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Abstract. Data mining services require accurate input data for their results to
be meaningful, but privacy concerns may influence users to provide spurious in-
formation. To encourage users to provide correct inputs, we recently proposed a
data distortion scheme for association rule mining that simultaneously provides
both privacy to the user and accuracy in the mining results. However, mining the
distorted database can be orders of magnitude more time-consuming as compared
to mining the original database. In this paper, we address this issue and demon-
strate that by (a) generalizing the distortion process to perform symbol-specific
distortion, (b) appropriately chooosing the distortion parameters, and (c) apply-
ing a variety of optimizations in the reconstruction process, runtime efficiencies
that are well within an order of magnitude of undistorted mining can be achieved.

1 Introduction

The knowledge models produced through data mining techniques are only as good as
the accuracy of their input data. One source of data inaccuracy is when users deliber-
ately provide wrong information. This is especially common with regard to customers
who are asked to provide personal information on Web forms to e-commerce service
providers. The compulsion for doing so may be the (perhaps well-founded) worry that
the requested information may be misused by the service provider to harass the cus-
tomer. As a case in point, consider a pharmaceutical company that asks clients to dis-
close the diseases they have suffered from in order to investigate the correlations in
their occurrences – for example, “Adult females with malarial infections are also prone
to contract tuberculosis”. While the company may be acquiring the data solely for gen-
uine data mining purposes that would eventually reflect itself in better service to the
client, at the same time the client might worry that if her medical records are either
inadvertently or deliberately disclosed, it may adversely affect her employment oppor-
tunities.

Recently, in [11], we investigated (for the first time) whether customers can be en-
couraged to provide correct information by ensuring that the mining process cannot,
with any reasonable degree of certainty, violate their privacy, but at the same time pro-
duce sufficiently accurate mining results. The difficulty in achieving these goals is that
privacy and accuracy are typically contradictory in nature, with the consequence that
improving one usually incurs a cost in the other [2].

Our study was carried out in the context of extracting association rules from large
historical databases, a popular mining process [3] that identifies interesting correlations
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between database attributes, such as the one described in the pharmaceutical example.
For this framework, we presented a scheme called MASK, (Mining Associations with
Secrecy Konstraints), based on a simple probabilistic distortion of user data, employing
random numbers generated from a pre-defined distribution function. It is this distorted
information that is eventually supplied to the data miner, along with a description of
the distortion procedure. A special feature of MASK is that the distortion process can
be implemented at the data source itself, that is, at the user machine. This increases the
confidence of the user in providing accurate information since she does not have to trust
a third-party to distort the data before it is acquired by the service provider.

Experimental evaluation of MASK on a variety of synthetic and real datasets showed
that, by appropriate setting of the distortion parameters, it was possible to simultane-
ously achieve a high degree of privacy and retain a high degree of accuracy in the
mining results. While these results were very encouraging, a problem left unaddressed
was characterizing the runtime efficiency of mining the distorted data as compared to
directly mining the original data. That is, the question “Is privacy-preserving mining of
association rules more expensive than direct mining?” was not considered in detail. Our
subsequent analysis has shown that this issue is indeed a major concern: Specifically,
we have found that on typical market-basket databases, privacy-preserving mining can
take as much as two to three orders of magnitude more time as compared to direct min-
ing. Such enormous overheads raise serious questions about the viability of supporting
privacy concerns in data mining environments.

In this paper, we address the runtime efficiency issue in privacy-preserving asso-
ciation rule mining, which to the best of our knowledge has never been previously
considered in the literature. Within this framework, our contributions are the following:

– We show that there are inherent reasons as to why mining the distorted database is
a significantly harder exercise as compared to directly mining the original database.

– We demonstrate that it is possible to bring the efficiency to well within an order of
magnitude with respect to direct mining, while retaining satisfactory privacy and
accuracy levels. This improvement is achieved through changes in both the distor-
tion process and the mining process of MASK, resulting in a new algorithm that we
refer to as EMASK. In EMASK, the distortion process is generalized to perform
symbol-specific distortion – that is, different distortion parameters are used for 1’s
and 0’s in a transaction.(1 indicates the presence of an item and 0 indicates the
absence of an item in a transaction). Estimation procedures are designed to care-
fully chose the parameters of distortion beforehand and a variety of optimizations
are applied in the mining process to achieve the desired goals. Our new design is
validated against a variety of synthetic and real datasets.

– In MASK, privacy is measured with respect to the ability to directly reconstruct
entries in the distorted matrix. We refer to this hereafter as “basic privacy”. In
EMASK, we consider basic privacy as well as “reinterrogated privacy” – this latter
notion captures the situation wherein the miner is permitted to utilize the mining
output (i.e. the association rules) to reinterrogate the distorted matrix, potentially
resulting in reduced privacy.
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1.1 Organization

The remainder of this paper is organized as follows: In Section 2, we describe the pri-
vacy framework employed in our study, while Section 3 provides background infor-
mation about the original MASK algorithm. Then, in Section 4, we present the details
of our new EMASK privacy-preserving scheme. The performance model and the ex-
perimental results are highlighted in Sections 5 and 6, respectively. Related work on
privacy-preserving mining is reviewed in Section 7. Finally, in Section 8, we summa-
rize the conclusions of our study.

