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Abstract

Users of database applications, especially in the e-com-
merce domain, often resort to exploratory “trial-and-
error” queries since the underlying data space is huge
and unfamiliar, and there are several alternatives for
search attributes in this space. For example, scout-
ing for cheap airfares typically involves posing multi-
ple queries, varying flight times, dates, and airport lo-
cations. Exploratory queries are problematic from the
perspective of both the user and the server. For the
database server, it results in a drastic reduction in effec-
tive throughput since much of the processing is dupli-
cated in each successive query. For the client, it results
in a marked increase in response times, especially when
accessing the service through wireless channels.

In this paper, we investigate the design of auto-
mated techniques to minimize the need for repetitive
exploratory queries. Specifically, we present SAUNA,
a server-side query relaxation algorithm that, given the
user’s initial range query and a desired cardinality for
the answer set, produces a relaxed query that is expected
to contain the required number of answers. The algo-
rithm incorporates a range-query-specific distance met-
ric that is weighted to produce relaxed queries of a de-
sired shape (e.g., aspect ratio preserving), and utilizes
multi-dimensional histograms for query size estimation.
A detailed performance evaluation of SAUNA over a
variety of multi-dimensional data sets indicates that its
relaxed queries can significantly reduce the costs asso-
ciated with exploratory query processing. To improve
the performance of SAUNA even further we have stud-
ied the wavelet techniques for query size estimation and
found them to be better.
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1 Introduction

An increasing number of Web applications are utilizing
database engines as their backend information storage
system. In fact, a recent survey [1] states that more than
200,000 Web sites generate content from databases con-
taining 7500 terabytes of information, and they receive
50% more monthly traffic than other sites.

Users of database applications, especially in the e-
commerce domain, often resort to exploratory “trial-
and-error” queries since the underlying data space is
huge and unfamiliar, and there are several alternatives
for search attributes in this space [2]. Consider, for ex-
ample, the query interface provided at Travelocity [3],
a popular Web site for travel planning. Here, for each
itinerary, users must select origin and destination air-
ports, departure and return times, departure and return
dates, and may optionally select airlines. Faced with
this environment, users often pose a sequence of range
queries while planning their travel schedule.  For ex-
ample, the first query could be:

SELECT * FROM FLI GHTS

WHERE DepartureTi me BE-

TWEEN 10.00 A°M AND 11.00 A'M AND
Depart ureDat e BETWEEN 09- 11- 2003 AND 09-
12-2003 AND

Oigin = "LAX" AND

Destination = "JFK' AND C ass = "ECONOW".

and if the result for this query proves to be unsatisfac-
tory, it is likely to be followed by

SELECT * FROM FLI GHTS
WHERE Depart ureTi me BE-
TWEEN 08.00 AAM AND 12.00 A°M AND



DepartureDat e BETWEEN 09- 11- 2003 AND 09-
13-2003 AND
Oigin = "LAX" AND
Destination = "JFK'" AND O ass = "ECONOW".
and so on, until a satisfactory result set is obtained.
Such trial-and-error queries are undesirable from the
perspective of both the user and the database server. For
the server, it results in a drastic reduction in effective
throughput since much of the processing is duplicated
in each successive query. For the client, it results in a
marked increase in response times, as well as frustra-
tion from having to submit the query repeatedly. The
problem is compounded for users who access the Web
service through a handheld device (PDA, smart-phone,
etc.) due to the high access latencies, cumbersome input
mechanisms, and limited power supply.

Too Few Answers

A primary reason for the user dissatisfaction that results
in repetitive queries is the cardinality of the answer set
— the Web service may return no or insufficiently few
answers, and worse, give no indication of how to alter
the query to provide the desired number of answers [2].
(The complementary problem of “too many answers”
has been previously addressed in the literature — see, for
example [4, 5].)

Two approaches, both implemented on the client-
side, have been proposed for the “too few answers”
problem: The 64K Inc.[6] engine augments query re-
sults (if any) with statistical information about the un-
derlying data distribution. Users are expected to utilize
this information to rephrase their queries appropriately.
However, it is unrealistic to expect that naive Web users
will be able (or willing) to perform the calculations nec-
essary to rephrase their queries.

An alternative approach was proposed in Eureka [2].
In response to the initial user query, Eureka caches the
relevant portion of the database at the client machine,
allowing follow-up exploratory queries to be answered
locally. A major drawback is that the user needs to in-
stall a customized software for each of the Web services
that she wishes to access. In addition, this strategy may
not be feasible for resource-constrained client devices
which may be unable to host the entire database seg-
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Figure 1: Range query relaxation in 2 dimensions

ment, or which are connected through a low-bandwidth
network.

Finally, yet another possibility is to convert the user’s
range query into a point query (e.g., by replacing the
box represented by the query with its centerpoint) and
then to use one of the several Top-K algorithms avail-
able in the literature (e.g., [7]) with respect to this point.
However, this approach is unacceptable since it runs the
risk of not providing all the results that are part of the
original user query. 1 Further, as discussed later in
this paper, closeness to a point may not be equivalent to
closeness to the query box.

The SAUNA Technique

In this paper, we propose SAUNA (Stretch A User query
to get N Answers), a server-side solution for efficiently
supporting exploratory queries. More formally, given
an initial user query QT (which we expect to return
M answers), and given the desired number of answers
N, if N > M, SAUNA derives a new relaxed query
QF which contains Q' and is expected to have N an-
swers. A pictorial representation of a SAUNA relax-
ation is shown in Figure 1 for a two-dimensional range
query.

