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Abstract

Iceberg queries are a special case of SQL queries involving GROUP BY and HAVING clauses, wherein
the answer set is small relative to the database size. We present here a performance framework and a detailed
evaluation within this framework of the efficiency of various iceberg query processing techniques. Based on
these results, we provide a simple recipe algorithm that can be implemented in a query optimizer to make

appropriate algorithmic choices for processing iceberg queries.

1 Introduction

Many database applications, ranging from decision support to information retrieval, involve SQL queries that
compute aggregate functions over a set of grouped attributes and retain in the result only those groups whose
aggregate values satisfy a simple comparison predicate with respect to a user-specified threshold. Consider,
for example, the “Dean’s Query” shown below in Example Query 1 for the Relation REGISTER(RolINo,
CourselD, Credits, Grade):

Example Query 1.
SELECT Rol | No, SUM Credits)
FROM REG STER
GROUP BY Rol | No
HAVI NG SUM Credits) > 18

This query returns the roll number of students currently registered for more than 18 course credits (i.e. the
fast-track students). Here, the grouping attribute is the student roll number, the aggregate operator is SUM,
the comparison predicate is “greater than”, and the threshold value is 18. When the threshold is sufficiently

restrictive such that the results form only a small fraction of the total number of groups in the database, the
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query is called an iceberg query [1] — the analogy is that the database is the iceberg and the small result
represents the proverbial “tip” of the iceberg.
Database systems currently do not employ special techniques to process iceberg queries operating on large

databases. That is, independent of the threshold value, they typically use the one of the following approaches:

1. the relation is completely sorted on disk with regard to the group-by attributes and then, in a single se-
quential scan of the sorted database, those groups whose aggregate values meet the threshold requirement
are output; or

2. the relation is recursively partitioned using hash functions resulting in partitions in which the distinct

groups fit in the available main memory and are hence grouped in main memory

In general, these strategies appear wasteful since they do not take the threshold predicate into account, that
is, they are not output sensitive. In case of an iceberg query involving a join of multiple base relations, the
iceberg relation | is derived from the base relations B using one of the efficient join algorithms: sor t - ner ge
j oi n, hybri d-hash j oi n, and others mentioned in [2]. For the case where the group-by clause shares
some attributes with the join attributes, the query optimizer opts for algorithms that produce “interesting” orders
([2],[3]). As aresult of this, the tuples from the result of the join can be piped (using the iterator model discussed
in [2]) to the following aggregate operation, which can then aggregate the tuples in memory to produce the
final query result. If such an “interesting” order is not possible for the result of join, | needs to be computed
followed by one of the two approaches mentioned for a single relation above. We consider only the latter case
in the rest of the paper for reasons mentioned in Section 2.

Motivated by the above observation, a variety of customized algorithms for efficiently handling iceberg
queries were proposed and evaluated in [1] by Fang et al. These algorithms, which we will collectively hereafter
refer to as CIQE, * are based on various combinations of sampling and hashing techniques. For example, the
Defer-Count algorithm operates in the following manner: in the sampling scan, a random sample of the database
is used to identify “candidate” (i.e. potentially qualifying) groups by scaling the sample results to the database
size, followed by a hashing scan of the database to identify other candidate groups, winding up with a counting
scan of the entire set of candidates against the database to identify exactly those that do meet the threshold
requirement.

Cl QE represents the pioneering work in defining and tackling iceberg queries. A particularly attractive
feature of Cl QE is that it does not entail materializing the join of the relations on which the GROUP-BY is
being applied, and is therefore not affected by the size of the join of the relations. However, it still has significant
lacunae, described in more detail below, with regard to its scope of applicability and its integration with query
processors. These issues need to be addressed before specialized iceberg query processing can become a viable

proposition in real systems — we take the first step in doing so in this paper.

IRepresenting the fi rst | etters of the words in the paper’s title: Computing |ceberg Queries Effi ciently.



1.1 Scopeof Applicability

Cl QEcan be utilized only in a restricted set of iceberg query environments — specifically environments in which

1. The comparison predicate is >, 2
2. The aggregate operator is either COUNT or SUM, and
3. The aggregate values of the groups have a highly skewed distribution.

An implication of the last constraint (high skew) is that CI QE would not work for Example Query 1 since
the number of credits taken by students typically occupies a small range of values (in our institute, for example,
the values range between 0 and 24, with 99 % of the students taking between 6 and 18 credits).

With respect to the second constraint, apart from COUNT and SUM, other common aggregate functions
include MIN, MAX and AVERAGE. For example, an alternative “Dean’s Query” could be to determine the
honors students by identifying those who have scored better than a B grade in all of their courses, as shown in
Example Query 2. The candidate pruning techniques of ClI QE are not effective for such aggregates since they
introduce “false negatives” and post-processing to regain the false negatives can prove to be very expensive.

Example Query 2:

SELECT Rol | No

FROM REG STER

GROUP BY Rol | No

HAVI NG M N( G ade) > ‘B’

Finally, the impact of the first constraint (> comparison predicate) is even more profound — restricting the pred-
icate to > means that only “High-lceberg” queries, where we are looking for groups that exceed the threshold,
can be supported. In practice, however, it is equally likely that the user may be interested in “Low-Iceberg”
queries, that is, where the desired groups are those that are below a threshold. For example, an alternative ver-
sion of the “Dean’s Query” could be to find the part-time students who are taking less than 6 credits, as shown
in Example Query 3:
Example Query 3:

SELECT Rol | No, SUM Credits)

FROM REGQ STER

GROUP BY Rol | No

HAVING SUM Credits) < 6

At first sight, it may appear that Low-Iceberg queries are a simple variant of the High-Iceberg queries and

can therefore be easily handled using a Cl QE-style approach. But, in fact, the reality is that Low-Iceberg is

2For ease of exposition, we use > and < to also imply > and <, respectively.



a much harder problem since there are no known efficient techniques to identify the lowest frequencies in a
distribution [7]. A practical implication is that the sampling and hashing scans that form the core of the Cl QE

algorithm fail to serve any purpose in the Low-Iceberg scenario.

