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Abstract

A “plan diagram” is a pictorial enumeration of the executan choices of a database query
optimizer over the relational selectivity space. We hawenghrecently that, for industrial-strength
database engines, these diagrams are often remarkablyecoamul dense, with a large number of
plans covering the space. However, they can often be redoamdich simpler pictures, featuring
significantly fewer plans, without materially affectingetiguery processing quality. Plan reduc-
tion has useful implications for the design and usage ofygoetimizers, including quantifying
redundancy in the plan search space, enhancing usealbifigrametric query optimization, iden-
tifying error-resistant and least-expected-cost plang, minimizing the overheads of multi-plan
approaches.

We investigate here the plan reduction issue from the@lettatistical and empirical perspec-
tives. Our analysis shows that optimal plan reductiontwaminimizing the number of plans, is an
NP-hard problem in general, and remains so even for a sta@ggrained variant. We then present
a greedy reduction algorithm with tight and optimal perfarmoe guarantees, whose complexity
scales linearly with the number of plans in the diagram foivargresolution. Next, we devise fast
estimators for locating the best tradeoff between the ri@ui plan cardinality and the impact on
query processing quality. Finally, extensive experimeoawith a suite of multi-dimensional TPC-
H and TPC-DS based query templates on industrial-strengimizers demonstrates that complex
plan diagrams easily reduce to “anorexic” (small absolutelper of plans) levels incurring only
marginal increases in the estimated query processing. costs



1 Introduction

Modern database systems usguary optimizeto identify the most efficient strategy to execute declar-
ative SQL queries. The efficiency of the strategies, call@dris”, is usually costed in terms of the
estimated query response time. Optimization is a mandabaicise since the difference between the
cost of the best plan and a random choice could be in ordersaghitude [25]. The role of query
optimizers has become especially critical in recent times td the high degree of query complexity
characterizing current decision-support applicatioagx@mplified by the TPC-H benchmark [26], and
its recent incarnation, TPC-DS [27].

Plan Diagrams

For a query on a given database and system configurationptimirer’s plan choice is primarily a
function of theselectivitief the base relations participating in the query — that sgigtimated number
of rows of each relation relevant to producing the final reslil a recent paper [19], we introduced
the concept of a “plan diagram” to denote a color-coded pait@numeration of the execution plan
choices of a database query optimizer for a parameterizexy g@mplate over the relational selectivity
space. For example, consider QT8, the parameterized 2-fy tpraplate shown in Figure 1, based on
Query 8 of the TPC-H benchmark, with selectivity variationsghesuPPLIERaNdLINEITEM relations
through thes_acctbal :varies andl_ extendedprice :varies predicates, respectively. The associated
plan diagram for QT8 is shown in Figure 2(a), produced with Biicasso query optimizer visualizer
tool [17] on a popular commercial database endine.

select ayear, sum(case when nation = 'BRAZIL then volume else 0 érsdim(volume)

from (select YEAR(ocorderdate) as_gear, Lextendedprice * (1 -_Hiscount) as volume, n2.name as
nation

from part, supplier, lineitem, orders, customer, nationnmetion n2, region

where ppartkey = Lpartkey and suppkey = Isuppkey and_brderkey = aorderkey and austkey
c_custkey and mationkey = nl.mationkey and nl.megionkey = rregionkey and sationkey =
n2.nnationkey and_.name =’AMERICA’ and ptype ='ECONOMY ANODIZED STEEL
ands_acctbal :variesand|_extendedprice :varies

) as allLnations
group by ayear

order by ayear

Figure 1:Example Query Template: QT8

In Figure 2(a), the X and Y axes determine the percentagetsales of the suppPLIER and
LINEITEM relations, respectively, and each color-coded regionesepts that a particular plan has

'Plan diagrams can be computationally expensive to produicgLich investments are likely to be acceptable for canned
query templates, like those found in Web applications.
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Figure 2:Sample Plan and Reduced Plan Diagrams (QT8)

been determined by the optimizer to be the optimal choicéan éntire region. We find that a set of
89 different optimal plans, P1 through P89, cover the ers#lectivity space. The value associated
with each plan in the legend indicates the percentage aexrage of that plan in the diagram — P1, for
example, covers about 22% of the space, whereas P89 is cimosely 0.001% of the space.

[Note to Readers: We request the readers to view the planatagdirectly from the color PDF file, rather than
from a print copy since the grayscale version may not clegagyster the various featurgs.

Anorexic Plan Diagrams

As is evident from Figure 2(a), plan diagrams can be extrgowhplex and dense, with a large number
of plans covering the space — several such instances sgaamagpresentative set of query templates
based on the TPC-H benchmark, over a suite of commerciahgars, are available at [17]. However,
we had also shown in [19] that these dense diagrams couldatjypbe “reduced” to much simpler
pictures featuring significantly fewer plangithout adversely affecting the query processing quality

For example, if we were willing to tolerate a minor cost irage of at most 10% for any query
point in the diagram relative to its original (optimizeriesated) cost, Figure 2(a) could be reduced to
that shown in Figure 2(b), where only 7 plans remain — thamisst of the original plans have been
“completely swallowed” by their siblings, leading to a higheduced plan cardinality. Further, note
that a 10% increase, apart from being small in absolute teisredso well within the bounds of the
inherenterror that characterizes the estimation process of modarmizers [14, 20, 24]. The graph
of the reduced diagram’s plan cardinality as a function efabst increase threshold for this example
is shown in Figure 3.

In general, our experience over a wide spectrum of densediamnams ranging from tens to hun-
dreds of plans, across the optimizer suite, has been that &ncoease threshold ohly twenty percent
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Figure 3: Plan Cardinality vs Cost Threshold

is amply sufficient to bring down the number of plans in thelfiealuced picture tavithin ten In
short, that plan diagrams can usually be made “anorexicleaktaining acceptable query processing
performance.

Further, as we will show in detail later in this report, it sgsible to achieve this reduction efficiently
since we limit our attention to only the set of plans appeapnmmthe original plan diagram, and do not
revisit the exponentially large search space of plan atares from which the optimizer makes these
choices.