Note that a variety of relaxed queries, which may
even be infinite in number, could be derived that obey

1For an unevenly shaped user query, the evenly shaped relaxed
query box obtained by point-query relaxation may not enclose the
original query.



the above constraints. In this solution space, SAUNA
aims to deliver a relaxed query that (a) minimizes the
distance of the additional answers with respect to the
original query, that is, it aims to derive the closest
N — M answers, and (b) minimizes the data processing
required to produce this set of answers. The first goal
is predicated on defining a distance metric for points ly-
ing outside the original query — this issue is well under-
stood for point-queries [7] but not for the range (or box)
queries that we consider here. Therefore, SAUNA in-
corporates a box-query-specific distance metric that is
suitably weighted to produce relaxed queries of a de-
sired shape (e.g., aspect-ratio preserving with respect to
the original query). To achieve the second goal, SAUNA
utilizes multi-dimensional histograms as the tool for
query size estimation. Histograms [8, 9, 10] are the de
facto standard technique for maintaining statistical sum-
maries in current database systems, and therefore our
system is easily portable to these platforms. While uni-
dimensional histograms are currently the norm, tech-
niques for easily building and maintaining their multi-
dimensional counterparts have recently appeared in the
literature [11].

As we show in Section 6, a detailed performance
evaluation of SAUNA over a variety of real and syn-
thetic multi-dimensional data sets stored on a Microsoft
SQL Server 2000 engine indicates that its relaxed
queries can significantly reduce the costs associated
with exploratory query processing, and in fact, often
compare favorably with the optimal-sized relaxed query
(obtained through off-line processing). Further, these
improvements are obtained even when the memory bud-
get for storing statistical information is extremely lim-
ited.

Organization

The remainder of this paper is organized as follows:
The relaxation problem is formally defined in Section 2.
Distance metrics for box queries are discussed in Sec-
tion 3. The SAUNA query relaxation strategy is pre-
sented in Section 4. The wavelets technique of query
size estimation is explained in Section 5. The perfor-
mance model and the experimental results are high-
lighted in Section 6. Related work on query relaxation
is reviewed in Section 7. Finally, in Section 8, we sum-

marize the conclusions of our study and outline future
research avenues.

2 Problem Definition

We assume that the data space is characterized by D
dimensions and that the corresponding attribute set is
{X1,X3,...,Xp}. The domain of each attribute X;
may be either continuous, discrete, or categorical, and
each domain has minimum value X ™" and maximum
value X™** (an ordering is imposed on categorical at-
tributes as discussed later in Section 4.5). We assume
that all domains are normalized to the range [0,1].

The initial query posed by the user is a D-
dimensional hyper-rectangle defined by Q! =
{(f,p0N, 14, 08), ... 15, RL]} where each 1] and
h! denote the lower and upper limit of the query
along the ith dimension (see Figure 1). That is,
Xmin <II' < pl < Xxmae Vi 1 <4 < D. Here, some
attributes will have ranges (i.e., I} < hF), some will be
points (i.e., 11 = k), and some will be don’t-cares (i.e.,
I = xmin bl = Xme®). We assume that the user
specifies the attributes that are fixed in that they should
not be relaxed. In the absence of this information, for
point attributes we introduce a small range variation,
to avoid divide by zero errors that will arise with
the Aspect and Inverse distance metrics explained in
Section 3.

The relaxed query is denoted by QF =
(U BB, R, 0, UE BT, with QF € QF
and X < IF < 1l and Xmer > R > A
Vi 1 < 4 < D. The differences r;; = 1} —IF
rin, = hf — Al (ry,ry > 0) are used to denote
the relaxations w.r.t. the lower and upper limits of the
original query along the sth dimension.

We assume that the user also provides IV, the desired
cardinality of the answer set. The estimated cardinali-
ties of the original and relaxed queries are denoted by
M =| QF | and N’ =| QF |, respectively. Relaxation
is invoked only if M < N, and the goal of the relax-
ation system is to produce a relaxed query such that (a)
N’ > N, (b) N’ — N is minimized, (c) the additional
N — M answers returned to the user are the closest
neighbors of Qf, and (d) the data processing required
to produce these additional answers is minimized. The



definition of closest neighbors is made precise in the
next section.

Note that even in the absence of a definitive specifi-
cation of NV from the user, there may be some default
values that could be effectively used by the system. It
has been observed in user studies that a compact repre-
sentation of results on fewer screens, and that reduce the
need to scroll are more effective [12]. This implies thata
good rule of thumb is to display a page-full of answers.
In this paper, following the approach used in search en-
gines such as Google, (ww. googl e. com) we use 10 as
the ideal target number of results. Note that this value
can be easily changed in the framework to adapt to the
access characteristics of diverse devices, such as PDAs
and smartphones, whose displays typically have 10 to
12 lines at a low resolution.

3 Distance Metrics for Box

Queries

Most distance functions used in practice are based on
the general theory of vector p-norms [13], with 1 <
p < oo. For example, p = 2 gives the classical Eu-
clidean metric, p = 1 represents the Manhattan metric,
and p = oo results in the Max metric. In the remain-
der of this paper, for ease of exposition, we assume that
all distances, along each dimension, are measured with
the Euclidean metric. Note, however, that the SAUNA
relaxation algorithm can be easily adapted to any of the
alternative metrics.