2 Problem Framework

2.1 Database Model

We assume that each customer contributes a tuple to the database with the tuple being
a fixed-length sequence of 1’s and 0’s. A typical example of such a database is the so-
called “market-basket” database [3] wherein the columns represent the items sold by a
supermarket, and each row describes, through a sequence of 1’s and 0’s, the purchases
made by a particular customer (1 indicates a purchase and 0 indicates no purchase).
We also assume that the overall number of 1’s in the database is significantly smaller
than the number of 0’s – this is especially true for market-baskets since each customer
typically buys only a small fraction of all the items available in the store. In short, the
database is modeled as a large disk-resident two-dimensional sparse boolean matrix.

Note that the boolean representation is only logical and that the database tuples may
actually be physically stored as “item-lists”, that is, as an ordered list of the identifiers
of the items purchased in the transaction. The list representation may appear preferable
for the sparse databases that we are considering, since it reduces the space requirement
as compared to storing entire bit-vectors. However, because we are distorting user in-
formation, it may be the case that the distorted matrix will not be as sparse as the true
database. Therefore, in this paper, we assume that the distorted database is stored as a
large collection of bit-vectors.

2.2 Mining Objectives

The goal of the miner is to compute association rules on the above database. Denoting
the set of transactions in the database by

�
and the set of items in the database by � , an

association rule is a (statistical) implication of the form [3] ������� , where �
	��
���
and ��������� . A rule ������� is said to have a support (or frequency) factor s iff at
least ��� of the transactions in

�
satisfy ���
� . A rule ������� is satisfied in the set

of transactions
�

with a confidence factor c iff at least ��� of the transactions in
�

that
satisfy � also satisfy � . Both support and confidence are fractions in the interval [0,1].
The support is a measure of statistical significance, whereas confidence is a measure of
the strength of the rule.

A rule is said to be “interesting” if its support and confidence are greater than user-
defined thresholds ���! #"%$'& and �)(+* "%$'& , respectively, and the objective of the mining
process is to find all such interesting rules. It has been shown in [3] that achieving
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this goal is effectively equivalent to generating all subsets � of � that have support
greater than ���  "%$'& – these subsets are called frequent itemsets. Therefore, the mining
objective is, in essence, to efficiently discover all frequent itemsets that are present in
the database.

2.3 Privacy Metric

As mentioned earlier, the mechanism adopted in this paper for achieving privacy is to
distort the user data before it is subject to the mining process. Accordingly, we measure
privacy with regard to the probability with which distorted entries can be reconstructed.
In short, our privacy metric is: “With what probability can a random 1 or 0 in the true
matrix be reconstructed”? For the sake of presentation simplicity, we will assume in
the sequel that the user is only interested in privacy for 1’s (this appears reasonable to
expect in a market-basket environment, since the 1’s denote specific actions, whereas
the 0’s are default options). The generalization to providing privacy for both 1’s and 0’s
is straightforward – the details are given in [1].

Privacy can be computed at two levels: Basic Privacy (BP) and Re-interrogated
Privacy (RP). In basic privacy, we assume that the miner does not have access to
the distorted data matrix after the completion of the mining process. Whereas, in re-
interrogated privacy, the miner can use the mining output (i.e. the association rules) to
subsequently re-interrogate the distorted database, possibly resulting in reduced pri-
vacy.

3 Background on MASK

We present here background information on the MASK algorithm, which we recently
proposed in [11] for providing acceptable levels of both privacy and accuracy.

Given a customer tuple with 1’s and 0’s, the MASK algorithm has a simple distor-
tion process: Each item value (i.e. 1 or 0) is either kept the same with probability  or is
flipped with probability

���  . All the customer tuples are distorted in this fashion and
make up the database supplied to the miner – in effect, the miner receives a probabilis-
tic function of the true customer database. For this distortion process, the Basic Privacy
for 1’s was computed to be

�
�
�  �� � �
	���
����	���
���� ��� ��	������ ��� 
��

� ��	���� ��� 
�� ��
	���� ��� 
�� ��� ��� ��	�����
 (1)

where �"! is the average support of individual items in the database and  is the distortion
parameter mentioned above.

Since the privacy graph as a function of  has a large range where it is almost
constant, it means that we have considerable flexibility in choosing the  value – in
particular, we can choose it in a manner that will minimize the error in the subsequent
mining process. Specifically, the experiments in [11] showed that choosing  �$#&% ' (or,
equivalently,  �(#&% � , since the graph is symmetric about  �(#&%*) ) was most conducive
to accuracy.

The concept of Re-interrogated Privacy was not considered in [11]; we include it
in this paper and compute both Basic Privacy and Re-interrogated Privacy for EMASK
(see Section 4.1 for details).
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3.1 Run time efficiency of MASK

Privacy preserving Association rule Mining on a database through MASK algorithm
was found to be significantly more expensive than direct association rule mining through
some mining algorithm. Let us look at the performance numbers of a sample database.
Figure 1 shows the running time (on log scale) of MASK (implemented as an extension
to Apriori[4]) as compared to Apriori on a synthetic database generated with IBM Syn-
thetic Data generator (T10.I4.D1M.N1K as per naming convention of [4]). The figure
shows that there are huge differences in running times of the two algorithms – specifi-
cally, mining the distorted database can take as much as two to three orders of magni-
tude more time than mining the original database. Obviously, such enormous overheads
make it difficult for MASK to be viable in practice.

