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Abstract

To effectively support today’s global economy, database systems need to store and ma-
nipulate text data in multiple languages simultaneously. Current database systems
do support the storage and management of multilingual data, but are not capable of
querying or matching text data across languages in different scripts. As a first step
towards addressing this lacuna, we propose here a new operator called LexEQUAL,
which supports multi-script matching of proper names. The operator is implemented
by first transforming matches in multi-script text space into matches in the equiv-
alent phoneme space, and then using standard approrimate matching techniques to
compare these phoneme strings. The algorithm incorporates tunable parameters that
impact the phonemic match quality and thereby determine the match performance in
the multi-script space. We evaluate the performance of the LexEQUAL operator on a
large multi-script name dataset and demonstrate that it is possible to simultaneously
achieve good recall and precision by appropriate parameter settings. We also show
that the operator run-time can be made extremely efficient by utilizing a combina-
tion of g-gram and database indexing techniques. Thus, we show that the LexEQUAL
operator can complement the standard lexicographic operators, representing a first
step towards achieving complete multilingual functionality in database systems.

1 Introduction

The rapidly accelerating globalization of businesses and the success of mass-reach e-Governance so-
lutions require database systems to store and manipulate text data in many different natural languages
simultaneously. While the current database systems do support the storage and management of multi-
lingual data [15], they are not capable of querying or matching text data across languages that are in
different scripts. For example, it is not possible to compare the name “Al Qaeda” in English and the
same name written in other scripts, like Arabic, Hindi or Korean, automatically, thereby hampering the
work of security agencies.

We take a first step here towards addressing the above lacuna by proposing a new database operator
called LexEQUAL, which supports matching of proper names across language scripts, hereafter referred
to as “multi-script matching”. To illustrate this operator, consider a hypothetical e-Business, Books.com
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that sells books in different languages, with a sample product catalog as shown in Figure 1. Without loss
of generality, we assume that the data is stored in Unicode [29] character set with each attribute value
tagged explicitly with the language or in an equivalent format, such as Cuniform [15].

Author Author_FN Title Price Language
Descartes René Les Méditations Metaphysiques € 9.00 French
BT T (T U4 G3T R.K. Gt Lblugilh F1 B oot &) BT Herb L INR 250 | Tami 1
Epleplohat R.K. =oes s BT INR 155 | Kannada

D onigs « aac Z= OB e 2 S5la=l) [SAR 75 | Arabic
Nehru Jawaharlal Discovery of India $ 9.95 English
B ) k3 Fh oo L ¥ R IR ¥ 7500 Japanese
E i SeTETeTTer T U =T INR 175 | Hindid

Figure 1. Multilingual Books.com

In such an environment, we propose a new database operator, LexEQUAL that can match Nehru across
the Indic languages which are spread across over a dozen scripts, with the following SQL query syntax:
select * from Books
where Author LexEQUAL ’Nehru’
inlanguages { Hindi, Bengali, Tamil, ...}

Multi-script matching of proper names gains importance in light of the fact that a fifth of normal text
corpora is generic or proper names [17]. This matching is fraught with a variety of linguistic pitfalls
as explained in detail later in the paper — for example, the textual string “Rama” in English maps to
two different names in Indic languages: Rama or Rama, and it is not clear whether one or the other, or
both, are to be considered as matches. Since the phoneme sets of two languages are seldom identical, a
string in one language may equate to multiple strings in the second. Therefore, multi-script comparisons
are inherently fuzzy unlike the standard uni-script lexicographic database comparisons, making it only
possible to produce a likely, but not perfect, set of answers with respect to the user’s intentions. That
is, the metrics of precision and recall typically associated with information retrieval, also come into play
in the multi-script database context.

Our approach to implementing the LexEQUAL operator is based on transforming each text string in
the database, to its equivalent phonetic string representation. This phonetic string can be obtained using
common linguistic resources (such as, dictionaries [22] or Text-to-Speech (T'TS) engines [7]) and can be
represented in the canonical IPA format [11]. Note that the phonetic strings may be either computed
on-the-fly to save space, or stored persistently to save time, providing a classic space-performance tradeoff.

With the above framework, a match between two multi-script strings is tested by matching the cor-
responding phonetic strings. That is, the matching in character space is transformed into a match in
phoneme space. This phonemic matching approach has its roots in the classical Soundex algorithm of
Knuth [13], and has been previously used successfully in monolingual environments by the information
retrieval community [32]. Our phoneme space matches are implemented using standard approzimate
string matching techniques to cater to the inherent fuzziness of multilingual matching mentioned above,
and reflect the natural clustering that exists among phonemes. Further, the algorithm incorporates tun-
able parameters that impact the phonemic match quality and thereby determine the match performance
in the name space.

We have evaluated the matching performance of the LexEQUAL operator on a multi-script telephone
subscriber name dataset. Our experiments demonstrate that it is possible to simultaneously achieve good
recall and precision by appropriate parameter settings. Specifically, a recall of over 95 percent and preci-
sion of over 85 percent were obtained for this dataset. In our future work we plan to investigate techniques
for automatically generating the appropriate parameter settings based on dataset characteristics.



Apart from output quality, an equally important issue is the run-time of the LexEQUAL operator.
To assess this quantitatively, we first implemented the LexEQUAL operator on a commercial database
system through User-Defined Functions (UDF). This straightforward implementation turned out to be
extremely slow — however, we were able to largely address this inefficiency by utilizing a combination of
Q-Gram filters [9] and phoneme indexing [31] techniques that limit the number of strings passed to the
expensive UDF function. We present experimental numbers to quantitatively demonstrate the effect of
these improvements.

In summary, we expect the phonetic matching technique outlined in this paper to effectively and
efficiently complement the standard lexicographic matching, thereby representing a first step towards
the ultimate objective of achieving complete multilingual functionality in database systems.

1.1 Related Research

To our knowledge, the problem of matching multi-script strings has not been addressed previously
in the database research literature. Our use of a phonetic matching scheme for multi-script strings is
inspired by the successful use of this technique in the mono-script context by the information retrieval
and pharmaceutical communities. Specifically, phonetic retrieval is discussed in [23] and [32], where the
authors present their experience in phonetic matching of text strings, and provide measures on correctness
of matches with a suite of techniques. Phonetic searches have also been employed in pharmaceutical
systems such as [16], where the goal is to find “look-alike sound-alike” drug names.