3.1 ReferencePoints

When computing the distances of database tuples with
respect to point queries, it is clear that the distances are
always to be measured (whatever be the metric) between
the pair of points represented by the database tuple and
the point query. However, when we come to box (range)
queries, which is the focus of this paper, the issue is not
so clear-cut since it is not obvious as to which point in
the box should be treated as the reference point. In fact,
it is even possible to think of distances being measured
with respect to a set of reference points.

One obvious solution is to take some point inside the
box (e.g., the center), treat the box as being represented
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Figure 2: Measuring distance from periphery. P is
closer to periphery than @

by this point, and then resort to the traditional distance
measurement techniques. However, this formulation ap-
pears highly unsatisfactory since the spatial structure of
the box, which is representative of the user intentions,
is completely ignored. Instead, we contend here that
the user’s specification of a box query implies that she
would prefer answers that are close to the periphery of
the box. To motivate this, consider the example situa-
tion shown in Figure 2, where point P is farther from
the box center than point ) i.e., 7o > 74, but P’s dis-
tance from the closest face of the box is smaller than the
corresponding distance for @ i.e., 71 < rs. In this situ-
ation, we expect the user to prefer point P over @) since
there is less deviation with respect to the complete box.

The above observation can be formally captured by
the following reference point assignment technique: For
measuring the distance between a point P and a query
box B, the reference point on B is the point of inter-
section of the perpendicular line drawn from P to the
nearest face or corner of the box B.

We could, of course, have devised more complex ref-
erence point assignments — for example, compute the
average of the distance between P and all corners of
the box B, with the box corners operating as a univer-
sal set of reference points. However, we expect that the
above simple formulation may be sufficient to express
the expectation of a significant fraction of users of Web
services, and further, more complex assignments can be
directly accommodated, if required, in the SAUNA re-
laxation algorithm.



In summary, given a point P = {p1,p2,...,pp} and
a box-query B with lower and upper limits /;(B) and
h;(B) respectively, we denote the component of dis-
tance on the i-th dimension as

d;(P,B) = p;—hiB) if p; > hi(B)
= Li(B)-pi if pi<li(B)

0 otherwise

and the overall (Euclidean) distance between P and B
as

dist(P, B) = 1)

Note that with this formulation, all points that lie within
or on the box have an associated distance of zero.

3.2 Attribute Weighting

An implicit assumption in the above discussion was that
relaxation on all dimensions was equivalent. However,
it is quite likely that the user finds relaxation on some
attributes more desirable than on others. For example,
a business traveler may be time-conscious as compared
to price, whereas a vacationer may have the opposite
disposition. Therefore, we need to weight the distance
on each dimension appropriately. That is, we modify
Equation 1 to

D
dist(P,B) = \| > _(di(P, B) x w;)? 2)
=1

where w;, w; > 0 is the weight assigned to dimension
2.

One option certainly is to explicitly acquire these
weights from the user, and use them in the above equa-
tion. However, as a default in the absence of these in-
puts, we can resort to the following: Use the box shape
as an indicator of the user’s intentions. Specifically, we
can assume that the user is willing to accept a relax-
ation on each range dimension that is proportional to the
range size in that dimension, i.e., the user would prefer
what we term as an Aspect-Ratio-Preserving relaxation.
This metric preserves the aspect ratio of user-supplied

query hence the name. This objective can be easily im-
plemented by setting
hi(B) —1;(B)

aspef.t
%

Asp Tatzo(z)

An alternative interpretation of the user’s box-query
structure could be that attributes should be relaxed in
inverse proportion to their range sizes, since the user
has already built-in relaxation into the larger ranges of
her query. This can be implemented with the following
distance function

Maz2 | (hi(B) —1;(B))

inverse
7

= Asp_ratio(i) =

It should be noted that the notion of measuring dis-
tance from periphery as opposed to from the center
holds even for this distance function. Figure 3 shows an
example of the relaxed queries produced by using the
Aspect and Inverse metrics, respectively. Given a con-
stant k£ and relaxation units a and b (in the z and y axes,
respectively), we see in these figures that the locus of
points equidistant from the original query is not hyper-
rectangular in the corners. Since relational databases
can execute only hyper-rectangular queries, we approx-
imate the relaxed queries by their Minimum Bounding
(Hyper)-Rectangles (MBRs). We refer to the area en-
closed within the locus as the core region and the area
between the core region and the MBR rectangle as the
extended region.

If our goal is to produce the closest set of answers
to the query box, then we need to explicitly prune the
extended region points. This is because there may be
a point lying just outside the relaxed query box, whose
distance is less than that of one of the points from the ex-
tended region. We term this as a distance-preserving re-
laxation. However, if minor deviations from the optimal
set of answers is acceptable, then we can settle for a box-
preserving relaxation instead, wherein answers from the
extended region are also included in the answer set. Our
experimental results indicate little performance differ-
ence for these alternative relaxations — therefore, we as-
sume a box-preserving relaxation in the remainder of
this paper.

As a final point, note that if the user has speci-
fied a point query as opposed to a box query, then the
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Figure 3: Distance Metrics and Relaxation regions: (a) Aspect (b) Inverse

above formulation degenerates to a traditional Top-N
query [7], where the goal is to find the nearest N neigh-
bors to the query point.