We hasten to add that while our focus is primarily on sel@gtivased parameterization in this report,
the above observations on the reduction behavior also haédfor parameterization on threemory
made available to the database engine for query processikgy factor impacting optimizer plan
choices [5].

Contributions

We consider here the problem of reducing plan diagrams, ftweoretical, statistical and empirical
perspectives. We first show that finding the optimal (w.r.inimizing the plan cardinality) reduced
plan diagram is NP-Hard through a reduction from Set Coweis flesult motivates the design of Cost-
Greedy, a greedy algorithm whose complexityigm), wheren is the number of plans and is the
number of query points in the diagraim < m). Hence, for a given picture resolution, CostGreedy'’s
performance scaldsmearly with the number of plans in the diagram, making it much mofiieht
than theO(m?) reduction algorithm of [19]. Further, from the reductionatjty perspective, Cost-
Greedy provides a tight performance guarante®@h m), which cannot be improved upon by any
alternative deterministic algorithm.

We also consider a storage-constrained variant of the pldunction problem and find that it retains
the hardness of the general problem. On the positive sideever, we provide ThresholdGreedy, a
greedy algorithm that delivers a performance guarant®@8fw.r.t. the optimal.

Using extremely coarse characterizations of the costilligions of the optimal plans, we develop
fast but effective estimators for determining the expeatgaber of plans retained for a given threshold.
These estimators can also be used to predict the locatidredfdst possible tradeoff (i.e. the “knee”)
between the plan cardinality reduction and the cost inerga®shold.

Last, through an experimental analysis on the plan diagfmoduced by industrial strength op-
timizers with TPC-H and TPC-DS based multi-dimensionalrguemplates, we show that (a) plan



reduction can be carried out efficiently, (b) the CostGrealdprithm typically gives the optimal re-
duction or is within a few plans of the optimal, (c) the anglgt estimates of the plan-reduction versus
cost-threshold curve are quite accurate, and finally, thed 0% cost threshold is amply sufficient to
bring the plan cardinality to within or around 10, even foglhidimensional query templates — this is
an especially promising result from a practical perspectiv



2 Anorexic Reduction Benefits

The production of anorexic reduced plan diagrams, that iagrdms whose plan cardinality is
within/around a small absolute number (10 is the yardstggddihere), has a variety of useful implica-
tions for improving both the efficiency of the optimizer am tchoice of execution plan, as outlined
below:

Quantification of Redundancy in Plan Search SpacePlan reduction quantitatively indicates the ex-
tent to which current optimizers might perhaps be over-stigiated in that they are “doing too
good a job”, not merited by the coarseness of the underlyosg space. This opens up the
possibility of redesigning and simplifying current optiars to directly produce reduced plan
diagrams, in the process lowering the significant compatatioverheads of query optimization.
An approach that we are investigating is based on modifyiegset of sub-plans expanded in
each iteration of the dynamic programming algorithm to (ejude those within the cost in-
crease threshold relative to the cheapest sub-plan, anérflve, using stability estimators of
the plan cost function over the selectivity space, “voddtdub-plans; the final plan choice is the
stablest within-threshold plan.

Enhancement of PQO Usability: A rich body of literature exists oparametric query optimization
(PQO) (e.q.[5, 12, 13, 8, 9, 15]). The goal here is to apreniify the optimal set of plans for
the entire relational selectivity space at compile timej anbsequently to use at run time the
actual selectivity parameter settings to identify the Ipésh — the expectation is that this would
be much faster than optimizing the query from scratch.

A practical difficulty with PQO, however, is the represeitatof the plan optimality boundaries,
which could, in principle, be of arbitrary complexity, magiit difficult to identify specifically
which plan from the set of optimal plans is to be utilized foreavly arrived query. A workaround
for this problem is the following [13]: For the specific quesyrrently supplied by the user,
evaluate its estimated execution cost wadth of the plans the optimal set. Then, choose the
lowest cost plan for executing the query. For this workatbiarbe viable, the plan diagram must
have, in an absolute sense, only a small number of plans isthecause while plan-costing is
cheap as compared to query optimization [13], the total taken for many such costings may
become comparable. However, as shown in Figure 2(a), thé@euaof optimal plans can be very
large, unless plan reduction is applied.

Therefore, a direct benefit of plan reduction is that it mak&© viable from an implementation
perspective even in the highly complex world of industetength optimizers.

Identification of Error-Resistant Plans: Plan reduction can help to identify plans that provide ro-
bust performance over large regions of the selectivity spabereforegerrorsin the underlying
database statistics, a situation often encountered bynalis in practice [14], may have much
less impact as compared to using the fine-grained plan chait¢éhe original plan diagram,
which may have poor performance at other points in the space.

For example, in Figure 2(a), estimated selectivities off1¥%) leads to a choice of plan
P70. However, if the actual selectivities at runtime turn wube significantly different, say



(50%,40%), using plan P70, whose cost increases steeplyseiéctivity, would be disastrous.

In contrast, this error would have had no impact with the ceduplan diagram of Figure 2(b),

since P1, the replacement plan choice at (14%,1%), remainiseapreferred plan for a large
range of higher values, including (50%,40%). Quantitdyivat (50%, 40%), plan P1 has a cost
of 135, while P70 is much more expensive, abibuge timeghis value.

In short, the final plan choices become robust to errors ighatithin the optimality regions of the
replacement plans. Such stability of plan choices is eaffganportant for industrial workloads
where often the goal is to identify plans with stable goodralfgerformance as opposed to
selecting the best local plan with potentially risky penfiance characteristics [16].

Identification of Least-Expected-Cost Plans:When faced with unknown input parameter values, to-
day’s optimizers typically approximate the distributiointloe parameter values using some rep-
resentative value — for example, the mean or modal value -tteerdalways choose this “least
specific cost” plan at runtime. It has been shown in [3, 4] éhagtter strategy would be to instead
optimize for the “least expected cost” plan, where the fidtribution of the input parameters is
taken into account. Computing the least expected cost maonmy involves substantial com-
putational overhead when the number of plans is large, Isotadsumes that the various plans
being compared are all modeled at the same level of accuiaeyy true in practice. With plan
reduction, on the other hand, both the efficiency and theityuaflthe comparisons can become
substantially better since there are fewer contendingsplan

Minimizing Overheads of Multi-Plan Approaches: A dynamic approach for selecting the best query
plan was proposed in [1] wherein multiple candidate queayplare executdd parallel. Based
on the relative rate of progress of the various plans, sl@aadidates are terminated along the
way. The viability of this strategy is based on keeping thebar of parallel candidate plans to
a manageable number given the available computationalme=ss, and plan reduction can help
satisfy this constraint.