Apart from being multi-script, another novel feature of our work is that we not only consider the
output quality of the LexEQUAL operator but also quantify its run-time efficiency in the context of a
commercial state-of-the-art database system. This is essential for establishing the viability of multilingual
matching in online e-commerce and e-governance applications.

The approximate matching techniques that we use in the phonemic space have been selected from the
large body of literature available on approximate matching, most of which has arisen from the computer
science theory community (see [20] for a comprehensive survey of these techniques). Specifically, we use
edit-distance in the phonemic space as the evaluation metric for a match, with the cost matrix for the
various edit operations (insertion, substitution, and deletion) reflecting the natural clustering that exists
in the phonemic domain.

To improve the efficiency of LexEQUAL, we resort to Q-Gram filters [9], which have been successfully
used recently for approximate matches in monolingual databases to address the problem of names that
have many variants in spelling (example, Cathy and Kathy or variants due to input errors, such as Catyh).

We also use phonetic indexes to speed up the match process — such indexes have been previously
considered in [31] where the phonetic closeness of English lexicon strings is utilized to build simpler
indexes for text searches. Their evaluation is done with regard to in-memory indexes, whereas our
work investigates the performance for persistent on-disk indexes. Further, we extend these techniques to
multilingual domains.

1.2 Organization of this Paper

The rest of the paper is organized as follows: The multi-script query processing problem and the
associated linguistic issues are discussed in Section 2. Our implementation of the LexEQUAL operator
is presented in. Section 3. The experimental setup and results for the LexEQUAL match quality are
highlighted in Section 4. Techniques for improving the run-time efficiency of LexEQUAL are outlined and
evaluated in Section 5. Finally, we summarize our conclusions and outline future research avenues in
Section 6.



2 Multi-script Query Processing

In this section, we outline the scope of the multi-script matching problem that is addressed in this
paper, and highlight some of the linguistic issues that arise in the matching process.

Primarily, we consider the problem of matching text attributes across multiple languages arising from
different scripts. For example, the European Union may require to support such queries over a federated
database that has relational columns in both Latin and Greek scripts. We restrict our matching to
attributes that contain proper names (such as, Authors, Corporations, Telephone Subscriber Names,
etc.) which are assumed not to have any semantic value to the user, other than their vocalization. We
also assume that the attribute is tagged with its language, the reasons for which are given below. Though
we restrict multi-script matching problem (in this paper) to only text attributes storing proper nouns,
they nevertheless represent a significant fraction of user queries, as proper and generic nouns represent a
significant part of the user query strings and form about a fifth of normal corpora in text databases [17].

The multilingual matching we have outlined here is applicable to many user domains, including tele-
phone white pages enquiry, bibliography searches, and web search engines. We also expect such tech-
nology to be useful for integrating data in multi-national corporations (such as Amazon.com, Siemens
etc.), news organizations (such as Reuters, BBC etc.), and inter-governmental organizations (such as
UN, EU, Interpol etc.). Finally, it is also likely to be useful for data integration in large multilingual
data warehouses.

2.1 Multi-script Selection

We now motivate the need for multi-script selection and join in database systems. Consider a query to
retrieve all the works of an author from Books.com, irrespective of the language of publication. Figure 2
shows such a query for author Nehru, along with a sample output from the database system.

select Author, Title, Price
From Books
where Author = “d&&°

or Aunthor = “Nehru’
Author Title Price
Nehru Discovery of India $ 9.95
E i AT T ST INR 175

Figure 2. Example for Multilexical Selection

The above query suffers from several problems: First, the user needs to know and specify the search
string Nehru in all the languages in which Nehru’s works might have been published. Second, even if
the user has this complete set of languages, the user needs to have access to lexical resources, such
as fonts and multilingual editors, in each of such languages to input the query and specify all possible
variations of the search string. In addition, the representation of proper names is significantly error-prone
in databases, due to lack of dictionary support during data-entry!.

To address the above problem, we propose the following query specification instead:

select * from Books
where Author LexEQUAL ’Nehru’
inlanguages { English, Hindi, Arabic }

!The error rate for attributes storing names is empirically shown to be x~ 3% (~1.5% mis-spelling and x1.5-2% mis-
typing) [12].



where LexEQUAL is a new multi-script matching operator that retrieve the strings that match phonetically
to the query string in all of the user specified languages.

2.2 Multi-script Join

The new multi-script matching operator may also be used to join multilingual attributes, based on
their phonetic representations. For example, the addresses of authors of books that were sold may be
obtained by joining the Author attributes from the Books and Authors tables, as shown in the following
SQL expression and in Figure 3.

select Authors.Author, Authors.Address, Books.Title
from Authors, Books
where Authors.Author LexEQUAL Books.Author

Author Author_FN Title Price | Language i
o |Descartes René Les Méditations Metaphysiques €900 |French '6 Tel# | Author Author_FN | Address
¥ | Grap saaniored| gy fw Geors) INR 150 | Tami1 | 3602368 | Descartes | René LaHaye, Touraine, France.
8 % T | 9 U @ INR175 | Hindi |51 3045737 | Narayan  [R K. Malgud, India.
oo [Nehru Jawaharlal |Discovery of India $995 |English | f [5295510 | Nehru Jawaharlal | Allahabad, India.
Authors.Author LexEQUAL Books.Author
T T,
Author Address Title
e | DESCartes | LaHaye Touraine, France. Les Méditations Metaphysiques
5 [ Nehru Allahabad, India. 9, Fw Georls)
« | Nehru Allahabad), India. A TH
g Nehru Allahabad, India. Discovery of India

Figure 3. Multilexical (Phonetic) Join

A real-life e-Governance application that requires a join based on the phonetic equivalence of multi-
script data is outlined in [14].

2.3 Linguistic Issues

The multi-script matching of proper names is fraught with variety of linguistic pitfalls: while issues
such as, equating strings that vary only in combining diacritical marks? and user-accent differences® may

be handled easily, we outline two important issues that are open and being addressed in our research.

