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ABSTRACT

In an increasingly multilingual world, it is critical that in-
formation management tools organically support the simul-
taneous use of multiple natural languages. An essential pre-
requisite for efficiently achieving this goal is that the under-
lying database engines must provide seamless matching of
attribute data across languages. We propose here a new SQL
operator, called SemEQUAL, that supports simple semantic
matching of multilingual attribute data. SemEQUAL lever-
ages standard linguistic resources, such as the WordNet tax-
onomic hierarchy, that are available in multiple languages.
We define this operator and outline its implementation us-
ing standard SQL:1999 features, but a performance evalu-
ation on a suite of commercial database systems indicates
unacceptably slow response times. However, by tuning the
schema and index choices to match typical linguistic fea-
tures, the performance is improved to a level commensurate
with online user interaction.

1. INTRODUCTION

In an increasingly multilingual digital world®, it is critical
that information management tools, such as web search en-
gines, e-Commerce portals and e-Governance applications,
support the simultaneous use of multiple natural languages.
An essential pre-requisite is that the underlying database
engines (typically relational), provide the same functionality
and efficiency for multi-lingual data as that associated with
processing unilingual data, for which they are well-known.
Unfortunately, as described below, the state-of-the-art falls
short of these requirements on several counts, motivating
our research on multi-lingual database systems.

From the efficiency perspective, we recently profiled in [18]
the performance of standard relational operators (e.g. Se-
lect, Join) applied on multilingual data and proposed effi-

I Two-thirds of current internet users are non-native English
speakers [23] and it is predicted that the majority of web-
data will be multilingual by 2010 [29].

cient storage formats to make the operators language-neutral.
Subsequently, from the functionality perspective, we intro-
duced a new SQL multilingual operator called LexEQUAL [19]
for phonetic matching of specific types of attribute data
across languages, and proposed techniques to optimize its
performance along the lines of those that are used in mono-
lingual world [13]. In this paper, we take the next logi-
cal step in supporting multilingual functionality, by propos-
ing SemEQUAL, a semantic operator for matching text at-
tribute data across languages based on meaning. For exam-
ple, to automatically match the English noun mathematics,
with mathématiques in French or %@ SLi (transliterated
as kanitham) in Tamil.

1.1 The SemEQUAL Operator

To determine semantic equivalence of word-forms across lan-
guages and to define the SemEQUAL operator, we take re-
course to WordNet [30], a standard linguistic resource that is
available in multiple languages and, very importantly from
our perspective, features inter-language semantic linkages.
After integrating WordNet with the database platform, two
alternatives arise with regard to the SemEQUAL implemen-
tation: a derived-operator approach, wherein SemEQUAL
is expressed in terms of standard SQL scripts, or a core-
operator implementation, where SemEQUAL is internally
visible to the database engine. The latter approach has its
obvious benefits in terms of improved efficiency, but requires
an involved and time-consuming software engineering exer-
cise, making it feasible only in the long-term. In contrast,
the derived-operator approach can be used immediately if
the performance can be made acceptably fast — we investi-
gate this possibility here.

Specifically, we first analyse the performance of SemEQUAL,
expressed using standard SQL:1999 features, in relational
database systems. A direct implementation on three com-
mercial database systems indicates that supporting multi-
lingual semantic processing is unacceptably slow. However,
by tuning the schema and access structures to match the
characteristics of WordNet, we are able to bring the response
times down to a few milliseconds, which we expect to be suf-
ficient for most applications. We emphasize that our focus
in this paper is to demonstrate the efficient implementation
of SemEQUAL using existing database technologies.

In short, we quantitatively demonstrate that multilingual se-
mantic matching may be implemented on today’s database
systems, using standard language features, achieving perfor-
mance levels commensurate with online user interaction.
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1.2 A Multilingual e-Commerce Example
Consider a hypothetical Books.com, with a sample multilin-
gual product catalog, as shown in Figure 1, where books in
different languages are featured.

Author Author_FN Title Price Category
Descartes René Les Méditations Metaphysiques €49.00 | Philosophie
Grm aaniarad | pFw Gers) INR 250 | #7 35 71
Adams Laurie S. Arte Di Rinascita Italiana €75.00 | AttiFini
Lebrun Francois L'Histoire De La France €19.95 | Histoire
Durant wWill/Ariel |History of Civilization $ 149.95] History

Eradl Ecisaics AT U @I INR 175 | 3frerr
Franklin Benjamin Un Américain Autobiographie € 25.00 | Autobiographie
Gilderhus Mark T. History and Historians $ 49.95 | Historiography
FTES Sursargren| 558w Gorgmar INR 250 | #w# i gl

Figure 1: A Multilingual Books.com

Currently, a query with (Category = ‘History’) selection con-
dition, would return only those books that have Category
as History in English, although the catalog also contains
history books in French, Hindi and Tamil. A multilingual
user may be better served, however, if all the history books
in all the languages (or more likely, in a set of languages
specified by her) are returned. A sample SQL query using
the proposed SemEQUAL operator and the corresponding
result set, as given in Figure 2, would therefore appear to
be desirable?.