An alternative and less resource-intensive multi-plarr@g@gh is proposed in [14] wherein dur-
ing execution of the best compile-time plan choice, basedhenobserved run-time perfor-
mance, a change in the query plan could be triggered for tinaireng unexecuted portion of
the query. When this approach is combined with plan redactioe likelihood of triggering a

re-optimization becomes substantially lower, therebyioatg the associated overheads.

Supports Plan Clustering: Plan reduction fits in perfectly with the query clusteringpegach previ-
ously proposed in our Plastic plan recycling tool [7, 21,22, where queries that are expected
to have identical plan templates are grouped together basesthilarities in their feature vec-
tors. This is because the cluster regiartserentlycoarsen the plan diagram granularity. Further,
from an implementation perspective, having fewer distplahs makes it easier with regard to
both storage and comparison.

Picasso Execution Diagram Time Estimation: Apart from producing compilation diagrams, the Pi-
casso tool [17] also supports the production of executi@®t diagrams which show the actual
run-time costs of executing the query points in the planmiag As a precursor to this process,
the user is given an estimate of the time taken to producerttie @icture, and this is achieved



by first fully executing a sample query point and then extlaioeg its response time to the sum
of the optimizer-estimated costs of the remaining queryisoiFor the sample query point, we
would like to ideally choose, from an efficiency and repréagveness perspective, the cheapest
guery point associated with the plan that occurs most frefyién the plan diagram. In the re-
duced plan diagram, it is likely that we will find a much cheapeint represented by this most
frequent plan since the areas covered by the surviving ensase substantially.



3 Related Work

To the best of our knowledge, apart from the initial resultsspnted by us in [19], there has been
no prior work on the reduction of plan diagrams with regardeal-world industrial-strengthgquery
optimizers and query templates. However, similar issuee baen considered in the PQO literature
in the context of simplified optimizers and basic query wogkls. Specifically, in the pioneering work
of Betawadkar & Ganguly [2], a System-R style optimizer wift-deep join-tree search space and
linear cost models was built, the workload comprising ofep8PJ query templates with star or linear
join-graphs and one-dimensional selectivity variationsthin this context, their experimental results
indicate that, for a given cost increase threshold, plangtaon is more effective with increasing join-
graph complexity. They also find that “if the increase tho#dhs small, a significant percentage of the
plans have to be retained.” For example, with a threshold&6,dmore than 50% of the plans usually
have to be retained. However, this conclusion is possiltdyed to the low plan cardinality (less than 20
in all the experiments) in their original plan diagrams. émtrast, our results indicate that on the dense
plan diagrams seen in real-world environments, where thaxeu of plans can be in the hundreds, not
only is the reduction very substantial even for a 10% cogseimee, but even more strikingly, that the
reduced plan cardinality is small absolute terms

In the subsequent work of [12, 13], Hulgeri & Sudarshan madebptimizer along the lines of the
\Volcano query engine [11], and evaluate SPJ query templaitbstwo, three and four-dimensional
relational selectivities. In their formulation, the costiiease threshold cannot be guaranteed in the
presence of nonlinear cost functions, a common featuresictige, and is used only as a heuristic. Even
with this relaxation, the final number of plans with a thrddhaf 10% can be large — for example, a 4-D
guery template with 134 original plans is reduced only to 5&whe DAG-AniPOSP algorithm and
to 29 with AniPOSP. Our work differs in that (a) we guaranteeiaintain the cost increase threshold,
and (b) the observed reductions are substantially higher.

Finally, we provide for the first time, efficiency and qualgyarantees for the reduction algorithms,
as well as cardinality estimators for the reduced plan diagr



4 The Plan Reduction Problem

In this section we define the Plan Reduction Problem, heneadterred to as PlanRed, and prove that it
is NP-Hard through a reduction from the classical Set Coveblem [10]. For ease of exposition, we
assume in the following discussion that the source SQL ceenplate is 2-dimensional — the extension
to higher dimensions is straightforward.

4.1 Preliminaries

The input to PlanRed is a Plan Diagram, defined as follows:

Definition 1 Plan Diagram
A Plan DiagramP is a 2-dimensional0, 100%]| selectivity space S, represented by a grid of points
where:

1. Each point(z,y) in the grid corresponds to a unique query with (percentagddcivitiesz, y
in the X and Y dimensions, respectively.

2. Each query point in the grid is associated with an optimal plaii (as determined by the
optimizer), and a cost;(q) representing the estimated effort to executeith plan P,.

3. Corresponding to each plah; is a unique colorL;, which is used to color all the query points
that are assigned t@,.

The set of all colors used in the plan diagréns denoted by ». Also, we will useP; to both denote
the actual plan, as well as the set of query points for wikicis the plan choice — the interpretation to
use will be clear from the context.

With the above framework, PlanRed is defined as follows:

Definition 2 PlanRed
Given an input plan diagrar®, and a cost increase threshold\ > 0), find a reduced plan diagram
R that has minimum plan cardinality, and for every pl&nin P,

1. P,eR,or

ci(a)
ci(q)
That s, find the minimum-sized “cover” of plans that is suéfit to recoloiP (using only the colors in
Lp) without increasing the cost of any re-colored query pdiet (vhose original plan is replaced by a
sibling plan) by more than the cost increase threshold. Qlsly, forA — 0, the reduced plan diagram
will be almost identical to the original plan diagram, whesdor A — oo, the reduced plan diagram
will be completely covered by a single plan.

In the above definition, we need to be able to evalugig), the cost of executing query poigpivith
the substitute choicg;. However, this feature is not available in all databaseesyst and therefore we
use a bounding technique instead to limit the value; 0f). Note that this means that the reductions we
discuss here areonservativen that, in principle, it may be possible to reduce the diageven more
— such enhanced reductions will only further support thecke@mions drawn later in this report.

