same
time, since ACD is marked with a smaller TID (2), it is simply marked with 3.

The above mechanism for counting reduces the number of updates and performs them in an on-demand
manner, thereby mitigating the expense of completely computing several intersections. This makes the
overall cost of FANGS much lower than other complete-intersection-based vertical algorithms. Further, it

opens up possibilities for a variety of optimizations — in the remainder of this section, we describe a few
such optimizations that are currently implemented in VIPER.

6.3 Lazy Snake Writes

FANGS implements a lazy snake write optimization that substantially reduces the number of snakes written

to disk — in fact, the only snakes that are written are those that are potentially useful in subsequent
computations.

8The DAG is, again, only partially shown.
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More concretely, while counting the candidates in the DAG using i-snakes, we do not know which
among the top-level 2i-candidates will turn out to be frequent, and which snakes will be used to generate
subsequent itemsets. Writing out all the 2¢-candidate snakes to disk can be very expensive and wasteful.
Therefore, we do not write any 2i-snake, but instead dynamically regenerate only the required snakes in
the next pass. For this purpose, we associate with each 2i-candidate a “generator cover”, that is, a pair
of i-snakes that can be used to dynamically generate it in the next pass. These i-snakes are written in the
current pass for use in the subsequent pass. In turn, these i-snakes are regenerated in the current pass
using a pair of 7/2-snakes that had been written out in the previous pass.

Dynamic regeneration is easily incorporated into the counting process by adding an additional level to
the DAG corresponding to the 7/2-snakes. The modified DAG now looks like the entire picture of Figure 5,
with the leaves being the i/2-snakes that generate the i-snakes. Specifically, though the conceptual picture
shows the DAG leaves as the 2-snakes AB, AC, BD,CD and DE, in reality each of these snakes are being
generated dynamically from the 1-snakes A, B,C,D and F; the 2-snakes are written to disk only during
the current pass. Note that this modification does not require any changes in the counting scheme except

for including an additional level of updates.

6.4 Generator Cover Selection and Writing

A simple mechanism for selecting the generator covers described above is the following: During the pass,
write out all the i-snakes to disk. After the pass is over, which means that the frequent itemsets among
the top-level 2i-candidates have now been identified, for each of these frequent itemsets choose any pair of
i-snakes whose union gives the itemset.

This simple process can be optimized, however, by observing that generator covers can be identified
prior to performing the intersections. That is, we can associate a pair of i-snakes for each top-level
candidate even before counting it. This results in a substantial benefit in that only those i-snakes that
could potentially be used for re-generating a top-level candidate during the next pass need to be written
to disk.

The second optimization in the generator cover identification step utilizes the fact that several generator
cover choices may exist for a top-level candidate. For example, in Figure 5, both (AB,CD) and (AC, BD)
are generator covers for ABC'D. We can exploit this by choosing the covers in an overlapped fashion —
that is, for each new top-level candidate, try as far as possible to use the i-snakes that have already been
identified to cover previous itemsets. This will result in a further reduction of the number of the snakes
that are written to disk.

The final optimization is related to the order in which the top-level candidates are processed for
identifying generator covers. Note that, given the above “overlap” heuristic, the order has a bearing on
the eventual assignment of generator covers. We therefore choose to process the candidates in decreasing
order of their estimated supports.® Within this processing order, preference is given to generator covers
comprised of leaves with higher support — the idea here is that high support leaves will be common to a

larger fraction of the candidates, and therefore choosing them “early on” will eventually result in a smaller

9The estimated support is computed using the scheme presented in [1].

16



set of snakes in the global cover.

Note that a plausible alternative to the above ordering is to do exactly the opposite — give preference
to covers comprised of leaves with low supports, based on the observation that such snakes will be more
highly compressed, resulting in less computational effort and disk traffic. Of course, this may result in
having a larger number of snakes represented in the cover.

In short, the choice is between “a small cover of high-frequency snakes” and “a bigger cover of low-
frequency snakes”. We evaluated both possibilities in our experiments and found that the former approach
yields better results.

6.5 Snake Trimming through Top-Down Writes

We have outlined above the techniques for choosing and minimizing the number of snakes to be written
to disk. We now move on to presenting an additional optimization that “trims” the chosen snakes by
increasing their sparseness, resulting in higher compression ratios.

