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Abstract

We have recently built a database system called BODHI, intended to store plant bio-diversity in-
formation. It is based on an object-oriented modeling approach and is developed completely around
public-domain software. The unique feature of BODHI is that it seamlessly integrates diverse types of
data, including tazonomic characteristics, spatial distributions, and genetic sequences, thereby spanning
the entire range from molecular to organism-level information. A variety of sophisticated indexing strate-
gies are incorporated to efficiently access the various types of data, and a rule-based query processor is
employed for optimizing query execution. In this paper, we report on our experiences in building BODHI

and on its performance characteristics for a representative set of queries.

1 Introduction

Over the last decade, there has been a revolutionary change in the way biology has come to be studied. Com-
puter assisted experimentation and data management have become commonplace in the biological sciences
and the branch of Bio-Informatics is drawing the attention of more and more researchers from a variety of
disciplines. A key area of interest here is the study of the bio-diversity of our planet. The database research
community has also realized the exciting opportunities for novel data management techniques in this do-
main — bio-diversity was featured as the theme topic at the Very Large DataBase (VLDB) 2000 Conference
[LENOO].

Over the last three years, we have built a database system, called BODHI (Bio-diversity Object Database
arcHItecture) !, that is specifically designed to cater to the special needs of biodiversity applications. While
BODHI currently hosts purely plant-related data, it can be easily extended to supporting animal-related
information as well. In this paper, we report on our experiences in building BODHI, and also present its

performance profile with regard to a representative set of user queries.

*Contact Author: srikanta@dsl.serc.iisc.ernet.in
!Gautama Buddha gained enlightenment under the Bodhi tree



Background

The study of bio-diversity, as outlined by the WCMC (World Conservation Monitoring Center) [WCM], is
an integrated study of Species, Ecosystem and Genetic diversity. The data associated with these domains
vary greatly in the scale of their structural complexity, their query processing cost, and also their storage
volume. For example, while the taxonomy information of species diversity has complex hierarchical struc-
ture, spatial data and spatial operators associated with ecosystem diversity are inherently voluminous and
computationally expensive. On the other hand, genetic diversity is based on specialized pattern recognition
and similarity identification algorithms over DNA or Protein sequences of the species. Thus, supporting such
diverse domains under a single integrated platform is a challenge to the data management tools currently
used by the ecologists. More often than not, these scientists make use of different tools for managing and
querying over each of the domains, leading to difficulties in performing cross-domain queries.

To illustrate the above point, consider the following target query, which is of interest to modern evolu-

tionary biologists and similar to those that have appeared in the ecological literature(for example [Mit92]):

Query 1 Retrieve names of all fruit-bearing shrubs that share a part of their habitats and have a Chromo-

somal DNA sequence score of over 70 with Magnolia-champa.

The above query is typical in the new age of bio-diversity studies, where researchers are simultaneously
studying the macro-level and micro-level relationships between various target species. Answering the query
requires the ability to perform integrated queries over taxonomy hierarchies ( “fruit-bearing shrubs”), recorded
spatial distribution of species ( “common habitat”), and the genome sequence databases ( “Chromosomal DNA
sequence score above 70”). Unfortunately, however, due to the lack of holistic database systems, biologists
are usually forced to split the query into component queries, each of which can be processed separately
over independent databases, and then either manually or through a customized tool perform the join of the
results obtained from the component queries.

For example, a typical “experience story” for answering the above query, as gathered from domain experts,

would be:

1. Locate all fruit-bearing shrubs by performing a selection query over the taxonomy database, stored in

MS-Access [Vie99], a ubiquitous PC-based relational database, and retrieve the keys for their habitats.

2. For all the keys output in Step 1, access the associated habitat data, stored as polygons in Ar-
cView [Arc99], a popular spatial database product. Then, for each qualifying polygon, find all the
habitats in the spatial database that intersect this polygon. Finally, compute an intersection between
the original set of polygons and the newly-derived set of polygons in order to prune away the habitats

of organisms other than fruit-bearing shrubs.

3. From the output of Step 2, identify the names of the species of the target shrubs, and then perform
repeated BLAST [AGM190] searches over the EMBL GenBank [GEN] DNA sequence database to



identify the sequences (and, thereby the species), that have a score of more than 70. Note that this

final score-based pruning has to be performed externally by the researcher.

Long procedures, such as the above, for answering standard queries are not only cumbersome but can also
lead to delays in understanding various micro-level and macro-level bio-diversity patterns, and worse yet,
the patterns may not be found at all due to limited human capabilities (example to illustrate this point can
be found in the field of molecular biology, reported in [SM97], where comparison of sequences “by hand”
missed out some of the significant alignments thereby leading to erroneous conclusions about the functional

similarity of proteins in question).

The BODHI System

Based on the above discussion, there appears to be a clear need for building an integrated database system
that can be productively used by the bio-diversity community. To address this need, we have built the
BODHI database system in association with the ecologists and biologists at our institute. The project has
been funded by the Dept. of Biotechnology, Ministry of Science and Technology, Government of India.

BODHI is a native object-oriented system that naturally models the complex objects ranging from hier-
archies to geometries to sequences that are intrinsic to the bio-diversity domain. In particular, it seamlessly
integrates taxonomic characteristics, spatial distributions, and genomic sequences, thereby spanning the
range from molecular to organism-level information. To the best of our knowledge, BODHI is the first
system to provide such an integrated view.

BODHI is fully built around publicly available database components and system software, and is there-
fore completely free. In particular, the SHORE micro-kernel [CDF*94] from the University of Wisconsin
(Madison) forms the back-end of our software, while the A-DB extensible rule-based query optimizer from
the University of Texas (Arlington) is utilized for production of efficient execution plans. The system is
currently operational on a Pentium-III-based PC hosting the Linux operating system.

A variety of sophisticated access structures, drawing on the recent research literature, have been im-
plemented to provide efficient access to the various data types. For example, the Path-Dictionary [LL9§]
and Multi-key Type indexes [MP97] accelerate access to inheritance and aggregation hierarchies, while the
R*-tree [BKSS90] and Hilbert R-tree [KF94] are used for negotiating spatial queries.

The BODHI server is compliant with the ODMG standard [Cat94], supporting an OQL/ODL query
and data modeling interface. To enable biologists to interface with the system in a more intuitive manner,
BODHI also supports access through the Web client-server model wherein clients submit requests through
the HTTP protocol and CGI-bin scripts, and the results are provided through the browser interface. Further,
the server is “XML-friendly”, outputting the result objects in XML format, enabling clients to visualize the
results in their favorite metaphor.

