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Abstract

XML documents are inherently extremely verbose since the “schema” is repeated for every “record”
in the document. While a variety of compressors are available to address this problem, they are not
designed to support direct querying of the compressed document, a useful feature from a database per-
spective. In this paper, we propose a new compression tool called XGrind, that directly supports queries
in the compressed domain. A special feature of XGrind is that the compressed document retains the
structure of the original document, permitting reuse of the standard XML techniques for processing
the compressed document. Performance evaluation over a variety of XML documents and user queries
indicates that XGrind simultaneously delivers improved query processing times and reasonable com-

pression ratios.

1 Introduction

In recent years, the XML language [1], by virtue of its self-describing and textual nature, has become
extremely popular as a medium of data exchange and storage, especially on the Internet. To support this
functionality, XML resorts to, in database terms, storing the “schema” with each and every “record” in the
document. This is in marked contrast to the traditional database approach of storing the meta-data once
for the whole database. A consequence of XML'’s repeating-schema characteristic is that documents are
extremely verbose as compared to their intrinsic information content. The size increase is estimated to be as

much as 400 percent [10]!
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gzip [6], and thereby reduce the size of the document. An alternative approach is to design an XML-
specific compressor. This approach was used in the XMi11 tool, proposed recently by Liefke and Su-
ciu [12]. XM1i11 achieves compression ratios typically in excess of 80 percent on large XML documents by
grouping semantically related data items into “containers” and compressing each container separately with a
specialized compressor that is ideal for that container (optional), followed by a gz ip on that container. For
example, the meta-data (in the form of XML tags and attributes) and the data (element and attribute values)
are compressed separately. A performance study [12, 13] showed XMi11 to consistently provide improved
compression ratios as compared to gz ip.

Since XMil1 is designed to minimize the size of the equivalent compressed XML, it is attractive in
terms of reducing network bandwidth requirements for transmission of XML documents, and disk space
requirements for storage of XML documents. However, its compression approach is not intended for directly
supporting querying or updating of the compressed document. In fact, accomplishing such operations on
XMill-compressed documents would typically entail a complete decompression of the file.!

The ability to perform direct querying is important for a variety of applications, especially for those
hosted on resource-limited computing devices such as Palm-Tops. For example, consider a vendor who
travels around with a detailed list of her customers and orders, in compressed XML format, on her PDA.
She could be reasonably expected to frequently query this database in order to check customer contact
information, order status, delivery schedules, etc., as well as enter information about new customers or
orders, status updates, etc. If she would need to decompress the entire document every time she wanted an
answer or needed to make an update, it could be quite time-consuming and tiresome. Worse, it may even
turn out to be impossible to perform the decompression since her device may run out of space to hold the
uncompressed document!

At the other extreme of the resource spectrum, data warehouses storing XML documents may find that,
even if decompressing were available for free, directly supporting data-intensive decision support queries
on the compressed data may result in a significant improvement in query response times as compared to
querying the uncompressed version. This is because compression, as highlighted in [23, 28, 29, 31, 33],
provides many other benefits apart from the obvious utility of reduced space: disk seek times are reduced
since the compressed data fits into a smaller physical disk area; disk bandwidth is effectively increased due
to the increased information density of the transferred data; and, the memory buffer hit ratio increases since

a larger fraction of the document now fits in the buffer pool.

!Since XMill compresses in “chunks” of 8MB size, in principle it is possible to separately decompress and query each chunk —

however, there are significant design and implementation complexities involved in this process, as mentioned in [12].



Based on the above observations, we propose in this paper a new compression tool called XGrind, that
directly support queries in the compressed domain. That is, instead of compressing at the granularity of
the entire document, it compresses at the granularity of individual element/attribute values using a context-
free compression scheme based on Huffman encoding [7]. This means that exact-match and prefix-match
user queries can be entirely executed directly on the compressed document, with decompression restricted

to only the final results provided to the user.?

Further, range or partial-match queries require on-the-fly
decompression of only those element/attribute values that feature in the query predicates, not the entire
document.

A novel and especially useful feature of XGrind is that it retains the structure of the original XML
document in the compressed document also. This means that the compressed document can be parsed using
exactly the same techniques that are used for parsing the original XML document. A related major benefit is
that XML indexes [37] can be created on the compressed document. Further, updates to the XML document
can be directly executed on the compressed version. Lastly, a compressed document can be checked for
validity against the compressed version of its DTD. We expect that these properties would be of considerable
utility in practical settings, especially those hosting large number of XML documents. For example, major
repositories of genomic data such as the European Bioinformatics Institute (EBI) [39], allow registered users
to upload new genetic information to their archives. It would be extremely useful if such information could
be compressed by the user and then uploaded, checked for validity, and integrated with the existing archives,
all operations taking place completely in the compressed domain.

Another feature of XGrind is that, for XML documents adhering to a DTD, it attempts to utilize
the information in the DTD to enhance the compression ratio. For example, attribute values that are of

enumerated-type are recognized from the DTD and are encoded differently from other attribute values.

1.2 Performance Results

We have conducted a detailed performance evaluation of XGrind over a representative set of real and
synthetic XML documents, including some generated according to the recently announced XML bench-
mark [36]. Our study considers a variety of metrics including the compression ratio, the compression time,
and the query processing times. Since, to our knowledge, there do not exist any prior queryable XML
compressors, we have attempted to place the XGrind performance results in perspective by comparing it

against the following yardsticks: (a) XMi11, with regard to the compression ratio and compression time

2Note that this decompression is the minimum which will have to be performed by any compression scheme.



with regard to the query processing time metric.