1.2 Integration with Query Processor

The performance study in [1] was limited to investigating the relative performance of the Cl QE suite of algo-
rithms for various alternative settings of the design parameters. This information does not suffice for incorpo-
ration of iceberg queries in a query optimizer since it is not clear under what circumstances Cl QE should be
chosen as opposed to other alternatives. For example, questions like: At what estimated sizes of the “tip” should
a query optimizer utilize Cl QE? Or, at what is the minimum data skew factor for Cl QE to be effective for a
wide range of query selectivities?, and so on, need to be answered. A related issue is the following question:
Even for those environments where Cl QE is applicable and does well, is there a significant difference between
its performance and that of the best possible (if quantifiable), encouraging researchers to try and devise even
better algorithms? That is, how efficient is Cl QE?

1.3 Our Work

We attempt to address the above-mentioned limitations and questions in this paper. First, we place Cl QE’s per-
formance for iceberg queries in perspective by (empirically) comparing it against three benchmark algorithms:
SMA, HHA, and ORACLE over a variety of datasets and queries. In these experiments, we stop at 10% query
selectivity (in terms of the number of distinct targets in the result set) since it seems reasonable to expect that
this would be the limit of what could truly be called an “iceberg query” (this was also the terminating value
used in [1]). SMA and HHA represent the classical approaches described above, and provide a viability bound
with regard to the minimal performance expected from ClI QE. Note that even though the list of classical algo-
rithms we consider here for computing the iceberg queries is not exhaustive, existence of better algorithms in
specific scenarios only means that the performance gap between classical algorithms and Cl QE can only reduce
in comparison to the results shown in the experimental section. Finally, ORACLE represents an optimal, albeit
practically infeasible, algorithm that is apriori “magically” aware of the identities of the result groups and only
needs to make one scan of the database in order to compute the explicit counts of these qualifying groups®.
Note that this aggregation is the minimum work that needs to be done by any practical iceberg query algorithm,
and therefore the performance of ORACLE represents a lower bound.

Second, we provide (for the first time) a customized algorithm, called M NI , to handle Low-Iceberg queries.
M NI is a multi-pass algorithm that in each pass over the database, partitions it into memory-sized partitions
and generates a new mini-database that is compressed both vertically and horizontally. The mini-database

forms the input to the following pass, and the iteration ends when the mini-database becomes small enough to

3Since the result set is small by defi nition, it is assumed that counters for the entire result set can be maintained in memory.



completely fit in memory. We compare M NI ’s performance against the same suite of benchmark algorithms
described above, i.e., SMA, HHA and ORACLE.

Finally, we provide a simple “recipe” algorithm that can be implemented in a query optimizer to enable it
to make a decision about the appropriate algorithmic choice to be made for an iceberg query, that is, when to
prefer Cl QE or M NI over the classical approaches implemented in database systems. The recipe algorithm

takes into account both the query characteristics and the underlying database characteristics.

1.4 Contributions

To summarize the contributions of this paper:
e \We provide a complete performance framework for the Cl QE algorithm.
o We define Low-Iceberg queries and present a new algorithm for efficiently processing such queries.

e \We provide a recipe algorithm, suitable for inclusion in a query optimizer, to make the appropriate algo-

rithmic choice for High and Low iceberg query execution.

1.5 Organization

The remainder of this paper is organized as follows: In Section 2, we focus on High-Iceberg queries and describe
the suite of algorithms (SMA, HHA, Cl QE and ORACLE). The performance of these algorithms is presented in
Section 3. We then move on to defining Low-Iceberg queries and presenting our new M NI algorithm in
Section 4. The performance of M NI with respect to SMA, HHA and ORACLE is evaluated in Section 5. Next, in
Section 6, we provide the recipe algorithm intended for use in the query optimizer. In Section 7, we overview
the related work, and finally, in Section 8, we summarize the conclusions of our study and outline future avenues

to explore.

2 High-lceberg Queries

Our focus in this section is on High-Iceberg queries, that is, where the threshold represents a lower bound on
the aggregate value of result groups. As formulated in [1], a prototypical High-Iceberg query on a relation

I(targety, ..., targety, rest) and a threshold 7" can be written as:

SELECT target;, ..., targety, agg_function(measure)
FROM |
GROUP BY targeti, ..., targety

HAVI NG agg_function(measure) > T

where the values of targety, ..., targety, identify each group or target, while measure (C rest) refers to the



fields on which the aggregate function is being computed, and the relation I may either be a single materialized
relation or generated by computing a join of the base relations.

We describe, in the remainder of this section, the suite of algorithms — SMA, HHA, CI QE — that can be used
for computing High-Iceberg queries, as also the optimal ORACLE. We also discuss the impact of various data
and query parameters on the performance of this suite of algorithms. For ease of exposition, we will assume in
the following discussion that the aggregate function is COUNT and that the grouping is on a single attribute.
Also as mentioned in the Introduction, the iceberg query is assumed to be executed either on a single relation
or on a join of relations where “no” interesting join order is possible. For the cases where the join of relations
can be produced in an interesting order, a simple sequential in memory aggregate after the join can be used to
compute the iceberg query. Further, we will use, following [1], the term “heavy” to refer to targets that satisfy

the threshold criteria, while the remaining are called “light” targets.

21 The SMA Algorithm

Relation T is sorted on the target attribute using the optimized Two- Phase Ml ti-way Merge- Sort [5].
The two important optimizations used are: the result attributes are projected before executing the sort in
order to reduce the size of the database that has to be sorted, and the aggregate evaluation is pushed into the
mer ge phases, thereby reducing the size of data that has to be merged in each successive nmer ge iteration of
ext ernal nerge-sort. From the analysis shown in [4], performance of SMA is not linear in the size of
data, and requires number of merge passes proportional to the logarithm of the data size. But for sufficient

main-memory, SMA finishes in 3-5 passes of the database for most real-world dataset sizes.

2.2 TheHHA Algorithm

Algorithms based on hybrid hashing can also be used for aggregation by hashing on the grouping attributes.
Hybrid hashing combines in memory hashing and overflow resolution. Items of the same group are found
and aggregated when inserting them into the hash table. Since only output items, not input items, are kept in
memory, hash table overflow occurs only if the output does not fit into memory. However, if overflow does
occur, partition files are created. Thus, hybrid hashing determines dynamically how much input data truly must
be written to temporary disk files. All partition files in any one recursion level are as large as the entire input
because once a partition is written to disk, no further aggregation can occur until the partition files are read back

into memory. Details of the algorithm and its complexity can be found in [2].