We view BODHI's role as not merely that of a database system in isolation, but as a central repository that

provides a common information exchange platform for all the tools used in a biologist’s “data workbench”



such as decision support systems, visualization packages, etc. That is, BODHI occupies a role similar to that
played by the Management Information Base (MIB) in tele-communication network management.

Algorithms proposed in the research literature typically tend to be evaluated in isolation and it is never
clear whether their claimed benefits really carry through in practice with regard to end-user metrics in
complete systems. We suggest that researchers may find it possible to address this deficiency by using
BODHI as a “test-bed” on which new ideas can be evaluated in a real-world kind of setting. As reported
later in this paper, we have ourselves carried out this exercise with regard to spatial indexes.

Finally, BODHI is living proof that developing a viable biological DBMS does not necessarily entail
expensive hardware or software but can be cobbled together using commodity components.

In this paper, we report on our experiences in building BODHI, and also present its performance profile
with regard to a representative set of biological queries (including Query 1 mentioned above).? Since, as
mentioned earlier, there are no comparable systems that we are aware of, for the most part our results
can be placed only in an absolute perspective. However, specifically for queries restricted solely to spatial
data, we were able to utilize the well-known Sequoia 2000 benchmark [SFGM93], and additional spatial
aggregate operators such as Closest introduced in the [DKL*94]. Here our numbers are competitive with
those obtained by the Paradise GIS system [DKL%94], that was highly optimized for handling only spatial

queries.

1.1 Organization

The remainder of the paper is organized as follows: Desirable design goals for bio-diversity DBMS are laid
out in Section 2. The BODHI system architecture and its implementation are covered in Section 3 and 4,
respectively. Then in Section 5, we present our experiences in building BODHI, and followup with a detailed
performance evaluation in Section 6. Related work is reviewed in Section 7. Finally, in Section 8, we present

our conclusions and future research avenues.

2 Design Goals

In this section, we highlight the main features that would be desirable in a bio-diversity information system.

These include:

2.1 Handling of Complex Data Types

Plant bio-diversity data can be broadly classified into the following three categories:

Taxonomy Data This is data about the relationships between species based on their characteristics. This
includes phenetic relationships (based on comparison of physical characteristics) and phylogenetic re-

lationships (based on evolutionary theory)[Pan91]. The various characteristics on which these rela-

2A preliminary position paper focusing solely on the BODHI architectural design was presented in [SHOO].



tionships depend may vary in time due to discovery of a new class of characteristics, corrections to

previously recorded characteristics, etc.

Geo-spatial Data The study of ecology of species involves recording the geographical and geological fea-
tures of their habitats, water-bodies, artificial structures such as highways which might affect the
ecology, etc. These are represented on a map of the region and have to be handled as spatial data by

the database.

Bio-molecular Data The genetic makeup of species is becoming increasingly important with a large num-
ber of genome sequencing projects working on organisms and plants. For example, “bio-prospectors”
look for indigenous sources of medicines, pesticides and other useful extracts. Such data can be dis-

covered from the biomolecular and genetic composition of species.

The above datatypes have complex and deeply-nested relationships within and between themselves. Fur-

ther, they may involve sophisticated structures such as sequences and sets.

2.2 Molecular Pattern Discovery

The molecules that are of interest in bio-diversity are DNA and Proteins. DNA is represented as a long
sequence based on a four nucleotide alphabet. There are regions in the DNA sequence, called ezons, which
contain the genetic code for the synthesis of Proteins. The proteins are long chains of 20 amino acids. Each
protein is characterized by the amino acid patterns it has, and is responsible for various functionalities in a
cell which determine the characteristics of the organism or plant.

The similarity between two genetic sequences is a measure of their functional similarity. Analysis of
DNA and Protein sequences from different sources gives important clues about the structure and function
of proteins, evolutionary relationships between organisms, and helps in discovering drug targets.

There are a number of popular algorithms, such as Dynamic Programming, BLAST [AGM™90],
FastA [LP85] etc., for performing the similarity search over genetic sequences. Researchers and bio-
prospectors frequently search the database using these algorithms to locate gene sequences of interest.
However, the implementation of these algorithms is typically external to the database, making them rel-
atively slow. It therefore appears attractive to consider the possibility of integrating these algorithms in the
database engine (this observation is gaining currency in the commercial database arena as well, as exemplified

by IBM’s provision of homology searching through UDFs in DB2).

2.3 Usage Interface

As with all other scientific communities, the bio-diversity community relies on timely knowledge dissemina-
tion. Therefore, supporting access through the Internet is vital for maximizing the utility of the information
stored in the database.

Typically, bio-diversity data is autonomously collected and managed by individual research institutions

and commercial enterprises. In order to provide larger scope of data availability, it is necessary that such



localized and autonomous data repositories be able to exchange data. The current state of information
exchange amongst various bio-diversity data repositories is not very satisfactory[Saa99]. However, with the
advent of XML, many research groups are proposing DTDs in individual fields of ecology and genetics|[ANZ,
BIO] . The bio-diversity information system should support these DTDs for handling data over heterogenous
set of repositories.

It is imperative to have a good visualization interface for the results produced by the system since (a)
the end-users are biologists, not computer scientists and (b) the results could range from simple text to
multidimensional spatial objects.

Finally, most of the research in bio-diversity is done by small teams of researchers who work within low
budgets and are unable to afford high-cost data repository systems. Therefore, solutions that are completely
or largely based on public-domain freeware which can be hosted on commodity hardware, with total cost

not exceeding $1000, are essential for these groups.

3 Architectural Overview Of BODHI

As mentioned earlier, bio-diversity data is inherently hierarchical and has complex relationships. In order to
enable natural modeling of these entities and their relationships, BODHI is designed as an object oriented
database server, with OQL/ODL query and data modeling interfaces. While we consciously adopted this
technology from the very beginning of our project in 1998, it is gratifying to note that the same approach
is now being taken by large-scale biological repositories such as EMBL (European Molecular Biology Labo-
ratory) — in a recent report, they have indicated their intention in moving from their current Oracle-based
relational database system to an object-based data management and distribution scheme for their massive
genomic databases [WRTR*].

The overall architecture of BODHI is shown in Figure 1. At the base is the storage manager, which
provides the fundamental needs of a database server such as device and storage management, transaction
processing, logging and recovery management. The application-specific modules, which supply the taxo-
nomic, spatial and genomic services, are built over this storage manager and form the functional core of
the system. The query processor interfaces with the functional modules and performs query processing and
optimization using statistics exported by these modules. Finally, the client interface framework receives
query forms over the Internet from clients and returns results in the desired format. In the remainder of this

section, we describe the core database components in more detail.