SELECT Author,Title,Category FROM Books
WHERE Category SemEQUAL ‘History’
InLanguages {English, French, Tamil}

Author Title Category
Durant History of Civilization History
Lebrun L'Histoire De La France Histoire
Grp 25w Geord ELETL

Figure 2: Basic Semantic Selection

Further, the SemEQUAL operator may be generalized to re-
turn not just the tuples that are equivalent in meaning, but
also with respect to semantic relationships, such as general-
ization. For example, consider a variation of the operator,
specified as SemEQUAL,, where the user may specify re-
trieval of all History books, including those under the sub-
classifications of History, as shown in Figure 3. Note that
in addition to the original results, three additional tuples
are also reported in the output®.

In the following sections, we take the generalized operator —
SemEQUAL:, as the multilingual semantic matching opera-
tor, as will be discussed in Section 2.2.

As a final note, in this paper we focus only on multilingual
domain, though such an operator may be applicable in any
domain that has a well-specified taxonomic hierarchy.

2The third record in the result set is a Tamil book,
with (transliterated) category value Charitram, meaning
History.

3Both Historiography (the art and science of history mak-
ing) and Autobiography are considered specialized branches
of History. The last record in the result set is a Tamil
book, with (transliterated) category value as Suyacharitam,
meaning Autobiography.

SELECT Author,Title,Category FROM Books
WHERE Category SemEQUAL, ‘History’
InLanguages {English, French, Tamil}

Author Title Category
Durant History of Civilization History
Franklin uUn Américain Autobiographie Autobiographie
Gilderhus History and Historians Historiography
Lebrun L'Histoire De La France Histoire
Grap 2T BT S SB TLe
ST H B 55D G BT w17 B

Figure 3: Generalized Semantic Selection

1.3 Our Contributions

To summarize, our main contributions in this paper are:

e Motivating and formalizing the notion of multilingual
semantic equality at the granularity of database at-
tributes, based on the WordNet multilingual resource.

e Integration of WordNet with relational systems for query
processing and a derived-operator implementation of
SemEQUAL, using standard SQL features.

e Optimizing the performance of the SemEQUAL opera-
tor on commercial database systems, based on Word-
Net linguistic features, to a level that appears sufficient
for e-Commerce deployments.

1.4 Organization of the Paper

The remainder of this paper is organized as follows: Sec-
tion 2 details our definition for semantic matching operator
and its implementation. In Sections 3 and 4, we present our
experimental evaluation and the results, respectively. Sec-
tion 5 provides a survey of related research and Section 6
concludes the paper, highlighting our results and future re-
search avenues. Finally, a review of WordNet is provided
in Appendix — A (which may be skipped by an informed
reader).

2. MULTILINGUAL SEMANTIC
MATCHING

In this section, we specify the semantics of the SemEQUAL
operator and describe our strategy for implementing the
operator, in our derived-operator approach, using standard
SQL constructs.

2.1 Some Basic Definitions

Let the database contain tuples that include attributes that
are earmarked for semantic matching. Let D be the domain
with atomic values (text strings) from which the values of
attribute are taken. Let H be a well defined taxonomic hi-
erarchy (a collection of directed acyclic graphs) that define
is-a relationships among the atomic values of the domain D.
Given an atom z and a taxonomic hierarchy H, the transi-
tive closure of x in H is unique, and is denoted by 7Cx(z).
Based on the above, we provide the following definitions, to
express semantic matching in a domain.

Definition 1: Given a taxonomic hierarchy H in domain D
and two nodes A and B in D, we define A is-a B, iff A €
TCwn(B).



Definition 2: Given a taxonomic hierarchy H in domain D
and two sets of nodes A and B in D, we define A is-a B, iff
A C TCH(B).

Definition 3: Given a taxonomic hierarchy H in domain
D and two sets of nodes A and B in a domain D, we say A
is-possibly-a B, iff AN TCr(B) # ¢.

If the atomic values have unique semantics in the domain D
and taxonomical hierarchy H comprises only of trees then
definition 2 provides an unambiguous semantic match be-
tween the domain elements. When one or more of the above
conditions fail to hold, then the definition 3 provides a weaker
notion of equality?. In our implementation of SemEQUAL,
we use the weaker definition 3, as the linguistic atomic values
are not unique in their meaning.

2.2 Definition of SemEQUAL

In this section, we define and outline implementation of
Multilingual semantic matching using the SemEQUAL oper-
ator, leveraging on common linguistic resource (specifically,
WordNet) for mapping text strings to a set of canonical se-
mantic primitives. For the discussions in the rest of this
paper, familiarity with WordNet is assumed; we provide ba-
sics of WordNet in Appendix A, and refer interested read-
ers to [8, 30] for further details. For following the query
processing issues, it is suffice to understand that WordNet
contains a lexical matrix that maps a text string to a set
of canonical sementic primitives and a taxonomical hierar-
chy for all noun semantic primitives, modeled as a collection
of directed acyclic graphs. Further, efforts are underway to
link WordNets of different languages, by linking correspond-
ing semantic primitives.