The specific bounding technique we use is based on assunatiglbwing:

2. YV query points; € P, 3P; € R, such tha <(1+X)



Plan Cost Monotonicity (PCM): The cost distribution of each of the plans featured in the plia-
gram is monotonically non-decreasing over the entire selgcspace S.

Intuitively, what the PCM condition states is that we expiéna query execution cost of a plan to

increase with base relation selectivities. For most quenyplates, this is usually the case since an

increase in selectivity corresponds to processing a lameunt of input data. However, the assumption

may not hold for query templates that feature negation apesauch as “set difference”, or short-

circuit operators like “exists” — we discuss how to handletssituations in A.1. For the remainder of

this report, we consider only the common case of plan diagiamhich the PCM condition applies.
Based on the above, we can now state the following rule:

Definition 3 Cost Bounding Rule

Consider a pair of query pointg; (x1, y1) with optimal planP; having cost; (¢;), andgs(xs, y2)
with optimal planP, having cost,(g2). Then the cost of executing querywith plan P, i.e. c2(q1),
is upper bounded b, (q2) if 2o > 1,2 > y5.

That is, when considering the recoloring possibilitiesd@uery point;, only those plan colors that
appear in thdirst quadrani relative tog; as the origin, should be considered. Further, if there xist
differently colored pointy, in the first quadrant whose cost is within thehreshold w.r.t. the optimal
cost of¢, theng; can be recolored with the color ¢f without violating the query processing quality
guarantee. In short, condition 2 of Definition 2 is replacgdHe stronger requirement

V query points; € P, 3FP; € R, such thatlr € P,

G0 (14 ).
ci(q)

In the remainder of the report, we will characterize any glaagram that has more than ten plans
asdense We usen andm to denote the number of plans and the number of query poiritgiplan
diagram, respectively. Further, we usg andm, to denote the diagram resolution in the X and Y axes,
respectively, withn = m; x msy. Lastly, BottomLeftis used to denote th@, 1) point andTopRightis
used to denote the point with coordinates, , m) in the diagram.

with r in first quadrant of; and

4.2 The Set Cover Problem

We now move on to the classical Set Cover problem, definedllasvi

Definition 4 Set Cover Problem
Given a finite universal sat/, and a collectionS = {S;,5,,...S,} of subsets of/ such that
» 1 S; = U, find the minimum cardinality subsét C S, such that”' coversU i.e. all elements of/
belong to some subset @

Let I = (U, S) denote an instance of a Set Cover problem. From a given icesfarcreate a new
instancel’ = (U’, S,..) such that:

1. §' = {€'}, wheree’ is an element not itV

2. U' =UUS, Snew = SU{S"}



Let C’ be an optimal solution of’. It is easy to see that' = C’ \ {5’} is an optimal solution of the
original instance . Therefore, we will assume henceforth in this section thatSet Cover instance is
of the form[’.

Lemma 1 Given a set cover instandé, addition of a new elemeantto U’, to subsefs’, and to zero or
more subsets ifiS, Ss, . . ., S, }, does not change the optimal solution/af

Proof: LetC = {5',S;,,S.,,...,S;,} be the optimal solution of’ before the addition of the element
e. After addinge to I’, C still coversU’, sincee € 5.

To see that’ continues to be the optimal solution Bfafter adding:, assume the contrary. L&Y be
a cover forU’ with |C’| < |C|. Remove: from all subsets i’ that contaire. Now C’ coversU’ \ {e}.
This contradicts our selection 6f as the optimal solution of before the additionof. =

4.3 Reducing Set Cover to PlanRed

We now show that the Set Cover problem can be reduced to theRlduction problem. Specifically,
Algorithm Reduce in Figure 4 converts an instance of Set Covan instance of PlanRed. Ittakes as in-
put the instancé’ and threshold and outputs a plan diagram and another instdpnce= (Unew, S)e)
of Set Cover.

The data structures used in the algorithm are as follows:

1. cur(q): integer denoting the smallessuch that query point € S; (i.e. denotes current plan that
q belongs to in the plan diagram)

2. belong(q): list storing allj, such thay; € S; andj # cur(q) (denotes the set of plans that can be
used instead of the current plan in the reduced plan diagram)

3. cost(q): value indicating the cost afin the plan diagram
4. color(q): integer denoting the color (equivalently, plan)ah the plan diagram

In addition, the valuex + 1 is used to denote the s&t, i.e. S, 1 = S’ in cur andbelong.

Algorithm Reduce works as follows: Consider a Set Covesins¢!’ = (U’, S,...,). For each subset
S; € S,ew, @ unique colol; which represents the plan is created. Each elemenpte U’ represents
a query point inP, and letq be in subsets;,, S;,,...S;, for eachS; € Sycw, j = 1,2,...k and
iy < iy < ... <1 PlanP, is chosen as the representative Jaand becomes the plan with whigh
is associated. For each of the other subsets in wiishpresent, a new query pointis created and
placed to the right of in the plan diagram, with its color corresponding to the stiiigepresents and
its cost being1 + \) times the cost of. Intuitively this means that plaf;, can be replaced by plans
Pi;,j =2,3...k. Then, a query pointis created having pla®’ corresponding to the subsgtwith
a cost(1+ \)? times the cost of — this point is added to the right of all the points that wemevjusly
created for. This means thatcan in turn replace all the other points that were created,fout notg
itself. (Note that this process is identical to the elemeititton process of Lemma 1.) When moving
from the last element of one row to the first element of the n@wt the cost is further increased by a
factor of (1 + \).