Our experimental results indicate that XGrind provides a reasonably good compression ratio — on the
average, about three-quarters that of XMi11, and always at least two-thirds that achieved by XMi11. Fur-
ther, the compression time is always within a factor of two of that of XMi11. These numbers are especially
encouraging given that we are (a) using element/attribute-granularity compression, rather than document-
granularity compression, (b) using a simple character-based Huffman/Arithmetic encoding scheme, rather
than a pattern-based approach, and (¢) making two passes over the original XML document to provide
context-free compression.

We hasten to mention that the initial pass of gathering the statistics for context-free compression could
be optimized by sampling in case of huge XML documents. This would marginally reduce the compression
ratios and reduce the compression times considerably. The implementation details of the sampling pass need
to be worked out.

Further, note that while compression is a “one-time” operation, querying would probably be a repeated
occurrence — therefore, any overheads in document compression time would quickly be amortized over large
query sequences.

On the query processing front, XGrind provides substantially improved query processing times as
compared to Native for a variety of common XML-QL [2] queries. For example, for an exact-match
predicate on a key field, XGrind does better by a factor of three, on average. Similarly, even for range
queries where a significant portion of the document would necessarily be decompressed, XGrind’s response
time is about half that of Nat ive, on average.

In summary, we present here a new compression tool for XML documents that is “query-friendly”,
making it practical to simultaneously achieve both reasonable compression and good query performance.

To the best of our knowledge, this is the first quantitative work on queryable XML compression.

1.3 Organization

The remainder of this paper is organized as follows: Background material on compression techniques and
the XM111 compressor is provided in Section 2. The architectural design and implementation details of our
new XGrind compressor are presented in Section 3. The performance model and the experimental results
are highlighted in Sections 4 and 5, respectively. Section 6 presents the results of the XGrind tool using
the Arithmetic-Compressor module as against the Huffman-Compressor module used for the results shown
in Section 5. Related work on XML compression is overviewed in Section 7. Finally, in Section 8, we

summarize the conclusions of our study and outline future avenues to explore.



In this section, we overview background material on compression techniques, and also the XMi11 compres-
sor. We restrict our attention to lossless compression techniques in this paper since we expect that for XML
document databases, which store mainly textual and numeric data, only such techniques can be used.

Most lossless data compression techniques are based on one of two models: statistical or pattern.? In
statistical modeling, each distinct character of the input data is encoded, with the code assignment being
based on the probability of the character’s appearance in the data. In contrast, pattern-based compression
schemes recognize duplicate strings in the input data, and these duplicates are replaced either by pointers to
the first appearance of the string, or by an index into a dictionary that maps strings to codes.

Yet another dimension of lossless compression algorithms is that they may be adaptive or non-adaptive.
In adaptive schemes no prior knowledge about the input data is assumed and statistics are dynamically gath-
ered and updated during the encoding phase itself. On the other hand, non-adaptive schemes are essentially
“two-pass” over the input data: during the first pass, statistics are gathered, and in the second pass, these
values are used for encoding.

Most of the popular compression techniques are based on one of the following algorithms: Huffman,
Arithmetic, LZ77 or LZ78. The Huffman coding and Arithmetic coding techniques implement the sta-
tistical model, while LZ77 and LZ78 are pattern-based. For Huffman and Arithmetic, both adaptive and
non-adaptive flavors are available, whereas both the LZ encoders are adaptive. We describe the Huffman,

Arithmetic, and LZ77 techniques here.

2.1 Huffman Coding

In Huffman coding [7], the most frequent characters in the input data are assigned shorter codes and the less
frequent characters are assigned longer codes. The longer codes are constructed such that the shorter codes
do not appear as prefixes (also known as prefix-free encoding). In particular, a tree is constructed with the
characters of the input alphabet forming the leaves of the tree. The links in the tree are labeled with either 0
or 1 and the code for a character is the label sequence that is obtained by traversing the path from the root
to the leaf node corresponding to that character in the Huffman tree.

As mentioned earlier, both adaptive and non-adaptive versions of Huffman coding exist. In non-adaptive
Huffman coding, the Huffman tree is completely built before encoding starts, using the known frequency
distribution of the characters in the data to be compressed. The tree remains unchanged for the entire

duration of the encoding process. The decoder builds the same tree using the saved frequency distribution

3 An exception is the classical Run-length encoding scheme which simply recognizes successive repetitions of characters.



with a Huffman tree that is built using an assumed frequency distribution of the characters in the input data.
A common practice is to assume that all characters are equally likely to occur. As the encoding process
proceeds and more data is scanned, the Huffman tree is modified based on the data seen up to that point.
Therefore, the Huffman tree changes dynamically during the encoding phase and the same character can

have different codes depending on its position in the data being compressed (unlike non-adaptive Huffman).

2.2 Arithmetic Coding

A limitation of Huffman coding is that each character is encoded into an infegral number of bits. This
means that the codes may often be longer than that strictly required for the character. For example, a char-
acter with probability of occurrence 0.9 can be coded minimally in 0.135 bits (from information-theoretic
considerations *), but requires 1 full bit in this scheme.

Arithmetic coding attempts to address the above shortcoming of Huffman coding. Here, the compressed
version of the input data is represented by the interval between two real numbers of arbitrary precision,
(z,y), where 0 < z < y < 1. At the start, the range is initialized to the entire interval [0,1), and this range
is progressively refined. During the encoding process, each character is assigned an interval within the
current range, the width of the interval being proportional to the probability of occurrence of that character.
The range is then narrowed to that portion of the current range which is allocated to this character. So, as
encoding proceeds and more data is scanned, the interval needed to represent the data becomes smaller and
smaller, and the number of bits needed to specify the interval grows. The more likely characters reduce the
range less than the unlikely characters and hence add fewer bits to the compressed data. The implementation
details of this scheme are given in [8, 26].