 10
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 0.25 0.5  1  1.5  2

T
im

e(
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min support(%)

Apriori
MASK

Fig. 1. Comparison of run time of Apriori and MASK (log scale)

The reason for the huge overheads are the following:

Increased database density: This overhead is inherent to the methods employing
random distortion method to achieve privacy. The random perturbation methods
flip 0’s to 1’s to hide the original 1’s. Due to the generation of false 1’s, the density
of the database matrix is increased considerably. For example, given a supermarket
database with an average transaction length of 10 over a 1000 item inventory, a
flipping probability as low as 0.1 increases the average transaction length by an
order of magnitude, i.e. from 10 to 108. The reason that flipping of true 1’s to
false 0’s cannot compensate for this increase is that the datasets we are considering
here are sparse databases, with the number of 0’s orders of magnitude larger than
the number of 1’s. Hence the effect of flipping 0’s highly dominates the effect of
flipping 1’s.
As a result of increased transaction lengths, counting the itemsets in the distorted
database requires much more processing as compared to the original database, sub-
stantially increasing the mining time. In [9], a technique for compressing large
transactions is proposed – however, its utility is primarily in reducing storage and
communication cost, and not in reducing the mining runtime since the compressed
transactions have to be decompressed during the mining process.

Counting Overhead: On distortion via MASK scheme, an entry in the non-randomized
database may be distorted to either ’0’ or ’1’. Thus � -itemset may produce any of



6

���
combinations. For example, a ’11’ may distort to ’00’,’01’,’10’ or ’11’. In order

to accurately reconstruct the support of the � -itemset via the reconstruction proce-
dure as explained in [11], we need the counts of all these

� �
combinations in the

distorted database. Thus in principle we need to keep track of
���

counts for each
� -itemset. To reduce these counting overheads, MASK took the approach of main-
taining equal flipping probabilities for both 1’s and 0’s – with this assumption, the
number of counters required is only � [11]. Further, only � � �

of the counts need
to be explicitly maintained since the sum of the counts is equal to the database car-
dinality, ���)���	��
 – the counter chosen to be implicitly counted was the one with the
expected largest count.
While the above counting optimizations did appreciably reduce runtime costs, yet
the overhead in absolute terms remains very significant – as mentioned earlier, it
could be as much as two to three orders of magnitude compared to the time taken
for direct mining.

4 The EMASK Algorithm

Our motivation for the EMASK algorithm stems from the fact that while MASK is suc-
cessful in obtaining the dual objectives of privacy and accuracy, its runtime efficiency
proves to be rather poor. In this section, we describe how EMASK is engineered to
address the above efficiency concerns.

4.1 The Distortion Process

The new feature of EMASK’s distortion process is that it applies symbol-specific dis-
tortion – that is, 1’s are flipped with probability

� � �  �� , while 0’s are flipped with
probability

� � �
� � . Note that in this framework the original MASK can be viewed as a
special case of EMASK wherein  � �

.
The idea here is that MASK generates false items to hide the true items that are

retained after distortion, resulting in an increase in database density. But, if a fewer
number of true items are retained, a fewer number of false items need to be generated,
and we can minimize this density increase. Thus the goal of reduced density could be
achieved by reducing the value of  and increasing the value of

�
(specifically increas-

ing it to beyond 0.9). However, note that a decrease in  value increases the distortion
significantly which can reduce accuracy of reconstruction. Also,

�
or the non-flipping

probability of 0s cannot be increased to very high values as it can decrease the privacy
significantly. Thus the choices of  and

�
have to be made carefully to obtain a combi-

nation of  and
�

values, such that
�

is high enough to result in decreased transaction
lengths but privacy and accuracy are still achievable.

We defer the discussion on how to select appropriate values of  and
�

to Section 4.4.

Privacy Estimation for EMASK As mentioned earlier, privacy can be computed at
two levels: Basic Privacy (BP) and Reinterrogated Privacy (RP). We now quantify the
privacy provided by EMASK with regard to both these metrics.



7

Basic Privacy The basic privacy measures the probability that given a random cus-
tomer � who bought an item � , her original entry for � , i.e. ’1’, can be accurately re-
constructed from the distorted entry, prior to the mining process. We can calculate this
privacy in the following manner, similar to the procedure outlined for MASK in [11]:
Let � $ be the support of the ����� item, � $ be the original entry corresponding to item � ,
in a tuple and � $ be its distorted entry. The reconstruction probability of a

�
is given by�

�
�  �	 � 	 � $ �

���
	
� � $ � ��� � $ � � �
��	 � � $ � ��� � $ � � � � ��	

� � $ � # � � $ � � �
�
	 � � $ � ��� � $ � #��
� ��	

� � $ � ��� � $ � � � �
��	

�
� $ � � �

��	
� � $ � � �

� ��	
� � $ � # � � $ � � � �

��	
�
� $ � � �

�
	
� � $ �(#��

�  
�
� $

��	
� � $ � � �

� � ���  �� �
� $

��	
� � $ � #��

But,

��	
� � $ � � � ����	

� � $ � ��� � $ �(#�����	 � � $ �$#�� � �
	
� � $ � ��� � $ � � ����	 � � $ � � �

� � $  � � ��� � $ � � ��� � �
And,

��	
� � $ � #�� � ��� ��	

� � $ � � � � � $ � ���  �� � � � � � $ � �
Therefore,

�
�
�  �	 � 	 � $ � �  

�
� $

� $  � � � � � $ � � � � � �
� � ���  �� �

� $
� $ � ���  �� � � ��� � $ � �

The overall reconstruction probability of 1’s is now given by

�
�
�  �	 � � �

�
$ � $ � �

�  �	 � 	 � $ �� $ � $
and the Basic privacy offered to 1’s is simply

� #�# � � � �
�
�  	 � ��� .