4 The SAUNA Relaxation Algo-
rithm

We propose SAUNA, a simple query relaxation mecha-
nism that attempts to ensure the desired cardinality and
quality of answers while simultaneously trying to re-
duce the cost of relaxed query execution. Specifically,
our algorithm generalizes to box queries the approach
taken for point queries in [7, 14].

Our relaxation strategy leverages histograms for
query size estimation. Histograms are the de facto stan-
dard technique for maintaining statistical summaries
in current database systems, and therefore SAUNA
is easily portable to these platforms. In particular,
we use multi-dimensional histograms for the experi-
ments reported in this study. These include multi-
dimensional equidepth histograms and EQUIDWAV hy-
brid histogram which will be covered in Section 5. Al-
though multi-dimensional histograms have been touted
as being resource-intensive to create and maintain, re-
cent work [11] has addressed this problem by propos-
ing an online adaptive mechanism for easily building
and maintaining multi-dimensional histograms, the so-
called self-tuning histograms.

Due to their summary nature, histograms can pro-
vide only estimates, and not the exact values. There-
fore, when relaxing a query to produce N answers,
there is always a risk of either under-estimation or over-
estimation of the cardinality of the answer set. While
under-estimation results in inefficiency due to accessing
more database tuples than necessary, over-estimation re-
quires the query to be relaxed further and submitted
again — a restart in the terminology of [14].

Estimation strategies possible in this environment in-
clude a conservative approach that completely elimi-
nates restarts at the risk of getting many more tuples
than necessary, and an optimistic approach that trades
restarts for improved efficiency. These No-Restarts and
Restarts approaches were implemented in [14] by as-
suming that all database tuples in a histogram bucket
are at the maximum or minimum distance, respectively,
with respect to the point query. Note that for a point
query, there is always a unique location on a histogram
bucket which is at a minimum (maximum) distance
from the point query. However, when we consider box-
queries in conjunction with the periphery-based distance
metric described in the previous section, there is a set of
points on the histogram bucket that are all at the same
minimum (maximum) distance from the box query. In
Figure 4, we present the MinDist and MaxDist algo-
rithms to find these minimum and maximum distances,
respectively. Both these algorithms are linear in the
number of query attribute dimensions. We describe be-



low the various relaxation strategies for box queries that
are based on these distance computations.

4.1 Box-Restarts Strategy

In this approach, all tuples inside a histogram bucket are
assumed to be present on a locus of minimum distance
from the query box. Since both the query box and the
histogram bucket are D-dimensional yper-rectangles,
the minimum distance between them is the minimum
distance between any pair of their D — 1 dimensional
hyper-rectangle surfaces. We use the MinDist algo-
rithm (Figure 4(a)) to compute this minimum distance.
MinDist locates one of the points at minimum distance
on the bucket and then computes the distance of that
point from the query box. In the algorithm, 5% and b”
are the lower and upper bounds of the bucket in the
i-th dimension, while ¢! and ¢ are the corresponding
lower and upper bounds of the box query. It should be
noted here that the identification of the nearest point in
the MinDist algorithm is independent of the specific dis-
tance metric (including attribute weighting) chosen for
computing the minimum distance.

In the Box-Restarts relaxation strategy, we compute
the minimum distances of all histogram buckets from
the query box, and then sort these buckets in increas-
ing order of these distances. We assume that relaxing
the query up to the minimum distance of some bucket
implies that the relaxed query includes all tuples in that
bucket. Hence we choose the largest distance from the
set of bucket distances such that the relaxed query is
expected to contain NV tuples. Since the underlying as-
sumption that all points in a bucket are as close as pos-
sible to the query box is optimistic, the Box-Restarts
strategy does not guarantee that the relaxed query will
indeed return N tuples.

4.2 Box-NoRestarts Strategy

In this approach, all tuples inside a histogram bucket are
assumed to be present on a locus of maximum distance
from the query box. We use the MaxDist algorithm (Fig-
ure 4(b)) to compute this maximum distance. The pro-
cess we follow for finding the Box-NoRestarts relax-
ation distance is the same as that for the Box-Restarts
approach outlined above. Since the relaxed query is

guaranteed to cover all the histogram buckets at a dis-
tance less than or equal to relaxation distance, the Box-
NoRestarts strategy guarantees that the relaxed query
shall return at least N answers. This guarantee is ob-
tained at the cost of efficiency in that many more tuples
than strictly necessary may have to be processed to find
the desired answer set.

To make the above discussion concrete, sample
points chosen by the MinDist and MaxDist algorithms
are shown in Figures 5(a) and 5(b), respectively. In
these figures, @ is the query box, b; through bg are the
histogram buckets in the 2-dimensional space, and p;
through ps are the points chosen by the algorithms. Note
that while minimum distance points can be located on
the query box itself (e.g., ps in Figure 5(a)), the maxi-
mum distance points always have to be on the corners
of the histogram bucket (all p; in Figure 5(b)).