Consider a canonical SemEQUAL query predicate®

{Attribute} SemEQUAL {Constant}
InLanguages L1, L2,...,Ln

Let L;, denote the language in which the Constant is speci-
fied, S7,, denote the set of synsets of Constant c in language
Lin, Szom denote the set of matching synsets of Sr,, in
target language Lout, and T'C(S7, ,) denote the transitive
closure of Szom in the WordNet of language Lou:. Then,
U, TC(S%,.,,) denotes the union of all synsets in the tran-
sitive closures of S7, , in the respective WordNet of the
target languages. Further, let the value of the Attribute,
in the database tuple currently under consideration, be de-
noted by data, its language by Ldata, and the set of synsets
of data w.r.t. Laata by Sry,,., -

With this notation, the SemEQUAL operator returns true
On]‘y if SLdata n(Uout TC(Szout)) # O'

The SemEQUAL operator has the following properties:

“While the definition 2 provides strong semantic matches
(such as, Floppy Disk Drive is a Computer Peripheral), the
definition 3 provides only for possible semantic equality un-
der some specific interpretations (such as, Mouse could pos-
sibly be a Computer Peripheral).

®We consider only multilingual selection queries here — the
extensions for join are elaborated in a forthcoming technical
report.

Property 1: SemEQUAL is not reflexive.

Property 2: SemEQUAL commutes with selection, pro-
jection or join operators. It also commutes with aggregate
operators, as long as the aggregation is defined on the se-
mantic attribute that is being compared.

The property 1 follows from the asymmetry of the operator
and the property 2 follows from the fact that the operator
does not modify the record, but merely acts as a filter. These
properties may be exploited by the optimizer to select an
efficient query plan. Due to the lack of space, the details are
deferred to a forthcoming technical report.

The SemEQUAL operator may be implemented similar to
the popular equijoin operator, though the operator imple-
mentation involves two distinct steps: computation of the
transitive closure of constant C and testing if any of the
values of Sz, ., is a member of the set |J ., TC(S%,,,)-
Computing the transitive closure of the constant C in a rela-
tion system is expensive, but may be implemented using the
standard SQL:1999 recursive SQL constructs or tree traver-
sal algorithms. After computing the transitive closure of
the constant C the operator would cycle through the inner
table (the LHS operand), outputting all records for which
SemEQUAL returns a value true. This second step may be
implemented using well-known techniques, such as, building
a hash-tables for elements of the closure set and the set-
membership of a value may be found in one hash probe.

2.3 Implementing Multilingual SemEQUAL

Our strategy for matching multilingual attributes hinges on
converting the query string and data strings to sets of Word-
Net synsets in a canonical form, using appropriate linguistic
resources (WordNet, in our case) and processing the set-

membership predicate efficiently.
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Figure 4: Framework for Semantic Matching

For the first step, the framework we use for conversion is
shown in Figure 4. The text strings stored in the databases
(represented by the lower half of the figure) are converted
into synsets, using WordNet lexical matrix function. Though
the database attributes can vary from simple attributes to
full documents, we consider only matching of simple multi-
lingual attributes storing noun word-forms.

Once transformed to synsets, the semantic primitives may
be augmented with specializations, by traversing the taxo-



nomical hierarchies of WordNet that are stored in the database.

In addition to the intra-language (Is-A) relationships avail-

able to specialize within a language, the inter-language (Inter
-Language-Index) relationships are also available in the in-

terlinked WordNets®, to move to taxonomic hierarchies of

target languages. Thus the rich semantic interrelationships

between the synsets may be used for computing the tran-

sitive closure of a given synset, spread over a set of user-

specified target languages.

2.4 Semantic Matching Function
The SemEQUAL function to match a pair of multilingual
strings is outlined in Figure 5.

SemEQUAL (Stringpata, StringQuery, 7r)

Input: Strings Stringpata, Stringquery
Set of Target Languages 7

QOutput: TRUE or FALSE
[Optionall Gloss of Matched Synset

1. (Lp,Lg) <« LangOf (Stringpata, StringQuery);
(Wp Wg) «— WordNetOf (Lp,Lg);
3. Sp « Synset of Stringpate in Who;
So — Synset of Stringquery in Wo;
4. TCgo « TransitiveClosure(Sg, 7¢);
5. if 7Co N Sp is not empty then
return TRUE else return FALSE;
6. [Opt.] return Gloss of the Matched Synset;

o

TransitiveClosure (S, 7¢)
Input: String S, Target Language Set 7.
Output: The specializations of S

Ls « Language of String S;
W, < WordNet of Language Ls;
S «— Sc¢ « Synsets of S in Wr; Sn «— ¢;
repeat until no change in S:
for every element s in S¢
Sy« Sn U hypernyms of s
U Synsets linked to s through
InterLangIndex to L ¢ 7. that are
not yet traversed to;
7. S — SUSN; Sc «— Sn; S — ¢
return S

A e

o

Figure 5: Semantic Matching Algorithm

The SemEQUAL function takes as input, strings Stringpata
and StringqQuery. The transitive closures are computed in
the taxonomic network obtained from crosslinked WordNet
hierarchies, using the TransitiveClosure function. Once the
transitive closure is computed, set-processing routines are

5Several efforts are underway to link up WordNet taxonomic
hierarchies of different languages. The Furopean WordNet
(EWN) [6] — a major initiative that includes all major Eu-
ropean languages, keeps the basic taxonomic hierarchies the
same, and has defined links to map synsets in one lan-
guage to those in the other. Similarly, the Indo-WordNet
(IWN) [17, 3] is being developed in a common framework,
with a stated goal of sharing the same taxonomic structure
in all 15 of the official Indian languages, and with additional
links to the English WordNet.

used for computing intersections. The output is TRUE if the
specified matching condition is met, else FALSE. Since the
query string, StringQuery, may match on any one of the
several synsets (which are possible semantics of the same
word form), SemEQUAL may be made optionally to return
the Gloss of the synset on which the Stringguery is matched.