Arithmetic coding also has adaptive and non-adaptive versions, in exactly the same manner as that

described previously for Huffman coding.

2.3 LZ77 Coding

The LZ77 coding [9] is used in popular compression tools such as gzip. Here, the input data is scanned
sequentially and the longest recognized input string (that is, a string which already exists in the string table)
is parsed off each time. The recognized string is then replaced by its associated code. Each parsed input
string, when extended by its next input character, gives a string that is not yet present in the string table.

This new string is added to the string table and is assigned a unique code value. In this manner, the string

4Information content of a character is its entropy= —pclogape, where p, is the probability of its occurrence.



the same string table as the encoder and constructs it incrementally in a similar manner.

2.4 The XMill Compressor

The XxMi11 [12, 13] compressor represents, as mentioned in the Introduction, the state-of-the-art in XML
compression. In XMill’s document model, each XML document is composed of three kinds of tokens: tags,
attributes, and data values. These tokens are organized as a tree, with internal nodes being labeled with tags
or attributes, and leaves labeled with data values. The path to a data value is the sequence of tags, (and,
possibly one attribute) from the root to the data value node.

For the above kind of documents, XMi 11 operates in the following manner: First, meta-data in the form
of XML tags and attributes is compressed separately from the data, which is the set of strings formed from
element content and attribute values. Second, semantically related data items are grouped into “contain-
ers”. For example, all <name> data items form one container, while all <phone> items form a second
container. This is an extension to the semi-structured domain of the notion of column-wise or domain-wise
compression that is well-known in relational DBMS (see e.g.[31, 34]). The motivation for such semantic
grouping is that data belonging to the same group will usually have similar characteristics and can there-
fore be compressed better than data sequences that have only syntactic proximity. Third, each container is
compressed separately with a specialized compressor that is ideal for that container. For example, a delta
(difference) compressor may be used for a container hosting integers that typically have moderate changes
from one value to the next, while a run-length encoder may be used for domains with a very limited set of
values (e.g., “Male” or “Female” for a gender element). Finally, the outputs of all containers are individually
compressed using gzip, which as mentioned above, is based on LZ77, and the results are concatenated into
a single XML file.

To implement the above control flow, the XML document is parsed by a hand-crafted SAX (Simple API
for XML) parser [35] that sends a stream of tokens to a path processor, which assigns each token to an
appropriate container, and containers are then compressed independently with their associated compression
mechanism.

A performance study over a wide variety of XML documents showed XMi1l1l to consistently provide
improved compression ratios as compared to using plain gzip, since gzip treats the entire file as a con-

tinuous stream of bytes and does not associate any semantics with the contents.



In this section, we first describe the design features of our new XML compressor, XGrind, which are
intended to ensure both good query performance and reasonable compression ratios. We then present its

architectural and implementation details.

3.1 Compression Techniques

XGrind uses different techniques for compressing meta-data, enumerated-type attribute values, and (gen-

eral) element/attribute values, respectively. These techniques are described below:

3.1.1 Meta-Data Compression

XGrind follows the XMi1l1l compression approach of separating structure from content. The method to
encode meta-data is similar to that in XM111, and is as follows: Each start-tag of an element is encoded by
a ‘T’ followed by its unique element-id. Each end-tag is encoded by a ‘/’. Each attribute name is encoded

by the character ‘A’ followed by its unique attribute-id.

3.1.2 Enumerated-type Attribute Value Compression

Enumerated-type attribute values are a common occurence in XML documents. For example, the states of
a country, or the set of departments in a company, or the set of zipcodes, are all instances of frequently
occuring enumerated-type attribute values. This knowledge is often captured in the DTD itself. XGrind
identifies such enumerated-type attributes by examining the DTD of the document and encodes their values

using a simple logs K encoding scheme to represent an enumerated domain of K values.

3.1.3 General Element and Attribute Value Compression

While the above schemes cater to meta-data and enumerated-type attribute values, we now move on to the
compression technique for general element and attribute values, which typically form the bulk of the XML
document.

Given XGrind’s goal of efficiently querying compressed XML documents, a context-free compression
scheme is required. That is, a compression scheme in which the code assigned to a string in the document,
is independent of its point of occurrence in the document. This feature allows us, given an arbitrary string,
to locate occurrences of that string in the compressed document directly, without decompressing it. This is
done by first compressing the query string (expressed as a path expression) and searching for occurrences of

its corresponding encoded sequence in the compressed document.



to a data item is dependent on the entire contents of the document prior to the occurence of the data item.
That is, only with a complete decompression of the prior contents is it possible to decode a given sequence.
On the other hand, context-free coding of strings is possible with the non-adaptive versions of compression
algorithms like Huffman coding and Arithmetic coding. To support the non-adaptive feature, two passes
have to be made over the input XML document, as discussed in the previous section: the first to collect the
statistics and the second to do the actual encoding.

In principle, we could use a single character-frequency distribution for the entire document. However,
in XGrind, we compute a separate frequency distribution table for each element and non-enumerated
attribute. The motivation for this approach is that data belonging to the same element/attribute is usually se-
mantically related and is expected to have similar distribution. For example, data such as telephone numbers
or zipcodes will be composed exclusively of digits. Therefore, the characteristics of each element/attribute
are reflected more accurately and the smoothing out of the peculiarities of a particular element/attribute
(which may happen in the case of a single document-wide frequency distribution) is prevented. °

Since we expect that queries will typically have predicates related to element/attribute values, we com-
press at the level of individual element/attribute values. This is done during the second pass using the set of
frequency tables generated during the first pass.