4.3 Box-Dynamic Strategy

Since Box-Restarts and Box-NoRestarts represent ex-
treme solutions, an obvious question is whether an
intermediate solution that provides the best of both
worlds can be devised? For this, we adopt the dy-
namic workload-based mapping strategy of [7], which
attempts to find the relaxation distance that minimizes
the expected number of tuples retrieved for a set of
queries while ensuring a reduced number of restarts.
This is implemented as follows: Given « as a param-
eter such that

do(a) =d?" + o (dJVF - dl")

where d2% and dPN% are the Box-Restarts and Box-
NoRestarts distances for query ¢, we need to find the
value of d, () that minimizes the average number of tu-
ples retrieved for a given query workload. Since d4(«)
is a unidimensional function of «, the golden search
algorithm [15] can be utilized to estimate this optimal
value of a. Note that this approach requires an initial
“training workload” to determine a suitable value of «,
which can then be used in the subsequent “production
workloads”.

In the remainder of this paper, we present results only
for the Box-Dynamic strategy since we found that it
consistently outperformed the extreme strategies.



Algorithm MinDist (Boz q, Bucket b,
Metric metric) {
Point Nearest, Nearest!, Nearest";
Vi:1<:< D
begin
Nearestf =g
= bl !
= b otherwise
Nearestif1 = qzh if bﬁ < q{" < bf‘
=b ifql < bl
= b? otherwise
if |¢¢ — Nearest!| < |¢f — Nearesth|
Nearest; = Nea'resté
else
Nearest; = NeaTest?
endV1

return disty,ciric (Nearest, q)

}

if bl <ql < ob
if b < bl

(8 MinDist

Algorithm MaxDist (Boz q, Bucket b,
Metric metric) {

Point Farthest, Farthest!, Farthest™;

Vi:1<i<D

begin

Farthe.st§ = bé if qé < bé
= bf otherwise

Farthest! = b if ¢t <!
= bf otherwise

if |¢¢ — Farthest!| > |¢f — Farthestl|
Farthest; = Farthe.sté

else
Farthest; = Farthestzh
end V1
return distmetric (Farthest, q)

}

(b) MaxDist

Figure 4: Algorithms for computing distances

4.4 Relaxation Algorithm

While the Box-Dynamic strategy does reduce the likeli-
hood of restarts, it does not completely eliminate them.
To ensure that we do not get into a situation where there
are repeated restarts of a given query, we follow the
strategy that if the Box-Dynamic strategy happens to
fail for a particular query, then we immediately resort to
the conservative Box-NoRestarts strategy — that is, all
queries are relaxed with at most one restart. The com-
plete set of steps of the SAUNA relaxation algorithm is
shown in Figure 6.

In Section 5 ahead, we introduce a new relaxation
function relaxBoxWavelet. The SAUNA relaxation al-
gorithm requires replacement of relaxBoxDynamic by
relaxBoxWavelet only to utilize the power of the new
histogram type introduced.

4.5 Handling Categorical Attributes

An implicit assumption in the discussion so far was that
all attributes are either continuous or discrete with in-
herent ordering among the values. In practice, however,
some of the dimensions may be categorical in nature
(e.g., color in an automobile database), without a natu-
ral ordering scheme. We now discuss how to integrate
categorical attributes into our relaxation algorithm.

In the prior literature, we are aware of two techniques
that address the problem of clustering in categorical
spaces — the first approach is based on similarity [16]
and the second is based on summaries[17]. While both
techniques can be used in our framework to calculate
distances, we restrict our attention to the former in this
paper.

The similarity approach works as follows: Greater
weight is given to “uncommon feature-value matches”
in similarity computations. For example, consider a cat-
egorical attribute whose domain has two possible val-
ues, a and b. Let a occur more frequently than b in the
dataset. Further, leti and 5 be tuples in the database that
contain a, and let p and ¢ be tuples that contain 5. Then
the pair p, g is considered to be more similar than the
pair 7, 7, i.e., Sim(p,q) > Sim(z, 7); in essence, tuples
that match on less frequent values are considered more
similar.

Quantitatively, similarity values are normalized to
the range [0,1]. The similarity is zero if two tuples have
different values for the categorical attribute. If they have
the same value v, then the similarity is computed as fol-
lows:

filfi —1)

Sim(v) =1— . :
(v) =1 n(n —1)

2.

l€EMoreSim(v)
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Figure 5: Box query relaxation strategies. (a) Box-Restarts (b) Box-NoRestarts.

where f; is frequency of occurrence of value 7, n is the
number of tuples in the database, and MoreSim(v) is the
set of all values in the categorical attribute domain that
are more similar or equally similar as the value v (i.e.,
they have smaller frequencies).

We cannot directly use the above in our framework
since our goal is to measure distance, not similarity. At
first glance, the obvious choice might seem to be to set
distance = 1— similarity. But this has two problems:
Firstly, tuples with different values in the categorical at-
tribute will have a distance of 1. Secondly, tuples with
identical values will have a non-zero distance. Both
these contradict our basic intuition of distance.

Therefore, we set the definition of distance as fol-
lows: If two tuples have the same attribute value, then
their distance is zero. Tuples with different values will
have distances based on the frequencies of their attribute
values. The more frequent the values, the less is the
distance. For example, if the categorical attribute has
values a, b and ¢ in decreasing order of frequencies,
DIST(a,c) < DIST(b,c), since a is more frequent
than 4. In general, given tuples with values v; and vs,
we can quantitatively define

.DIST(’Ul,Uz) =
= 0

otherwise

1 — Sim(vy) x Sim(ve) if vy # vy

5 Wavelet based histograms

The accuracy of the SAUNA relaxation algorithm de-
pends on the accuracy of the query size estimation
technique used. Histograms, particularly the equidepth
histograms are the de facto choice in commercial
databases. However a novel technique using wavelets
was introduced in [18] for query size estimation and
shown to be working better than traditional histogram
types.We explain the technique in brief ahead and pro-
vide our comparative results for errors in recomput-
ing the distribution made by wavelet histograms and
equidepth histograms in Section 6.