The TransitiveClosure function computes the transitive clo-
sure of a given string, by computing all the sub-classes of
a synset node corresponding to the input string. The sub-
classes are computed using Is-A relationships within a lan-
guage and using Inter-Language-Index across languages.
In the implementation, only the WordNets corresponding to
the target languages specified in the query are traversed.”
Further, once a traversal to a target language (in line 6 of
TransitiveClosure algorithm) has been made, back traversals
to WordNets of any other languages are not permitted, in
order to avoid unnecessary repetitions. Due to such restric-
tions, the algorithm scales linearly with the number of Word-
Nets added to the query®.

Note that a full transitive closure computation may not be
essential for testing non-empty intersection of sets of synsets
corresponding to the input multilingual strings. Specifically,
during the computation of the closure of 7Cg (in Line 6 of
TransitiveClosure algorithm), as soon as a node that is in Sp
is produced in the closure, the matching may be stopped,
outputting a TRUE. However, if a large table of values is
checked for semantic equality with a given string Stringpata,
then apriori computing the full closure of Stringp.ta may
help to reduce the overall response time since it is computed
only once for the query.

A related issue here is that we match the data string against
the the union of the transitive closures of the synsets of the
query string in all target languages. This is indeed waste-
ful since, at least for text attributes, potential matches for
a data string in a particular language can only be with the
synsets in that language. The problem, however, is that cur-
rent technology does not easily support automatic language
identification for attribute data, and therefore, the matching
has to be perforce done in the indicated manner.

2.5 Following through with an Example

We present a simple derived-operator implementation method-

ology for matching multilingual data to implement the SemEQUAL

function. The linguistic resources (WordNets in multiple
languages) are first stored in the database tables. Then,
SQL:1999 recursive constructs are used to compute the tran-
sitive closure of the synsets corresponding to the data string.
The set membership of the query string in the transitive clo-
sure of the data string is specified using the SQL IN predi-
cate.

"To specify all languages, a wildcard * is used in the
InLanguages clause, in which case all installed WordNets
are utilized.

8While it is possible to compute the fiz-point of all cross-
lingual traversals, the complexity of the algorithm becomes
extremely high; in addition, the result sets could become
more fuzzy due to the unevenness between the taxonomic
hierarchies of different languages.



For example, the user query to retrieve all History books
including its subclassifications, shown below,

SELECT Author, Title from Books
WHERE Category SemEQUAL ALL ‘History’
InLanguages {English, French, Tamil}

is mapped to the query:

WITH Descendants (child, lang)
(SELECT W,.sub, Wc.lang
FROM WordNet W,
WHERE W, .super = ‘History’
AND ( W¢.lang = ‘English’
OR W¢.lang = ‘French’
OR W;.lang = ‘Tamil’)
UNION ALL
SELECT W, .sub, W.lang
FROM WordNet W, , Descendants Dec
WHERE W, .parent = Dec.child
AND W, .lang = Dec.lang)
SELECT Author, Title from Books
WHERE Category IN
(SELECT child FROM Descendants)

The user query effectively translates to the following SQL
query, where the IN clause has been expanded to indicate
the computed transitive closure.

SELECT Author, Title from Books

WHERE Category IN {
‘History’, ‘Autobiography’, ‘Memoir’,...
‘Histoire’, ‘Autobiographie’, ‘Mémoire’,... }
CFN GG JCswailgto 3

Here, the values Autobiography, Memoir, etc., are a few
of the 76 subclasses of History, in English WordNet, and

. . P -y Naid .
Autobiographie, Mémoire, #7237  FUFTILL efc., are equiv-

alent synsets in the French and Tamil WordNets. Note that
any conjunction (disjunction, respectively) of SemEQUAL
predicates can be handled by computing the intersection
(union, respectively) of closures for the IN predicate.

We would like to emphasize that the size of the closure thus
computed depends on the query string and the characteris-
tics of the WordNet taxonomic hierarchy. The problem of
computation of closures in relational systems has been ana-
lyzed in [15, 16], where the authors show poor performance
of the relational database systems in computing closures.
Though a variety of sophisticated algorithms for transitive
closure have since been presented in the literature (e.g. [1]),
the current implementations of transitive closure algorithms
in relational database systems are still recognized to be gen-
erally slow. Once computed, the closure set is passed on to
the IN predicate, which is well optimized in RDBMS. This
operator contributes very little to the overall processing time
of the SemEQUAL query (less than 1% of the query run time
in our experiments). Thus, the overall performance of the
SemEQUAL query primarily depends on the speed of com-
puting the recursive SQL operator.