With the above scheme, queries can be carried out over the compressed document without fully decom-
pressing it. To be more precise, exact-match and prefix-match user queries can be completely carried out
directly on the compressed document, while range or partial-match queries require on-the-fly decompres-

sion of only the element/attribute values that are part of the query predicates.

3.2 Homomorphic Compression

The most novel feature of the XGrind compressor is that its output, like its input, is semi-structured in
nature. In fact, the output compressed document can be viewed as the original XML document with its
tags and element/attribute values replaced by their corresponding encodings. The advantage of doing so is
that the variety of efficient techniques available for parsing/querying XML documents can also be used to
process the compressed document. Second, indexes, such as those proposed in [37], can now be built on
the compressed document in similar manner to those built on regular XML documents. Third, updates to
the XML document can be directly executed on the compressed version. Finally, a compressed document
can be checked for validity against the compressed version of its DTD, without having to resort to any

decompression, as shown by the following property.

®This is similar to collecting column or domain statistics for compression in an RDBMS [34].



the XGrind encoding scheme for the meta-data and enumerated-type attribute values. Let hx (D) denote
the compressed DTD and hx (X) denote the compressed XML document. The following property is a con-

sequence of the “context freeness” of the compression scheme and the semi-structured nature of the output.
X is valid for D < hx(X) is valid for hx (D).

In other words, the XGrind compressed document is valid with respect to its associated compressed
DTD. The proof for this follows from the closure of regular languages and context-free languages under

homomorphisms and under inverse homomorphisms [11].

3.3 System Architecture

The architecture of the XGrind compressor along with the information flows is shown in Figure 1. The
XGrind kernel module is the heart of the compressor. It starts off by invoking the DTD Parser, which
parses the DTD of the input XML document, initializes frequency tables for each element or non-enumerated
attribute, and populates a symbol table for attributes having enumerated-type values. The kernel then invokes
the XML Parser, which scans the XML document and populates the set of frequency tables which contain
statistics (in the form of frequencies of character occurrences) for each element and non-enumerated at-
tribute. The kernel then invokes the XML Parser for a second time to construct a tokenized form — tag,
attribute, or data value — of the XML document. The tokens are supplied in streaming fashion to the kernel

which calls, for each token based on its type, one of the following encoders:

Enum-encoder module if the token type is meta-data or an enumerated-type data item. Each start-tag of
an element is encoded by a ‘T’ followed by its unique element-id. Each end-tag is encoded by a */’.
Each attribute name is encoded by the character ‘A’ followed by its unique attribute-id. As mentioned
earlier, this coding scheme is similar to that used by XMi11. Enumerated-type attribute values are

coded using the symbol table information.

Huffman-Compressor module ©

for non-enumerated data items. This module implements the non-adaptive Huffman coding compres-
sion scheme. It encodes each element/attribute value with the help of its associated Huffman tree,
which is constructed from the assoiciated frequency tables. The last byte of the encoded sequence

is padded with ' 0’ s (bits), and escaped so that the compressed XML document can be parsed

5We also have the Aritchmetic-Compressor module that implements the non-adaptive Arithmetic coding compression scheme.

‘We do not mention the Arithmetic-Compressor details in the text to avoid repetition.
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<!- student.xml ——>

<STUDENT rollno = "604100418">
<NAME>Pankaj Tolani</NAME>
<YEAR>2000</YEAR>
<PROG>M.E</PROG>

<DEPT name = "Computer_Science_and_Automation"/>

</STUDENT>

Figure 2: An XML fragment of the Student database

without ambiguity. Escaping is done so that the demilter does not appear in the compressed text and

hence it can be extracted and decompressed without ambiguity.

The compressed output of the above encoders, along with the various frequency and symbol tables, is
called the Compressed Internal Representation (CIR) of the compressor and is fed to the XML-Gen module,
which converts the CIR into a semi-structured compressed XML document. This conversion is done on the

fly during the second pass while the document is being compressed.

3.4 Compression Example

We now demonstrate the working of XGrind with an example. Consider an XML document fragment along
with its DTD as shown in Figures 2 and 3, respectively. The document represents a student database with
five elements: STUDENT, NAME, YEAR, PROG and DEPT. The STUDENT element has a rol 1no attribute,
while DEPT has a name attribute of enumerated-type. *

For the above document, the XGrind Kernel module invokes the DTD Parser module to examine the
DTD for enumerated-type attributes and stores their values in its symbol table. It also initializes the frequncy
tables for the elements and non-enumerated type attibutes in the XML document. In our example, the
attribute name along with its list of values is inserted in the symbol table. The XGrind Kernel module
next calls the XML Parser which scans the input XML document and collects the statistics for each element
and attribute type. A second scan of the input XML document is now made and a stream of tokens is
returned to the kernel during this pass. Depending on the type of the token, the appropriate compressor
for it is called. That is, for all the tags, attributes, and enumerated-type attribute values, the Enum-encoder

module is invoked, while the Huffman-Compressor module is invoked for the rest of the data items. The

"The underscores in the enumerated values in Figure 3 are necessary as the current XML standard [1] does not allow white

space as a valid character in an enumerated string.
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<!ELEMENT
<!ATTLIST
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