5.1 Wavelets

Wavelets are mathematical tool for hierarchically de-
composing functions. Wavelets represent a function in
terms of a coarse overall shape, plus details that range
from broad to narrow. The data distribution function
can be represented using the wavelets. Wavelets offer
an elegant technique for representing the various levels
of detail of the function in a space-efficient manner.



Algorithm SAUNA Relaxation (Query QT, IntegerN)

{

1 M = estimateCardinality(Q?);

2ifM<N

3 QF = relaxBoxDynamic(Q7);

4 numAnswers = execute(Q);

5 if numAnswers > N return the N nearest answers;
6 else

7 QF = relaxNoRestart(Q?);

8 execute(QF');

9 else

10 numAnswers = execute(Q7);

11 if numAnswers > N return all answers;
12 else

13 M = numAnswers;

14 go to Step 7;

}

Figure 6: SAUNA relaxation algorithm

5.1.1 Wavelet Decomposition and Histogram Con-
struction

The goal of wavelet decomposition step is to represent
the frequency distribution at hierarchical levels of de-
tail. Signal compression techniques employing wavelets
can be used to reduce the space complexity of repre-
senting the underlying data distribution within a his-
togram bucket. For this purpose we need to choose an
appropriate basis function. We chose Haar wavelets ba-
sis function, because they are the easiest to implement
and fastest to compute. For detailed treatment on Haar
wavelets we refer the reader to [18].

The wavelet decomposition step involves applying
the wavelet transform i.e., wavelet decomposion on the
cumulative frequency distribution of the data. The trans-
form results in N wavelet coefficients, equal in num-
ber to number of values in the frequency distribution.
For space efficiency reasons we store only a few of,
say m, wavelet coefficients along with their positions
in the wavelet transform. After wavelet transformation
is done, most of the wavelet coefficients are either very
small or zero in magnitude. The common practice is to
store the m coefficients highest in magnitude.
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5.1.2 Reconstruction of frequency distribution

To reconstruct the frequency distribution we take the m
stored wavelet coefficients and reconstruct the wavelet
transform by assuming other coefficients to be zero. An
inverse wavelet transform on this set of N coefficients,
then gives the approximate cumulative frequency distri-
bution. The accuracy of this approximate distribution
depends on the number of actual wavelet coefficients
that were stored.

5.1.3 Query Size Estimation

Query size estimation using the approximated cumula-
tive frequency distribution is straightforward now. For a
range query a < z < b on attribute X, the query size is
estimated to be f(b) — f(a), where f(b) and f(a) are the
cumulative frequency counts upto b and a respectively.

514 Relaxation Algorithm

Use of wavelets as estimation technique demands for
a different way of computing the relaxation distance
which was earlier done using Box-Dynamic strategy.
We suggest a simple binary search algorithm which tries
to find out iteratively the relaxation distance that will
impart desired selectivity to relaxed query. The algo-
rithm relaxBoxWavelet is given ahead. It should be
noted that the the overheads for this algorithm are not
high, as all the computation is done in memory us-
ing few coefficients only. The lo and hz values are 0
and domain _size respectively because the wavelets his-
togram is equivalent to a single bucket equidepth his-
togram in which all the wavelet coefficients are stored.
The performance of the algorithm can be further im-
proved by search techniques like golden search, how-
ever it does not affect the accuracy of the results.

In the Iterative Relaxation algorithm the
EzpandQuery function expands query g by ra-
dius rad and using metric metric to generate a relaxed
query §. SizeEst function estimates the cardinality
of query §. Note that we need to replace the call to
relaxBoxDynamic in the SAUNA algorithm with a call
to relaxBoxWavelet function.



Algorithm relaxBoxWavelet (Boz q,int NumAns,
Metric metric)
{

int lo, he, o, rad;
Box §;
lo = 0;
h: = domain_size;

while (ht > lo)

rad = (lo + hi)/2;
¢ = EzpandQuery(q,rad, metric) ;
o = SizeEst(§);
if (¢ < NumAns)
lo = rad;
else if (6 > NumAns)
ht = rad;
else return §,

}

return § ;

}

Figure 7: Iterative Relaxation algorithm

6 Experimental Results

6.1 Experimental Settings

We used a variety of synthetic and real-world data sets to
evaluate SAUNA - these datasets are the same as those
used in [7]. The real-world data sets consisted of the US
census data set (199, 523 tuples) and the Forest data set
(581,012 tuples) obtained from [19]. We selected from
these data sets the same set of attributes as [7]. The
synthetic data consisted of the Gauss and Array data
sets, each containing 500,000 tuples. The Gauss data
sets [15] were generated using predetermined number of
overlapping multidimensional gaussian bells. Each bell
was parameterized by the variance and zipfian param-
eter. The Array data sets were generated using zipfian
distribution [20] for frequency of data values along each
attribute. The value sets of each attribute were gener-
ated independently. The values of zipfian parameter for
both these data sets were chosen to be 0.5,1,1.5 and 2.