ReducdSet Coverl’)

1.
2.

oo o &M w

Initialize 1., = I'; Vq € U’, setbelong(q) = NULL
For each elemente U’

(a) Letg belongto sets;,,S;,,..., 5,1 <i1 <ix<...<ip<n+1
(b) Setcur(q) =iy
(c) Addisg,is, ..., ik tobelong(q)

Letm = |U’'|; mz = max,(|belong(q)|) + 2 ,q € U’; i=1, Initialize cost
Createn + 1 colorsLy, Lo, ..., Ly

Create amn x mx grid

For each elemente U’

(a) Addq at point(z, 1) in the grid
(b) Setcolor(q) = cur(q); cost(q) = cost;cost = cost x (1 + N);p =2
(c) Foreachj € belong(q)

i. Create element. Setcur(r) = j

ii. Vz,z € belong(q) such that: > j, addz to belong(r)

iii. Add (n+ 1) to belong(r)

iv. Add r at position(i,p) inthe grid.p =p+1

V. Setcolor(r) = j, cost(r) = cost

vi. Add r to instancel,,.,, such that- € S, if j = cur(r) orj € belong(r)
(d) Create elemerit Setcur(t) = n+ 1, belong(t) = NULL
(€) cost = cost* (1+ \)
() Add ¢t at position(z, p) in the grid
(9) Setcolor(t) = n + 1;cost(t) = cost; cost = cost * (1 + N).
(h) Addt to Ipeq-
(i) Seti=i+1

7. For every empty point in the grid:

(a) Create a new elemeqt Setcur(q) = n + 1,belong(q) = NULL.
(b) Addq to the empty point. Seblor(q) =n + 1

(c) Setcost(q) = cost of row’s rightmost point with colak,, 1

(d) Addq to I,eq

8. End Algorithm Reduce

Figure 4: Algorithm Reduce
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Figure 5: Example of Algorithm Reduce

Starting from the bottom row and moving upwards, the aboweguiure is repeated for each element,
resulting in each element and its associated generatetsdming assigned to different rows in the
plan diagram. Finally, for each empty point in the grid, a reggyery pointg is created having plan
P’ corresponding to the subsgt with a cost equal to the cost of the rightmost point in its roithw
the planP’. An example of this reduction, with = 10%, is shown in Figure 5, where each point
is represented by a square block. The blocks in the first coloftthe output plan diagram represent
the elements originally i/, while the remaining blocks are added during the reductroegss. The
values in the blocks represent the costs associated witbaiiesponding points, and each subset is
associated with a color, as shown in the legend.

We now show that Algorithm Reduce does indeed produce a péagrain whose optimal solution
gives the optimal solution to the Set Cover instance useatihance that PlanRed is NP-Hard.

Lemma 2 The gridG produced by Algorithm Reduce is an instance of PlanRed.

Proof:
1. Each pointinG is associated with a color (equivalently, plan) and a cost.

2. For any poin{x, y) on GG, wherex andy represent the row and column respectivelyclstcost
associated witliz, y). At point (z,y + 1), the cost associated is eitheor ¢ x (1 + \). At point
(x + 1,y) the cost is greater than« (1 + \) because Algorithm Reduce increases the cost by a
factor of (1 + ) while moving from one row to the next. Therefore, the costrizbng rule of
Definition 3 holds.

Hence the grid~ satisfies the conditions necessary for the Plan Diagrameoffdd. =

Lemma 3 The optimal solution for the instance of the plan diagramegated by Algorithm Reduce
gives the optimal solution for the Set Cover instaffcgsed as input to the algorithm.



Proof: Consider the plan diagram gri@ and the Set Cover instan@g.,, = (Unew, S,.,,) that is the
output of the algorithm. For every pointz, y) on the grid that can be recolored, there must exist a
point with that color to the right of(x, y) with cost either or ¢ * (1 + X) wherec is the cost of(z, y).
Also, the color’s index will be in théelong list of the element corresponding to that point.

For each such point(x, y), there is an elementin I,.,,, such that- belongs to the subsefs € 5/,
whenevercur(q) = j or j € belong(q). Hence, from the above property, if poifitz, y) has colorL;
in the reduced plan diagraR, then the corresponding elementlip,, will be an element of sef;.

Therefore, ifR has colors (plans).p = {L;,, Li,, ..., L;, } , since every point is colored with some
color in Lg, its corresponding element ip..,, will belong to some subset ift,,.., = {S;,, Si,, - - ., Si, }-
Therefore(C,,.., coverslU,..,. Hence we just need to show thatif; is the optimal color set (with least
number of colors), thet,,.,, is the optimal set cover faf,..,,.

To prove the above, assume the contrary, thatis@at = {S;,, Sj,, ..., 5;}, | < kis the optimal
cover ofU,.,,. By construction of the grid, every point in the grid corresding to an element i,

i € {1,2,...1}, can be colored with colaL;,. Apply this color to the point in the grid and set the cost
of this point to be the cost of the point with the matching catwits right. After recoloring the grid
in this manner, we get a new color €t = {L,,, L;,, ..., L;} that covers the whole grid with
|L’z| < |Lgl|. This contradicts the assumption that was the optimal color set. Hence, the optimal
solution to the grid gives the optimal solution for the setaranstancd,,..,.

The newly created elements that are added to createl,,.,, by the algorithm are in accordance
with Lemma 1. Hence the optimal solution féris the same as the optimal solution Bf,,. Thus
the optimal solution for the instance of plan diagram geteeray Algorithm Reduce gives the optimal
solution for the Set Cover instanéeused as its input. =

Armed with the above lemmas, we now state the main theorem:

Theorem 1 The Plan Reduction Problem is NP-Hard.

Proof: It can be seen that
1. Algorithm Reduce has a polynomial time complexity@fum).

2. Forl' = (U, Syew), the grid created has in the worst ca&¥| * (|S,..|) elements with.S,,c.,|
plans. Itis a valid plan diagram. (Lemma 2)

3. The optimal solution for Set Cover Instanean be obtained by the optimal solution of the plan
diagram generated by the algorithm. (Lemma 3)

Hence the theorem. =

In the hope of finding a polynomial-time optimal solution wiscaconsidered a situation where,
rather than allowing a plan to be collectively swallowed byraup of sibling plans, we mandate that
a plan can be swallowed only if it can be entirely replaced kynglesibling plan. That is, all query
points of a swallowed plan have the identical replacemeiorconfortunately, however, this constraint
does not change the complexity of the problem, as proved peAgdix A.2.