2.3 The CIQE Algorithm

We now describe the CI QE algorithms and then discuss their performance at an intuitive level. In the following
discussion, we use the notation H and L to denote the set of heavy and light targets respectively. The Cl Q&

algorithms first compute a set F' of potentially heavy targets or “candidate set”, that contains as many members



of H as possible. When F'— H is non-empty, it means that there are false positives (light values are reported as
heavy), whereas when H — F' is non-empty it means that there are false negatives (heavy targets are missed).
The algorithms suggested in [1] use combinations of the following sequence of building blocks in a manner

such that all false positives and false negatives are eventually removed.

Scaled-Sampling: A random sample of size s tuples is taken from I. If the count of each target, scaled by N/s,
where N is the number of tuples in I, exceeds the specified threshold, the target is part of the candidate
set F'. This step can result in both false positives and false negatives.

Coarse-Count: An array A[l..m] of m counters and a hash function h, which maps the target values from
logat 10 logom bits, m < t, is used here. Initially all the entries of the array are set to zero. Then a linear
scan of I is performed. For each tuple in I with target v not in F', the counter at A[h(v)] is incremented.
After completing this hashing scan of I, a bitmap array B[1..m] is computed by scanning through the
array A and setting B[k] to one if A[k] > T. This step removes all false negatives, but might introduce
some more false positives.

Candidate-Selection: Here the relation I is scanned, and for each target v whose B[h(v)] entry is one, v is
added to F.

Count: After the final F' has been computed, the relation I is scanned to explicitly count the frequency of the
targets in F'. Only targets that have a count of more than 7" are output as part of the query result. This

step removes all false positives.

The analysis of the above steps suggests that Cl QE performance is linear in the size of the data as long as
the final F fits in memory. For the case where the final F' does not fit in memory, Count resorts to SMA on a
filtered database containing only tuples corresponding to the targets in F, also generated during Candi dat e-
Sel ecti on.

Among the Cl QE algorithms, we have implemented Def er - Count and Mul ti - St age, which were
recommended in [1] based on their performance evaluation. A brief-description of these algorithms is provided

next.

2.3.1 Defer-Count

The Def er - Count algorithm operates as follows: First, compute a small sample of the data. Then select the
f most frequent targets in the sample and add them to F', as these targets are likely to be heavy. Now execute
the hashing scan of Coar se- Count , but do not increment the counters in A for targets already in F. Next
perform Candi dat e- Sel ect i on, adding targets to F'. Finally remove false positives from F' by executing
Count .



2.3.2 Multi-Stage

The Mul ti - St age algorithm operates as follows: First, perform a sampling scan of I and for each target v
chosen during the sampling scan, increment A[h(v)]. After sampling s tuples, consider each of the A buckets.
If A[i] > T % s/N, mark the ** bucket to be potentially heavy. Now allocate a common pool of auxiliary
buckets B[1..m'] of m' (< m) counters and reset all the counters in A to zero. Then perform a hashing scan of
I as follows: For each target v in the data, increment A[h(v)] if the bucket corresponding to h(v) is not marked
as potentially heavy. If the bucket is so marked, apply a second hash function A’ and increment B[h'(v)]. Next
perform Candi dat e- Sel ect i on, adding targets to F'. Finally remove false positives from F' by executing
Count .

24 The ORACLE Lower Bound Algorithm

We compare the performance of the above mentioned practical algorithms against ORACLE which “magically”
knows in advance the identities of the targets that qualify for the result of the iceberg query, and only needs to
gather the counts of these targets from the database. Clearly, any practical algorithm will have to do at least
this much work in order to answer the query. Thus, this optimal algorithm serves as a lower bound on the
performance of feasible algorithms and permits us to clearly demarcate the space available for performance
improvement over the currently available algorithms.

Since, by definition, iceberg queries result in a small set of results, it appears reasonable to assume that the
result targets and their counters will all fit in memory. Therefore, all that ORACLE needs to do is to scan the
database once and for each tuple that corresponds to a result target, increment the associated counter. At the

end of the scan, it outputs the targets and the associated counts.

25 CIQE versusSMA/HHA

We conclude this section with an informal discussion of the qualitative impact of the different data and query
parameters on the relative performance of SMA, HHA and CI QE. In particular, we consider the following three
parameters: the number of targets (¢), the mean (m) of the aggregate values (i.e. counts) of the targets, and the

result selectivity (s) as reflected by the threshold 7.

251 Number of Targets

For a fixed amount of memory, this parameter really does not affect SMA, since the performance of both sor t
and mer ge are only mildly dependent on the number of targets. On the other hand, as the number of targets play
a critical role in deciding the number of partitions in HHA, the increase results in a considerable degradation in
the performance of HHA. Also the performance of Cl QE degrades considerably with an increase in the number

of targets. This is because more and more targets collide to the same hash bucket, and as a result, Coar se-



Count results in more and more false positives. Eventually, after some point, not all the targets in F' can fit in

memory, and Count resorts to SMA for computing the iceberg query.

252 Mean Target Count

This parameter does not affect SMA since sort and rer ge perform the same number of comparisons and
hence the same amount of work, independent of the distribution of the target counts. But skew in the distribution
of the target counts contributes to the reduced performance of HHA. This is because the hash function fails to
produce nearly equi-sized partitions in that case. Also it affects the performance of Cl QE considerably since
Coar se- Count ’s pruning ability is dependent on this parameter, as explained below.

For target count distributions with high skew, that is, where m < T', Coar se- Count works fine since the
combination of many light targets colliding to the same hash bucket still do not make these buckets to appear as
heavy. As a result, this step results in eliminating many light targets, and hence a small | F'| for Count . On the
other hand, for target count distribution with low skew (m ~ T'), even a few light targets colliding to the same
bucket make its occupants appear as heavy. As a result, |F'| becomes large, comparable to the total number of

targets in the relation, forcing Count to resort to SMA as its exit policy.