3.1 Service Modules

The three service modules: Object Services, Spatial Services and Sequence Services, provide the functionalities

for each of the bio-diversity data domains mentioned in the Introduction:
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Figure 1: Schematic of Architecture of BODHI

Object Services

While the storage manager handles basic object management, it is necessary to support specialized access
methods for efficient processing of queries over the object schema and its instantiation. The Object Services
component bundles together these access methods.

In querying over object oriented data models, it is common for predicates to follow arbitrarily long
(sometimes recursive) relationship paths, or be evaluated over an inheritance hierarchy rooted at a chosen
base type. As illustrations, consider the following query types over a typical bio-diversity data model such

as that given in Figure 2:
1. Identify the PlantSpecies based on one or more of its IdentCharacteristics.
2. Retrieve all IdentCharacteristics of a given PlantSpecies.

3. List the names of all PlantSpecies associated with « GeoRegion.
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Figure 2: Partial Objectmodel

The above queries illustrate the fact that queries over relationship graphs of bio-diversity data models
may have either an ancestor class or a nested class as the predicate, and might need to be evaluated over
a inheritance hierarchy. These queries may involve joins between extents of objects in the traversal paths,
or scanning over multiple extents for the predicate in the case of queries over type hierarchies. Therefore,

access methods for both inheritance and aggregation hierarchies are included in this module.

Spatial Services

Spatial (or geographic) data, in both vector (object) and raster (bitmap) formats, constitutes the bulk of
the bio-diversity information. Due to the inherent complexity of spatial operations (such as overlap, closest,
etc.), combined with large volumes of data, spatial query processing is considered to be a major bottleneck
in the expeditious processing of a cross-domain query (such as Query 1 in the Introduction).

The Spatial Services module provides efficient implementations of access methods and spatial operations.
To ensure that the access methods have efficient disk allocations, and thereby alleviate the performance
bottleneck mentioned above, these methods are built within the storage manager. While this choice makes
it cumbersome to replace or upgrade the storage manager, we felt that the resulting performance benefits
would outweigh the disadvantages.

The Spatial module provides a spatial type system based on the ROSE Algebra [Giit94]. These types
consist of Simple primitives: Point, Polyline, and Polygon; and Compound primitives: Layer and Network,
which are collections of related Polygons and Polylines, respectively. The spatial type hierarchy supported

is this module illustrated in Figure 3.
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Sequence Services

In modern bio-diversity studies, genetic data plays an important role [Mit92]. The Sequence Services module
interfaces with the storage manager to provide efficient storage of genetic sequences and sequence retrieval
algorithms such as BLAST, FasTa, etc. These algorithms are expensive to compute since there are currently
no obvious ways of caching or indexing to speed up their computation, and a full scan of the sequence
database is therefore entailed each time. The Sequence Services module uses appropriate storage structures
for efficient execution of the genetic algorithms.

This module supports two primitive types: DNA and Protein. The DNA alphabet of 4 nucleotides
is encoded using two bits and similarly the Protein sequence alphabet of 20 is encoded in five bits. The
functions for translation of DNA sequences into Protein sequences, and vice-versa, for complementary DNA
strand generation, and for substring operations are also included in this module. Finally, the alignment-
based sequence similarity algorithms such as BLAST (using standard scoring matrices such as BLAST or

BLOSUM) are also part of the module.

3.2 Query System

The data modeling and query language for BODHI is based on the ODL and OQL languages, respectively,
from the ODMG standard [Cat94]. These languages have been enhanced with support for both the typesys-
tems over spatial and genetic data, and the operators over these typesystems.

The query processor contains, in addition to the techniques available in generic database systems, spe-

cialized optimization schemes for:

e Spatial operators, when spatial indexes are available on predicate attributes

e Relationship path traversals



e Queries over a type hierarchy of the data model.

The presence of user defined methods in the synthesized object types (for example, Print method on
objects, Area over polygons, etc.), form a serious obstacle for optimal plan generation, since their costs
are not directly available to the query optimizer. A variety of strategies for handling this situation have
been proposed in the literature [KKM91, GCD*93]. In BODHI, we have extended the ODL language to
allow optional definition of cost functions, and functionally equivalent methods. These extensions enable the
cost-based optimizer to compute the cost associated with each of the equivalent methods, before choosing

the best execution strategy.

Client Interface Framework

The client interfacing is an important layer in the query interface of BODHI. We have developed a simple
framework to transform the objects of the query results into formats amenable for transportation to end-
clients. With clients following different needs for their visualization and query capabilities, we feel this
becomes an important part of the query interface. Using this framework, users can easily implement their
transformation rules which are then applied to the appropriate objects in the query results. The transformed

results are then shipped to the clients.

4 Implementation Choices

In this section we highlight the important software choices that we had to consider in BODHI, and provide the
rationale for the decisions that we made. We discuss these choices under the following heads: (i) selection of
storage manager and query processor, (ii) selection of access methods, and (iii) positioning of implementation

components.

4.1 Selection of Storage Manager and Query Processor

For the back-end storage manager, we selected the SHORE system developed at the University of Wisconsin
(Madison) which, at the time we began the project in late 1998, had a major release the previous year that
was operational on both Solaris and Linux platforms. We were drawn towards SHORE due to its attractive

array of features, including:

e Well-implemented support for basic database functionalities such as transactions, logging and recovery
management, device and storage management, etc. Recovery is implemented through the ARIES
algorithm [MHL"92] which has become the de-facto industry standard, while multi-granularity locking

is provided for enhanced concurrency.

o Integrates file-system interface with DBMS functionality. This can be extremely useful in handling

genomics data which is available largely as flat-files.
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e First-class support for user defined types.

e Availability of a framework for writing Value Added Servers (VAS) — to provide additional features to

the storage manager.

e Presence of R*-Tree [BKSS90], a spatial indexing structure built within the SHORE kernel (in addition
to the standard BT-Tree index).

e Availability of source code, which enabled us to enhance many of the features of SHORE (the version

we have used is Version 1.1.1, which was the latest at the time we began our project).
e Successfully tested under at least two large scale research prototypes [DKL*T94, SP97].

e Intrinsic support for parallelism on a multiprocessor or network of workstations.

After we had been into development for about a year, we had reached the stage wherein we were thinking
about the implementation of the query processor. In particular, we were considering the possibility of
building our own query processor, using either a Volcano-style framework or a Tigukat-style framework. We
dropped this idea, however, when news broke (on the dbworld [DBW] mailing list) of the first release of
A-DB, an extensible rule-based optimizer from the University of Texas (Arlington), which, serendipitously
enough, had been implemented on Shore! This vastly reduced our design time on the query processor front.
Further, A-DB came with an attractive set of features including query transformation and optimization rules
for OQL (specified using the OPTL optimization specification language), and a functional design that made
it easy to enhance and specify additional rules. Finally, it had a firm mathematical foundation in monoid
comprehension calculus that permitted optimizations similar to those found in relational query rewriting

engines.