The key idea here is that the i-snakes that are written to disk are used only for regenerating the top-
level candidates in the following pass. Therefore, only those TIDs which completely contain the top-level
itemset need to be included in the leaf-snake. To make this clear, consider the following example: Suppose
that snakes AB and C'D are being written to disk in order to generate ABC'D in the next pass. Now, if a
transaction has the items A, B, D, E, we would normally add this transaction to the snake AB, but not to
the snake C'D. However, we can exploit the information that the snake AB is being used only to generate
the snake ABCD, and hence this transaction is useless for that purpose. Therefore, there is no need to
add this particular transaction to the AB snake as well.

The above optimization is easily incorporated into the counting process described earlier in this section:
Instead of the bottom-up approach of updating the i-snakes when they are detected in a transaction, adopt
a top-down approach wherein these updates are made only when the top-level 2i-candidate is detected in
the transaction. That is, the writes are “focussed” with regard to the ultimate objective.

These contrasting approaches are shown pictorially in Figure 7. In the bottom-up approach of Figure 7a,
the snakes AB and CD are appended to for all successful intersections of A, B and C, D, respectively. With
the top-down approach of Figure 7b, however, these snakes are updated only when the top-level itemset
ABCD is detected in a transaction (through intersections of its subsets).

Note that this does not mean that the trimmed snake AB is identical to the snake ABCD because
writes to AB may be made from all of the different top-level candidates for which it forms part of the

cover. It is, of course, ensured that a particular TID is added only once to a snake.

7 Related Work

In the previous sections, we described the functioning of our new VIPER algorithm. We now move on to
reviewing the prior work in vertical mining algorithms.

Algorithms for (sequential) vertical mining have been previously presented in [6, 8, 10, 4, 3]. We restrict
our attention here to the most recent among these, namely MaxClique[10], ColumnWise[3] and Hierarchical
BitMap[4].
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Figure 7: Bottom-up and Top-Down Approaches to Snake Writing

The MaxClique algorithm, which is a pioneering effort in the development of the vertical mining
approach, is based on a vertical tid-list (VTL) format. It first generates the equivalence classes of frequent
itemsets (as described for VIPER) and then refines these classes into smallercliques. For each clique, the
mining process operates in two phases: In the first phase, beginning with a support-ordered list of the
itemsets of the clique, the first itemset is repeatedly intersected with each of the following itemsets in the
list until an infrequent itemset is generated. In the second phase, each of the remaining itemsets in the
list are combined with each of the itemsets in the first set and the supports of all these combinations are
counted to identify all the additional frequent itemsets.

While cliques are more refined than equivalence classes, identifying them is computationally expensive,

Mining Database Comp- Candidate Single/Multiple Main Restrictions
Algorithm Format ressed Generation Scans of a Column
MaxClique Tid-list no Clique Multiple Pre-processing / Small db
ColumnWise  Tid-list no AprioriGen Multiple Short-Wide Tables / Small db
HBM Bit-vector no AprioriGen Multiple Memory-intensive / Small db
VIPER Bit-vector yes FORC Single -

Table 2: Comparison of Vertical Mining Algorithms
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especially when the class graph is not sparse. Secondly, the algorithm assumes that the TID-lists of an
entire clique can be completely stored in memory — this may not always be feasible for large databases.
Thirdly, since the cliques may share individual items, the same item may have to be read in from disk
multiple times. Finally, the problem of computing Ly mentioned in Section 3 is circumvented by assuming
an off-line “pre-processing” step that gathers the counts of all 2-itemsets that qualify against a user-
specified lower bound on the minimum support. It is not clear how realistic it is to expect users to be able
to choose such a bound across all future mining activities. Moreover, the pre-processing step has to be
repeated every time the database is augmented.

Extensions to the basic MaxClique algorithm have been proposed in [9, 10] to address some of the above
problems, but the feasibility and performance impact of these modifications have not been assessed. For
example, the proposal to recursively decompose cliques until all the TID-lists in a clique fit into memory,
may result in significant overlap of items across cliques, with adverse impact on the disk traffic.