<!ATTLIST

<!-= DTID for the Student database ——>

STUDENT (NAME, YEAR, PROG, DEPT)>
STUDENT rollno CDATA HREQUIRED>
NAME (§PCDATA) >

YEAR (§PCDATA)>

PROG (#PCDATA) >

DEPT EMPTY>

DEPT name (Computer_Science_and_Automation

| Electrical Communication_Engineering

| Electrical_Engineering

| Supercomputer Education_And Research_Centre)

Figure 3: DTD for the Student database

TO AQ nahuff(604100418)
T1 nahuff (Pankaj Tolani) /
T2 nahuff (2000) /
T3 nahuff (M.E) /

T4 Al enum (Computer_Science._and Automation) /

Figure 4: Abstract view of the compressed XML document

output of this together with all the meta-tables (that is, the symbol table along with the frequency tables
containing the statistics) forms the CIR. This is given as input to the XML-Gen module which outputs the

final semi-structured compressed document. An abstract view of the output compressed document is shown

in Figure 4.

Here, the tag STUDENT is encoded as TO, NAME as T1, YEAR as T2, PROG as T3 and DEPT as T4.
All end tags are encoded as ‘/’. The attributes rol1lno and name are encoded as A0 and A1, respectively.
nahuff (s) denotes the output of the Huffman-Compressor module for an input data value s, while enum (s)

denotes the output of the Enum-encoder module for an input data value s, which is an enumerated attribute.
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of validity with respect to the compressed DTD.

3.5 Query Processing

The compressed-domain guery processing engine consists of a lexical analyzer that emits tokens for encoded
tags, attributes, and data values, and a parser built on top of this lexical analyzer that does the matching and
dumping of the matched “records” (which in the XML world, would be semi-structured tree fragments). As
all the tokens are byte-aligned, the lexical analyzer that tokenizes the CIR is able to operate on a byte-by-
byte basis. This means no bit-by-bit operations are necessary, considerably speeding up the lexical analysis.
The parser, which makes a depth-first-search traversal of the XML document, maintains information about
its current location (path) in the XML document and the contents of the set of XML nodes that it is currently

processing.

e For exact-match or prefix-match queries, the query path and the query predicate are converted to the
compressed-domain equivalent. At the time of parsing the compressed-domain equivalent, when the
current path matches the query path, and the compressed data value matches the compressed query
predicate, the parser outputs the matched record and halts. Note that the compressed-domain pattern-
match is also a byte-by-byte comparison, and not a bit-by-bit pattern-match, which would be highly
inefficient. In fact, the matching requires much less work in the compressed domain, as the number

of bytes are much fewer in the compressed version.

e For range or partial-match queries, only the query path is compressed. At the time of parsing the
compressed-domain equivalent, when the current path matches the query path, the data value is de-
compressed and used for evaluating the match. This decompression is required since compression
scheme we use is not “order preserving” (i.e. given two strings s1, S2 and their respective code words
c1, C2, then 81 > 89 7 ¢1 > ¢2). Only the records whose element/attribute values fall in the range are

fully decompressed and returned to the user.

3.6 Implementation

We have implemented the XGrind tool in C++. The SAX API [35] XML Parser provided in [14] was used
for implementing the XML Parser module, while Lex and Yacc were used for implementing the DTD Parser
module. We wrote our own non-adaptive Huffman-Compressor module and parser for the semi-structured

compressed XML document (again, using Lex and Yacc).
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In this section, we describe our experimental setup to evaluate XGrind. We evaluated XGrind on a
representative set of real and synthetic XML documents, including one generated according to the recently
announced XML benchmark [36]. Since, to our knowledge, there do not exist any prior queryable XML
compressors, we have attempted to place the XGrind performance results in perspective by comparing it
against the following yardsticks: (a) XMi11, with regard to the compression ratio and compression time
metrics, and (b) Nat ive, a parser which directly operates on the original uncompressed XML document,
with regard to the query processing time metric. Our experiments were conducted on a PIII, 700 MHz

machine, running Linux (TurboLinux 6.0), with 64 MB main memory and 18 GB local IDE disk.

4.1 XML Documents

XML document Size Records | Scaleup | Depth | Elems | Attrs | Enums
xmlbenchmark | 1.119 GB 1 1 8 77 16 0
conferences 382 MB 1.04M 10 3 25 5 0
journals 294 MB 0.76M 11 3 15 2 0
shakespeare 161 MB 740 22 6 22 0 0
Xpress 361 MB 0.70M 1 4 24 0 0
student1 960 MB M 1 3 6 2 1
student4 1.375 GB M 1 3 7 5 4

Table 1: Statistics of the data sets

The details of the XML documents considered in our study are summarized in Table 1. The size field
refers to the total disk space occupied by the document; the records field indicates the number of top-
level records in the document; the scaleup field indicates the number of times the original file has been
concatenated; the depth field indicates the maximum level of nesting; the elems, attrs and enums
fields indicate the number of elements, attributes and enumerated-attributes, respectively, in the document.

The XML documents used in our study cover a variety of sizes, document characteristics and application

domains, and are listed below:

xmlbenchmark: This document was generated using the recently announced XML benchmark data gen-
erator, xmlgen [36]. It is deeply-nested and has a large number of elements and attributes. Here,

element values are often long textual passages.
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archive [40]. Since DTDs are not available for these documents, we created the DTDs ourselves.
However, we hasten to add that this is not strictly required since the XGrind tool works without a
DTD also — the only impact is that the compression times will increase marginally, because, without
the DTD, internal frequency statistics hash tables will have to be created on-the-fly during the initial

pass, as the XML document is being parsed.

shakespeare: This document is the publicly available XML version of the plays of Shakespeare [41]. Here,

element values are often long textual passages.

xpress: This document is obtained from the publicly available Ham Radio database of the US Government’s
Federal Communications Commission [42]. This real dataset has the highest percentage of meta-data

content (70%) amongst the set of XML documents we consider here.

studentl: This is a synthetically generated XML document that represents a database of student infor-
mation. The DTD for this document has one attribute — name (of the department) — which is an
enumerated type. The student names (an element in this XML document with PCDATA content) are
generated by concatenating words from the ispell spellchecker dictionary, and are not just random

text.

studentd: This is also a synthetically generated XML document, similar to studentl, except that the DTD
has four enumerated attributes — year (of registration), name (of the course), name (of the department),

and name (of the previous school).