2.3.1 Language-dependent Vocalizations

Given a text string, such as Jesus, the phonemic equivalent is different in English and in Spanish (where
it is pronounced like “Hesus”). So, it is not clear when a match is being looked for, which vocalization(s)
should be used. One solution is to take the vocalization that is appropriate to the language in which the

2By choosing the appropriate comparison levels pre-defined in Unicode, databases may match strings that vary only in
diacritical marks (such as Muller and Miiller). See Appendix A.5 and [5] for details.

3 Accents do not play an important role for our multi-script matching, since we start with the written form of the names,
stored in the database attributes. Such strings may be transformed using the same text-to-phoneme function.



source data is present (i.e. either English or Spanish) and hence we require language of an attribute to
be identified.

Automatic language identification is not a straightforward issue — while many languages, including
most of the Indic languages, are uniquely identified by their associated Unicode character-blocks, this
is not true for the Western European languages which all share a common Unicode character-block. It
is also not true for the Chinese-Japanese-Korean set of languages, which share character-blocks. There
is quite some literature in the IR community on automatic language identification but the proposed
techniques assume a sufficiently large corpus of text is available to make this determination — in the
database world, where we deal with limited information at the attribute level, it becomes much harder
to make such assignments.

2.3.2 Context-dependent Vocalizations

In some languages, the vocalization of a set of characters is dependent on the surrounding context. For
example, consider the English string 1ive. It may have different vocalizations depending on context (
such as those in, “long live the king” and “live telecast”). While it is easy in running text to make the
appropriate association, it again becomes difficult in the database context, where information is processed
at the attribute value level.

3 LexEQUAL: Multilingual Matching Operator

In this section, we first show the strategy that we propose for matching multilingual strings and then
detail our algorithm along with the description of algorithmic parameters for such matching.

3.1 Multilexical Matching Strategy

Our view of storage and semantics of textual information in databases, is shown in Figure 4. The
semantics of what gets stored is outlined in the top part of the figure, and how the information gets
stored in the database systems is provided by the bottom part of the figure. The important point to note
is that a proper name, which is being stored currently as a character string (traditional mapping of a name
to a character string, as shown by the dashed line) may also be stored as a phoneme string (proposed
mapping of a name to phoneme string, as shown by the dotted line). Further, the transformation may
be done as and when needed from the stored multilingual lexicographic string, using standard linguistic
resources, such as text-to-phoneme converters.

In a multilingual environment, when a name is queried for, the primary intention of the user is in
retrieving all names that match aurally, irrespective of the language. We propose a framework to capture
this intention, in matching multilingual attributes, by matching their equivalent phonetic strings. Further,
such phoneme strings represent a normalized form of proper names across languages, thus provide a means
of comparison. Further, when the text data is stored in multiple scripts, this may be the only means of
comparing them. In phoneme domain, the similarity may have to be tested using approximate matching
techniques, due to the inherent fuzzy nature of the representation and due to the fact that phoneme sets
of two different languages are seldom identical.

3.2 LexEQUAL Matching Algorithm

We propose complementing and enhancing the standard lexicographic equality operator of database
systems with an matching operator that may be used for approximate matching of user-specified multi-
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lingual names attributes. Such attributes are compared, after transforming them to equivalent phonetic
strings in a common phonetic alphabet. Our algorithm for the LexEQUAL operator is shown in Figure 5.

The operator — LexEQUAL, accepts two multilingual text strings and an user match threshold parameter
as input. The strings are transformed to their equivalent phonetic strings and the edit distance between
them is computed. If the edit distance is less than the user-specified user match threshold, then a
match is flagged. If the multilingual strings are in the same language, then comparison is specified as
lezicographic, using standard database equality operator.

The transform function takes a multilingual string in a given language and returns its phonetic
representation, in IPA alphabet (Appendix A.3 and [11]), which encodes the superset of all phonemes of
all the natural languages. Such transformation may be easily implemented by integrating standard TTS
systems that are capable of producing phonetically equivalent strings. The editdistance function [8]
takes two strings and returns the edit distance between them. A dynamic programming algorithm is
implemented, due to the flexibility that it offers in experimenting with different cost functions. Further,
the LexEQUAL may be parameterized for fine tuning the quality of match for a given dataset.

3.2.1 User Match Threshold Parameter

A user-tunable parameter User Match Threshold, as a fraction between 0 and 1, is accepted as an input
for the phonetic matching. This parameter specifies the user tolerance for approximate matching: 0
signifies that only perfect matches are accepted, whereas a positive (but, < 1) threshold specifies the
allowable error (that is, edit distance) as the fraction of the size of query string. The correct value for the
threshold parameter may be determined by the requirements of the application domain. For example,
a Directory Enquiry application may accept more errors in matching than a Credit Rating Verification
application.

3.2.2 Clustered Edit-Distance Parameterization

The three functions in Figure 5, namely InsCost, DelCost and SubsCost, provide the costs for inserting,
deleting and substituting characters in matching the input strings. With different cost functions, different
flavors of edit distances may be implemented easily in the above algorithm. The standard Levenshtein
Edit Distance [8] metric is simulated with all cost functions returning uniform value of 1.

In our strategy, we allow a Clustered Edit Distance parameterization, by extending the Soundez [13]
algorithm to the phonemic domain. In phonetic matching, a substitution between a and @ may be more
acceptable than substitution between, say, a and k. Hence we created clusters of near-equal phonemes,
based on the similarity measure as outlined in [19]. The substitution cost within a cluster is specified as
a user-definable parameter — called Intra-Cluster Substitution Cost, and may be varied between 0 and 1.
Specifically, an intracluster substitution cost of 1 simulates the standard Levenshtein cost function and
a cost of <1 allows clustered phonemes to be exchanged with a smaller penalty than Levenshtein cost
function.

Finally, we also allow user-defined clustering of phonemes, based on the languages of interest to the
users and stringency of the application domain.

3.3 Our Current Implementation

We have implemented a basic architecture for querying multilingual data, as highlighted in Figure 6.