4.2 Selection of Access Methods

As discussed earlier, BODHI includes indexes for inheritance hierarchies, aggregation hierarchies, and spatial
data that are implemented in the Object and Spatial Services modules. For each of these indexing categories,
there have been numerous proposals in the research literature, requiring us to make a carefully selected choice.

We had intended to add indexes for sequence data as well. Unfortunately, however, until this issue was
addressed very recently in [KS01, HAIO1], no practical solutions for indexing the sequences were available,
rendering it impossible to realize our objective. We are now investigating the incorporation of these new

methods in the BODHI system.

Inheritance Hierarchies

For indexing inheritance hierarchies, we have chosen the Multi-key Type Indexing[MP97]: The basic idea
behind MT-index is a mapping algorithm that maps type hierarchies to linearly ordered attribute domains

in such a way that each sub-hierarchy is represented by an interval of this domain. Using this algorithm,

11



MT-index incorporates the type hierarchy structure into a standard multi-attribute search structure, with
the hierarchy mapped onto one of the attribute domains (type domain). This scheme supports queries over
single extent as well as over extents of classes under a subtree. This can also be extended to support the
multi-attribute queries.

Apart from its simple transformation of the tree into a linear path, a major attraction of the MT-index is
that it can be implemented using any of the multi-dimensional indexing schemes. In particular, since SHORE
natively supports R*-trees, the MT-index could be directly implemented using this structure, resulting in

considerably reduced programming and integration effort.

Containment Hierarchies

For indexing aggregation hierarchies, we have chosen the Path Dictionary (PD) index [LL98]. The PD-Index
consists of three parts: the path dictionary which supports the efficient traversal of the path, and the identity
index and the attribute inder which support associative search. The identity index and attribute index are
built on top of the path dictionary.

Conceptually, the path dictionary extracts the compound objects, without the primitive attributes, to
represent the connections between these objects in the aggregation graph. Since attribute values are not
stored in the path dictionary, it is much faster to traverse the nodes in the extracted path-dictionary. In
order to support associative search based on attribute values, PD-Index provides attribute indexes which
are built for each attribute on which there are frequent queries. When the identifier of an object is given,
the path information is obtained using the identity index built over the path dictionary.

On the positive side, the PD-index supports both forward and backward traversals of the hierarchy with
equal ease; further, its performance evaluation indicated significantly improved access times in [LL98]. A
limitation, however, is that it only handles 1:1 and 1:N relationships. Since typical schemas of bio-diversity
database include aggregations of N:M cardinality, and structures such as sets, bags and sequences in the
aggregation path, we had to extend the implementation of the PD-index to handle these constructs as well.

The details of the extensions are given in [SHO00].

Access Methods for Spatial Data

For spatial data, SHORE natively supports the R*-Tree [BKSS90], which is the most popular spatial access
method since it achieves better packing of nodes and requires fewer disk accesses than most of the alternatives.
However, a problem with the R*-Tree is that even though it has tight packing to begin with, its structure
may subsequently degrade in the presence of dynamic data. To tackle this, we implemented the Hilbert
R-Tree[KF94], which is designed for handling the dynamic spatial data while maintaining good packing
of the index structure. It makes use of a Hilbert space-filling curve over the data-space to linearize (i.e.
obtain a total ordering of) the objects in the multi-dimensional domain space. A performance evaluation
in [KF94] shows this structure to provide better packing in the presence of dynamic spatial data and thus

better performance. However, the evaluation was considered in isolation and therefore one of the goals of

12



RUNTIME ENVIRONMENT

\I/ aggregation paths

o | type
GeneStore ray  [Genome atial | etion, | PD Index
ValueAdded | sequencesTVPe ype > Value Added
Ser ver BEET LW Server
Type System Lay
| SHORETypelayer | |
B+-Tree R*-Tree (Rt
Index Index REUTER
Index
SHORE Storage Manager
LI NUX

Figure 4: Positions of Implementation Components

our study was to investigate how well these performance improvements carried over to a real system.

4.3 Positioning of Implementation Components

In addition to selection of software and the indexing methods, another important decision that determines
the system performance and extensibility is the placement of functionality in the implementation. On option
is to achieve performance improvements by supporting every feature of the system at the lowest level — for
example, by implementing at the SHORE storage manager level. However, this becomes a huge effort to
extend and improve the system by addition of new basic types, new access structures, etc. At the same time,
if we provide all the additional features at layers external to the storage manager then the overall performance
could suffer. Therefore, we considered these two competing requirements of the system carefully while placing
the implementation of the services, to optimize extensibility while minimizing the performance overhead on

the system.

Object Services As mentioned earlier, this module bundles the Path-dictionary and Multi-key Type in-
dexes over object aggregation and type hierarchies, respectively. The Path-dictionary structure is
implemented as a VAS, which maintains the path-dictionary on a data repository — with its own re-
covery and logging facilities — independent from the main database. This gives the query processor
an opportunity to scan the path-dictionary repository in parallel to the other data scans active at the

same time. Further, the locking overheads are distributed over different storage management threads.
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The Multi-key Type index, on the other hand, is instantiated as an R*-Tree, which is available for

spatial indexing, with linearized type system as a dimension and each object treated as a “point” in

the spatial sense.

Spatial Services In addition to the R*-Tree provided by the Shore storage manager, the spatial services

module provides the Hilbert R-Tree which is intended for use with highly dynamic spatial workloads.
Although this index could also be implemented as a VAS external to the database, the Shore SM
interface, the interface to build VASs, allows one to introduce new logical index structures, but no
page-level storage control is provided. This excludes the possibility of implementing index structures
such as Hilbert R-Tree that rely on physical packing of data for performance benefits. We were thus
forced to implement the Hilbert R-Tree by refactoring the existing R*-Tree implementation.

We had the option of implementing the spatial type system, illustrated in Figure 3, either as part of
the basic type system (similar to the support of types like integers, strings, references, etc.) or at the
same level as a user defined type system. In the former approach, we do gain the storage efficiency
and low object creation overhead, but we lack the extensibility and ease of implementation available in
the latter approach. The final choice was to go for an extensible type system, therefore, to provide the
spatial type system (along with sequence type system — discussed below), as a user level library which
can be modified and extended by the database administrator without having to work on the storage

manager layers.

Sequence Services The type system of the Sequence Services, consisting of DNA and Protein types, are

5

provided in the same way as the spatial types, which we have described above. In addition, the DNA
sequence type has extra requirements for its storage. The DNA sequences are usually very long (1000—
10000 basepairs), and consists of only 4 alphabets. Instead of storing them as character strings, we
store them in a compressed form and perform queries over the compressed records rather than on the
character strings. The efficient storage of the raw sequences is implemented as a separate VAS which

provides advantages similar to those mentioned in the Path-dictionary implementation.