4.4 Storage-budgeted Plan Reduction

In practice, it is often the case that a fixed storage budgebigded to hold the set of plans for a query
template. That is, a budget in terms of the number of storadsplsay, is specified, and the goal is
to identify the best set of plans that would minimize the cost increase in the Reducad Blagram.
This problem is thedual of PlanRed, in terms of exchanging the constraint and thectigg, and is
defined as follows:

Definition 5 Storage-budgeted Plan Reduction Problem

Given a plan diagran and storage constraint of retaining at mdsplans, find thet plans to be
chosen so as to minimize the maximum cost increase of thg gaets in the reduced plan diagram
R.

A Karp Reduction [10] can be used to show that Storage-beddgetanRed is NP-Hard by using it
to solve the general Plan Reduction problem, leading todhewing theorem (Proof in A.3):

Theorem 2 The Storage-budgeted Plan Reduction Problem is NP-Hard.



5 Greedy Plan Reduction

Given the hardness results of the previous section, it &lglénfeasible to provide optimal plan reduc-
tion, and therefore we now turn our attention to developiffigient greedy algorithms.

We first consider AreaGreedy, the reduction algorithm pseglan [19], where the greedy heuristic
is based on plan areas. Then we present CostGreedy, a neutioedalgorithm that is greedy on
plan costs. Its computational efficiency and reductioniglarantees are quantified for the general
PlanRed. We then present a greedy algorithm Threshold@thathas strong performance bounds for
the storage-budgeted version. As before, for ease of exposive assume that the input plan diagram
is 2-dimensional — the algorithms can be easily generataéigher dimensions, while the theoretical
results are independent of the dimensionality.

5.1 The AreaGreedy Algorithm

The AreaGreedy algorithm first sorts the plans featuringéglan diagram in ascending order of their
area coverage. It then iterates through this sequencéngtaith the smallest-sized plan, checking in
each iteration whether the current plan can be completedyiewed by the remaining plans —if it can,
then all its points are recolored using the colors of the lomadr plans, and these points are added to
the query sets of the swallowers.

An important point to note here is that when a plan that hasadly swallowed some other query
points is itself considered for swallowing, then theginal costs of the previously swallowed query
points are used in computing the cost increase with the cucendidate swallowers. This ensures that
in the final reduced plan diagram, the cost increase of allygpeints is within the threshold even if
these points have been subject to multiple swallowings figrént plans in the iterative process.

The intuition behind the design of AreaGreedy is two-fol@sE using an area basis for the swallow-
ing iterations is likely to reduce the number of small-sipéahs. This would contribute towards plan
stability as discussed in the Introduction. Second, ssiaéld plans tend to be found near the origin
and the axes of the plan diagram [18, 13, 19] — this meanshgtdffer more scope for swallowing
since their first quadrants are big and therefore likely teehmany more candidate swallower plans
as compared to the larger-sized plans which occur in theehigdgions of the selectivity space. The
algorithmis givenin A.4

By inspection, it is obvious that AreaGreedy has a time cexipt of O(m?), wherem is the number
of query points in the plan diagram. With respect to reductjoality, let AG denote the solution
obtained by AreaGreedy, and [@pt denote the optimal solution. We have shown in A.5 that theeupp

Gl will be atleast).5v/m.

bound of the approximation fact
Opt|

5.2 The CostGreedy Algorithm

We now propose CostGreedy, a new greedy reduction algaonitiich provides significantly improved
computational efficiency and approximation factor as camegéo AreaGreedy.

Consider an instance of PlanRed that hasranx m, grid with n plans andn = m; x my query
points. By scanning through the grid, we can populatectheandbelong data structures (introduced
in Section 4.3) for every point. This can be done as follows: €&ach query poing with plan P; in



the grid, setcur(q) to bei, and add tadelong(q) all j such thatP; can replace;. Using this, a Set
Cover instancd = (U, S) can be created witl/| = m and|S| = n. HereU will consist of elements
that correspond to all the query points anavill consists of sets corresponding to the plans in the plan
diagram. The elements of each set will be the set of querytpdtiat can be associated with the plan
corresponding to that set.

The following lemma shows that the reduction solution fa gtan diagram can be obtained from
the Set Cover instance created above.

Lemma 4 The optimal solution of the created Set Cover instahgeres the optimal reduction solution
to the plan diagran® that is used to create the instance.

Proof: Let C' = {S;,,5.,,...S;, } be the optimal solution of. For each query poing in P, if it
belongs to a subset;, € C, then colorg with color ;. This is a valid coloring because the element
q will be in subsets;; only if ¢ can be replaced by plaf},. Hence,Lgr = {S;,, Si,, ... S;, } colors all
points in the plan diagram.

To show thatly is optimal, assume that there exigts = {L;,, L,,, . .. L;, } which covers all plans
in the plan diagram with < k. The coverlC” = {S,,, S,,,...S;, } is a cover ofl, since if a point can be
colored withZ;, € L%, then it will belong to the corresponding s&t. SincelL’; covers all points in
the plan diagrant,” coversU. This contradicts the assumption tidats the optimal cover of. Hence
thelemma. =

Lemma 4 is explicitly used in the design of CostGreedy, showiigure 6. In Lines 1 through 6,
an instancd = {U, S} of Set Cover is created. Then, in Line 8, CostGreedy call®Atlgm Greedy
Setcover, shown in Figure 7, which takes this input instaamzkoutputs the cover C S.

By definition, the TopRight query point iR cannot be re-colored since there are no points in its first
guadrant. Therefore, its color hhas to perforce also appeamRnHence, we remove its corresponding
set from the Set Cover instance (Line 7) before applying Atgom Greedy Setcover, and then add it
to the solution at the end (Line 10).

Finally, an attractive feature of CostGreedy is that a swald point is recolored only once, in
contrast to AreaGreedy where a swallowed point can be reslmultiple times.

5.2.1 Complexity Analysis

In the following theorem we show that the time complexity a§sBGreedy isO(nm). Since it is
guaranteed that < m, and typicallyn < m, this means that CostGreedy is significantly more
efficient than AreaGreedy, whose complexitylén?). Further, it also means that for a given diagram
resolution, the performancelisear in the number of plans in the plan diagram.