LexEQUAL (S}, S;, €)

Input: Strings S;, S,
User Match Threshold, e
Languages with IPA transformations, Sz (as global resource)

Output: TRUE, FALSE or NORESOURCE

// get the languages of the input Strings

1. L; < Language of Si;L, < Language of S;;
// if same language strings, use lexicographic comparison

2. if L; = L, then return (S;=S, ? TRUE : FALSE);
// else, transform and use approximate matching techniques

3. ifL; € S; and L, € S, then
4. Ti<transform(S;,L;); T« transform(S,,L,);
5. Smaller < (| T; | < | T, | ? Ty : |T+]);

// match if edit distance < (threshold =« length(SmallerString))
6. if editdistance(7},7T,) < (e * Smaller) then
return TRUE else return FALSE;
7. else return NORESOURCE;

editdistance(Sz, Sr)
Input: String Sy, String Sg
Output: Distance k

Ll<—|SL‘;L,«<—|SR|;
Create DistMatriz[L;, L,] and initialize to Zero;
for i from 0 to L; do DistMatrizi, 0] < i;
for j from 0 to L, do DistMatriz[0, j] < j;
for 7 from 1 to L; do
for j from 1 to L, do
DistMatriz[i, j] < Min
{ DistMatriz[i — 1, j]+InsCost(St;) }

NS wN e

DistMatrizli — 1,5 — 1]+SubCost(Sg;,SL,)
DistMatrizli, j — 1]+DelCost(Sr;)
8. return DistMatriz[L;, L,];

Figure 5. The LexEQUAL Algorithm
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Figure 6. Architecture

Lexical resources (such as, Unicode code tables for required languages and IPA) were installed. We
integrated components of a basic TTS engine that converts a given language string to its equivalent
phonemes in TPA alphabet. Ideally, the implementation should install or invoke needed transformation
modules dynamically, to optimize the memory usage of the server. Further, since the quality of the
match depends on quality of transformation, the system should allow easy modification to or exchanges
of transformation functions, in a modular fashion. The multi-script comparison operator — LexEQUAL
was implemented as an user-defined function (UDF) that can be called in SQL statements. Our approach
required minimal changes to existing database architecture or usage semantics. Further, it should be
noted that in our implementation scheme, only the comparison semantics would be altered, but the
output would be the multilingual records, in the stored language characters sets only.

4 Experimental Study

In this section, we outline an experimental setup to measure the effectiveness of phonemes matching
of names. In this section, we outline our methodology for verifying the correctness of the matching
and provide a methodology for fine-tuning the quality. in Section 5 we provide the performance of such
queries.

4.1 Experimental Data

For our study of correctness of LexEQUAL operator, we needed a large multi-script lexicon with pho-
netically equivalent names marked explicitly. Since none were available, we had the following two choices:
experiment with a given multilingual lexicon and verify correctness by manual relevance judgements, or
alternatively, create a manually tagged multilingual lexicon and verify correctness mechanically. Bi-
lingual dictionaries mark semantically equivalent, and not necessarily phonetically equivalent words.
Though directories in local scripts are available, since equivalent strings in each were not tagged explic-
itly, their use in approximate matching produced huge outputs, posing a problem for manual relevance
judgements. Hence we took the second approach of creating a multilingual names lexicon containing
phonetically equivalent names, hand-tagging of equivalent names in different languages, and automating
the verification of correctness of the matches, using these tags. Further, we generated a large (about
200,000 multi-script names) tagged lexicon, by using the originally hand-tagged multi-script lexicon, for
our performance experiments.

4.1.1 Creation of Tagged Multi-script Lexicon

To create the multi-script lexicon, we followed the following approach: First, sets of names were selected
from three different sources so as to cover names in English and Indic domains, fairly evenly. The first

10



set consists of randomly picked names from the Bangalore Telephone Directory, covering most frequently
used Indian names. The second set consists of randomly picked names from San Francisco Physicians
Directory, covering most common American first and last names. The third set consisting of generic names
representing Places, Objects and Chemicals, was picked from Ozford English Dictionary. Together the
set yielded about 800 names in three different languages, namely English and two Indic languages —
Tamil and Hindi. All phonetically equivalent names (the same name from different sets, and presumably
in different scripts) were tagged with a common tag-number. Because of such tagging, we expect to find
the precision and recall figures for every experiment accurately; any match of two multilingual strings
is considered to be correct if their tag-numbers are the same, and considered to be false-positive if their
tag-numbers are different. False-dismissals can be computed since for every input, we know the expected
set of correct matches, based on the tag-numbers. Our aim is to get the matching to be almost perfect
in our subsequent experiments, as the names were deliberately picked to be diverse.

Lexicographic String |Language | Phonetic Representation (in IPA)
Amazon English |@&mozan
IBIT T ITWIGHT Tami naraysen
University English |junevarszIti
|@EswT Tami]l indiya
Hindi haidredzen
Computer English |kempjuter

Figure 7. Phonemic Representation of Test Data

To convert English names into corresponding phonetic representations, we used the following two
standard resources: First, the Ozford English Dictionary [22] that provides phonetic representations,
was used whenever a transformation is available, and the text to phoneme converter published by
www.Foreign Word.com [7], for the others. The transformed string is further cleaned up, by remov-
ing symbols specific to speech generation, such as the suprasegmentals, diacritics, tones and accents. For
Indic scripts, we developed a phonemic converter along the lines of the transliterations outlined in [27].
Sample phonetic strings are given in Figure 7.

The histogram of the data set used for measuring quality of matches — both lexicographic and the
generated phonetic representations are shown in Figure 8. The set had about 800 names with an average
lexicographic length of 7.35 and average phonetic length of 7.16 with each multilingual string tagged
with a tag-number to indicate those other multilingual strings that it is expected to match with?.

Further, for performance experiments, we generated a large data set, using the tagged multilingual
lexicon as shown above. Specifically, we concatenated each string with all remaining strings within a given
language. The generated set contained about 200,000 names, with an average lexicographic length of
14.71 and average phonetic length of 14.31. The histogram of the generated data set — both in character
and generated phonemic representations, is given in Figure 9. Further, every multilingual string thus
generated was tagged with a tag-number to mark the other multilingual strings that it is expected to
match with.