The above expression is minimized when all the items in the database have the same
support, and increases with the variance in the supports across items. As discussed
later in Section 6, with the appropriate choices of  and

�
, this increase is marginal

for the market-basket type of datasets that we consider here. Therefore, as a first-level
approximation, we replace the item-specific supports in the above equation by � ! , the
average support of an item in the database. With this, the reconstruction probability
simplifies to

�
�
�  �	 � � � 
����
	��	

���� ��� ��	�� � ����� �

� � ��� 
�� ����	�
	�� ��� 
�� � � ��� ��	 � � (2)

In Figure 2 we plot
� #�# � � � �

�
�  	 � � � i.e. privacy for different values of  and

�
at

� ! =0.01 – the shadings indicate the privacy ranges. Note that the color of each square
represents the privacy value of the lower left corner of the square. We observe here
that there is a band of values for  and

�
in which the privacy is greater than the 80%

mark. Specifically, for
�

between # % � and # % ' , high privacy values are attainable for all
 values, and the whole of this region appears black. Beyond

� � # % ' , privacy above
80% is attainable but only for low  values. Similarly for

�
below 0.1, high privacy can

be obtained only at high  values.
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Fig. 2. Basic Privacy of EMASK

Reinterrogation privacy Reinterrogation privacy takes into account the reduction in
privacy due to the knowledge of the output of the mining process – namely, the associ-
ation rules, or equivalently, the support of frequent itemsets [4]. Privacy breach due to
reinterrogation stems from the fact that an individual entry in the distorted database may
not reveal enough information to reconstruct it, but on seeing a long frequent itemset in
the distorted database and knowing the distorted and original supports of the itemset one
may be able to predict the presence of an item of the itemset with more certainty. As an
example situation, suppose the reconstructed support of a 3-itemset present in a transac-
tion distorted with  �$#&% ' 	 � �$# % ' , is 0.01. Then the probabiity of this 3-itemset com-
ing from a ’000’ in the original transaction is as low as #&% ��� # % ��� #&% ��� # % '�'%�(#&% # #�# '�' .
Thus, with the knowledge of support of higher length itemsets the miner can predict the
presence of an item of the itemset in the original transaction with higher probability.

Our method of estimating reinterrogation privacy breach is based on that described
in [8] for computing privacy breaches. We make the extremely conservative assumption
here that the data miner is able to accurately estimate the exact supports of the original
database during the mining process. The method of calculating reinterrogation privacy
is as follows:

– First, for each item that is part of a frequent itemset, we compare the support of
the frequent itemset in the distorted data with the support of the singleton item in
the original data. For example, let an itemset

�
a,b,c � occur a hundred times in the

randomized data and let the support of the item � in the corresponding hundred
transactions of the original database be twenty. We then say that the itemset

�
a,b,c �

caused a 20% privacy breach for item � due to reinterrogation, since for these hun-
dred distorted transactions, we estimate with 20% confidence that the item � was
present in the original transaction.

– Then, we estimate the privacy of each ’1’ appearing in a frequent item column
in the original database. There are two cases: 1’s that have remained 1’s in the
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distorted database, and 1’s that have been flipped to 0’s. For the former, the privacy
is estimated with regard to the worst of the privacy breaches (computed as discussed
above) among all the frequent itemsets of which it is a part and which appear in
the distorted version of this transaction. For example, for an item � in the original
transaction

�
a,b,c,d,e � , the privacy breach of � is the worst of the privacy breaches

due to all frequent itemsets which are subsets of
�
a,b,c,d,e � and contain � .

In the latter (flip) case, the privacy is set equal to the average Basic Privacy value
– this is because for the

�
values that we consider in this paper, which are close to

1.0 as discussed later, most of the large number of # ’s in the original sparse matrix
remain # , so a

�
flipping to a # is resistant to privacy breaches due to reinterrogation.

– Next, for the 1’s present in in-frequent columns, the privacy is estimated to be the
Basic Privacy since these privacies are not affected by the discovery of frequent
itemsets.

– Finally, the above privacy estimates are averaged over all 1’s in the original database
to obtain the overall average reinterrogation privacy.

4.2 The EMASK Mining Process

Having established the privacy obtained by EMASK’s distortion process, we now move
on to presenting EMASK’s technique for estimating the true supports of itemsets from
the distorted database. In the following discussion, we first show how to estimate the
supports of 1-itemsets (i.e. singletons) and then present the general * -itemset support
estimation procedure. In this derivation, it is important to keep in mind that the miner
is provided with both the distorted matrix as well as the distortion procedure, that is, he
knows the values of  and

�
that were used in distorting the true matrix.

Estimating Singleton supports We denote the original true matrix by � and the dis-
torted matrix, obtained with distortion parameters  and

�
, as � . Now consider a ran-

dom individual item � . Let ��� � and ���! represent the number of 1’s and 0’s, respectively,
in the � column of � , while ��� � and ���! represent the number of 1’s and 0’s, respectively,
in the � column of � . With this notation, we estimate the support of � in � using the
following equation:

�
	 ��� ��
 �
� (3)

where � �
�
 ��� �

���  ��� � � � �
��� ����! � � � � �

��� ����! �
Estimating � -itemset Supports It is easy to extend Equation 3, which is applicable
to individual items, to compute the support for an arbitrary * -itemset. For this general
case, we define the matrices as:



10

� � �
�������
�

� ���� � �%
%
%
��� ����!