All the experiments were performed using multidi-
mensional equidepth histograms [8], as they are both
accurate and simple to implement. Further, an
N-dimensional unclustered concatenated-key BT -tree
multidimensional index covering all the query attributes
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was built over each data set.

The query workload consists of queries with the
number of range dimensions varying from 2 to 4, which
is typical of many Web applications. The specific
queries were generated by moving a query template over
the entire domain space, returning a set of 100 queries.
This query density was sufficient to ensure that most
queries suffered from the problem of too few answers
and therefore required relaxation. All results we report
are averages for this set of hundred queries.

Besides different datasets, we also evaluated the per-
formance of SAUNA with respect to (a) varying the
number of buckets in the histogram; (b) varying NV, the
desired result cardinality; (c) varying the skew in the
data; and, (d) varying the distance metric. To serve as
comparative yardsticks for SAUNA’s performance, we
used two benchmarks:

Sequential (SEQ) : In this strategy, a sequential scan
of the database is made in order to produce a sorted
list of the tuples w.r.t. their distance from the query
box, after which the top IV tuples are returned.

Optimal (OPT) : This strategy refers to a hypothet-
ical optimal relaxation strategy which produces
the minimally relaxed query that contains the de-
sired answer set. Note that the minimum bounding
hyper-rectangle enclosing the N nearest tuples of
a query box is not guaranteed to return N answers
only and often returns more than NV answers. Fur-
ther, it is not possible for any relaxation technique,
without observing the actual data tuples, to retrieve
tuples equal to OPT tuples. In our experiments,
the answers for OPT were found through an offline
complete scan of all the data tuples.

The terminology used in the following experimental
descriptions is explained in Table 1.  For all the re-
sults, unless otherwise mentioned, the default settings
were zipfian parameter z = 1, number of dimensions
= 3, number of desired answers N = 10, Aspect dis-
tance metric and number of histogram buckets = 256.
Finally, the Box-dynamic strategy (see Section 4.3) is
used for SAUNA relaxation in all the experiments pre-
sented here. Our experiments were conducted on a Pen-
tium IV machine running the Windows 2000 operating
system.



Term Meaning

Dim No. of Dimensions
Strat Relaxation strategy

cen census dataset

cov cover dataset

arr Array dataset

opt | Optimal relaxation strategy
B-dyn Box-dynamic strategy

Table 1: Terminology

6.2 Experiment 1. Basic SAUNA perfor-
mance

The performance of SAUNA and OPT on the various
datasets for the default parameter settings is shown in
Figure 8 with respect to the number of tuples retrieved
(note that the Y-axis is shown on a log scale). The first
point to observe here is that for all the datasets, SAUNA
requires processing less than 4% of the tuples — in fact,
for the census and array datasets they are less than 1%.
Secondly, note that there is quite a substantial difference
between the optimal performance and that of SAUNA.
This is due to the fact that SAUNA has to depend on
statistical information that is limited by a tight memory
budget (only 256 histogram buckets, consuming around
5KB memory, were used in this experiment). It can be
seen that the gz and cover datasets consistently perform
worse than the other datasets, but for array and census
datasets the performance is closer to optimal. We at-
tribute this to the dense and clustered nature of the gz
and cover datasets which results in retrieval of too many
tuples even from a small space. Again this is largely de-
pendent on the quality of histograms available.

In Figure 9, we show the running times of SAUNA
and OPT strategy(excluding the time required to find
the optimal relaxed query), normalized to the execu-
tion time of SEQ, for the various datasets. The first
point to note here is that the SAUNA execution times
are below 10% of the sequential scan time for all the
datasets. Secondly, for the census and array datasets the
SAUNA times are close to that of OPT, and even for the
other datasets the difference is not much. The number
of query restarts were found to be negligible for census
and array datasets. The gz and cover datasets showed
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Figure 8: Percentage of tuples retrieved

around 10% query restarts. The restarts were particu-
larly observed for the queries nearer to the void regions
of the datasets which are very small in other datasets.

The execution time figures clearly indicate the effi-
ciency of SAUNA w.r.t. the optimal strategy. Again, it
should be noted that it is not the relaxation algorithm,
but the quality of the histograms (the type and number
of buckets) that affect the efficiency of SAUNA as com-
pared to the optimal in terms of number of tuples re-
trieved or the execution time. By increasing histogram
sizes we expect that SAUNA would perform closer to
the optimal.

6.3 Experiment 2. Varying Number of
Histogram Buckets

In this experiment, we investigated the performance im-
provements that could be obtained if our tight mem-
ory budget for statistical information was somewhat re-
laxed. In particular, we varied the memory budget from
the default 5 KB to about 100 KB.

The results of this experiment are shown in Fig-
ure 10. It can be clearly seen here that the number of
tuples retrieved decreases steadily with increasing num-
ber of buckets. The decrease in number of tuples re-
trieved is almost linear with the histogram sizes and at
small size of 40KB the number of tuples are well within
0.5% of total number of tuples for all datasets except
cover. This supports our claim that SAUNA is limited
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Figure 9: Execution time of SAUNA relative to SEQ

by the quality of histogram statistics only.