1t is interesting to note that though visually the Indic strings are much shorter compared to English strings, their text
representations and phonemic representations are much alike, owing to the fact that most Indic characters are composite

glyphs.
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Figure 9. Profiles of Generated Data Set

4.2 Database Setup

We implemented a prototype phonetic matching system using the Oracle 9i (Version 9.1.0) database
system. The multilingual strings were stored in Unicode, along with their phonetic representations, also

in the Unicode format, in the IPA alphabet. The algorithms shown in Figure 5 were implemented, as
UDF in the PL/SQL language.

4.3 Query Parameters

The following two query parameters were set for each query, to measure their effect on the quality
of the matches: The first, User Match Threshold parameter that sets the tolerance level for matches,
was varied between 0 and 1. The second, Intracluster Substitution Cost (for the Clustered Edit Distance
parameterization), which varies the cost of substitution of a character from within a user-specified clusters
of phonemes between 0 and 1. These parameters were explained in Section 3.2.

4.4 Metrics Measured

Along the lines of Information Retrieval system, we measured two specific metrics for quantifying the
quality of approximate matching. They are, Recall, defined as the fraction of correct matches in the result
and Precision, defined as the fraction of the results that are correct.

For every query we measured the recall and the precision figures by the following methodology: We
matched each phonetic string in the data set with every other phonetic string, counting the number
of matches (mq) that were correctly reported (that is, those matches that were between strings with

12



the same tag-number, which are expected to match in the first place), along with the total number of
matches that are reported as the result (mo). Please note that the total number of matches reported
(m2) includes false-positives, that is, those phonetic strings that matched across groups. If there are n
equivalent groups (with the same tag-number) of multi-script strings with n; strings each®, the precision
and recall metrics are calculated as follows:

Recall = m1 /Y5 (™ C2), and

Precision = my/my

The denominator in recall is the ideal number of matches, as every pair of strings (i.e., " Cy) with the

same tag-number must match. Further, for an ideal answer for a query, both the metrics should be 1.
Any deviation indicates the inherent fuzziness in the querying, due to the differences in the phoneme set
of the languages and the losses in the transformation to phonetic strings.

4.5 Correctness of Phonetic Matching

We ran our experiments by matching each of the multilingual string on the tagged lexicon, to measure
the quality of the phonetic matching. Our objective is to tune the parameters to achieve the best possible
recall and precision, for the given data set.

4.5.1 Performance of Approximate Matching for the Given Lexicon

The plots of the recall metric against user match threshold, for various intracluster substitution costs,
between 0 and 1, are provided in Figure 10.

Recall

0.5 Intracluster Substitution Gost: 0.00 ——

Intracluster SUbstitltion Gost: 1.00 -~
0.8 1

0.4

0.4 0.6
User Match Threshold
Figure 10. Recall

Overall, the recall improves with increasing user match threshold, and reaches perfect recall, after an
threshold of 0.5, asymptotically. An interesting point to note is that the recall gets better with reducing
intracluster substitution costs, validating the assumption of Soundez algorithm [13]. Also, our results
indicate that it is necessary to set the threshold to above a figure of 0.3, to be assured of a recall of over
90%.

The plots of precision metric against user match threshold, for various intracluster substitution cost,
varied between 0 and 1, are provided in Figure 11.

The graphs indicate that while the precision drops with increasing threshold, the drop is negligible for
threshold <0.2, but rapid in the range between 0.2 and 0.5. For a precision of >80%, the threshold
may need to be <0.3. However, it is interesting to note that with a intracluster substitution cost of
0, the precision drops too rapidly, too early (around 0.1 itself). That is, the Soundez method, which

5Both n and n; are known during the tagging process.
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is good in recall, is very ineffective in precision, as it introduces too many false-positives even at low

thresholds.

4.5.2 Selection of Ideal Parameters for Phonetic Matching

Figure 12 illustrates the recall-precision curves, with respect to each of the query parameters, namely,
intracluster substitution cost and user match threshold. For the sake of clarity, we show only the plots
corresponding to the costs 0, 0.5 and 1 and plots corresponding to threshold between 0.2 and 0.4.
While the top-right corner, corresponding to perfect precision and recall, the curves indicate that the
best possible matching is achieved by a substitution cost between 0.25 and 0.5, and for thresholds
between 0.25 and 0.35, corresponding to the knee of the respective curves.

1
o9 |
os |
07}
= o6}
=1
@
‘5 05 F
1<
o o4}
03}
o2}
0.1 | Intracluster Substitution Gost: 0.00 —— 3
Intracluster Substitution Gost: 0.50 --->¢---
o Intraciuster Substitution Cost: 1.00 -3
0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Recall
Precision-Recall (By User Match Threshold)
1
o9 |
os |
07}
f =
S ose |
@
(&3
L os}
o Y
oal vond
x G
b
03} p
02 F  Threshold: 0.2 —— i
Threshold: Q'3 --->¢--- H
04 Threshold: 0.4 -5
‘0.82 0.84 0.86 0.88 0.94 0.96 0.98 1

0.9 0.92
Recall

Figure 12. Precision-Recall Graphs
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The analysis suggests as the best set of parameters for phonetic matching of the given data set as,
thresholds in the range [0.25, 0.3], and intracluster substitution cost in the range [0.25, 0.5]. With
such parameters, the recall is ~95%, and a precision is ~85%. That is, ~5% of the real matches would
be false-dismissals, and about ~15% of the results are false-positives, which must be discarded by post-
processing, using non-phonemic methods®.

We also would like to emphasize that quality of approximate matching depends on phoneme sets
of languages, the accuracy of the phonetic transformations and more importantly, on the data sets
themselves. Hence the matching needs to be tuned following a procedure as outlined in this section, by
the developers or administrators of specific applications as required by their application domains. In our
future work, we plan to investigate techniques for automatically generating the appropriate parameter
settings based on dataset characteristics.

5 Improving Approximate Matching Query Performance

In this section we discuss the query performance of queries using the LexEQUAL operator. All ex-
periments shown in this section are run on the large generated data set (of about 200,000 multi-script
names) to provide a reasonable run times for comparison.