��������
� � � �

�������
�

� ���� � �%
%
%
��� ����!

��������
�

Here ��� � should be interpreted as the count of the tuples in � that have the binary form
of � (in * digits) for the given itemset (that is, for a 2-itemset, � �� refers to the count of
10’s in the columns of � corresponding to that itemset, � �	 to the count of 11’s, and so
on). Similarly, ��� � is defined for the distorted matrix � .

The column matrices can be simplified by observing that the distortion of an entry
in the above distortion procedure depends only on whether the entry is 0 or 1, and not
on the column to which the entry belongs, rendering distortion of all combinations with
same number of 1s and 0s equivalent. Hence the above matrices can be represented as:

� � �
�������
�

� �&
%
%
%
��� ����!

� ������
� � � �

�������
�

� �&
%
%
%
��� ����!

� ������
�

where ��� � should be interpreted as the count of the tuples in � that have the binary form
with � 1’s (in * digits) for the given itemset. For example , for a 2-itemset, � �� refers
to the count of 11’s in the columns of � corresponding to that itemset, � � � to the count
of 10’s and 01’s, and ���! to the count of 00’s. Similarly, ��� � is defined for the distorted
matrix � .

Each entry 
 $�� 
 in the matrix � is the probability that a tuple of the form corre-
sponding to ���
 in � goes to a tuple of the form corresponding to � �$ in � . For example,
 � � � for a 2-itemset is the probability that a

� # or # �
tuple distorts to a

���
tuple. Accord-

ingly, 
 � � � =  � � � � � . The basis for this formulation lies in the fact that in our distortion
procedure, the component columns of an * -itemset are distorted independently. There-
fore, we can use the product of the probability terms. In general,


 $�� 
 � "%$ & � $�� 
 ��
��� "���� � ! � $ � 
 � & �


 � �  � � ���  �� � $ � � � & � 
 � $ � � � � & � � � $ � 
 � � ��� � � � $ � � � (4)

4.3 Eliminating Counting Overhead

We now present a simple but powerful optimization by which the entire extra over-
head of counting all the combinations generated by the distortion can be eliminated
completely. This optimization is based on the following basic formula from set theory:
Given a universe � , and subsets � and � ,� � ���!��� � � � � � � � � � � ��� �
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where N is the number of elements, i.e. cardinality, of the set denoted by the bracketed
expression. This formula can be generalized3 to� � � � � � �� % % % ���" � � � � % % % � & �
� � � � � � � % % � & � � "�

���
�

�
� ����������� � ���	�	
 � � ������� � "��

� � � � � � � � � � � � � % % % � � � � � � � % % � & �
Using above formula the counts of all the combinations generated from an * -itemset
can be calculated from the counts of itemsets and the counts of their subsets which
are available from previous passes over the distorted database. Hence, we only need to
explicitly count only the ’111...1’s, just as in the direct mining case.

For example, during the second pass we need to explicitly count only ’11’s which
makes

� � � � � � available at the end of the second pass. The counts of the remaining
combinations, ’10’, ’01’ and ’00’ can then be calculated using the following set of
formulae:

10 :
� � � ��� � � � � � � � � � � � ��� �

01 :
� � � � � � � � � � � � � � � � ��� �

00 :
� � � � � � � � � � � � � � � � � � � � � � � � � � � ��� �

The above implies that the extra calculations for reconstruction are performed only at
the end of each pass, the rest of the pass being exactly the same as that of the original
mining algorithm. Further, the only additional requirement of the above approach as
compared to traditional data mining algorithms such as Apriori is that we need to have
available, at the end of each pass, the counts of all frequent itemsets generated during
the previous passes. However, this requirement is easily met by keeping a hash table in
memory of these previously identified frequent itemsets.

4.4 Choosing values of � and 


As promised earlier, we now discuss how the distortion parameters,  and
�
, should be

chosen. Our goal here is to identify those parameter settings that simultaneously ensure
acceptable levels of both privacy and accuracy. We use privacy and accuracy estimations
to choose these values. The average support value of the dataset are required for these
estimations. We assume here that some initial sample data is available based on which
the determination of average support value can be made.

Earlier in this section, we had shown how the basic privacy can be calculated. We
use the basic privacy values as the estimation for privacy achievable at a point ( ,

�
) as

the basic privacy can be calculated before distortion. We now describe how to estimate
the accuracy of reconstruction beforehand. Our focus is specifically on

�
-itemsets since

their error percolates through the entire mining process.
Consider a single column in the true database which has � 1’s and ����������� � � 0’s.

We expect that the � 1’s will distort to ��� 1’s and � ��� � � � 0’s when distorted with pa-
rameter � . Similarly, we expect the 0’s to go to

� ����������� � � ��� 0’s and
� ����������� � � � ��� � ���

1’s. However, note that this is assuming that “When we generate a random number,

3 � �"! � ! �$#%# !'&)( is replaced by � �+*,( if -/.10
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which is distributed as bernoulli(p), then the number of 1’s, denoted by P, in � trials
is actually � � ”. But, in reality, this will not be so. Actually, P is distributed as bino-
mial(n,p), with mean *  and variance *  � ���  �� .