3. EXPERIMENTAL STUDY

In this section, we describe our experimental setup to mea-
sure the performance of the SemEQUAL operator, on a suite
of commercial database systems.

3.1 System Setup

For the performance experiments, a standard Pentium IV
workstation with 512 MB memory running Windows N'T op-
erating system, was setup. Three commercial database sys-
tems, IBM DB2 Universal Server (version 7.1.0), Microsoft
SQL Server (version 8.00.194), and Oracle 9i (version 9.0.1),
were installed with default configurations®. Of these three,
DB2 and Oracle support recursive SQL natively, while the
functionality is simulated in SQL Server, using scripts. In
subsequent sections, the database platforms are identified
randomly as System A, System B and System C, to protect
the identities of the systems.

3.2 WordNet Storage

The WordNet data was loaded in the database systems using
the simple hierarchy table method (with (Parent, Child)
relationships) for the storage of the WordNet taxonomic re-
lationships. We calculated the storage space requirements
of each WordNet to be about 2.5 MB, based on the profile of
English Wordnet (shown in Table 1) and assuming that the
WordNet of each language will be similar to English Word-
Net when fully developed. Storing index structures takes
about 1.5 MB of additional storage space, raising the to-
tal to 4 MB of storage space for each language. Further, it
should be noted that the WordNet for a language based on
non-Latin scripts has to be stored in Unicode [27], essentially
doubling the storage requirement!'®. Therefore, we estimate
that, in general, any WordNet can be accommodated within
10 MB of disk space.

3.2.1 Profile of WordNets

The entire set of noun taxonomic hierarchies of WordNet
(Version 1.5), totaling about 110,000 word forms, 80,000
word senses and about 140,000 relationships between them,
was loaded on the database systems. In addition, a sample
of Euro WordNet was downloaded and stored. The con-
tent statistics associated with the Euro-WordNet and Indo-
WordNet, were obtained and used for analysis.

Though the WordNets of different languages are at different
stages of development, The available WordNet data were an-
alyzed to profile the structural and storage characteristics of
each. The salient statistics are given in Table 1 for the re-
spective WordNets. Clearly, the English WordNet is the
most developed, followed by the European WordNets, and
finally the Hindi WordNet. As can be seen in Table 1, the
statistics of the existing hierarchies (such as, Average Fan-
out, Average Word-Forms per Synset, etc.) indicate a very
close match between English and European WordNets, aris-
ing out of similar graph characteristics among these Word-
Net hierarchies. The Hindi WordNet has an average fan-out
statistic that is nearly double that of English, perhaps due

9The public-domain database systems, MySQL and Post-
greSQL, were not considered since they do not support tran-
sitive closure computation.

0Though compression techniques [18] may be used to reduce
the space usage, for this study, we used only basic Unicode.



| Characteristic || English | French | German | Spanish | Hindi
Word Forms (Words) 114,648 | 32,809 20,453 50,526 22,522
Word Sense (Synsets) 80,000 22,745 15,132 23,378 7,368
Average Fan-out 2.236 2.176 2.301 2.360 3.889
Average Word Forms per Synset 1.985 1.442 1.352 2.162 2.286
Equivalence Relations per Synset(to English Synsets) 1.000 0.999 1.080 0.908 Not Available

Table 1: Statistical Profile of WordNets [3, 28, 7]

to clustering of word-senses on some parent nodes during
the development period.

Another interesting fact is the Fquivalence Relationships per
synset to English, in Euro WordNets; there exists a near
identity relationship between number of synsets of a spe-
cific language and the number of equivalence relationships,
indicating near-identical sets of synsets in those WordNets,
with respect to English WordNet. Such statistics confirm
our intuition that the development of WordNets closely fol-
low the English WordNet, structurally and semantically. In
addition, since both Euro-WordNet and Indo-WordNet have
conformance to English WordNet as their stated design goal,
it is reasonable to expect their structures to be similar to
that of English WordNet, when fully developed.

3.2.2  Simulating the Crosslinked-WordNets

To profile the performance of SemEQUAL working with fully
developed linguistic resources, we simulated the crosslinking
between WordNets by assuming that every synset in a non-
English language is connected to a corresponding synset in
English. Supporting such a methodology is the near identi-
cal taxonomic hierarchies among Euro WordNets and their
near identity relationship with taxonomic hierarchy of En-
glish WordNet, as mentioned above. Thus, the English
WordNet is replicated in Unicode (to model the Unicode rep-
resentation of non-Latin-script data) and a inter-language
-index is created between every pair of corresponding synsets
between the original English WordNet and its Unicode replica.
The resulting taxonomic hierarchy is used in the following
experiments.

3.3 Queries Performed

Since the closure computation takes more than 99% of the
runtime of the SemEQUAL query, we used queries that com-
pute the transitive closures on the above taxonomic hierar-
chy, as the base query for performance measurements. A
SQL:1999 transitive closure query (as shown in Section 2.5)
was used, with different query strings representing closures
of different sizes in the taxonomic hierarchy.

3.4 Metrics Measured

In all the experiments, we measured the wall-clock runtime
of a given query on the given data set. The queries were run
in an SQL or a programming language environment (C or
PL/SQL), as appropriate. The test machine was quiesced
except for the database system under study and the queries
were run cold. The average runtime from several identical
runs was taken as the runtime of a specific query (the graphs
show mean values with relative half-widths about the mean
of less than 5% at the 90% confidence interval).