The ColumnWise (CW) algorithm is designed for “wide and short” databases, where the number of
items is significantly more than the number of transactions.!’ For such databases it may not be possible
to store the counters of all the candidates in memory and therefore using the traditional horizontal mining
approach may result in significant disk traffic for paging the counters between memory and disk. To address
this issue, the CW algorithm assumes a VTL format and does the counting sequentially, a candidate at a
time, by merging the tid-lists of the individual items featured in the candidate. The rest of the algorithm
is identical to Apriori. Their experimental study only considers the I/O traffic but not the total execution
time of the mining process. Also, CW does not feature any special optimizations for taking advantage of
the vertical format.

Finally, the Hierarchical BitMap (HBM) algorithm uses a VTV representation that is augmented
with an auziliary index indicating which “groups” (every consecutive set of 16 bits forms a group) contain
only 0’s. This identification helps, during the intersection process, to skip the groups for which either
vector has a 0 in the auxiliary index. While this makes the intersection more efficient, it is at the cost of
having to maintain auxiliary structures that are proportional to the size of the database.

From the above discussion, we conclude that the state-of-the-art in vertical mining algorithms is subject
to various restrictions on the underlying database size, shape, contents or the mining process. Further, and
very importantly, their ability to scale with database size has not been conclusively evaluated since their
experiments have focussed on environments where the entire database is smaller than the main memory
of their experimental platforms. A comparative summary of the algorithms, as also VIPER, is given in
Table 2.

8 Performance Study

We have conducted a detailed study to assess VIPER’s performance against representative vertical and
horizontal mining algorithms. In particular, we compare it with MaxClique!! and Apriori. We also

include in the evaluation suite an idealized, but practically infeasible, horizontal mining algorithm, called

10The paper mentions “keyword metadata from Web documents” as an example of such a database.
"The code for MaxClique was supplied to us by its authors.
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ORACLE, which “magically” knows the identities of all the frequent itemsets in the database and only
needs to gather the actual supports of these itemsets. Note that this algorithm represents the absolute
minimal amount of processing that is necessary and therefore represents a lower bound on the execution
time of horizontal mining algorithms.'?

Our experiments cover a range of database and mining workloads, and include all the experiments
described in [10] — the only difference is that we also consider database sizes that are significantly larger
than the available main memory. A range of rule support threshold values between 0.25% and 2% are
considered in these experiments. The primary performance metric in all the experiments is the total
ezecution time taken by the mining operation. (This total execution time includes the pre-processing time
in the case of the MaxClique algorithm.)

The databases used in our experiments were synthetically generated using the technique described in
[2] and attempt to mimic the customer purchase behavior seen in retailing environments. The parameters

used in the synthetic generator and their default values are described in Table 3.

Parameter Parameter Default
Symbol  Meaning Value
N No. of items 1000
T Mean transaction length 10
L No. of frequent itemsets 2000
1 Mean frequent itemset length 4
D No. of transactions 2M - 25M

Table 3: Parameter Table

Our experiments were conducted on a SGI Octane 225 MHz workstation running Irix 6.5, configured
with a 128 MB main memory and a local 4 GB SCSI disk. For the databases with parameters 7' = 10 and
I = 4, (see Table 3), the associated database sizes are approximately 100MB (2M tuples), 250MB (5M
tuples), 500MB (10M tuples) and 1.25 GB (25M tuples). Finally, the weights used in VIPER’s skinning
scheme to create compressed snakes from tid-vectors are Wy = 256 and W7 = 1 (the rationale for these

choices is given in the Appendix).

8.1 Experiment 1: Comparison with MaxClique

In our first experiment, we evaluated the performance of the VIPER and MaxClique algorithms for the
T10I4 database across a range of database sizes. The results of this experiment are shown in Figures 8a—d,
which correspond to databases with 2M, 5M, 10M and 25M transactions, respectively. As is shown in these
graphs, VIPER consistently performs better than MaxClique. Also, the difference in performance shows a
marked increase with the size of the database. For example, while their performance at minSup = 0.25%

12The bound applies, of course, only within the framework of the horizontal mining data and storage structures used in our
study.
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Figure 8: Comparison of VIPER and MaxClique
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is comparable for the 2M database (Figure 8a), we see for the same support a performance ratio of over 3
in favor of VIPER in the database with 25M transactions (Figure 8d).