253 Result Sdlectivity

This parameter mildly affects the aggr egat e phase of SMA, which decides the number of targets that qualify
and hence the amount of work to be done in outputting the query result. Same if true for HHA. In contrast, this
parameter affects the performance of Cl QE considerably. This is because a decrease in selectivity implies a
lower threshold value, which means Coar se- Count will become less effective in eliminating light targets

for the final F', and as a result the final F' may not fit in memory.

254 Summary

To summarize the above discussion, we present here a simple metric to guide us about when Cl QE might be
expected do well. Denoting the average number of targets hashing to each bucket as (¢/b) and the mean target
count of m, the average “weight” of each bucket is (¢/b) * m. When this is normalized to the threshold T,
we get the “normalized average bucket weight” (N ABW) equal to (¢/b) % (m/T). Now, if NABW < 1, we

expect that Cl Qe will do well since F' will be small.

3 Performance Evaluation for High-lceberg Queries

Moving on from the qualitative comparison of the previous section, we now place CI QE’s performance in
quantitative perspective by comparing it against the three benchmark algorithms: SMA, HHA and ORACLE,

over a variety of datasets. We implemented all the algorithms in C/C++ and they were programmed to run in



a restricted amount of main-memory, fixed to 16 MB for our experiments. The experiments were conducted
on a PIlI, 800 MHz machine, running Linux, with 512 MB main-memory and 36 GB local SCSI HDD. The
OS buffer-cache was flushed after every experiment to ensure that caching effects did not influence the relative
performance numbers.

The details of the datasets considered in our study are described in Table 1. Dat aset refers to the name
of the dataset, Car di nal i ty indicates the number of attributes in the GROUP BY clause, Nunilrar get s
indicates the total number of targets in the data, Si ze of DB indicates the size of the dataset, Recor d
Si ze indicates the size of a tuple (in bytes), Tar get Si ze indicates the size of the target fields (in bytes),
Measur e Si ze indicates the size of the measure fields (in bytes), Skew (measured using LezxisRatio=
Var/Mean) is a measure of the skew in the count distribution, and Peak Count represents the peak target

count. Again, as mentioned in the Introduction, we do not consider here the cases where interesting join orders

are possible.
Data-[Cardi-| Num- | Size [Record|Target[Measure Peak
set | nality |Targets|of DB| Size | Size Size |Skew| Count
D, 1 I0M | 1GB 16 4 4 16571194780
D, 2 62M | IGB| 16 8 ! 1541194765
D3 1 8.38M | 1GB 16 4 4 1.27 24
D, 2 16AM [ IGB| 16 8 4 089 18

Table 1: Statistics of the datasets

We now move on to the performance graphs for these datasets, which are shown in Figures 1(a)— 1(d). In
these graphs, the query response times of the different algorithms are plotted on the Y axis for different values
of result selectivity ranging from 0.001% to 10% on the X axis. (Note that both the X axis uses log scale.) We
stopped at the 10% selectivity value since it seemed reasonable to expect that this would be the limit of what
could truly be called an “iceberg query” (this was also the terminating value used in [1]). Since we found little
difference in the relative performance of Def er - Count and Mul ti - St age for all our datasets, we have
given the performance of the Def er - Count algorithm under the generic name Cl QE in the graphs. In the
following discussion, low number of targets means that for the amount of main-memory available, the average

occupancy per bucket in Cl QE algorithms is less than 5. Else we say the number of targets is high.

3.1 High skew, Low number of targets

Figure 1(a) corresponds to Dataset D1 wherein the data has high skew and low number of targets, corresponding
to the “favorite” scenario for CI QE. Therefore, as expected, Cl QE performs better than SMA for a substantial
range of selectivity values (upto 7.0%). This is essentially because the average bucket occupancy (¢/b) is low
(= 2.75) and the peak target counts are much higher than the mean target count. However, the best overall
performer is HHA, as the total number of targets are not huge compared to the number of targets that can fit in

the constrained memory. Also note that, as discussed in Section 2.5.3, both SMA and HHA are unaffected by
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the query selectivity, unlike Cl QE. Finally, we see that there is a significant gap (order of magnitude) between
the performance of ORACLE and the online algorithms indicating that there appears to be some scope for

designing better iceberg processing algorithms.

3.2 High skew, High number of targets

Figure 1(b) corresponds to Dataset Do wherein the data has high skew with high number of targets. For this
dataset, Cl QE performs better than SMA for a much lower spread of selectivity values (only upto 0.7%). This
is because the average bucket occupancy is this case is almost 17, which is rather high. HHA performs worse
compared to other algorithms as the number of targets are far greater than the number of targets that can fit
in memory. Again note that, as discussed in Section 2.5.3, both SMA and HHA are unaffected by the query
selectivity, unlike CI QE. The reason that ORACLE shows a steep increase at 10% selectivity is that the result

targets exceed the available main memory.

3.3 Low skew, Low number of targets

Figure 1(c) corresponds to Dataset D3 wherein the data has low skew with low number of targets (similar to

the Dean’s Query in the Introduction). Note the dramatic change in performance from Figure 1 — we now

11



have Cl QE always performing worse than SMA. This is entirely due to the fact that the low skew means that a
significant fraction of the bits in the bit-vector turn out to be 1, effectively nullifying the desired filtering effect
of the Coarse-Count step. In fact, the bit-vector had over 25% of 1’s even at the highest selectivity (0.0001%).
Again, the best overall performer is HHA, as the total number of targets are not huge compared to the number

of targets that can fit in the constrained memory.

3.4 Low skew, High number of targets

Figure 1(d) corresponds to Dataset D4 wherein the data has low skew with high number of targets, correspond-
ing to the “nightmare” scenario for CI QE. Therefore, not surprisingly, we see here that Cl QE always performs
much worse than SMA because the combination of the low skew and the high bucket occupancy results in com-
pletely nullifying the pruning from the Coarse-Count step. Again, the best overall performer is HHA, as the total
number of targets are not huge compared to the number of targets that can fit in the constrained memory. The
reason that ORACLE shows a steep increase at 10% selectivity is that the result targets exceed the available
main memory at this selectivity.