Theorem 3 The time complexity of CostGreedy(gmn), wherem andn are the number of query
points and plans, respectively, in the input plan diagfdm

Proof: Let P be anm; x my grid. While populating théelong and cur lists, we maintain another
two-dimensional arraynincost of dimensionm; x n. This array is used to store the minimum costs
of the query points corresponding to each plan appearinggipartial-column located above each cell
in the row above the one that is currently being processed.ifitial values inmincost are alloo.



CostGreedy (Plan DiagramP, Threshold \)

1.

o ~ w N

© © N O

11.

For each poing from T'op Right to BottomLe ft do

(a) setcur(q) = color(q)
(b) updatebelong(q) with plans that are i’s first quadrant with cost within the given threshold

Letm = mq X ma.
Createn setsS = {51, 5o, ... S, } corresponding to the plans.
LetU = {1,2,...m} correspond to the: query points.

DefineVi = 1...n, S; = {j : i € belong(r) ori = cur(r) for query pointr corresponding tgj,
Vi=1...m}

Let! = (U, S), I be an instance of the Set Cover problem.

. Let L, be the color of th& opRight point. Remove se$,, and all its elements fron.
. Apply Algorithm Greedy Setcover th Let C be the solution found.

. C=CU{S.}

10.

Recolor the grid with colors corresponding to the setS iand update new costs appropriately. If a p
belongs to more than one subset, then color it with the cblatrriequires the least cost increase.

End Algorithm CostGreedy

Dint

Figure 6: CostGreedy

Greedy Setcover(Set Cover)

1.

2.

3.

4.

SetC =0
WhileU # () do:

(@) Selectses; € S, such thatS;| = maz(|S;|); V'S; € S (in case of tie, select set with smallest indgex)

(b) U=UN\S;, 8 =5\{5;}
() C=CU{S;}
ReturnC

End Algorithm Greedy Setcover

Figure 7: Algorithm Greedy Setcover



C1 C2 C3 C4 C5 R B Y G
C1]55] 38| 36] 45

C2| 55| 44| 40| 45
C3| 55| 5606|% |45
C4|55|% | |50

Plan Diagram

mincost

Figure 8:Updating mincostin Algorithm CostGreedy

We start the scan of the grid from right to left, beginninghwibhe top row of the grid. For each
point ¢ with plan P, at column: in the current row, if it can be replaced by any other pinthen
mincost[i][P;] should be within the increase threshold of the cosj.dflence, through a single scan
of mincost[i|, we can populatéeclong(q). Then the cost of is updated fornincost[i|[P;]. Since the
values in the colummincost|[i] are candidates for the minimum values of the columm, mincost[i—

1] is updated with the valugin(mincost|i], mincost[i — 1]). An example is shown in Figure 8. The
arraymincost contains updated values after processing all the columitiseofirst three rows of the
plan diagram.

With the above procedure, when moving to the next row to begssed, the columnsincost|i]
will automatically contain the minimum costs of all the ptaappearing in the first quadrant of the
query point at theé' column of the previous row. When a query point at colunmbeing processed,
due to the cumulative updation of the costs of the plansadsiin that rownincost|i] will be updated
with the minimum costs of all the plans in that point’s firsaguant.

So each query point requirés iterations to be made, and there afguery points. Hence the time
required for populating the data structures andbelong is of the ordeiO (mn).

Obtaining the Set Cover instance from the above data stestakes)(mn) time, and the Algo-
rithm Greedy Setcover also has a time complexit@)¢fnn). Thus the CostGreedy has an overall time
complexity ofO(mn). Hence the theorem. =

5.2.2 Approximation Factor

We now quantitatively assess the approximation factorddaglways be guaranteed by the CostGreedy
algorithm with respect to the optimal.



Lemma 5 CostGreedy has an approximation factor
cGl

opt| O(Inm), wherem is the number of query points in the plan diagram.
p

Proof: It has been shown in [6, 23] that Algorithm Greedy Setcoves)@as an approximation factor
% < H(m), wherem is the cardinality of the universal set, aifim) is the m'* harmonic
p
number. The input to GS can have at mpst— 1) elements in its universal set (this occurs when the
TopRight query point has a unique color not shared by any gkbiat in the entire diagram). Therefore,

cG|  |GS| _
Opil = 10pa] < H(tn=1)) = O(tnm) (1)

Tightness of Bound. It is shown in [23] that given any, [ where|Greedy| = k and|Opt| = [, a Set
Cover instance can be generated with- /) sets andn elements such that > G(k, 1), whereG(k, 1)
is a recursively defined greedy number:

G, 1) =1

Glk+1,0) = [—— % G(k, )]

-1
It is also shown in [23] that the following tight bound lnfm for Set Cover can be achieved using such
a construction whem = G(k, 1):

lnm—lnlnm—0.31§%§1nm—lnlnm+0.78 (2)

These results are used in the following lemma.
Lemma 6 The bound specified by Lemma 5 is tight.

Proof: The construction process in [23] of the above-mentione8eer instance, withn = G (k, 1),

is such that every element belongs to exattlp sets. For a giver, [, first construct the Set Cover

instance using the construction in [23]. Using this creatatlaer Set Cover instance of the forfrwith

(k+1+1) setsandm + 1) elements, as mentioned in Section 4.2. When Algorithm Reduapplied

to this new instance, it creates a grid with = 3 (m+1) elements. This is because, for each element,

since itis in two sets, it can be colored by two colors in trenpliagram. One of these will represent its

current plan, and for the other plan, a new element will bateird and added to its right. Then another

element will be created to its right which can replace thislgereated element and having the color

representing the plan corresponding to theeHence, each of the: + 1 rows will have 3 elements.
From Equation 2 we know that

> Inm—1Inlnm — 0.31 3)



/

Sincem = 3~ 1itis easy to see that

|Greedy| ,
— 2 =0(lnm
opr) Ot

Optimality of the Bound. It has been shown in [6] that the bound@©@fln m) for Set Cover is the
best possible bound below which Set Cover cannot be appetaarefficiently, unless NP has slightly
super-polynomial-time algorithms. This result is usedchi@a following theorem:

Theorem 4 The bound specified by Lemma 5 is the best possible thresblol kvhich PlanRed can-
not be approximated efficiently unless NP has slightly syqoéynomial-time algorithms.