4. RESULTS AND ANALYSIS

In this section, we focus on the performance of the differ-
ent commercial database systems in computing the closure.
We show the magnitude of inefficiencies and subsequently
outline two performance optimization techniques.

4.1 Closure Computation — Baseline

In the first suite of experiments, the interlinked WordNet
taxonomic hierarchy (in Unicode format to simulate multi-
lingual environments) was stored using the hierarchy table
method, as mentioned previously in Section 3.2. The query
strings for the experiment were chosen such that they have
closures of varying sizes, from very small to nearly half of
the noun forms. Such selection provides a sufficiently wide
range for calibrating the performance of the closure compu-
tation. Sample closure sizes (that is, the cardinality of the
result set) for selected query strings are given in Table 2.

Semantic Primes || Size of Closure |

Time 155
Shape 585
Process 2041
Fauna 4126
Knowledge 5340

Table 2: Closure Size for Semantic Primes

The SQL-Baseline performance (in seconds) for the basic
closure computation is given in Figure 6 (the graph is shown
in log-log scale). The performance of the query, both without
and with indexes on the attributes are provided. For those
experiments with index, B-Tree indexes on the parent and
child attributes were created. As can be observed here, the
closure computations for all the systems take in the order
of tens to hundreds of seconds without index and between
a few hundredths of a second to a few seconds even with
index, making the performance unsuitable for e-Commerce
deployments, if the size of the closure exceeds a few hundred
items. We observed that the differences in run-times in dif-
ferent database systems are primarily due to differences in
the implementation of transitive closure algorithms. For ex-
ample, two systems used breadth-first-search for expanding
the result set, while the third used depth-first-search. One
of the systems detected cycles during traversal and exited
gracefully, while the other two ran indefinitely.

While the slow performance is expected due to the repeated
scan of the table for every element in the in-progress closure
set, we found that the query plans always used nested-loops
join, irrespective of the size or profile of the data (such as,
size of the table containing the taxonomical hierarchy, ex-
pected size of the result set, etc.), or user-provided optimizer
hints. While using indexes, in all the systems, the query
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Figure 6: Performance of Computing Closure

execution plans indicated that the index on the taxonomic
table was made use of for scanning the outer (taxonomic)
table, but no optimizations (such as, sorting, maintaining
incremental views etc.) were used for efficient scanning of
the inner (temporary) table.

Thus, we observe that the standard storage and indexing
of WordNet in the database system is not sufficient to sup-
port the performance needed for online deployments. In the
following sections, we outline two optimizations that im-
prove the closure computation performance by another 1
to 2 orders of magnitude. We hasten to add that though
the optimizations are not novel, our objective is to demon-
strate that SemEQUAL may be efficiently implemented with
standard SQL features on currently available commercial
database systems. In the subsequent experiments, we focus
on only System B, which exhibited the worst performance
in the experiments so far.

4.2 Optimization #1: Precomputed Closure
We used the following technique for our first optimization
— pre-computing and storing the closures of every element
in WordNet explicitly, as the immediate children of corre-
sponding element, so that the closures could be found with
a simple linear scan of the enhanced table. However, any
improvement in performance is achieved with a significant
overhead in storage space — for English WordNet hierarchy,
the storage of the taxonomic tables are increased by about 50
times, to roughly 120 MB, to store the precomputed closure
with each element. We ran the transitive closure query on
the resulting data set, and the performance is presented in
Figure 7 (the graph is shown in log-log scale). We observe
here an improvement in performance, to about 4 seconds
for English WordNet, and about 7 seconds for the Unicode
WordNet. Though the runtimes are now reduced by two
orders of magnitude from the Baseline, such run times are
still unacceptable for on-line interactions. Understandably,
the closure computation takes approximately the same time
for all sizes of the closure, since they all involve only a single
scan of the table.

Further, we built an index on the parent attribute on the
pre-computed table with the expectation that the perfor-
mance would improve tremendously, since with one index
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Figure 7: Performance with Precomputation

scan, the closure can be computed. The B-Tree index built
on the parent attribute took a further 45 MB of storage
space. When the performance experiments were repeated
with the index (also shown in Figure 7), as expected, the
runtime of closure computation, for both the English and
the Unicode WordNets, were reduced by 3 orders of mag-
nitude, to the order of milliseconds for Latin-script based
languages and to just under one second for Unicode based
languages.

In summary, while there is tremendous improvement in the
performance, these gains come at an enormous storage cost.
Also, the runtimes are still not sufficiently small for Unicode
based WordNets.

4.3 Optimization #2: Reorganizing Schema
In this section, we outline an alternative optimization strat-
egy for improving the performance of closure computation,
without the large space overheads of pre-computed closures.
Our strategy is based on leveraging the distribution of synsets
in the WordNet hierarchy to reduce the calls to the expen-
sive recursive SQL statements.

We first computed the fan-out of subclasses for every parent
node in English WordNet, as shown in Figure 8 (the graph
is drawn to a log-log scale). The plot of the fan-out exhibits
a characteristic power-law distribution with an exponent of
—2.75. Further analysis indicate that only a small number
of synsets (less than 10%) have a large number of children
(more than 16), with the large majority having only a few
children®!.