5.1 Baseline LexEQUAL Runs

While the dynamic programming algorithm used for LexEQUAL is flexible for experimentation, it has
large time complexity and the UDF implementation incurs high call overheads. In addition, since the
UDF cannot be costed properly, the optimizer may resort to inefficient plans.

To create a baseline for performance, we first ran the simple select and join queries using LexEQUAL
operator on the large generated data set. The Table 1 shows the performance of the native equality
operator (for exact matching of character strings) and the LexEQUAL operator (for approximate matching
of phonetic strings), for basic scan and join queries’. The performance of the standard database equality
operator was shown only to highlight the inefficiency of approximate matching operator. As can be seen
clearly, the UDF is orders of magnitude slower compared with native database equality operators. In the
join query, as expected, the optimizer chose nested-loop join irrespective of the size of join, availability
of indexes or optimizer hints, indicating that little optimization was done on the query.

| Query || Matching Methodology | Time |
Scan || Ezact (= Operator) 0.59 Sec
Scan | Approzimate (LexEQUAL UDF) | 1418 Sec
Join || Ezact (= Operator) 0.20 Sec
Join || Approzimate (LexEQUAL UDF) | 4004 Sec

Table 1. Performance of Approximate Matching

Next, to improve the efficiency of the approximate matching LexEQUAL operator, we outline two
techniques — @-Grams and Approzimate Phonetic Index, that provide a candidate set of answers cheaply,
which is further operated on by accurate but inefficient LexEQUAL UDF, to weed out false-positives.

In our experiments, we were handicapped by our choice of one of the Indic languages, namely Tamil, that has the
minimal phoneme set, contributing to loses in transformation.

"The join experiment was done on a 0.2% subset of the original table, since the full table join using UDF took about 3
days.
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5.2 Q-Gram Technique

In this section, we show that the @-Grams used in approximate matching of standard text strings [9]
may be extended to phonetic matching as well, and we sketch briefly the filters and their implementation
in SQL.

We first augment the database with a table of g-grams of the original phonetic strings. Once created,
the following three filters, namely Length, Count and Position filters that use distinct properties of g-
grams were used to filter out the unmatchable strings using traditional database operators. Thus the
filters weed out all mismatches cheaply, leaving the expensive approximate matching LexEQUAL operator
to be called only on a vastly reduced candidate set, to weed out false-positives, accurately.

Length Filter leverages on the fact that strings that are within an edit distance of k cannot differ in
length, by more than k. This filter does not depend on the g-grams.

Count Filter ensures that the number of matching g-grams between two strings o1 and o9 of lengths
|o1| and |o2|, must be at least (maz(|o1],|o2]) —1— (k—1)+*¢q), a necessary condition for two strings
to be within an edit-distance of k.

Position Filter ensures that a positional g-grams of one string does not get matched to a positional
g-gram of the second that differs from it by more than k£ positions.

SELECT N.ID, N.Name
FROM Names N, AuxNames AN,
Query Q, AuxQuery AQ
WHERE N.ID = AN.ID
AND Q.ID = AQ.ID
AND AN.Qgram = AQ.Qgram

AND /* Length Filter */ [|len(N.PName) — len(Q.str)|< e x length(Q.str)
AND /* Position Filter */ |AN.Pos— AQ.Pos| < (ex*length(Q.str))

GROUP BY N.ID, N.PName
HAVING /# Count Filter */ count (¥)> (len(N.PName) — 1 — ((e * len(Q.str) — 1) * q))

AND LexEQUAL(N.PName, Q.str, e)

Figure 13. SQL using Q-Gram Filters

A sample scan query is shown in Figure 13, assuming that the query string is transformed into a record
in table QQ, and the auxiliary g-gram table of Q is created in AQ. The Length Filter is implemented in the
fourth condition of the SQL statement, Position Filter by the fifth condition and the Count Filter by the
GROUP BY/HAVING clause. As can be noted in the above SQL expression, the UDF function, LexEQUAL, is
called at the end, after all the three filters have filtered out the unmatchable strings. Thus, the expensive
UDF is called only for those pairs of strings, not weeded out by the filters.

5.2.1 Performance of Q-Gram Filters

We re-ran the same scan and join queries on the large generated multi-script data set, employing the
g-gram filters in a SQL expression as shown in Figure 13. The performance of the queries are given in
the Table 2.
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| Query || Matching Methodology | Time |

Scan || LexEQUAL UDF + g-gram filters | 13.5 Sec
Join | LexEQUAL UDF + g¢-gram filters | 856 Sec

Table 2. Performance with @-Gram Filters

Evidently, the use of g-gram filters have improved the scan query performance by an order of mag-
nitude and the join query performance by five-fold, over plain UDF-only queries. The improvement in
performance in join is not as dramatic as in the case of scans, due to the additional joins that are re-
quired on the large g-gram tables. Also, we would like to note that the performance improvements were
not as high as reported in [9], perhaps due to our use of standard commercial database system and the
implementation of LexEQUAL using slow dynamic programming algorithm, in an interpreted language
environment, namely PL/SQL.

5.3 Phonetic Indexing Technique

In this section we propose a phonetic indexing technique that may be used for accessing the near-equal
phonetic strings, using a standard database index.

The recall and precision graphs in Figures 10 and 11 indicate that for small values of intracluster
substitution costs, the recall remains high, but the precision drops too rapidly due to the introduction
of large number of false-positives. However, we show in this section that such grouping may be used
for building an approximate index, that may retrieve cheaply a candidate set (with false-positives) of
answers, which may then be processed using slower, but accurate LexEQUAL UDF function.

5.3.1 Phonetic Index, using Database Integer Indexes

In this technique, the basic strategy is to transform the phoneme strings to a number, such that phoneme
strings that are close to each other map to the same number. Such transformation modifies the Soundex
algorithm [13] to the phoneme space. The transformed numbers are indexed (as integers) using standard
database indexes. By searching such an index, the set of candidate matches (with false-positives) may
be obtained efficiently, to be further processed using the expensive, but accurate LexEQUAL UDF.