The reason that we have scaled up (by concatenation) some of the above documents is to ensure that our
results scale to the large XML documents that are expected to be commonplace in the future, especially in
the bio-informatics domain. We hasten to add that we also ran our experiments on the original(unscaled)
versions of these documents, and the results are consistent with those presented here. Therefore, the scale-up
does not prejudice our numbers in anyway.

Sample fragments of the XML documents are shown in the appendix.

4.2 Performance Metrics

Compression Metrics:
On the compression side, we compare XGrind’s compression ratios and compression times with that

of XMi11. These metrics are listed below:
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sizeof (original file)
Compression Ratio Factor (CRF) : This represents the compression ratio of XGrind normalized

CRxGrind
CRxwrin

Compression Time (CT) : This is the time taken to compress the XML file.

to that of XMi11 and is defined as CRF =

Compression Time Factor (CTF) : This represents the compression time of XGrind normalized to
CTx Grind

that of XMi11 and is defined as CTF = .
CTxwrin

Query Metrics:
On the query side, we compare XGrind’s query response times with that of Nat ive. The compari-

son metrics are listed below:

Query Response Time (QRT) : This is total time required to execute a user query (in seconds).

Query Speedup Factor (QSF) : This represents the query response time speedup obtained by
QRTN ative

XGrind normalized to that of Nat ive and is defined as QSF = ———.
QRTXGrind

4.3 XML Queries

For evaluating query response times, we use a representative subset from the “Ten Essential XML queries”
described in [3]. These queries are described below, and are presented using the XML-QL query language

constructs [3].

Exact-match queries : A sample exact-match query is shown in Figure 5. This query extracts the name of
the student whose roll number (which is a “key” value) equals 123456789. We evaluated the query
performance for randomly positioned records over the entire document and present the results here
for the average case. For these queries, the parsers used in XGrind and Nat ive were instrumented

to stop when the desired pattern was found.

Range queries : A sample range query is shown in Figure 6, which extracts all students whose date of
joining is between the years 1998 and 2001. We evaluate a wide range of query selectivities in our

experiments.

Delete queries : This query deletes the record of the student whose roll number (which is a “key” value)
equals 123456789. Again, we evaluated the query performance for randomly positioned records over

the entire document and present the results here for the average case.
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CONSTRUCT <student rollno=S$r> {
WHERE
<student rollno=123456789>
<name>$n</name>
<year>$y</year>
<dept name=$d>
</student> IN "student.xml",

CONSTRUCT <name>S$n</name>

} </student>

Figure 5: XML-QL exact-match query

CONSTRUCT <student rollno=S$r> {
WHERE
<student rollno=$r>
<name>$n</name>
<year>$y</year>
<dept name=$d>
</student> IN "student.xml",
Sy > 1998 and sy < 2001
CONSTRUCT <name>$n</name>

} </student>

Figure 6: XML-QL range query

5 Results

In this section, we present the results for the data sets and queries described in the previous section. We
present the results for the compression metrics first, followed by the query metrics. The results shown
here are for the Huffman-Compressor module. We club the results for the Arithmetic-Compressor module
in Section 6 to avoid confusion. Also these performance numbers are not of much interest, as the query

response times are much higher for the marginal improvements in compression numbers.
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Document CRxGrind | CRxMmin | CRF
xmlbenchmark 55.03 70.95 0.78
conferences 57.44 84.61 0.68
journals 57.85 85.59 0.68
shakespeare 54.96 74.12 0.74
Xpress 76.85 93.54 0.82
student] 77.13 91.74 0.84
student4 82.12 93.87 0.87
Average 0.77

Table 2: Comparison of compression ratios

5.1 Compression Metrics
5.1.1 Compression Ratio

The compression ratios (CRs) for XGrind and XMill and the associated compression ratio factors
(CRF's) for the seven XML documents are shown in Table 2. Based on these statistics, we make the

following observations:

e As expected, XGrind has lower compression ratio than XMi11, but the important point is that its
CRF is, on the average, about 77% that of XMi11. Also, the worst case is within 68% of XMi11.
These results were also also true for a variety of other documents that we considered (but are not

described here due to space limitations) in our experiment evaluation.

e The results for studentl and student4 show that the compression ratio for XGrind improves
with increase in the number of enumerated attributes. Experiments with other documents also showed
similar results. Since we expect a significant usage of enumerated attributes in real life XML docu-
ments, XGrind’s compression ratios will probably be better in practice than those shown here, that

is, the values presented here are “conservative”.