Experiences

In the previous sections we have described the architectural design of BODHI and the specific choices that

we made for the various components of the design. We move on now to discussing the experiences and

lessons that we learned during the course of implementing these choices in our prototype system. Some of

the issues that we raise here with regard to SHORE and A-DB have been addressed in subsequent releases of

these code-bases — we are constrained, however, to continue to use version 1.1.1 of Shore and version 0.3 of

A-DB, the versions that were current at the time we began the project three years ago, since we have made

significant alterations and enhancements to these software.

The overall detailed implementation of the system is illustrated in Figure 5. As illustrated, the schema

declarations in ODL are first converted into SDL (the definition language provided on top of the SHORE
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storage manager), by A-DB. The implementations of the schema declarations are stored in a separate source
file that is compiled into a linkable library for the applications. Similarly, the query in the OQL format is
typechecked, optimized and converted into an implementation of the optimal physical plan by A-DB.

5.1 Index Key Formats

A-DB generates the query implementation making use of its runtime interface to the SDL layer of SHORE.
The query is evaluated in a streaming fashion, avoiding the materialization of the sub-queries as much as
possible. Indexing over object extents is achieved by maintaining a separate extent of indexes. In SHORE,
the index objects have to reside within a “user level” object. Now, while A-DB uses an FExtentIndexr type
to hold the indexes, it also converts all the index keys into a string format in order to handle them in a
generic way. This turns out be a problem when handling keys that cannot be converted into character strings
(such as in the case of spatial indexes), and in handling keys which result in a loss of information during
the conversion (such as floating point values). Therefore, in order to support the spatial indexes from the
ODL/OQL layers, we were forced to introduce a specialized key type for spatial indexes and also implement
a special index holder class. This required a considerable amount of modification and extensions to the code
in the query processor.

At the same time, the rule-based optimization scheme of the A\-DB simplified the process of adding new
operators into OQL, as well as their optimization and rewritings into the physical operators based on the
statistics. We added operators such as Querlaps, Inside etc. for spatial operations, and sequence retrieval

operators such as BLAST into the OQL specification supported by the query processor.

5.2 Index Visibility

The implementation of access structures for spatial data and object hierarchies raised some of the subtle
issues with regard to hosting them on the A-DB and SHORE combination. One of the most surprising
revelations was the lack of spatial index support at the SDL layer in SHORE — which is still not available
since there have been no further releases of the SDL layer. The R*-Tree is available only at the storage
manager level, but is not exported to the SDL interface. This also meant that A-DB which uses the SHORE
through the SDL interface also has no knowledge of the spatial indexes. In order to provide the support at

the OQL level we first had to rework the SHORE code, and then integrate it with the query processor.

5.3 PD Index Implementation

While implementing the Path-dictionary-based indexing for aggregation path queries, we found that the
index structure as presented in [LL98] cannot be used in a stream based query processor such as A-DB,
without breaking the pipeline structure and materializing the query results at that join node. We addressed
this problem by inverting the storage of paths to proceed from the top of the aggregation tree instead

of the suggested bottom-up approach. While this inversion may partially reduce the effectiveness of the
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path-dictionary, the major benefit of avoiding the huge cost of joins over object extents is retained.

5.4 VAS Feature

In building the PD-index, we exploited the concept of Value Added Server (VAS), one of the strong features
of SHORE. The ability to provide a concurrent storage manager with a full set of database features such
as transactions, logging, recovery etc., eased the task of extending the storage manager capabilities tremen-
dously. Although RPC-based interaction between the storage server instances results in communication
delays and reduced type-support across the storage servers, it enables cleaner separation of services provided
by the storage manager.

We also used the VAS feature to provide genome sequence storage, and retrieval algorithms over this
storage. An important advantage of this implementation is that it is easy to extend and optimize the
sequence retrieval algorithms without having side-effects on the rest of the system. A problem, however,
was the following: The storage allocation of the sequences on the VAS is effected through a specific interface
which stores the sequences in a compressed form on the disk. Though this storage should ideally be handled
transparently, due to lack of post-construction hooks for object instantiation in A-DB and SHORE, this

compressed storage of sequences has to be explicitly called during database loading.
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| Parameter | Value |

Branch Factor at each level of Taxonomy U(1,19)
Mean (height, width) of habitat regions (10,12)
from
Range of distribution of habitat regions (—100t,0—100)
(-1000, -1000)
No. of DNA sequences per species 10

Table 1: Parameters to Synthetic Data Generator

6 Experimental Results

We have evaluated the performance of BODHI on a testbed of typical queries in the bio-diversity domain.
These queries make use of a mixture of synthetic and real datasets and consist of queries over both single-
domain (such as taxonomy, spatial or sequence domains) and multiple domains — i.e., queries similar to
Query 1 in the Introduction. Moreover, since spatial data forms a large fraction of data and is traditionally
considered the main component of the query processing time, we studied the performance of the spatial
component in detail. In particular, we evaluated the spatial data handling capabilities of BODHI over the
datasets and queries of the Sequoia 2000 regional benchmark[SFGM93], a standard benchmark for spatial
databases.

The performance numbers reported were generated on a Pentium-III 700MHz processor, with 512MB
memory and an 18GB 10000-RPM SCSI harddisk (IBM DDYS-T18350M model), connected with Adaptec
AIC-7896/7 Ultra2 SCSI host adapter. In order to reduce the effects of Linux’s aggressive memory mapping
of files, we flushed the benchmark database each time with an I/O over a large database. Further, we kept
the size of the buffer pool used by the storage manager to just 320KB (corresponding setting in Paradise is
16MB).

In rest of the section, we first describe the synthetic datasets used in our queries, and then proceed to

report the capabilities achieved and performance results of representative queries over BODHI.

6.1 Description of Datasets

The synthetic data used in our experiments conforms to a biodiversity object model, which is presented
in part as an object diagram in Figure 2. Even though we collaborated closely with the scientists of the
ecological sciences in designing this object model to represent their requirements, we faced difficulties in
procuring enough data to be used in the evaluation experiments of the system. This is because, the domain
experts have a bulk of their data in legacy formats, and often on “herbarium sheets”?® they maintain. We
are currently in the process of converting this data for populating the database, and have therefore chosen
readily available subset of real data, and boosted the dataset with synthetic data.