Another important point to note from the above experiments is that, apart from being stable across all
selectivities, the performance of SMA is always within a factor of two of Cl QE’s performance. This means that
SMA is quite competitive with Cl QE. On the other hand, the performance of HHA degrades considerably as the

number of targets increase. Other issues with HHA are:

e HHA opens multiple files for storing the overflow buckets on disk. This creates a problem with respect
to system configuration, as there is a limitation on the number of files that can be opened by a single
process. Another problem is the memory space consumed by open file descriptors [20].

e As the number of attributes in the GROUP-BY increase, it is difficult to estimate the number of targets,

which is critical for choosing HHA for iceberg query evaluation.

4 Low-lceberg Queries

The previous sections dealt exclusively with High-Iceberg queries. We now move on to considering Low-
Iceberg queries, which compute aggregate functions below a user-specified threshold, and present a customized
algorithm, called M NI , for efficiently evaluating such queries using compact main-memory structures. To the
best of our knowledge, there has not been any prior work in this area.

At first glance, one might think that it is not necessary to formulate the Low-Iceberg query problem sepa-
rately and that some minor variation of the specialized algorithms for High-lceberg queries would easily apply
to Low-Iceberg queries as well. But, as we explain below, none of the techniques developed in Cl Q& work for
Low-Iceberg queries, since their use would lead to false negatives, processing which will be as difficult as the

original problem.

12



e Scal ed- Sanpl i ngin Cl QEhelps in a quick probabilistic search of the high-frequency targets that are
likely to belong to the final answer in the High-lceberg query case. However, in the case of Low-Iceberg
queries, the low-frequency targets belonging to the final result will not show up because they occur too

infrequently in the database.

e The pruning technique used in the Coar se- Count step of Cl QE cannot be used for Low-Iceberg
queries. It would be incorrect to prune away targets belonging to the buckets that have a count exceeding
the threshold, as the individual counts may still be lower than the threshold. On the plus side, all targets
hashing to a bucket that turns out to be light are guaranteed to be light. But, in practice, only a few

buckets, if any at all, will exhibit this feature due to the large number of heavy targets present.

On the other hand, note that both SMA and HHA are capable of handling Low-Iceberg queries since they

operate independent of the threshold constraint.

41 MINI

In this section, we propose a simple, multi-pass partition-based algorithm, M NI , for evaluating Low-Iceberg
queries. A partition P C relation R refers to any contiguous subset of tuples contained in R and union of
all partitions is the relation, i.e., P, U P, U...U P, = R. The key idea underlying the M NI algorithm is to
partition the data and prune the high ranked heavy targets (targets whose aggregated measure ranks high among
all heavy targets) from the database at each pass. We now present the theorem used for pruning the candidates.
In the following text, terms ‘local’ and “‘global’ count represent the count of a target within a partition and for
the whole database respectively.

Theorem Given threshold T and relation R, partitioned into n partitions (P, Ps, ..., Pp),

YV targetst € R
(3 i local _count(t, P;)) > T = global _count(t,R) > T i=12,..,n

The theorem states that if a target is heavy in at least one partition P, then it must be heavy with respect
to the whole relation R. Therefore, we can prune those targets that are beyond the threshold in each of the
partitions.

At the end of every pass, we retain some of the high ranked heavy targets, which constitute most of the
database. We also prune some low ranked heavy targets when these are replaced by some high rank heavy
targets. And a new mini-database is created, which is composed of targets that proved to be locally light in
some partition. This database, which we refer to as the mini-database, will be smaller in size as compared to
the input database in this iteration, and is fed to the next iteration. We discuss the proof for guaranteed reduction
in Section 4.1.2. The iterative process continues until we reach a stage where all the remaining candidate targets
fit in memory after which we do a counting scan of the base data to eliminate all the false positives. Note that

no false negatives are possible in our scheme because we never remove any light targets from the database.
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Apart from the elimination of tuples corresponding to globally heavy targets, the following strategies help

to further reduce the effective database size:

e During the first pass over the base database, only the result attributes from the tuples are written to the

mini-database — this is similar to the early projection optimization of SMAV/HHA.

e During all passes, early aggregation of the tuples corresponding to a common target results in vertical

compression of the database, again similar to that of SMA/HHA.

The architecture of the algorithm is shown in Figure 2. We briefly describe the steps of the algorithm below
followed by a detailed functioning in Figure 3. Again for ease of exposition, we will assume the aggregate
function being computed is COUNT, but the algorithm easily extends for SUM.

PARTITIONED

DATABASE
HASH TABLE

Partition 1 Target, Measure

Partition 2

ORIGINAL - Measure < Cutoff MINI
DATABASE Partition 3 DATABASE

Partition n

Figure 2: Architecture of MINI

For each tuple, hash the target to a main-memory collision-resolving hashtable (i.e. distinct targets occupy
different buckets), and update the counter at the corresponding location. This continues till the hashtable
becomes full which marks the end of the current virtual partition and the beginning of the next partition. Now,
remove from the hashtable all the targets whose counter values are less than the Cut of f (shown in Figure 3)
as discussed below in Section 4.1.1, and write these along with their counter values to the mini-database.

Therefore, after every pass the mini-database consists of targets that appear locally light in a partition, but
are not guaranteed to be globally light (false positives). But the algorithm does not result in false negatives, as
light targets are always written.

Note that since heavy targets are not removed from the hashtable once they are identified to be heavy (since
Cutoff is always less than Threshold), after some number of partitions we might reach a stage where the entire
hashtable has only heavy targets, and therefore there is no further room for removal of any targets. From this
point in time, the following procedure is followed until all the tuples in the database have been processed:
for each tuple, hash on the target value and if the target does not exist in the hashtable, write the tuple to the
mini-database. This ensures that the tuples for the high ranked heavy targets identified during the current pass
continue to be pruned, resulting in significant reductions in database size. At the end of the pass, the hashtable

is flushed.
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MINI (Base_DB,T , M)

Input : Database Base_D B, threshold for Low-Iceberg query 7, Memory Size M
Output: Result Set F with targets less than threshold 7

1. DB = Base_DB

2. Mini Database Mini_DB = NU LL I/ mini-database to store the light targets
3. while (1) // iterative calls, stop when all targets fit in memory

4,
5.

o N o

9

10.
11.
12.
13.
14,

15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
217.
28.
29.
30.
3L
32.
33.
34.