The total number of 1’s in a column of the distorted matrix can be expressed as the
sum of two random variables, � and � :

– � : The 1’s in the distorted database that come from 1’s in the original database.
– � : The 1’s in the distorted database that come from 0’s in the original database.

The variance in the total number of 1’s generated in the distorted matrix is ����� �
� � � � ,

which is simply ����� �
� � � ����� � � � since � and � are independent random variables.

So, we have ����� �
� � � � � ����� �

� � � ����� � � � � *  � � �  �� � � ���)���	��
 � * � � � � � � � .
Therefore, the deviation of the number of 1’s in the distorted database from the expected
value is �

* � � � *  � ���  �� � � � �)���	� 
 � * � � � � � � � � �	� �
(5)

Let the distorted column have � � 1’s. Then, our estimate of the original count is
given by

* � * �
 � � � � � � ��� � � � �)���	� 


 � � � �
and the possible error in this estimation is computed as�

* �
�
* �

 � � � �
where

�
* � is as per Equation 5. If we normalize the error to the true value ( * ), we

obtain 
 ��� ( � � � �)� � � *  � � �  �� � � ���)���	��
 � * � � ��� � � � � ��� �

* �  � � � � � �
Substituting * � � �)���	� 
 � � ,


 �
� ( � � � �)� � �
�  � � � � �

� � �  � ���  �� � � ��� ��� � � � � � � �
���)���	��
 � � � (6)

which is completely expressed in terms of known parameters.
The above equation estimates the error in reconstrution of counts of 1-itemsets. But

as their error percolates through the entire mining process, we expect the p and q values
giving higher Error by this measure to give higher overall support and identity error for
other levels as well. Thus we can estimate the desirability of a particular p and q value
in terms of reconstruction accuracy using the above estimation.

Using the estimates given by Equations 2 and 6, the  and
�

parameters can be set
so as to achieve reasonable privacy and accuracy goals, as illustrated in Section 5.4.

5 Performance Framework

EMASK aims at simultaneously achieving satisfactory performance on three objec-
tives: privacy, accuracy and efficiency. While privacy is determined as outlined in Sec-
tion 4.1, the specific metrics used to evaluate EMASK’s performance w.r.t. accuracy
and efficiency are given below.
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5.1 Accuracy Metrics

We evaluate two kinds of mining errors, Support Error and Identity Error, in our exper-
iments:

Support Error ( � ) :
This metric reflects the (percentage) average relative error in the reconstructed sup-
port values for those itemsets that are correctly identified to be frequent. Denoting
the number of frequent itemsets by

� � �
, the reconstructed support by � 
+� ���! and

the actual support by � ��� ���! , the support error is computed over all frequent item-
sets as

� �
�
��� �����

� � 
+� ���  � � � �	� ���! � �� ��� ���  � � � # #
Identity Error ( 
 ) :

This metric reflects the percentage error in identifying frequent itemsets and has
two components: 
 � , indicating the percentage of false positives, and 
 � indicat-
ing the percentage of false negatives. Denoting the reconstructed set of frequent
itemsets with

�
and the correct set of frequent itemsets with � , these metrics are

computed as:


 � �
� � ��� �� � �
� � # # 
 � ��� ��� ���� � � * 100

5.2 Efficiency Metric

This metric determines the runtime overheads resulting from mining the distorted database
as compared to the time taken to mine the original database. This is simply measured as
the inverse ratio of the running times between Apriori on the original database and exe-
cuting the same code augmented with EMASK (i.e. EMASK-Apriori) on the distorted
database. Denoting this slowdown ratio as � , we have

� � ��� & � $ "���� �������� "!�� 
	# $$� # $��� & � $'"��%� �&� 
'# $$� # $
For ease of presentation, we hereafter refer to this augmented algorithm simply as
EMASK.

5.3 Data Sets

We carried out experiments on a variety of synthetic and real datasets. Due to space
limitations, we report the results for only two representative databases here:

1. A synthetic database generated from the IBM Almaden generator [4]. The syn-
thetic database was created with parameters T10.I4.D1M.N1K (as per the naming
convention of [4]), resulting in a million customer tuples with each customer pur-
chasing about ten items on average.

2. A real dataset, BMS-WebView-1 [15], placed in the public domain by Blue Martini
Software. This database contains click-stream data from the web site of a (now
defunct) legwear and legcare retailer. There are about 60,000 tuples with close to
500 items in the schema. In order to ensure that our results were applicable to
large disk-resident databases, we scaled this database by a factor of ten, resulting
in approximately 0.6 million tuples.
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5.4 Support and Distortion settings

The theoretical basis for determining the settings of the distortion parameters,  and�
, was presented in Section 4.4. We now utilize those formulas to derive acceptable

choices for the datasets mentioned above. The privacy and accuracy estimates for  
values ranging from 0.1 to 0.9 and

�
values ranging from 0.9 to 0.99 are shown in

Figures 3(a) and 3(b) for support=0.01 (the synthetic dataset) and support=0.005 (real
dataset), respectively. In these figures, the symbol o represents  �	 � combinations for
which the basic privacy is above a minimum threshold value, while the symbol x repre-
sents combinations for which the accuracy 4 is above a minimum threshold value. The
threshold for basic privacy was set at 90% while the threshold chosen for accuracy was
that produced by the original MASK algorithm, that is, the accuracy estimate obtained
with  �(#&% ' 	 � �$# % ' 5.