The above distribution suggests a new, more efficient or-
ganization of WordNet hierarchy, where a certain number
of sub-classes may be in-lined. We chose to inline upto 16
subclasses of a given synset in the parent table, reducing
the number of records in the taxonomic table to about a

Tt is interesting to observe that the plot of the fan-outs
in Hindi WordNet (also shown in Figure 8) exhibits a very
similar profile to English WordNet, differing only in scale.
Such similarity across widely different languages suggests
the applicability of power-laws in linguistic domains. Fur-
ther, we expect similar distributions for the other European
languages as well.
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tenth of the original table. All synsets with greater than 16
subclasses are left in the original table. The closure compu-
tation algorithm is modified to access the inlined table (for
all classes with less than 16 subclasses), or the original table
(otherwise). The overall size of the table (in terms of num-
ber of tuples) reduces by about 9o%, though the storage size
remains the same as the Baseline'?. However, the children of
a given synset may be found with a few accesses, with a clus-
tered index on the table, as against a table scan in Baseline.
With the new WordNet storage organization and query exe-
cution semantics, we repeated the performance experiments
on the reorganized tables, in two sets — first without an in-
dex on the hierarchy table, and next, with a clustered index
on the parent synset attribute.
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Figure 9: Performance with Reorganization

The performance of both sets of queries are shown in Fig-
ure 9 (the graph is drawn to a log-log scale). The perfor-
mance of Baseline is speeded up by 2 orders of magnitude
on plain tables and by 3 orders of magnitude on indexed
tables. Specifically, we find that the time to compute the
closure with index on re-organized tables is in the order
of a few milliseconds both for the Latin-based and Unicode
WordNets for closures of size upto 2, 500, well suited for any
e-Commerce deployments.

More significantly, the storage requirements do not go up
with the reorganized schema, as the same contents are re-
organized in different schema format, but not replicated or

12The required storage is about 4 to 5 MB for ASCII-based
languages and about 10 MB for Unicode-based languages.

deleted. Though there are slight overheads in accessing two
tables, these are insignificant compared with computing clo-
sures on a large original table. Thus, we show that closures
can be computed efficiently on WordNet taxonomic hierar-
chies, without excessive space tradeoffs.

4.4 The Typical Closure Size

In this section, we establish the typical size of the closure,
to justify the viability of the above performance figures. We
selected a combination of the top-100 most used nouns in
English [2] and the top-50 nouns that are used in popular
web-search engines [31] and computed the size of their clo-
sures in English WordNet. The average size of closures of
such noun forms provide a reasonable estimate on a typi-
cal closure size that would be computed for a user semantic
query. Due to space limitations, we provide only a partial
list of the query nouns and their closures sizes in Table 3.

| Common Query Nouns || Size of Closure |

Baby, Children, Kids 107
Business, Company, Organization 488
FEducation, Training 969
Food, Drink 2,570
Sex 78
Music, Song 548
Travel, Holiday 404
| Awverage Closure Size || 625

Table 3: Closure Size for Common Query Nouns

As can be seen, the average closure size for the most used
noun forms is about 625. Hence, it is realistic to use the
computation of a closure of size about 2,000, assuming that
in the multilingual world, users would want answers to be
computed in at most 3 or 4 languages. We observe that
for computing a closure of size ~ 2,000, it takes about 100
seconds (without index) and upto 5 seconds (with index) for
baseline performance. With the additional optimizations,
namely pre-computed closures and re-organized tables, the
performance of the closure computation in the same range
is brought down to a few milliseconds.

4.5 Scaling of Performance with Languages
In this section, we explore how the performance degrades
with the number of languages being considered for query
processing. In the following experiments, we used System
B for computing the transitive closure of a node that has a
closure of size of ~ 600. The interlinked WordNet hierar-
chy of multiple languages is simulated by replicating English
WordNet for each language with inter-language-indexes
between each corresponding synsets.

The runtimes for the typical query under different method-
ologies are given in Figure 10. While the baseline perfor-
mance increases quadratically with number of languages, a
near-linear increase is observed in both pre-computed clo-
sure and re-organized tables methodologies. Further, even
with about 8 languages, the runtimes for the typical query
remained within a few tens of milliseconds.

Thus, we show that a new semantic multilingual matching
functionality may be added to the relational database sys-
tems by integrating standard linguistic resources, and lever-
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aging only on existing SQL features. Further, we show the
performance of such matching may be optimized to support
online-user interactions.

5. RELATED RESEARCH

To the best of our knowledge, our approach to multilingual
semantic matching of attribute data — by integrating the
linguistic ontological resources with the database engine and
fine tuning it for OLTP type environments, has not been
discussed, previously in the literature.

Existing Support in Relational Databases

Since no semantic processing requirements are specified in
the SQL standards, each vendor has taken a different ap-
proach based on a suite of NLP techniques. While these
techniques are effective with large documents, they are not
well-suited for attribute granularity semantic processing, or
for OLTP environments. The SQL LIKE operator relies on a
restricted form of regular expression matching, and requires
the text being matched to be from a single script, making it
unsuitable in multilingual (or semantic) world.