6.4 Experiment 3: Varying N

We now move on to evaluating the effect of the choice
of N, the desired answer cardinality, on the perfor-
mance of SAUNA. The performance for values of N =
10,50, 250 is shown in Figure 11. We see here that, in
most cases, the cost does not increase considerably with
increasing values of N. This is because as IV increases,
the effective accuracy of the histogram becomes better
and better, and therefore there is lesser wasted effort. It
can also be observed that the ratio of tuples retrieved by
SAUNA versus optimal tuples decreases by almost one
order of magnitude with each increased values of N.
Thus in environments where higher number of answers
are expected (e.g. in a banking application where the
manager wants to see a list of 250 customers with bal-
ance more than $100, 000.) we expect SAUNA to per-
form even better.

6.5 Experiment 4. Varyingthe data skew

In our next experiment, we considered the effect of vary-
ing the skew in the dataset contents. The results of this
experiment are shown in Figure 12, and we observe here
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that, in most cases, the number of tuples retrieved is rel-
atively robust with regard to the skew. Further, note that
even with heavy skew (z = 2), the absolute number of
tuples retrieved is well below 3% of the total number of
tuples.
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6.6 Experiment 5. Varying the Distance
Metric

In our last experiment, we report the effects of chang-
ing the distance metric to Inverse on SAUNA’s perfor-
mance. The results of this experiment are shown in Fig-
ure 13. We see here that the performance characteristics
are very similar to those of the Aspect metric (Figure 8).

We observed similar behavior for our experiments
with other vector p-norm distance metrics also — the de-
tails are omitted here due to space limitations.

Overall, the above experiments show that SAUNA,
despite being constrained by the limited memory re-
sources, robustly and efficiently provides automated
query relaxation. When more memory is provided, the
performance improves accordingly.

6.7 Comparison of wavelets and His
tograms

For a fair comparison of the wavelets technique and his-
tograms, alculated the number of wavelet coefficients
and histogram buckets that could be accomodated in
a given space and constructed both the kinds of his-
tograms. We found the relative error made by both of
them in approximating the cumulative frequency distri-
bution of the data. We found out the error in the approx-
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imation of the original frequency distribution that each
of the techniques made. Figure 14 shows the results of
our study for single dimensional data. The errors clearly
indicate that wavelet histogram outperforms equidepth
histogram.
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7 Related Work

The problems of dealing with too many and too few
answers have been addressed in many different con-
texts. In the information retrieval literature, various
techniques have been proposed to both relax and con-
strain keyword-based queries (see e.g., [21]). Many
proposals for dealing with these problems for more
structured queries can be found in the database litera-
ture [22, 23, 4, 5, 24, 14, 7].

Recently, significant attention has been devoted to
the evaluation of Top-N queries. Top-N queries arise
in many applications where users are willing to accept
non-exact matches that are close to their specification.
The answers to such queries consists of a ranked set of
the N tuples in the database that best match the selection
condition.

Chaudhuri et al [14] discuss the problem of evaluat-
ing Top-N equality selection queries that return too few
answers. They propose distance metrics for equality se-
lection queries and present histogram-based query re-
laxation strategies to automatically relax such queries
and return the desired number of answers. They carry
forward their work in [7], where they introduce a
dynamic workload-aware strategy for processing Top-
N equality queries. Their work differs from ours essen-
tially in the type of queries they support — whereas their
work is limited to equality selection queries, SAUNA
supports the more general class of range queries. Chen
and Ling [25] handle the same problem as [14], but us-
ing sampling as an estimation technique. They show
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that, unlike histograms, sampling is quite efficient and
effective when the number of dimensions is large.

8 Conclusions

In this paper, we proposed SAUNA, a novel server-
based framework for automated query relaxation that
improves the efficiency and efficacy of query explo-
ration over large and unknown data spaces. Un-
like previous approaches that are limited to point
queries, SAUNA is able to relax multi-dimensional
range queries. Through the use of an intuitive range-
query-specific distance metric, SAUNA returns high-
quality answers that are closest to the user-specified
query box. In addition, since histograms are used for
query size estimation, the SAUNA framework can be
easily integrated with commercial RDBMS that sup-
port histograms. We also showed how categorical at-
tributes can be naturally integrated into this framework.
We also proposed a novel estimation technique EQUID-
WAV that combines simple equidepth histograms with
wavelet histograms.

Our experimental results indicate that SAUNA sig-
nificantly reduces the costs associated with exploratory
query processing, and in fact, often compare favorably
with the optimal-sized relaxed query (obtained through
off-line processing). Further, these improvements are
obtained even when the memory budget for storing sta-
tistical information is extremely limited. Specifically,
we found that even with as low a memory budget as 5
KB, SAUNA was able to provide satisfactory relaxation
retrieving less than 10% of the tuples in the database
and taking less than 10% of the time taken by sequential
scan. We also showed how it provides significant bene-
fits of up to an order of magnitude in execution time as
compared to user-driven manual relaxation.

There are two main directions we intend to pursue in
future work:

e Since SAUNA relies on query cardinality estima-
tions to perform relaxation, its effectiveness is
highly dependent on the estimation mechanism.
Although the current implementation uses multi-
dimensional equidepth histograms, we would like
to experiment with other strategies, e.g., [10, 9,



18].

Currently, when a restart is required, relaxation
is applied and the new relaxed query is executed.
Note that this leads to redundant work, as all an-
swers for previous query are derived again. For fu-
ture work, we intend to investigate query splitting
techniques (see e.g., [26]) to try and execute only
the difference query.
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