5.1.2 Compression Time

The compression time performance of XGrind is shown in Table 3, and compared with that of XMi11.
From the values in the table, we see that XGrind’s compression time is always within about twice the time
taken by XMi11. This is not surprising, as the XGrind compression scheme is two-pass, as against the

one-pass compression scheme used in XMi11. Also, for the xmlbenchmark and shakespeare datasets, which
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Document CTxGrina (in secs) | CTxmin (in secs) | CTF
xmlbenchmark 1246 878 1.41
conferences 442 222 1.99
journals 344 170 2.02
shakespeare 183 125 1.46
Xpress 353 182 1.93
studentl 978 471 2.07
student4 1328 647 2.05
Average 1.83

Table 3: Comparison of compression times

have longer text passages, the XGrind compression time is within about one and a half times the time taken
by XMi11. This is because the XMi11 pattern-based compression scheme turns out to be computationally
costlier than the simple character-based encoding used in XGrind for such long text segments.

Finally, note that while document compression is usually a “one-time” operation, querying the docu-
ment is a repeated occurrence — therefore, the extra compression time overhead of XGrind will be quickly

amortized from its benefits with regard to query performance, described next.

5.2 Query Metrics

We now move on to the query perfomance comparisons. Here, we compare the QRTs of XGrind
(QRTxGring) With that of Native (QRTNgtive), for exact-match, range-match and delete queries, re-

spectively.

5.2.1 Exact-Match query

For exact-match queries, a sample of which was presented in Figure 5, the average query response times are

shown in Table 4. The inferences we make from the results are the following:

o First, QRTxGrind <K QRTNative in all the cases, and this is made explicit in the QSF column, which
measures the relative speed up of XGrind w.r.t. Native. The minimum QSF for for XGrind is

about 2 times and is typically much higher, overall averaging around 3.

e Second, QRT xGring (as well as QRT N gtive) is much less than the time it takes XMi11 or gzip to

decompress the XML document, as shown in Table 5. So, if a tool like XMi11 or gzip were to be
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Document QRTxGrind(in secs) | QRTNative(in secs) | QSF
xmlbenchmark 80 185 2.00
conferences 27 68 2.51
journals 21 53 2.52
shakespeare 14 31 2.21
Xpress 20 73 3.65
student] 46 184 4.00
student4 50 250 5.00
Average 3.12

Table 4: Exact-Match Query Performance

Document XMill decompression time(in secs) | gzip decompression time(in secs)
xmlbenchmark 663 488
conferences 151 145
journals 116 107
shakespeare 71 65
Xpress 125 73
student] 288 336
student4 428 479

Table 5: Decompression Times

used for compression, and even if there were an algorithm that takes zero time to execute exact-match
queries over an uncompressed XML document, QRT'x grinqg Would still perform substantially better
than XMill or gzip. Further, XGrind would also require less space to process the query than

XMillorgzip.

5.2.2 Range query

For range queries, a sample of which was presented in Figure 6, the query response times for a spectrum of
answer selectivities (1%, 10%, and 50%) are shown in Table 6. Here, we consider selectivity with respect
to the number of top-level nodes. Hence, this experiment is not meaningful for xmlbenchmark, since it has
only one top-level node. However, it is straightforward to extend our experiments to lower-level nodes.

The inferences we make from the results in Table 6 are the following:
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Document %Selectivity | QRT xGrind(in secs) | QRTNative(in secs) | QSF
xmlbenchmark - - - -

conferences 1 71 136 1.92
10 87 150 1.72

50 153 205 1.34

journals 1 54 106 1.96
10 64 117 1.83

50 115 162 1.41

shakespeare 1 27 57 2.11
10 35 66 1.89

50 65 88 1.35

Xpress 1 43 139 3.23

10 58 150 2.59

50 125 255 2.04

student]1 1 138 364 2.64
10 166 390 2.35

50 292 540 1.85

student4 1 140 497 3.55
10 172 549 3.19

50 319 751 2.35

Table 6: Range Query Performance

%Selectivity | Average QSF (over all documents)

1 2.56
10 2.26
50 1.72

Table 7: Range Query Average Performance

o QRTxGrind € QRT Native for all selectivities over all the documents. This is made explicit in the
Average QSF values shown in Table 7, which averages the performance for a given selectivity across
all the documents. Note that for 1% and 10% selectivity, which are typically the types of queries seen
in practice, the average improvement is above 2.25 times w.r.t. Nat i ve. Further, even for a selectivity

as coarse as 50 %, the improvement is by over 70 percent.

22



Document QRTxGrind(in secs) | QRTNative(in secs) | QSF
xmlbenchmark 318 743 2.33
conferences 109 285 2.61
journals 84 284 2.61
shakespeare 45 107 2.37
Xpress 62 266 4.29
student1 174 783 4.50
student4 191 1035 541
Average 3.44

Table 8: Delete Query Performance

For delete queries, the average query response times are shown in Table 8. The inferences we make from

the results are the following:

o QRTxcrind € QRT Native for all the documents and this is made explicit in the QSF columns, show-
ing a minimum speedup for XGrind of about 2 times and typically much higher, overall averaging

about 3.5.

6 Results using Arithmetic-Compressor

Here, we present the results for the same data sets and queries for the XGrind tool using the Arithmetic-
Compressor module and compare these qualitatively with those for the XGrind tool using the Huffman-

Compressor module.

6.1 Compression Metrics
6.1.1 Compression Ratio

The compression ratios (CRs) for XGrind and XMill and the associated compression ratio factors
(CRFs) for the seven XML documents are shown in Table 9. Based on these statistics, and by comparing
these with the results of the XGrind tool using the Huffman-Compressor module, we observe that there is
just a marginal increase in compression ratios in all cases. This is due to the fact that we use element/attribute

granularity compression, and in most cases the number of bits saved in Arithmetic compression as against
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Document CRxGrind | CRxMmin | CRF
xmlbenchmark 55.0 70.95 0.78
conferences 57.6 84.61 0.68
journals 58.0 85.59 0.68
shakespeare 55.0 74.12 0.74
Xpress 76.9 93.54 0.82
student] 71.5 91.74 0.84
student4 82.4 93.87 0.87
Average 0.77

Table 9: Comparison of compression ratios

Huffman compression make up the last byte of the compressed text, which is finally padded with 0’ bits
(in both cases) before writing in the CIR. Note, the padding is done for efficient tokenizing of the CIR at

decompression/query time using byte operations.