As shown in the object model, the schema is hierarchical in nature and consists of aggregation paths,

3These are sheets that contain a plant specimen and its details.
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Element | No. of Tuples | Overall Size(in KB) |

Order 4 0.6
Family 46 7.1
Genera 496 76.0
Species 5155 1153.1
FlowerChar | 5155 564.0
Habitats 5155 607.0
InfloChar 5 20.4
EMBLEntry | 51550 2902

| Total | | 5330.2

Table 2: Statistics of the Synthetic Dataset

inheritance structures over object types, spatial and genome sequence components. The well known taxonomy
aggregation path of Order-Family-Genera-Species forms the backbone of the model. Each Species has a set
of identifying characters (IdentChar), and there are many sub-characteristics that are inherited from this.
The spatial component of the model consists of a collection of reported habitat areas for each Species.
Also associated with each Species is a collection of DNA sequences that are used to study the evolutionary
pathways amongst the species by locating homologies (sequences which have high likelihood of sharing a
common ancestor). We now describe the mechanism of generating synthetic data which complies to the

object model.

Taxonomy Data We generated the object relationships in taxonomy and characteristics hierarchy by set-
ting a heuristic probability of association at each optional relationship. In case of collections in the
aggregation path, the branch factor of the collection was uniformly distributed over specified end-
points. The real data available for about fifteen closely studied Plant species was boosted with this

synthetic data.

Spatial Data We used the synthetic data generation method followed in [KF94]. The data consists of
rectangular regions, whose centers are uniformly distributed over a unit square. The overlap between
rectangular regions can be controlled by specifying the distribution of their height and width values.
It should be noted that this dataset consists of only rectangular regions, while in reality we have
to handle non-convex polygonal regions as well. The performance of spatial data handling over real
dataset (involving non-convex polygonal regions) will be evaluated separately through the Sequoia 2000
benchmark. Each species object generated above is associated with a synthetically generated polygon

that represents the habitat of the species.

Genome Data In the case of Genome sequence data, we could use the data that is publicly available
through repositories such as GenBank, SwissProt, etc. In our experiments, we made use of a randomly
selected sample of “expressed sequence tags” (ESTSs) of various genomes available from the BLAST
database of EMBL GenBank [GEN]. We used these sequences to populate the DNA information of

our synthetically generated species.
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[1d | Time |
Taxonomy 73 min. (Without Pathdictionary)
Query-1 0.5 min. (With Pathdictionary)
Genome Query-1 | 0.2 sec.

Genome Query-2 | 1.5 min.

Table 3: Performance Numbers for Single-domain queries

Id Without Index | Pathdictionary | Spatial &
Pathdictionary

MDQ1 | 26.99 11.13 2.1

MDQ2 | 553.66 542.12 530.2

Table 4: Performance Numbers for Multi-domain Queries

We summarize the parameters used for the benchmark dataset in Table 2. We consider a set of 5 queries, over
this dataset that conforms to the schema illustrated in Figure 2. These queries span the domains of taxonomy,
spatial and genome data, and illustrate the capabilities of BODHI in handling these domains. In addition,
the performance numbers of these queries provide an indicator towards overall expected performance of the

system.

6.2 Biodiversity Queries

We now describe the set of queries considered to illustrate the capabilities of BODHI and present the
performance numbers over each of these queries. The query mix can be split further into 3 categories:
Taxonomy queries, Genome queries and Multi-Domain Queries. We collectively refer to Taxonomy and
Genome Queries as Single-domain queries, since predicates involve either taxonomy hierarchy or genetic
sequences associated with a species, but not both. The Multi-domain queries, on the other hand, query
across taxonomy hierarchy, habitat (spatial) collection and genetic sequences data corresponding to species.

The performance numbers for the queries are summarized in Table 3 and Table 4.

Taxonomy Query-1 Find all species that have the same Inflorescence characteristic in their Flowers as
that of “Magnolia-champa™.
This query performs a three level path traversal over aggregation hierarchy of Species, Flower and
Inflorescence Characteristics. By referring to Table 3, we see that without any indexing strategy
for accessing the aggregation paths, the query execution times are unacceptably high — especially
considering the modest size of the dataset. The performance of the query execution improves by two
orders of magnitude with the presence of a Pathdictionary index over the queried path. As discussed
earlier in Section 4, the Pathdictionary maintains a compact materialization of joins along queried path,
preventing the repeated computation of these expensive joins. Interestingly, if we follow the aggregation
paths through the usage of “swizzled pointers” available through C++ interface of SHORE, this query

can be answered in 8.5 seconds, which is much faster than even using Path-Dictionary based indexing.
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It has to be noted that rewritings available in query-processors such as A-DB do not make use of these

features available with the storage managers, thus incurring heavy cost of joins.

Genome Query-1: Retrieve all DNA sequences of Magnolia-champa.
The DNA sequences are stored encoded, using context-free encoding, in a separate storage. This
encoding increases the disk-memory bandwidth and enables the sequence similarity algorithms to
operate in this encoded domain itself. At the same time, there is an overhead of decoding them before
presenting to the user. The performance numbers of this query give estimate of the delay involved in

decoding these sequences

Genome Query-2: List names of all Species that have a DNA sequence within o BLAST score of 70 with
any sequence of Magnolia-champa.
The computation of BLAST scores over a database could be a time consuming task. We don’t have
any indexing schemes for speeding these queries, for reasons mentioned earlier in Section 3, and hence
for each query sequence we have to make a full scan of the sequence database and compute the
scores, significance of the alignments, etc. The timings for this query — which results in 10 BLAST
computations, is given in Table 3. When these numbers are compared against the query capabilities
of BLAST-farms run by organizations such as EMBL, they might look rather high. However, these
BLAST-computation farms make use of large-scale and heavily optimized data handling equipment
and keep the entire database in memory for speeding up the processing times, while BODHI is aimed

to handle varied data, and is running on a general purpose small-scale machine.

Multi-domain Query-1: Find all Species sharing a common habitat and having the same Inflorescence
characteristic as Magnolia-Champa.
This query is targeted at the combination of hierarchical data of Taxonomy domain, and associated
Spatial data. Being one of the popular queries by the collaborating ecologists, this evaluates the com-
bined effectiveness of Pathdictionary index and R*-Tree indexes available in BODHI. The performance
numbers provided in Table 4 are for the optimal query plan which performs the spatial overlap before
computing the joins over the aggregation paths. Since spatial overlap is highly selective in the existing
dataset, the number of path aggregation traversals are reduced to a very small number. As a result, we
see that even though this query is more complicated than Tazonomy Query-1, it takes less than 0.6%of
time taken for Tazonomy Query-1 even in the absence of Path-Dictionary index. The presence of
Path-Dictionary reduces the execution time further, from 26.99 seconds to 11.13 seconds — a reduction
of 58%. In this case, the execution times are dominated by the spatial overlap computation. We can
see this clearly by looking at the performance of the query, when both R*-Tree and Path-Dictionary
are present. The query time is just around 2 seconds, almost 80%improvement. This clearly indicates

that both indexing strategies are extremely useful for such queries.