The points in Figures 3(a) and 3(b) which have both symbols (i.e. o and x) represent
 �	 � combinations that have both good privacy and accuracy. For example,  � #&%*) 	 � �
#&% '�� is such a combination in both figures. From among this set of points, we select
only those combinations in which

�
is greater than 0.95 – this is because, as mentioned

earlier, from an efficiency perspective we would like to have
�

as high as possible since
it directly impacts the density of the distorted database.

With the above considerations in mind, the shortlist of candidate combinations is
shown in Tables 1 and 2 for synthetic and real datasets, respectively. The fact that the
real dataset has a richer set of candidates than the synthetic dataset is in accordance
with the observation in [11] that the sparser the dataset, the more amenable it is to
privacy-preserving mining.

p q
0.3 0.99
0.4 0.98
0.5 0.97
0.6 0.96

Table 1. Candidate ����� combinations
for synthetic database

p q p q
0.3 0.99 0.6 0.98
0.4 0.99 0.6 0.97
0.4 0.98 0.6 0.96
0.5 0.98 0.7 0.97
0.5 0.97 0.7 0.96

Table 2. Candidate ����� combinations
for real database

6 Experimental Results

We evaluated the privacy, accuracy and efficiency of the EMASK privacy-preserving
mining process for the candidate distortion parameters on the two datasets for a variety
of minimum support values. Due to space limitations, we present here the results only

4 accuracy estimated by equation 6
5 Choosing this threshold instead of a fixed value allows adaptation to the characteristics of the

specific data set that is being mined.
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Fig. 3. Determining Acceptable ����� Candidates

for 0.3% ���  "%$'& value, which represents a support low enough for a large number of
frequent itemsets to be produced, thereby stressing the performance of the EMASK
algorithm. The results for the synthetic database are presented first, followed by those
for the real database.

6.1 Experiment Set 1 : Synthetic Dataset

Mining the synthetic dataset with a ���  "%$ & of 0.3 resulted in frequent itemsets of length
upto 8. Table 3 presents the EMASK privacy, accuracy and efficiency results for this
dataset in a summarized fashion. In this table, for each  	 � candidate, BP and RP de-
note the basic and re-interrogated privacies, respectively; � denotes the slowdown of
EMASK; and the remaining columns show the accuracy metrics. We also include the
variances (across mining levels) of the accuracy metrics to determine whether the accu-
racy was skewed based on the lengths of the frequent itemsets.

p q BP RP � ��� ��� � �	��
 � ��� ( ���

 � ��� ( �	��
 � � (
0.6 0.96 92 70 5.2 4.99 5.34 3.39 3.23 6.84 0.27
0.5 0.97 92.6 74 3.8 5.64 6.27 4.86 7.74 6.41 4.31
0.4 0.98 93 78 2.4 6.40 7.87 6.60 6.13 18.35 19.02
0.3 0.99 92.6 80 1.1 6.63 11.69 10.19 7.61 137.20 120.24

Table 3. Performance Results for Synthetic dataset

The first point to note in Table 3 is that the results are very encouraging since they
clearly demonstrate that EMASK is able to get high values for all three competing
objectives – for example, with

� #&% � 	�#&% '
��� , the basic and re-interrogated privacy are
above 75 percent, the slowdown is only 2.4 (that is, it performed only around twice as
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slow as Apriori), and the accuracy on all measures is better than 90 percent (less than
10 percent error).

Secondly, note that the � slowdown values across all the combinations is such that
EMASK always performs within 5 times of Apriori. This is indeed a huge improvement
from the several orders of magnitude inefficiency that was exhibited by MASK, as
discussed earlier in Section 4.

Third, while it may appear that
� #&% � 	�# % '�'�� is very desirable from privacy and ef-

ficiency perspectives (it executes almost as quickly as Apriori and has an 80-plus pri-
vacy), yet it may not be a suitable choice since the variance in the accuracy measures
is very high. Specifically, the longer (and potentially most important) frequent itemsets
have much higher errors with the combinations with low  values like this. Table 4 and
Table 5 show errors at each level for # % � 	�# % '�� (highest  value in the candidates) and
#&% � 	�# % '�' (lowest  value) respectively. In the tables, the Level indicates the length of the
frequent itemsets,

� � � indicates the number of frequent itemset at this level, and other
three columns are error metrics as discussed before. The tables indicate that to ensure
high accuracy at higher levels one must move to high  values among the candidate
combinations.

Level � ��� � � � � �
1 664 1.5 1.5 3.21
2 1847 5.79 5.46 3.38
3 1310 3.66 4.27 2.9
4 864 7.29 6.13 3.45
5 419 6.2 12.88 4.35
6 115 6.08 4.34 5.44
7 21 4.76 4.76 6.86
8 2 0 0 5.39

Table 4. p=0.6,q=0.96, ���
	���
 � =0.3%

Level � ��� � � � � �
1 664 0.75 1.95 3.11
2 1847 7.95 6.93 5.09
3 1310 7.63 7.63 8.16
4 864 8.91 16.31 14.29
5 419 4.53 35.56 26.18
6 115 0 53.91 46.81
7 21 0 85.71 123.04
8 2 0 100 0

Table 5. p=0.3,q=0.99, ����	���
 � =0.3%

Finally, since no single combination is the best in all respects, the specific tradeoffs
between privacy, accuracy and efficiency have to be determined by the service provider
to suit her requirements. Among the chosen candidates for  	 � , moving to higher  
values gives better accuracy, moving to lower  values gives better privacy and moving
to higher

�
values gives better efficiency. But,the important point is that no matter which

of these combinations is chosen, they all provide 70-plus privacy, 80-plus accuracy, and
slowdown less than 5.