6.1.2 Compression Time

Document CTxGrina (in secs) | CTxmin (in secs) | CTF
xmlbenchmark 1800 878 2.05
conferences 973 222 4.38
journals 745 170 4.38
shakespeare 441 125 3.52
Xpress 418 182 2.29
studentl 1438 471 3.09
student4 2000 647 3.09
Average 3.25

Table 10: Comparison of compression times

The compression time performance of XGrind is shown in Table 10, and compared with that of XMi11.
Comparing C'T F's with that for Huffman-Compressor based XGr i nd compressor suggest that the compres-

sion times are much higher, for a marginal increase in compression ratios shown earlier in this section.
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We now move on to the query perfomance comparisons. Here, we compare the QRTs of XGrind

(QRTx Gring) With that of Native (QRTINgative), for exact-match and range-match queries, respectively.

6.2.1 Exact-Match query

Document QRTxXGrind(in secs) | QRTNative(in secs) | QSF
xmlbenchmark 80 185 2.00
conferences 26 68 2.61
journals 20 53 2.65
shakespeare 13 31 2.38
Xpress 20 73 3.65
student] 46 184 4.00
student4 50 250 5.00
Average 3.18

Table 11: Exact-Match Query Performance

For exact-match queries, the query response times using the Arithmetic-Compressor are similar to that
using the Huffman-Compressor module. This is because decompression (which is costlier for Arithmetic
Compression as compared to Huffman compression) is done only for one record qualifying the exact-match
query predicate. Apart from decompression, the work done in both cases is almost the same (most of which

is comparing bytes in the compressed-domain).

6.2.2 Range query

The performance for range queries using the Arithmetic-Compressor module is much worse compared to
those using the Huffman-Compressor module. The query response times are more for XGrind than Na-
tive in most cases. This is because the Arithemetic-Compressor module is much slower than the Huffman-
Compressor module, as the computations in the implementation of rithmetic compression are much more

involved than that in the implementation of Huffman compression.
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Document %Selectivity | QRT xGrind(in secs) | QRTNative(in secs) | QSF
xmlbenchmark - - - -

conferences 1 172 136 0.79
10 222 150 0.67

50 459 205 0.44

journals 1 130 106 0.81
10 165 117 0.70

50 345 162 0.46

shakespeare 1 62 57 0.91
10 110 66 0.60

50 195 88 0.45

Xpress 1 102 139 1.36
10 150 150 1.00

50 375 255 0.68

student]1 1 340 364 1.07
10 420 390 0.92

50 876 540 0.61

student4 1 345 497 1.44
10 435 549 1.26

50 957 751 0.78

7 Related Work

Table 12: Range Query Performance

%Selectivity | Average QSF (over all documents)
1 1.06
10 0.85
50 0.57

Table 13: Range Query Average Performance

compression of these verbose documents has also started attracting attention.
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Given the tremendous spurt in popularity of XML over the last two years, it is not surprising that
On the research front,
apart from XMill, the only other compression tool that we are aware of is Millau [15], which is de-

signed for efficient encoding and streaming of XML structures. This tool is designed for small XML




few companies — for example, http://www.xmlzip.com, http://www.ictcompress.comand
http://www.dbxml.com— which claim to have XML compression tools. As mentioned in [12], the
xmlzip tool from http://www.xmlzip.comruns out of memory on large documents. The tool from
http://www.ictcompress.com claims to provide significantly more compression than XMill, but

they do not consider the issue of being query-friendly.

8 Conclusions

In this paper, we have considered, for the first time, the problem of developing XML compression algorithms
that permit querying to be directly carried out on the compressed document. To this end, we developed an
algorithm called XGrind, which is built around a non-adaptive Huffman encoder that supports context-
free decompression at the token granularity. XGrind also has a special encoder for enumerated types, a
frequent occurrence in XML documents. The most novel feature of XGrind, however, is its guarantee
that the compressed document retains exactly the same semi-structured layout as the original document.
This facilitates the use of similar parsing techniques for both versions. More importantly, it permits us
to build indexes directly on the compressed document, which we expect to be a major value-addition in
practice. Another nice side-effect of XGrind’s token-granularity, context-free, compression scheme is that
the compressed XML document is more folerant to transmission / disk errors as compared to XMi11 or
gzip, and hence the compression scheme is more robust. We evaluated XGrind’s query performance
against Nat ive and the results indicate substantially improved query response times. Further, these benefits
were obtained while simultaneously achieving compression ratios that are comparable with that of XM111.

Next, we plan to investigate the following interesting issues:

e Using the information in the DTD corresponding to the XML document, it is possible to determine the
elements that have a fixed-schema without any {*/+/?} modifiers for the nested elements. This makes
it possible to avoid repeating the schema in the compressed document for fixed-schema elements.
We expect that this will improve the compression ratios of XGrind even further, without having any

retrogade effect on its query performance.

e The recently-proposed XML Schema [4] exposes the data types of the elements. We could use this

information to employ specialized context-free compressors for specific data types.

e The initial pass of gathering the statistics for context-free compression could be optimized by sam-

pling in case of huge XML documents. This would marginally reduce the compression ratios and
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be worked out.
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