We first grouped the phonemes into equivalent clusters along the lines of clustering outlined in [19],
and assigned a unique number to each of the clusters. Each phoneme string was transformed to a numeric
string, by concatenating the cluster identifiers of each phoneme in the string. Please note that such a
transformation is unique for a given string. The numeric string thus obtained is converted into an integer
— Grouped Phoneme String Identifier and stored along with the phoneme string. A standard database
B-Tree index is built on phoneme group identifier attribute, thus creating a compact index structure
using only integer datatype.

SELECT N.ID, N.Name
FROM Names N, Query Q
WHERE /* index scan */ N.GrPhStringId = Q.GrPhStringId

AND LexEQUAL(N.PName, Q.PName, e)

Figure 14. SQL using Phonetic Indexes

For an approximate scan or join query, we transform the query string to its phonetic representation,
and subsequently to its grouped phonetic string identifier. The index on the grouped phoneme string
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identifier of the lexicon is used first to retrieve all the candidate phoneme strings, which are further tested
for a match invoking the LexEQUAL UDF with the user specified tolerance for match. The invocation of
LexEQUAL operator in a query maps into an internal query as shown in Figure 14 that uses the phonetic
index, for a sample join query.

Please note that any two strings that match in the above scheme are close phonetically, as the dif-
ferences between individual phonemes are from only within the pre-defined cluster of phonemes. Any
changes across the groups will result in a non-match. Also, it should be noted that those strings that are
within the classical definition of edit-distance, but with substitutions across groups, will not be reported,
resulting in false-dismissals. While some of such false-dismissals may be corrected by a more robust
design of phoneme clusters and cost functions, not all false-dismissals can be corrected in this method.

5.3.2 Approximate Phonetic Index Performance

The phonetic group identifier attribute is created on the phoneme table, and is indexed as described
earlier. We ran the same table scan and join queries on the large generated multilingual data set, after
creating the index on the grouped phoneme string identifier attribute that is obtained by transforming
each of the phonetic strings of stored names. The LexEQUAL operator is modified to use this index,
using the SQL expression given in Figure 14. The performance of scan and join using the phonetic indez
is given in Table 3.

‘ Query H Matching Methodology ‘ Time ‘

Scan LexEQUAL UDF + phonetic indez | 0.71 Sec
Join LexEQUAL UDF + phonetic indez | 15.2 Sec

Table 3. Performance using Indexes

Clearly, the performance of queries using approzimate phonetic index is improved by orders of mag-
nitude, even beyond the performance improvements shown by g-gram techniques. However, we also
observed a small, but significant 4 - 5% false-negatives, with respect to the classical edit-distance metric.
With more robust grouping of phonemes, a closer match may be achieved.

6 Conclusions and Future Research

In this paper we specified a multilingual text processing requirement — Multi-script Matching that has
wide range of applications from web-search engines to e-Commerce applications to data integration in
multilingual data warehouses. We provided a survey of the support provided by SQL standards and
current database systems. In a nutshell, multi-script processing is not supported in any of the database
systems.

We proposed a strategy to solve the multi-script matching problem, specifically for proper name
attributes, by transforming matching in the lexicographic space to equivalent phonemic space. Such
transformation may be done using standard linguistic resources such as dictionaries and text-to-speech
converters. Due to the inherent fuzzy nature of the phonemic space, we employ approximate matching
techniques for matching the transformed phonemic strings. Since none of the existing databases natively
support approximate matching, we implemented the multi-script matching operator as a user-defined
function in a commercial database. Overall, we outlined our implementation that changes minimally the
basic database architecture.
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We confirmed the correctness of our strategy by measuring the quality metrics, namely Recall and
Precision, in matching a real, tagged multilingual data set, to obtain the best trade off between recall
and precision. The results from our initial experiments on a given data set showed good ~95% recall
and ~85%precision, indicating the potential of such an approach for practical query processing. We also
showed how the parameters may be tuned for optimal matching for a given dataset characteristics.

Further, we showed that the poor performance associated with the UDF implementation of approx-
imate matching may be improved significantly, by employing the same techniques used in approximate
matching, namely @-Gram techniques. In addition, we proposed a solution that captures the phonetic
closeness — phonetic index that may be used for building an index to aid performance improvements. We
demonstrated that such techniques improved the matching query performance by orders of magnitude.

Thus, we show that the LexEQUAL operator outlined in this paper to be effective in multi-script
matching, and can be made efficient as well using g-gram and phonetic indexing techniques. Multi-script
Matching may prove to be a valuable tool and hence we recommend its implementation as a SQL function
to leverage the full capabilities of the database engine.

6.1 Future Research

Multilingual (Semantic) Selection: Joining on multilingual attributes need not be restricted to
lexical domains only, but may be extended to semantics as well. In Books.com a query to retrieve all
books related to History may look like the one in Figure 15. The values for the Category attribute in the
resulting set of records are neither equal, nor equivalent lexically, but they are all equivalent semantically
to History.

select Author, Title, cCategory, Price

From Books

where category SemEqual "History"

Author Title Category |Price

Durant |[|History of Civilization History |$149.95
AR Th Gid ghaer Rs 175

Crap Flw Ceorl) sfg@Boud |[Rs 150

Toynbee |JA Study of History History |$ 29.95

Figure 15. Multilexical (Semantic) Selection

We are currently working on implementation of an operator, SemEQUAL that allows such matching of
attributes based on their semantic values, using standard linguistic resources, such as WordNet [6] that
define semantic units of a language and the rich inter-relationships between them.

Approximate Indexes: We are exploring the use of approximate indexes as outlined in [2], for further
performance improvements. Further, specific issues in phonetic indexes must be addressed, such as the
collation order of IPA phonemic set not corresponding to any of the languages. Hence, processing range
queries (such as, names between abacus and kite) may not make sense, phonetically.

Multilingual Benchmark Suites: Database system are the backbone for most e-Commerce and
e-Governance applications, handling large volumes of multilingual text. However, no well accepted and
trusted benchmarks, similar to the standard TPC benchmarks [28], exist for comparing different database
systems with respect to multilingual functionalities and performance. We propose to develop such suites,
using techniques outlined in this paper and our paper on multilingual performance [15].
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Appendix A: Background Information

This appendix provides the needed background on character encoding, phonemes and encoding and
on definition and techniques used in approximate matching.