8.1.1 Performance Scalability

In Figure 8e, the results of Figures 8a—d are combined to compare the scalability, with respect to database
size, of VIPER and MaxClique. In this figure, which is evaluated for minSup = 0.25%, the database size
is shown relative to the 2M database, while the running times have been normalized with respect to the
corresponding running times for the 2M database.

The results show that VIPER has excellent scalability with database size — the ratios of time taken
versus database sizes are nearly equal. This conforms to our expectation — since the computation cost in
VIPER is on a per-transaction basis, it should scale linearly with an increase in the number of transactions.

In contrast, MaxClique shows significant degradation with increasing database size.

8.1.2 Resource Usage

Having discussed their execution time and scalability performance, we now move on to analyzing the
resource usage of the VIPER and MaxClique algorithms.

The disk activity of VIPER and MaxClique for the T10I14D10M database is shown in Figure 8f over the
range of support values. We see here that VIPER’s disk traffic is consistently less than that of MaxClique,
highlighting the effect of the several optimizations that VIPER incorporates to reduce disk I/O.

MaxClique, on the other hand, reads in a TID-list corresponding to a single item multiple times,
depending upon the number of cliques in which it is present. As a result, the disk reads increase dramatically
at low supports where there is considerable overlap between clusters. In this situation, VIPER's strategy
of a single scan per snake in conjunction with lazy snake writes, appears to be the preferred choice.

Another feature of VIPER is that its main memory usage is effectively independent of the database
size. This is because it only needs to store the data structures associated with the FORC and FANGS
algorithms (apart from, of course, the read and write snake buffers), and the size of these data structures
is dependent only on the density of patterns in the database, not the database size. For example, VIPER’s
peak memory usage across all the workloads considered in the baseline experiment is 4 MB. In contrast,
MaxClique’s memory usage depends on the lengths of the TID-lists and the number of TID-lists in each
clique. Accordingly, MaxClique uses close to 2.5 MB for the database with 2M transactions, and as much
as 23 MB for the 10M database.

8.2 Experiment 2: Sensitivity Analysis

We now present additional experiments to evaluate the sensitivity of the results of the previous experiment
(T10I4) to the choice of database parameters. The performance for a T10I7D10M database, wherein pattern
lengths are longer, is shown in Figures 9.1, while the performance for a T20I4D10M database, wherein
transactions are longer, is shown in Figure 9.2. These figures continue to show VIPER consistently better

than MaxClique across the entire range of support values.
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An interesting point to note here is that the 0.25% support evaluation for the T20I4D10M database
could not be conducted for MaxClique since the number of TID-lists in a clique is very large in this
environment, and the combined memory requirement to store the TID-lists of a clique (approximately
500 MB) heavily exceeded the available physical memory (128 MB). This result highlights the fact that

MaxClique does not scale easily to databases whose active segment exceeds the available memory.
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Figure 9: Sensitivity Analysis

8.3 Experiment 3: Comparison with Apriori and ORACLE

We now move on to compare VIPER’s performance with that of the Apriori and ORACLE horizontal
mining algorithms. The performance for all the database sizes considered in the baseline T'1014 experiment
was evaluated and a representative graph for the 10M database is shown in Figure 10.1.

In Figure 10.1, we first notice that Apriori’s performance, steeply degrades at lower supports and is
considerably worse than that of VIPER. This is because it has to make several scans over the entire
database at these lower supports. At high supports, Apriori appears to perform marginally better than
VIPER. However, this is an artifact of our experimental setup wherein the original database is in horizontal
format and VIPER has the overhead of converting this database to the vertical format — in particular,
writing out of all the 1-snakes. This overhead is the predominant mining cost at high supports — when it
is factored out, VIPER performs better than Apriori. In practice, we might expect that applications using
vertical mining algorithms would store their databases in the vertical format itself.