Multi-domain Query-2: Retrieve all Species sharing a common habitat, having same Inflorescence char-

acteristics and having a DNA sequence within BLAST score of 80, with respect to Magnolia-champa.
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This query, which extends the Multi-domain Query-1 by adding extra predicate for BLAST score
computation for each of the sequences in the target species, is equivalent to the “goal” query that we
presented earlier as Query 1 in the Introduction. This query is written in the BODHI system, using

OQL,as follows:

select * from speciesl in PlantSpecies,
species2 in PlantSpecies,
embll in speciesl.stDNAEntries,
embl2 in species2.stDNAEntries

where
speciesl.flowerchar.inflochar = species2.flowerchar.inflochar
and
speciesl.georegion overlaps species2.georegion
and

embll in embl2.dna.blast (80);

Referring to Table 4, we see that the execution times are much higher than those of Multi-domain
Query-1 — due to the additional 50 BLAST computations. The reduction in execution times are
approximately same as in Multi-domain Query-1, about 11 seconds in presence of Path-Dictionary and
by 10 seconds in presence of both R*-Tree and Path-Dictionary indices. Hence, this query is clearly
dominated by the BLAST computations. Therefore, it appears to be imperative to develop indexing

strategies to improve performance of such queries over genome sequence data.

6.3 Evaluating Spatial Data Handling

The evaluation of queries over spatial data has traditionally been considered as a highly compute-intensive
operation, and many indexing strategies have been proposed to improve the performance of these queries.
The SEQUOIA benchmark has been quite popular for evaluating the performance and capabilities of spatial
databases. It consists of a set of 10 queries over a schema involving the spatial objects (such as polygons,
points and graphs) and also bitmap (raster) objects. As we do not have support for bitmap data formats
in BODHI, we have chosen to ignore the raster dataset and the queries (2),(3),(4) (9), which involve these
objects. The vector benchmark data consists of 62556 Point objects, 58585 Polygons and 201659 Graph ob-
jects. The Table 5 summarizes the performance numbers of the queries. We have compared our performance
numbers with a spatial database system, Paradise [DKL*94], also built on SHORE storage manager, and
Postgres [SR86], a successful and free object-relational database. The numbers given for these two systems
are taken from those reported in [DKL194]. Note that overall, performance numbers of BODHI are very
similar to those of Paradise.

We now briefly explain the chosen set of SEQUOTIA queries and their performance statistics with reference
to Table 5. We also note the importance of some of these in a typical set of queries expected in bio-diversity

studies.

Sequoia 1 — Dataloading and indexing. This query populates the database from a given set of datafiles,

and is expected to exercise the bulk-loading facility in the database. At the time of writing, we still
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| Id || BODHI | Paradise | Postgres |
1 5742.0 3613.0 8687.0
5 0.12 0.2 0.9
6 8.0 7.0 36.0
7 0.66 0.6 30.5
8 9.7 9.4 62.2
10 || 11.0 Not supported | 327.2

Table 5: SEQUOIA Benchmark numbers

do not have the bulk-loading feature in BODHI, resulting in a transaction commit for each object
hierarchy. Therefore, the table represents only an upper bound on the dataload and indexing times for
the spatial component. Referring to Table 5, we see that this is the only benchmark query in which
BODHI is far worse than Paradise which supports bulkloading facility. However, we don’t see it as
a major bottleneck in BODHI, since the bio-diversity databases are not expected to have high rates
of bulk data updates. Instead, these databases are highly query-intensive and hence it is important
to have fast query processing speeds. In addition, we expect improvements in performance when the

bulk-loading scheme is put in place for BODHI.

Sequoia 5 — Select a point based on its name. The performance of the B-Tree index over the name of
the point is evaluated in this query. We see from the table that both BODHI and Paradise perform
fairly well on this query — which is expected due to the common storage manager, i.e. SHORE, used

in both systems.

Sequoia 6 — Select polygons overlapping a specified rectangle. This is one of the typical spatial
queries asked in ecological studies where a geographic region is split into a set of grids and the re-
searchers would want to identify the species whose previously recorded habitat boundaries overlap
with the grid being studied. This could be important in identifying species whose co-existence in a
region is to be targeted for study. The performance of spatial operators such as overlap depend directly
on the performance of implementing these operators on an spatial index such as R*-Tree or Hilbert
R-Tree. Since the R*-Tree implementation of BODHI is the same as that of Paradise (both use the
index provided by the SHORE storage manager), we don’t see much difference in the query execution

performance. .

Sequoia 7 — Select polygons greater than specified area, contained within a circle. We see sim-
ilar query occuring in bio-diversity studies with variations in the area selection clause of the query.
The area of a polygon is provided through a derived attribute — computed based on the co-ordinates
of the polygon. This is extendible to allow for selection over arbitrary derived attributes over which
an index can be built. Thus, in ecological study databases, we get variations of the query that locate
all the habitats that are near a study center, with a derived attribute value (such as bio-mass index of

the habitat, etc.).
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This query reflects the combination of B-Tree and spatial index based query processing. The order in
which this query gets evaluated — whether the B-Tree lookup or the R*-Tree based overlap selection
is made as the first step — makes a big difference in the query answering times. The usage of query
optimizer which maintains cost statistics and uses it to arrive at the final evaluation order is also tested
in this query. The numbers presented in Table 5 are for the optimal plan generated by query processor
of BODHI, which is to perform the R*-Tree based overlap selection first and then the B-Tree-based

polygon area selection.

Sequoia 8 — Select polygons overlapping a rectangular region around a point. This query in-
volves a spatial join between a point and polygons. When scientists are interested in regions around
test points satisfying a criterion in their study area, this is the query they would be using to derive the

information.

Sequoia 10 — Select points contained in polygons with specific landuse type. This query is a join
between polygon extent and points through an inside predicate. The SEQUOIA benchmark specifies
islands within polygon regions. In order to get the right set of answers, we should exclude the points
which fall in these islands(or “holes”) in the polygons. The Paradise system does not report numbers
for this query, since it does not support the minus operator [DKL+94]. In BODHI, we perform this

operation using a subquery which implements the minus operation.

The ecological data gathering is done at various specimen collection centers in an ecoregion. The
ecoregions are usually split into different forest types and researchers are usually interested in locating
collection points which are located in specific forest type(s). At the same time, she might want to

exclude the collection points for the aquatic organisms.

| Id || with Hilbert R-Tree |

9798.0
0.12
60

0.4
56.0

0| 14.0

= 00 ~J O OU =

Table 6: SEQUOIA Benchmark numbers with Hilbert R-Tree

We also executed these Sequoia benchmark queries with Hilbert R-Tree in place of R*-Tree. The results
obtained are shown in the Table 6. It was surprising to see that the performance of these queries in presence
of Hilbert R-Tree is considerably worse than with R*-Tree. Our initial investigation into the cause indicated
that the packing factor of Hilbert R-Tree is extremely low (less than half of R*-Tree), resulting in many
more disk accesses. We are currently studying our implementation of the Hilbert R-Tree closely to ascertain
our initial observation for this behaviour.