A.1 Lexicography and Characters

A Character is the smallest component of written language that has a representational value. A Script
is a set of characters, such as Latin, usually pertaining to a group of languages. A language Repertoire is
a set of characters, possibly from multiple scripts, that form the individual alphabet of that language. In
addition, a language defines the rules for composition of its alphabet and their ordering uniquely, called
Lexicography, that define the word ordering in a language.

In database systems, text data strings are stored in some unique Character Encoding that assigns a
unique value to each of the characters in a language. There are several well-known encodings, such as
ISO-8859 and Unicode [29], that are used to represent a character set. It should be noted here that while
scripts correspond to character blocks in any of the encoding schemes, language is defined on a set of
characters, possibly from several scripts, with specific rules on composition, collations, vocalization etc.
All database systems use characters as the basic unit for storage and the language collations as the basis
for sorting and index building, if defined, or lexicographic ordering if collation is undefined, or sorting is
done across languages.

A.2 Phonology and Phonemes

Phonology is the study of sound structure related to speech, conforming to the grammar of a language.
Each human language usually has between 20 to 40 abstract linguistic units, called Phonemes, that
provide an alphabet of sounds that describe the articulation of the words in that language uniquely. A
Phone is the physical sound produced conforming to a phoneme. Since the phone is produced by the
vocal tracks of individuals, there are infinite variations of phones (called Allophones) that are possible
based on speaker’s individual, cultural and environmental factors. However, they are identified with a
specific phoneme using common aural signatures.

Phonemes are grouped together in syllables, which are in turn grouped together in words of a language.
Phonemes are to speech, what characters are to written text. Not all possible orders of phonemes are
allowed, much as not all possible sequences of characters are allowed. However, there is no a straight-
forward one-to-one mapping between characters of a language to phonemes, as the vocalization of the
characters depend on context of the character within the word, or even words around it. Such rules of
the mapping of a group of characters to a group of phonemes are extensively researched in Linguistics
and Speech Processing communities. While such transformation rules are outside the scope of this paper,
they are available in standard implementations of Text-to-Speech (TTS) systems of a language.

A.3 International Phonetic Alphabet

International Phonetic Association (IPA) [11] is one of the popular standards for describing phonemes
of any given language®. The phonetic alphabet of IPA is capable of representing the full range of
vocalizations primitives, irrespective of languages. Popular linguistic resources, such as Ozford English
Dictionary [22], define and publish the phonemic equivalent of all words in IPA alphabets and standard
TTS systems can generate a phonetically equivalent TPA string for a given character string of that
language. More recently, efforts such as Unisyn [30] are underway to specify abstract phonemes that
may provide an accent-free phonemic representation, which may be instantiated to a user’s geographic,
cultural requirements.

Further, the IPA alphabets are allocated a specific character block in the Unicode[29] encoding scheme.

8Standards such as Arpabet [12] also exist, though they originally designed for American English, using ASCII alphabets.
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Hence, phonetic representation of character strings in any language may be stored and manipulated as
Unicode strings in IPA character set. The support for storing Unicode data in database systems and the
query performance profiles are detailed in [15].

A.4 Approximate String Matching

Approximate matching techniques are used for matching strings that are close to each other in a
common alphabet, but not exactly equal. Common use for approximate matching techniques are in
Bioinformatics, for genomic comparison and in Information Retrieval, for retrieval with expected ty-
pographic errors. Several frameworks exist to capture the notion of closeness of strings. The popular
among them is the Edit Distance metric, which is used in the Approzimate String Matching, as given in
the following definitions [8].

Edit Distance The edit distance between two strings in a common alphabet 3, is the minimum number
of edit operations (i.e., insertions, deletions and substitutions) that are needed to transform one string
to the other.

Approximate Matching Two strings are considered to match approrimately, if the edit distance be-
tween them is less than a user specified threshold (possibly, as a function of strings themselves).

A.4.1 Q-Grams for Approximate Matching [8]

Let o be a string of size n in a given alphabet 3. o[i, j], 1 < i < j < n, denotes a substring starting
at position i and ending at position j of o. A substring, o[i,7 + ¢ — 1] of length g, is called a Q-Gram
of 0. The ¢-grams of o consists of all g-length substrings of o, and is obtained by sliding a window of
size q over the string. Further, the pair (i,0]i,i + ¢ — 1]) is called the positional g-gram, where i is the
starting position of the g-gram in 0. Usually, the g-gram matching techniques use augmented string 044,
where (¢ — 1) start symbols (say, <) are pre-pended to ¢ and (¢ — 1) end symbols (say, >) are appended
to o, where < and > are not part of the original alphabet, 3. Note that for a given string o, there are
(lo|+g — 1) g-grams.

A.5 Existing Support for Multilexical Matching
In this section, we outline briefly the support for multi-script matching, provided by the standards
and the current database systems.

Unicode Support Unicode, the multilexical character encoding standard, specifies the semantics of
comparison of two multilingual strings in three different levels [5]: using base characters, case or
diacritical marks. Such schemes are applicable only between strings in those languages that share
same script. Comparison of multilingual strings across scripts is binary.

SQL Standard Support The SQL:1999 standard [10] [18] allows the specification of Collation Se-
quences pertaining to a specific language, to correctly sort and index the text data. Comparison
within a collation has normal semantics and comparison across collations is binary.

Database Systems Support The following four features of databases systems are considered:
Multilexical Comparison All systems have pre-defined collation sequences for every language
supported. While the comparison within a collation has normal semantics, comparison across
collations is binary.
Multilexical Indexing Since comparison across collations are binary, any indexes that are also
built on strings from different collations are built with only binary sort order.

Approximate Matching Approximate matching is not supported by any of the databases. How-
ever, all database systems allow User-defined Functions that may be used to add functionality
to the server.
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Phonetic Matching Most database systems allow matching of Fnglish strings using pseudo-
phonetic Soundez() originally defined in [13]. However, such algorithms do not scale well
beyond English.

Regular Expression Matching Most database systems allow matching of regular expressions
using LIKE operator, but such matching does not scale beyond a single script.

In summary, while the databases are effective and efficient for monolingual data (i.e., within a
collation sequence), they do not currently support processing multilingual strings across languages
in any unified manner.
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