6.2 Experiment Set 2: Real Dataset

We conducted a similar set of experiments on the real dataset (BMS-WebView-1 [15]),
which had frequent itemsets of length upto 4 for 0.3% minimum support setting. The
results for this set of experiments are shown in Table 6.

The first point to note in Table 6 is that the privacy and accuracy results are no-
ticeably better than their counterparts in the synthetic dataset experiment. On the other
hand, the slowdown values are marginally higher. This is because Apriori is able to take
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p q BP RP � � � � � � ����
 � � � ( ����
 � ��� ( ����
 � � (
0.8 0.96 92.7 71 4.8 3.21 3.67 3.21 2.34 1.67 0.67
0.7 0.96 94.3 76 4.8 4.13 3.90 3.86 6.45 1.46 0.65
0.6 0.96 95.8 81.4 4.8 5.05 5.28 4.80 11.96 4.47 0.42
0.6 0.97 94.5 78 3.7 4.36 4.36 4.08 10.13 1.47 0.24
0.7 0.97 92.7 73 3.6 2.98 3.67 3.34 3.05 1.67 0.36
0.6 0.98 92.1 74 2.5 3.67 3.67 3.30 3.03 3.21 0.16
0.5 0.98 94.3 79.5 2.4 4.36 4.82 4.35 3.50 11.53 0.20
0.4 0.98 96.2 85.7 2.7 6.43 6.66 5.97 26.63 14.24 0.56
0.4 0.99 93.2 79.3 1.6 5.28 5.05 4.78 15.40 16.50 1.34
0.3 0.99 96 87 1.3 8.96 7.81 6.29 201.96 33.20 1.51

Table 6. Performance Results for Real Dataset

full advantage of the increased sparseness of this dataset, whereas EMASK still has
to pay a price for the density increases that are an outcome of the distortion process.
Secondly, there are a richer set of tradeoffs that are available to the service provider to
suit her requirements. Finally, note again that setting very high values of

�
, specifically� �(#&% ' ' , while very attractive from privacy and efficiency perspectives, results in high

variance for the accuracy measures. Here too, the errors are primarily incurred by the
longer frequent itemsets.

6.3 Summary

Overall, our experiments indicate that by a careful choice of distortion parameter set-
tings, it is possible to simultaneously achieve satisfactory privacy, accuracy, and effi-
ciency. In particular, they show that there is a “window of opportunity” where these
triple goals can be all met. The size and position of the window is primarily a function
of the database density and could be quite accurately characterized with our estimation
methods.

7 Related Work

The issue of maintaining privacy in association rule mining has attracted considerable
attention in the recent past [12, 6, 7, 13, 14, 10, 8, 9]. However, to the best of our knowl-
edge, none of these previous papers have tackled the issue of efficiency in privacy-
preserving mining.

The work closest to our approach is that of [8, 9]. A set of randomization operators
for maintaining data privacy were presented and analyzed in [8]. New formulations of
privacy breaches and a methodology for limiting them were given in [9]. The problem
of large transactions resulting from distortion was also mentioned in [9], but they ad-
dressed this problem from the perspective of reducing storage and communication costs,
but not runtime mining efficiency. Specifically, they proposed a compression technique
for reducing the effective size of the distorted database.

Another difference is that EMASK (and MASK) support a notion of “average pri-
vacy”, that is, they compute the probability of being able to accurately reconstruct a
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random entry in the database. In contrast, [8, 9] evaluate the probability of accurately
reconstructing a specific entry in the database. In [1], we present a detailed quantitative
argument for why it appears fundamentally unlikely that efficient mining algorithms
can be designed to support this stronger measure of privacy.

Finally, the problem addressed in [12, 6, 7, 13] is how to prevent sensitive rules from
being inferred by the data miner – this work is complementary to ours since it addresses
concerns about output privacy, whereas our focus is on the privacy of the input data.
Maintaining input data privacy is considered in [14, 10] in the context of databases that
are distributed across a number of sites with each site only willing to share data mining
results, but not the source data.

8 Conclusions

In this paper, we have considered, for the first time, the issue of providing efficiency
in privacy-preserving mining. Our goal was to investigate the possibility of simultane-
ously achieving high privacy, accuracy and efficiency in the mining process. We first
showed how the distortion process required for ensuring privacy can have a marked
negative side-effect of hugely increasing mining runtimes. Then, we presented our new
EMASK algorithm that is specifically designed to minimize this side-effect through
the application of symbol-specific distortion. We derived simple but effective formu-
las for estimating acceptable settings of the distortion parameters. We also presented a
simple but powerful optimization by which all additional counting incurred by privacy
preserving mining is moved to the end of each pass over the database.

Our experiments show that EMASK exploits a small window of opportunity around
the distortion combination ( � # % � 	 � � # % ' � ) which can simultaneously provide
good privacy, accuracy and efficiency. Specifically, less than 5 times slowdown with
respect to Apriori in conjunction with 70-plus privacies and 80-plus accuracies, were
achieved with these settings. In summary, EMASK takes a significant step towards mak-
ing privacy-preserving mining of association rules a viable enterprise.
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