Another interesting observation here is that if we compare the results with those in Figure 8c, Apriori
actually outperforms MaxClique over the entire higher support region. This might seem to be at odds with
the results reported in [10], wherein MaxClique always beat Apriori by substantial margins. The difference

here is that the pre-processing times are included in our execution time computations — these times were
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Figure 10: (.1) Comparison with Apriori and ORACLE (.2) Short and Wide Database

ignored (for all algorithms) in [10]. However, the pre-processing step takes different amounts of time for
different algorithms — in Apriori, only the “join” of Fj is counted in the second pass, whereas in MaxClique
the “join "of Z (the set of all items in the database) is counted in the second pass, and typically Z > Fy
— this has a major impact at higher supports, where the preprocessing step takes up most of the overall
execution time.

Finally, moving on to the performance of ORACLE, observe that VIPER’s performance is close to that
of ORACLE for most of the support range and, in fact, VIPER does noticeably better at minSup = 0.25% !
This behavior was also confirmed in our other experiments. Based on this, we can conclude that there are
workload regions where “an on-line vertical mining algorithm can outperform even the optimal horizontal

mining algorithm”, clearly highlighting the power of the vertical approach.

8.4 Experiment 4: Short and Wide Database

The previous experiments were evaluated on “tall and thin” databases where the number of transactions
(rows) significantly exceeded the number of items (columns). We now move on to considering a “short and
wide” database[3] — in particular, a database with N = 20,000 items and D = 10,000 transactions, all
the other parameters remaining the same as those of the previous experiments. This choice corresponds to
a “width-ratio” (defined as N/DI3]) of 2.0, matching the maximum considered in [3]. In fact, it perhaps
represents a more “stressful” environment since the number of items is an order of magnitude more than
that modeled in [3] (their database had only 1000 items).

The behavior of VIPER and Apriori for the above database is shown in Figure 10.2. We see here that
VIPER significantly outperforms Apriori over virtually the entire range of support values — for example,
at 0.25% support, Viper completes in one-fourth the time taken by Apriori. (Only at the highest support
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of 2% does Apriori do marginally better, and this again is due to the artifact of our experimental setup,
discussed in the previous experiment.) These results demonstrate that, unlike the CW algorithm of [3],
which is specifically designed for short-and-wide databases, VIPER applies equally to both short-and-wide

databases, as well as the the more traditional tall-and-thin databases.

8.5 Compression and Pruning

Finally, we present a few supporting statistics indicating the contributions of the several optimizations
implemented in VIPER.

With regard to snake compression, the Skinning technique resulted in databases that were substantially
smaller as compared to the original horizontal database. This is clearly brought out in the statistics of
Table 4, which show the space requirements for the various alternative representations of the T10I14D10M
database — here we see that VIPER is approximately one-third the size of the original HIL database and

almost an order of magnitude smaller than the VTV representation.

Representation Disk
Format Space
HIL 392 MB
VTL 392 MB
VTV 1.2 GB
Snakes 135 MB

Table 4: Database Format Sizes (T10I14D10M)

The pruning mechanisms for reducing the number of snakes written to disk resulted in considerable
savings, as demonstrated in the following extract from VIPER’s output for the second pass over the
T10I4D10M database:

Database: t10i4d10m, supp: 0.25, Starting level = 2
Candidates at level3: 3458

Candidates at leveld: 2402

# 2-snakes generated: 2504

# 2-snakes written: 1474

What this extract means is that during this pass a total of 2504 2-snakes were dynamically regenerated
while counting the supports of C5 and C4. Only 1474 of them were written back to disk as potential covers
for the 2402 Cy candidates, to be used in regenerating the frequent 4-snakes which are the leaves of the
DAG during the following pass.
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9 Conclusions

In this paper, we have addressed the problem of designing a “general-purpose” vertical mining algorithm
whose applicability or efficiency, unlike previously proposed algorithms, is not subject to restrictions on the
underlying database size, shape, contents, or the mining process. We presented VIPER, a new algorithm
that uses a compressed bit-vector representation of itemsets, called snakes, and aggressively materializes
the benefits offered by the vertical data layout. It features a novel DAG-based snake intersection scheme
that permits the candidates of multiple levels to be efficiently counted in a single pass. Other optimiza-
tions include cluster-based candidate generation, single scan per snake, lazy snake writes, generator cover
selection and snake trimming, all of which together result in significant savings in both computation and
disk traffic.