35.
36.
37.
38.
39.
40.
41,
. end while

42

43

pruned = oo, Pri or cutoff =0,Cutoff =0
while (pruned > 0) // till hash is full of heavy targets

/I Hashing Scan
while (HT is not full)
ReadNextTuple()
Hash on target
if (target already exists)
target.count = target.count + 1
else
insertinto HT
target.count = 1
end while
// Pruning Scan
pruned = 0
if (Prior_cutoff !1=T)
Cut of f = Min (T, Median of all measures in the H7 )
Prior cutof f =Cutoff;
else
Cut of f = Median of all measures less than T in HT
while (1)
if (Cutof f I=T)
for each entry in HT
if (target.count < Cutoff)
append to Mini_ DB
remove from HT
pruned = pruned + 1
break while
else
Cut of f = Median of all measures less than T in HT
end while
end while
if no tuples in database // all targets fit in hash. so, stop the iterative calls.
break while
/I Filtering Scan
while (more tuples in database)
ReadNextTuple()
Hash on target
if (target does not exist in HT)
append to Mini_DB
DB = Mini_DB,;
Mini_ DB = NULL

/I Counting Scan

. for each target in HT target.count = 0;

44. for each target in DB

45.
46.
. for each target in HT
48.
49.

47

if target exists in HT
target.count = target.count + 1

if target.count in HT < T
insert target in F

Figure 3: Algorithm Mll\ils(for COUNT aggregate)




The above iterative steps continue until all targets of mini-database fit in memory, at which point these

targets are counted over the base database in order to remove all the remaining false positives.

411 Hash Table Replacement Policies

In this section, we reason out the choice of the Cut of f parameter shown in Figure 3, for the replacement of the
hashtable entries each time the hash becomes full. This replacement criterion helps in deciding which targets
should reside in the hashtable and which should be written to the mini-database at the end of the partition. It
is expressed in terms of the percentage of targets that are retained to maintain their “dynamic” global count
(DGC), which represents the count of a target across multiple partitions, while the target is retained in the
hashtable. When a target is retained in the hashtable for the entire iteration, this equals the exact global count
(EGC), which represents the count of a target for the whole database.

Zero Reserved Replacement Policy
The name ‘Zero Reservation’ implies that the number of targets that are retained to maintain their DGC' are
zero percent of the total number that can fit in memory. At the end of each partition, we prune all the entries
which are locally heavy and write all those which are locally light to a mini-database (i.e. removing all the
targets from the hashtable). We now evaluate the limitations of this policy.

Consider a worst case scenario of the base database, where the targets are appearing alternately in each
partition. Here, even if most targets are locally light and globally heavy (considering the whole database), we
will end up writing all the targets in each partition to the mini-database. So there are scenarios where this
replacement policy fails to reduce the database size and M NI will never terminate.

Fully Reserved Replacement Policy
We now consider the other extreme, where the number of targets that are retained to maintain their DGC is
equal to the total number of targets that can fit in constrained memory. At the end of each partition, as all targets
in the memory are retained in the hashtable, no pruning takes place. However, at the end of an iteration over the
database, we remove the targets which are heavy in the hashtable (note that DGC equals EGC for all targets in
the hashtable). If the total number of targets that can fit in memory is x, then this policy is similar to removing
all tuples corresponding to  number of targets, after every iteration from the database. However this policy
ignores the result of theorem mentioned at the start of the section.

Now we consider a nightmare scenario for this replacement policy. Consider a case where all the low
ranked heavy targets and light targets appear in initial partitions. As no pruning happens, all the low ranked
heavy targets along with light targets are retained in the hash at the end of an iteration over the database. During
pruni ng scan, as we are removing only the low ranked heavy targets and light targets, the size of the mini-
database does not reduce much compared to the database on which we iterated, and hence M NI does not
perform well.

Half Reserved Replacement Policy
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In this policy, we retain about half of the targets to maintain their DGC. As shown in Figure 3, we use
the median of the counter values to implement this policy. At the end of each partition, we write all the targets
whose count is less than Cut of f , defined as min(median, threshold) in Figure 3, to mini-database.

We now verify whether this replacement policy provides sufficient throughput for the worst case scenarios
considered for the earlier replacement policies. For database with targets appearing alternatively in partitions,
we retain heavy targets which are high ranked among the partitions seen so far and this may result in hashtable
having all the heavy targets after some partitions, as median will be greater than the threshold after some
partitions. For the other case, where the light targets appear in initial partitions, as we use median in deciding
the Cut of f , we may initially retain the light targets in the hashtable, but these will be pruned after the initial
partitions are scanned, as we come across heavy targets which replace the light targets.

Other Replacement Policies
We also tried 25% and 75% reserved policies and inferred the following from the results: For 25% reserved
policy, the performance is bad as Cut of f reaches threshold quickly and most of the targets in the free 75%
are locally light and need to written to mini-database, resulting in smaller reductions in database size across
iterations. Using 75% reserved policy does not improve the situation as hashtable fills up very quickly every
time (as there is only 25% room for new targets). And as a consequence, we need to execute pr uni ng scan
more often and this incurs overhead. Hence, we use ‘Half Reserved’ replacement policy for M NI based on the

above discussion.

4.1.2 Convergence of MINI

Convergence of M NI relies on the assumption that the database size reduces over iterations. Here is a proof
for the convergence.

Proof: Let us assume |R| =f* |T| and |S| =g * |M|, where R, T', S and M stands for result number
of targets, total number of targets, result target space and memory constraint respectively, factors ‘f* and ‘g’
represent percentages. The above formula implies that, the result number of targets will be a small percent
of the total number of targets and the memory occupied by these result targets is again a small percent of
total memory. For iceberg query domain, the factors ‘f” and ‘g’ will be approximately less than 1% and 25%
respectively. So, the result will actually fit in memory. We now provide two lemma’s to support our proof.

Lemma 1. A target in the reserved category can only get replaced by another target whose aggregate
measure is ‘strictly’ greater than its own.

Lemma 2: If no target in the reserved category is replaced, then some fraction of the reserved category has
to be eventually heavy, since we assume that result size is approximately less than 25% of memory size.