Graph Database Systems

While customized graph database platforms have been de-
veloped for specific application domains [14, 21], they are yet
to be adopted as general purpose solutions. Our focus is to
define a general semantic operator and profile and optimize
its performance in the relational systems.

Information Retrieval Research

There are vast amounts of literature in the Information
Research community in the areas of Knowledge-based and
Crosslingual information retrieval. The techniques employed
are varied, ranging from syntactic and morphological anal-
ysis [9], Machine Translation [5], statistical techniques [10],
and Latent Semantic Indexing [4] for semantic querying in
a single language. Further, paired dictionaries, thesauri and
statistical mapping techniques are used for handling cross-
language querying. We refer to the Multilingual Information
Retrieval Track of the ACM SIGIR conference for a survey
of current techniques. However, this research focuses on
specialized NLP techniques to work on a large corpora of
text and is not well suited for attribute granularity data.
The closest technique to ours uses paired thesauri [25], but
does not provide generalization techniques. Though Word-
Net based approach was used for semantic information re-

trieval in [24], and for crosslingual information retrieval in
[11], the emphasis of these papers has been on quality of the
results and not performance. In contrast, we focus on query
processing on relational systems in an OLTP environment.

Semantic Web

Relating to the semantic processing of data, the Semantic
Web [26] proposed and promoted by W3C Consortium, ex-
tends the current web data by annotating it with semantic
metadata information. Such annotations are more appropri-
ate for web domain, and not for database query processing.
However, the ontological hierarchies captured in such a for-
malism may be used in our methodology.

6. CONCLUSIONS

Given that the global deployment of e-Commerce applica-
tions and tools need support for seamless multilingual text
data processing based on their semantics, we proposed a new
SQL operator — SemEQUAL, intended for matching multi-
lingual text attribute data based on their meanings. Our
proposal outlines a light-weight, yet robust approach, for
implementing this feature by adopting and integrating the
WordNet linguistic resource in the database system. Lever-
aging the rich taxonomic hierarchies in WordNets and cross-
linking between them, multilingual text attribute data may
be matched, by transforming them to a canonical semantic
form. As a side effect, such a methodology provides a re-
peatable and consistent results set for a given data set across
different database systems.

We outlined a derived-operator implementation for SemEQUAL.
Our experiments with WordNet on three commercial database
systems, confirmed the utility of the SemEQUAL operator,
but underscored the inefficiencies in computing transitive
closure, an essential component for semantic matching. The
runtimes are in the order of tens of seconds, unsuitable for
any practical deployments. By tuning the storage and ac-
cess structures to match the characteristics of resources in
the linguistic domain, we speeded up the closure computa-
tion by 2 to 3 orders of magnitude — to a few milliseconds —
making the operator viable for supporting user online query
processing. Thus, we show the viability of such an operator
to support semantic matching. In the long-term, we expect
a core-operator implementation would exhibit even further
performance improvements.
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8. APPENDIX - A: WORDNET

WordNet [30] is a linguistic reference system, organized based
on the meanings and semantic relationships. We provide a
brief overview in this section and refer the interested reader
to [8, 30] for further details.

8.1 Word Form and Word Sense

A word may be thought of as a lexicalized concept; simply,
it is the written form of a mental concept that may be an
object, action, description, relationship, etc. Formally, it is
referred to as a Word-form. The concept that it stands for is
referred to as Word-sense, or in WordNet parlance, Synset.
The defining philosophy in the design of WordNet is that
a synset is sufficient to identify a concept for the user. A
short description, similar to the dictionary meaning, called
the Gloss is provided with synsets, for human understand-
ing. Two words are said to be synonymous, or semantically
the same, if they have the same synset and hence map to the
same concept. WordNet organizes all relationships between
the concepts of a language as a semantic network between
synsets. A lexical matrix that maps word forms to word
senses forms the basis for mapping a word-form to a synset.
For example, the word-form mouse corresponds to several
different synsets, two of which are {rodent, a gnawing ani-
mal} and {computer peripheral, an electronic device}.

The synsets are divided into five distinct categories — nouns,
verbs, adjectives, adverbs and functional words, with each of
the groups giving rise to different types of semantic rela-
tionships between the synsets. We explore below the Nouns
category, as about a fifth of normal text corpora and majority
of query strings are nouni-form words [22].

8.2 Nouns

The nouns in English WordNet are grouped under approx-
imately twenty-five distinct Semantic Primes [8], covering
distinct conceptual domains, such as Animal, Artifact, etc.
Under each of the semantic primes, the nouns are orga-
nized in a taxonomic hierarchy, as shown in Figure 11, with
Hyponyms links signifying the is-a relationships and the
reverse Hypernyms signifying the has-sub-class relation-
ships. The is-a relationships define a semantic taxonomic
hierarchy that is leveraged for matching on semantics, in our
strategy. Additionally, a part-of hierarchy is also interwo-
ven into the above taxonomic hierarchy. The specializations
of a given noun are the synsets that occur in the transitive
closure — that is, those nodes reachable in the taxonomic
hierarchy from the node corresponding to the synset of the
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Figure 11: Sample WordNet Noun Hierarchy