Our experimental results demonstrate that VIPER consistently performs better than MaxClique, which
represents the state-of-the-art in vertical mining — further, VIPER has the added advantage of excellent
scalability, an important requirement for a viable mining algorithm. Finally, we also showed that VIPER
is capable of not only outperforming Apriori, but also ORACLE, the idealized horizontal mining algorithm
— this is a new result establishing the power of the vertical approach.

In our future work, we propose to explore the development of parallel vertical mining algorithms that

can effectively exploit vertical mining’s attractive feature of supporting asynchrony in the counting process.
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Appendix: Snake Skinning Compression Bounds

We present here lower bounds for the compression factors that can be obtained for frequent snakes through
VIPER’s snake skinning process as compared to their equivalent HIL (or VTL) representation. In our
analysis, we use the following notation:

S The itemset whose bitvector is to be compressed
D Number of tuples in the database

minSup | Minimum rule support

n1 Number of 1’s in S’s bit-vector

g Number of 0’s in S’s bit-vector

1 Number of runs of 1’s in the bit-vector

To Number of runs of 0’s in the bit-vector

Wo Size of full group for 0’s

Wi Size of full group for 1’s

WL Word length (in bits)

Table 5: Notation

The total size occupied by the horizontal (or vertical TID) representation is easy to compute — measured
in bits, it is simply H = WL % n;.

For the snake representation, each 0 in the original bit vector either results in 1+/logo W) bits (including
the field separator bit) in the output if it is isolated, or in (1+logaWy)/i bits if part of a group with length
i (1 < WO0), or in 1/W0 bits if part of a full group. The same analysis holds for each 1 in the original bit
vector, except that Wi is now the operating weight.

From the above, we can deduce that the maximum number of bits in the output will occur when there
is an alternating sequence of 0’s and 1’s until all the 1’s are finished, with all the remaining 0’s bunched
together at the start and tail of this sequence (assuming ng > n, as is almost always the case — in fact,
ng > n1 is the norm). So, for example, given that there are five 0’s and three 1’s in a bit vector, the worst
permutation with respect to the size of the output is the sequence 01010100.13

With this worst case sequence, the number of bits in the compressed snake arising out of 0’s of the
original vector is, after ignoring all constant terms that are not dependent on the database size, the

following: 4
By = n1(1 +logaWy) + | (no — n1)(1/Wo)] + no|1/Wo ]
Similarly, the number of bits in the compressed snake arising out of 1’s of the original vector is
By =n1(1 +logaW1) +n1 | (1/W1)]
Therefore, the total number of bits in the skinned snake for itemset S is
Bg = By + By = n1(2 + logaWo + logaW1 + [(1/W1)]) + [(D — 2 % ny)(1/Wo) | + (D — nq) [1/Wo]

after making the substitution that ny = D — ny. The minimum compression factor, Cyn, can now be
computed as

H WL

Chmin > B_S = 2+logaWo+logaWi+[1/Wh [+[(1/minSup—2)(1/Wo) |+(1/minSup—1)[1/Wo |

13This worst permutation is, of course, not unique — the sequence 00101010 would also result in the same number of output
bits.

4The last term caters to the special case where Wy = 1.
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after making the substitution that n;/D > minSup. Note that this formulation is independent of database

size and depends only on the configuration parameters.
If we choose WL = 32, Wy = 256 and W7 = 1 to reflect the fact that we expect to get long strings of 0’s
and isolated 1’s in practice, the above formula evaluates to

1
Cmin >

034+ ————
+ 8192 * minSup

Note that C,,;, in the above formula is monotonic in minSup. For minSup = 0.1%, C,,i, evaluates

to 2.14, while for minSup = 1%, it evaluates to 2.80, and with increasing minSup, Cp,in asymptotically
reaches 2.91. So, the lower bound on the frequent snake compression ratio with the given set of parameters

is always in the range (2, 3) for practical support values.

The choice of Wy = 256 was empirically selected based on the following observations: Low values of W)
(e.g. Wy = 8) provide excellent compression factors for high supports but can become extremely bad at
low supports, even to the extent of the compression factor dipping below 1, for example, at 0.1% support.
High values of Wy (e.g. Wy = 8192), on the other hand, result in few full groups of 0’s, causing reduced
compression factors. A graphical analysis showed that for practical ranges of support values, Wy = 256
offers the best overall choice between these extremes.
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