In addition, BODHI also supports the spatial aggregate operator Closest, on the lines of Paradise spatial

data management system. This operator was used in executing three of the spatial aggregate benchmark
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| Id || Time |

11 || 3.36 sec.
12 || 51 sec.
13 || 66 min.

Table 7: Performance over Paradise Queries

queries given by Paradise system, as Query-11, Query-12 of their benchmark queries reported in [PYK*97].
For completeness, we have also included Query-13, which is not an aggregation query, but is a spatial join
in benchmark queries of Paradise. But we cannot compare the performance numbers obtained in BODHI
with those reported in [PYK™97], as the benchmark datasets are completely different in both schema and
the scale (they used 10 years of 8 Km. resolution AVHRR satellite images obtained from NASA, and DCW
global data set containing information about roads, cities, land use, drainage properties etc.). Hence, we

present the numbers in an absolute sense in Table 7.

Paradise 11 - Select closest graphs (polylines) to a given point. This query requires the evaluation
of the spatial aggregate “Closest” using available index structures. This aggregation operator is imple-
mented as an iterative searching for the closest polyline (Graph in Sequoia dataset). At each iteration
step, a box is constructed around the given point, and all polylines that overlap with the box are
located using the spatial index. If no polyline that satisfy this constraint are found, then dimensions of
the box are increased and another iterative search is performed. When we obtain a non-null candidate
set through this step, we compute exact distances between the point and the polylines in the candidate
set, and closest polyline is determined. The performance of this query depends heavily on the location
of the point and the distribution of polylines in the region. If the polylines are densely packed, we get
to non-null candidate set within a few iterations (most likely in the first iteration itself), thus getting
the target polyline instantaneously. The performance numbers presented in Table 7 were obtained over

a sample of 100 points from Sequoia dataset.

Paradise 12 - Select closest graphs to every point. This query is an extension of earlier query, and
performs a spatial aggregate on a cross product of two relations (in this case polylines and points).
For each point in the Sequoia dataset, we use the Paradise 11 presented earlier, and locate the closest

polyline.

Paradise 13 - Select all polylines which intersect with each other. This query joins two large spa-
tial relations and tests the efficiency of the system’s spatial join algorithm. The cardinality of the
polyline extents in Sequoia benchmark is very high, with 201659 graph objects in the dataset. In order
to answer this query, we need to perform a self spatial-join of this extent, which is highly expensive.

This is clear from 66 minutes reported in Table 7, to answer this query.

The SEQUOIA benchmarks show that BODHI is very close in performance to the performance of Par-

adise, a specialized and highly optimized spatial database system. Even though the hardware platform used
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by both the systems are difficult to compare, it should be noted that both Paradise and BODHI use the
same storage manager system. In addition the following points regarding numbers reported under BODHI
should be noted: (i) We use file-based storage management instead of using raw-disk as done by Paradise
system. (ii)The optimal physical query plan is generated through a generic object-oriented query processor.

(iii) The typesystem is easily extendible as it is provided as an ODL schema defintion.

7 Related Work

Bio-diversity data consists of both macro-level and micro-level information ranging from ecological informa-
tion to genetic makeup of organisms and plants. Apart from our work, we are not aware of any other that
attempts to combine the complete spectrum of information, though the need for it is highlighted in a recent
proposal for GBIF(Global Bio-diversity Information Facility)[Saa99] by OECD(Organization for Economic
Co-operation and Development). This proposal identifies the domain level challenges in building a global,
interconnected data repository of bio-diversity information systems and notes that the urgent requirement in
bio-diversity studies is a suitable information management architecture for handling vast amounts of diverse
data.

In the area of macro-level bio-diversity data management, there have been many governmental efforts
from various countries such as FRIN[BS94], INBio[INB] and global initiatives such as Species 2000[Spe],
the Tree of Life[MM98], etc. And in a recent report sponsored by the National Science Foundation SF in
the USA [NSF01], a group of computer scientists have outlined research directions in bio-informatics.

The micro-level bio-diversity data, or genetic information of various species, has been growing steadily
due to a multitude of genome sequencing initiatives. The specific data management issues in handling such
data[GRS94, GRS] have been addressed in quite a few proposals. In all of these proposals, the database
management architecture has been tailored for the specific purposes of the project. For example, consider
the ACeDB (A C.elegans Database)[DTM] database system, originally proposed for C. elegans genome
sequencing project. ACeDB is an object oriented data management tool that has many features that make
it a extremely popular software in many sequencing projects. ACeDB handles missing data and schema
evolution issues, common requirements in a ongoing sequencing projects, in a flexible manner. However, in
spite of its popularity in genome sequencing community, it cannot be considered for the larger requirements
of bio-diversity data handling due to the following reasons: (1) Its lack of support for geo-spatial data;
(2) Weak support for database updates; and (3) The lack of recovery mechanisms necessary in large data
repositories.

In BODHI, we have provided the key strengths of ACeDB (its sequencing algorithms and object-oriented
basis), and augmented it with strong database functionalities, in addition to other features necessary for a

complete bio-diversity information repository.
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8 Conclusions

We have reported in this paper on our experiences in building BODHI, an object-oriented database system
intended for use in bio-diversity applications. To the best of our knowledge, BODHI is the first system to
provide an integrated view from the molecular to the organism-level information, including taxonomic data,
spatial layouts and genomic sequences.

BODHI is operational, completely free and is built around publicly available software components and
commodity hardware. Further, BODHI incorporates a variety of indexing strategies taken from the recent
research literature for efficient access of different data types. Through a detailed performance study using
a range of biological queries, we showed that these indexes were extremely effective in reducing the running
times of the queries. Our experiments also showed that while spatial operations are certainly expensive, as
mentioned in the literature, in the biological context, it is perhaps the genomic sequencing queries that are
really the “hard nuts”. Therefore, the importance of developing efficient indexing strategies for sequence
data cannot be over-emphasized.

We hope that BODHI can be successfully used by biologists as the central information repository of their
workbench, and by computer scientists as a realistic testbed for evaluating the efficacy of their algorithms.
We are currently working on adding new indexing mechanisms such as the Pyramid Tree for indexing high-
dimensional data, where each data object has thousands of attributes — such data is especially common in

drug-related datasets.
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