Lemmas 1 and 2 consider the cases where a target in reserved category can be replaced and cannot be
replaced respectively. According to Lemma 1, a target in reserved category can only be replaced by a target
whose aggregate measure is “strictly’ greater than its own, which implies that we will retain highly ranked

heavy targets, whose pruning will reduce the mini-database to quite an extent. Now, consider a worse case
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situation, where no target in the reserved category can be replaced, i.e., all the targets are light. According to
Lemma 2, when no target in the reserved category can be replaced, as result size is approximately less than
25% of the constrained memory size, the other fraction of reserved partition will eventually have heavy targets,
which provides proof for guaranteed reduction.

Experimental results supporting this proof are shown in Figure 4 which shows convergence of M NI for

both varieties of data: high-skew and low-skew.
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Figure 4: Convergence of MINI for High and L ow data skew

42 M N versus SMAVHHA

We now consider the same parameters discussed in Section 2.5 to study the impact of these on the performance
of M NI .

421 Number of targets

As the number of targets increase, the number of false positives increase, and this results in smaller reductions
in mini-database for M NI . But for Low-Iceberg queries, a small increase in heavy targets means a considerable
increase in the database size. But this will not affect M NI as much as SMA, as M NI ’s performance scales

linearly with the size of the database.

42.2 Mean Target Count

For target count distribution with high skew (mean > T), M NI performs better, because most of the database
is occupied by high ranked heavy targets, which are efficiently pruned by the pruning scan in each pass, resulting
in good reduction across iterations. For target count distribution with low skew (mean ~ T') , even though the
number of heavy targets in each partition are small, due to the replacement policy there will be a good reduction

in mini-database size.
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4.2.3 Result Selectivity

This parameter decides the number of groups in the result set. As the result selectivity decreases, the number of
false positives increase, thus affecting M NI ’s performance. But, in general, the selectivity will be high for true
“iceberg” queries. As the result selectivity decreases, the result targets will not fit into the memory, resulting in

M NI performing multiple scans on the base database for counting scan.

5 Performance Evaluation of MINI

In this section, we present the performance evaluation model and experimental results of M NI ’s performance
for various datasets. We compared M NI ’s performance with SMA, HHA, and ORACLE. The details of the
datasets considered are described in Table 2. The column names of this table are the same as those explained
in Section 3. The datasets are characterized by different amount of skew in the target count distribution and the
number of targets. We considered both high skew and low skew varieties in our datasets. Datasets D5 and Dg
represent high skew data, while D7 and Dg represent low skew data.

When we considered the same memory constraint of 16MB as used in evaluating High-lceberg algorithms,
M NI and HHA took only one pass as the total number of targets in these datasets fit in memory. This is shown
in Figure 5, which corresponds to Dataset D;. To make the experiments tractable, we could not increase the
number of targets, as this results in enormous increase in the size of the database, exceeding our disk capacities
of 36GB. Hence, to make M NI take multiple passes, we lowered the memory constraint for M NI to 8KB,
while using the same 16MB for others.

In the following experiments moderate number of targets means that the number of targets that can fit in
the constrained memory of 8KB is only 10% of the targets in the dataset. On the other hand, high number of
targets means that the number of targets that can fit in the 8KB memory are much less, in our case only 5% of
the targets in the dataset. We now explain the performance graphs for our datasets shown in Figures 6(a)-6(d).
Again, the Y axis represents the query response time in seconds for various result selectivities, ranging from
0.001% to 10% on the X axis.

Data-|Cardi-| Num- | Size [Record|Target[Measure L east
set | nality |Targets|of DB| Size | Size Size | Skew |Count
D5 1 5000 12GB [ 16 4 4 40159 2
Dg 2 10000 | 2GB | 16 8 4 16618 1
D~ 1 5000 12GB [ 16 4 4 83 1
Dg 1 10000 [ 2GB | 16 4 4 66 1

Table 2: Statistics of the datasets

5.1 High skew, Moderate number of targets

Figure 6(a) corresponds to Dataset D5, wherein the data has high skew and moderate number of targets. For this

dataset, M NI works better by about a factor of two over SMA and a factor of three over HHA. M NI performs
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Figure 5: High skew/moderate number of targets

better as most of the database is occupied by the high ranked heavy targets, which are efficiently pruned by
M NI ’s replacement policy. Note that, both SMA and HHA are unaffected by query selectivity, as it is only the

aggregate phase which is affected.

5.2 High skew, High number of targets

Figure 6(b) corresponds to Dataset D¢, wherein the data has high skew and high number of targets. For this
dataset, M NI performs better, even though the number of targets that can fit in memory of 8KB is less (about
5%). The drop in performance for M NI from result selectivity 1% to 10% is because M NI ’s counting scan
requires two scans for result selectivity of 10%, as it cannot store all the result targets at a time in memory. SVA
is not affected by the increase in the number of targets, but performance of HHA further degrades as the number

of targets are far more than the number of targets that can fit in constrained memory.

5.3 Low skew, Moderate number of targets

Figure 6(c) corresponds to Dataset D7, wherein the data has low skew and moderate number of targets. Unlike,
high skew data where few high ranked heavy targets occupy most of the database, low skew data has more
moderate heavy targets. Hence, M NI takes more number of iterations to prune these heavy targets. But note

that the performance of M NI is within a factor of two of SMA’s and HHA’s performance.

5.4 Low skew, High number of targets

Figure 6(d) corresponds to Dataset Dg, wherein the data has low skew and high number of targets. Similar to the
Dataset D7, M NI is much within a factor of two of SMA’s and HHA’s performance. The drop in performance
from result selectivity of 1% to 10% is because the counting scan of M NI takes two scans, as the whole of
result set does not fit in memory.

An important point to note in the above experiments is, although M NI ’s memory constraint has been

reduced by afactor of 2000 compared to SMA’s memory, M NI ’s performance is better for high skew data and
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is always within a factor of two of SMA’s and HHA’s performance for low skew data.

6 RecipeAlgorithm

In this section, we describe a simple “recipe” algorithm (Figure 7) that can be implemented in the query opti-
mizer to enable it to make a decision about the appropriate algorithmic choice to be made for a High and Low
Iceberg query, that is, whether to choose Cl QE, M NI , SMA. We do not consider HHA here, because as discussed
at the end of Section 3, HHA is not suitable for the kind of datasets (within the given memory constraints) we
consider here.

For Iceberg queries involving the AVERAGE, M N or MAX aggregate functions, SMA is the only choice
among the suite of algorithms we consider here since Cl QE/M NI pruning techniques do not work for these
functions.

For High-Iceberg queries involving COUNT or SUM on a single relation, we make a binary decision be-
tween SMA and Cl QE based on the conditional in the formula on line 9. Estimating the total mentioned in this
formula is simple and is done the same way as in Scal ed- Sanpl i ng. i.e. compute the total for the sample

size s (totalsampie) and then scale it to the dataset size by multiplying by N/s.
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Iceberg_Query_Optimizer_ Module (B, G, J, A, T, O, M)
Input:
B - set of relations in the query i.e. FROMclause,
G - set of attributes in the group-by i.e GROUP BY clause,
J - set of attributes in the equi-join i.e. WHERE clause,
A - aggregate function on the targets,
T - threshold on the aggregate function i.e. HAVI NGclause,
O - comparison operator on the threshold,
M - memory for computing the query
Output:
C - choice of algorithm to use for computing the Iceberg Query
Cl QE,M NI, SMA.
1. if (A = AVERAGE or M Nor MAX) // irrespective of whether O is’ <’ or’ >/

2. return SVA

3.if(0is’ >')

4. if (A = COUNT or SUM

5. if (| B| = 1) // single relation

6. b = number of hash buckets for Cl QE in the available memory M

7. if (A = COUNT)

8. total = N

9. else

10. Sample B

11. Estimate total = aggregate value treating the whole database
as a single target = N/s * total sampie

12. if (total /b < T) Il takes care of average per bucket occupancy,
skew and selectivity

13. return Cl Qe

14. else

15. return SVA

16. else if (|B| > 1) // join of multiple relations

17. if (J NG = ¢) /] “no” interesting join order possible

18. D = the amount of free disk space

19. Estimate .S = the size of the join

20. if (S<2xD)

21. Il same as | B| = 1 above

22. else

23. return Cl QG

24. if (Ois' <)
25. retcurn M NI

Figure 7: Recipe Algorithm
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DS Tact Sact Test Sest
D[ 12 | 7.00 |18 | 4.40
D91 19 [0.0002| 18 10.0004
D3 721 0./0 [18 ] 1.02
D,| 18 [0.0001] 18 |0.0001

Table 3: Crossover point : actual vsestimated

We verified the accuracy of this binary decision for the datasets involved in our study. Table 3 presents a
summary of these results. In this table, T, refers to the actual threshold (based on the experiments) below
which SMA starts performing better than Cl QE, S, refers to the corresponding percentage target selectivity,
Tes: refers to the estimated threshold (based on the formula) below which SMA should start performing better
than Cl QE, and S, refers to the corresponding percentage target selectivity. As shown in the table, the
selectivity estimates where SMA will start performing better than Cl QE are very close to the numbers from the
experimental study.

For Low-Iceberg queries involving SUM or COUNT as aggregate measures, M NI is the best choice (while
this looks contrary to the results projected in Figures 6(a)-6(d), note that M NI ’s memory constraint has been
reduced by a factor of 2000 compared to other algorithms). Also for Low-Iceberg queries involving these
aggregates on a join of relations, M NI is the only choice when the relations cannot be materialized although

M NI works better for other cases with interesting join orders as well.

7 Reated Work

Apart from the Cl QE set of algorithms [1] previously discussed in this paper, there is comparatively little work
that we are aware of that deals directly with the original problem formulation. Instead, there have been quite
some efforts on developing approximate solutions [9, 8, 13, 19, 18, 10]. In [16], a scheme for providing quick
approximate answers to the iceberg query is devised with the intention of helping the user refine the threshold
before issuing the “final” iceberg query with the appropriate threshold. That is, it tries to eliminate the need of
a domain expert or histogram statistics to decide whether the query will actually return the desired “tip” of the
iceberg. This strategy for coming up with the right threshold is complementary to the efficient processing of
iceberg queries that we consider in this paper.

As mentioned before, the Cl QE algorithm works only for simple COUNT and SUM aggregate functions.
Partitioning algorithms to handle iceberg queries with AVERAGE aggregate function have been proposed in [17].
They propose two algorithms, BAP (Basic Partitioning) and POP (POstponed Partitioning) which partition the
relation logically to find candidates based on the observation that for a target to satisfy the (average) threshold,
it must be above the threshold in at least one partition. The study has two drawbacks: First, their schemes
require writing and reading of candidates to and from disk, which could potentially be expensive, especially
for low skew data. Second, their performance study does not compare BAP/POP with respect to SMA, making

it unclear as to whether they are an improvement over the current technology. In our future work, we plan to
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implement and evaluate these algorithms.

There has been quite some work in the area of Iceberg cubes recently, where the goal is to compute a
restricted part of the whole data cube in order to reduce the resources required to compute and store the cube.
The techniques involved here are different from that of the basic iceberg query, being primarily related to
pruning the lattice that has to be computed. A bottom-up approach to computing the iceberg cube using the
Apriori technique [14] for pruning is proposed in [11]. This pruning strategy is extended to handle complex
measures, including averages, in [12]. Using PC clusters for parallelizing the computation of the iceberg-cube
is investigated in [15].

All the above work has been done in the context of High-lceberg queries. To the best of our knowledge,

there has been no prior investigation of Low-Iceberg queries which we consider in this paper.

8 Conclusions and Future Work

In this paper, we have attempted to place in perspective the performance of High-lceberg query algorithms. In
particular, we compared the performance of Cl QE with regard to three benchmark algorithms — SMA, HHA and
ORACLE - and found the following:

e Cl QEperforms better than SMA for a dataset with low to moderate number of targets and high to moderate
skew. It never performs better than SMA for datasets with low skew and high number of targets.
e Performance of ClI QE is never more than twice better than that of SMA for the cases where the relation is

materialized and there is enough disk space to sort the relation on disk.

We defined for the first time Low-Iceberg queries, a class of queries that are similar to High-lceberg queries,
but much harder to compute. We provide a customized algorithm, called M NI , to handle Low-Iceberg queries,
and our performance results show that it works better than SMA for high and low skew datasets. We also
described a simple recipe algorithm for the incorporation of Iceberg queries in the Query Optimizer. This
recipe takes into account the various data and query parameters for choosing between classical and specialized

techniques.
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