Proof: Assume that there exists some deterministic algoritbatX, that improves on the bounds of
O(Inm) for PlanRed. Then, for the instance of the grid created froBetCover instance, we will

have a reduced bound. This means we can get a reduced bouetl Gov@r by reducing it into a plan
diagram and applyin@etX to it. But this would contradict the result of [6]. =

5.3 The ThresholdGreedy Algorithm

We now turn our attention to developing an efficient greedypathm for the Storage-budgeted varia-
tion of the PlanRed problem. Specifically, we present ThokekBreedy, a greedy algorithm that selects
plans based on maximizing the benefits obtained by chooserg.t The benefit of a plan is defined to
be the extent to which it decreases the cost threshalfithe reduced plan diagram when it is chosen,
which means that at each step ThresholdGreedy greedilyselsdbe plan whose selection minimizes
the effective\.

The least number of plans that can be in the reduced planatiraiga single planwhich corresponds
to the plan of the TopRight query point in the plan diagramisTan be always achieved by setting the
cost increase thresholdto equal the ratio between the costs of the TopRight and Butéft query
points in the plan diagram, i.@.s;,, pian, = cost(TopRight)/cost(BottomLeft).

We now bootstrap the selection algorithm by choosing thas pind subsequently choose additional
plans based on their relative benefits. The details of theritfign can be found in Figure 16. Let
Ben,,,, and Ben,,..q, be the total benefit of choosirigplans by the optimal and greedy algorithms,
respectively. This means that the final cost increase tbrestith the optimal selection i8s;,pian —
Beno,:, and with the threshold greedy solutiom\s;,, p;.,, — Benr. The following theorem quantifies
the approximation factor of ThresholdGreedy (proof in A.6)

Theorem 5 Given a storage budget &f plans, letBen,,; be the benefit obtained by the optimal so-
lution’s selection, andBenrg be the benefit obtained by the ThresholdGreedy algorithel&cton.
Then

Benpg . <k: — 1)k

Benop: k
Fork = 10, which we consider to be a reasonable budget in practicaltbee ratio works out to about
0.65, while fork — oo, the ratio asymptotically goes down to 0.63. In an overalksegthis means that
ThresholdGreedy is always guaranteed to provide closgdethirds of the optimal benefit




6 Estimators for Plan Reduction

Our experience has been that CostGreedy takes about a nontday out a single reduction on plan
diagrams that have in the order of a million query points. M/thiis appears sufficiently fast, itis likely
that users may need to iteratively try out several redustisith different cost increase thresholds in
order to identify the one appropriate for their purpose. &a@ample, the user may wish to identify the
“knee” of the tradeoff between plan cardinality reductiom dhe cost threshold — that is, the location
which gives the maximum reduction with minimum threshold.

In the above situations, using the CostGreedy method reglgdb find the desired setting may prove
to be extremely cumbersome and slow. Therefore, it woulddbefll to design fast but accurate esti-
mators that would allow users to quickly narrow down theaus to the interesting range of threshold
values. In the remainder of this section, we present suamastrs.

Our first estimator, AvgEst, takes as input the plan diagPaand a cost increase thresholdand
returns the estimated number of plans in the reduced playradieR obtained with that threshold. It
uses the average of the costs of all the query points assdaidth a plan, to summarize the plan’s cost
distribution. All these averages can be simultaneouslymded with a single scan of the Plan Diagram.
AvgEst then sets up an instance of Set Cover, as shown ind=ywrith the number of elements equal
to the number of plans, and the set memberships of plans &sllmastheir representative average costs
satisfying the\ threshold. On this instance, the Greedy Set Cover algorithtroduced earlier in
Figure 7, is executed. The cardinality of the solution isime¢d as an estimate of the number of plans
that will feature inR.

AvgEst (Plan Diagram P, Threshold \)
1. LetCost(i),¥i = 1...n denote the average cost of PIBn
2. SetU ={1,2,...n}
3. SetS; ={1,2,...n},Vi=1...n
4. for each plarP, do

(a) For all plansP; such thatC'ost(j) < Cost(i) or Cost(j) is not within the threshold of'ost(i), set
Sj = S5\ {i}

5. Apply Algorithm Greedy Setcover th Let C be the solution found
6. return|C|

7. End Algorithm AvgEst

Figure 9: Algorithm AvgEst

Our second estimator, AmmEst, uses in addition to the agevalye, the minimum and maximum
cost values of the query points associated with a plan. Bhagich plan is effectively represented by
three values. Subsequently, the algorithm is identicalMgisst, the only change being that the check
for set membership of a plan is based on not just the averdge bat on all three representative values
(min, max and avg) satisfying the membership criterion.



By iteratively running the estimator for various cost threlsls, we can quickly plot a graph of
plan cardinality against threshold, and the knee of thisegan be used as the estimated knee. Our
measurements show that this estimation process execugefewm milliseconds, orders of magnitude
faster than calculating the knee using CostGreedy. Fytthisrestimate can be used as a starting point
to find the actual knee which is likely to be in the neighborthcas shown in the experimental results

of the following section.



7 Experimental Results

Having considered the theoretical and statistical aspdgitan diagram reduction in the previous sec-
tions, we now move on to presenting our experimental resdlte testbed is the Picasso optimizer
visualization tool [17], executing on a Sun Ultra 20 workista equipped with an Opteron Dual Core
4GHz processor, 4 GB of main memory and 240 GB of hard diskingithe Windows XP Pro operat-
ing system. Through the GUI of the Picasso tool, users camg@guery template, the grid resolution
and distribution at which the instances of this templateighbe spread across the selectivity space, the
parameterized relations (axes) and their attributes owriwthie diagrams should be constructed, and
the choice of query optimizer. With this information, th@tautomatically generates the associated
SQL queries, submits them to the optimizer to generate tnesphand finally produces the color-coded
plan, cost and cardinality diagrams.

We conducted our plan reduction experiments over densediamams produced from a variety
of multi-dimensional TPC-H and TPC-DS based query templataluated over a suite of industrial-
strength database query optimizers. The templates wetanireted at a variety of grid resolutions,
based on the experimental objectives and ensuring viahtgalin production times. We also confirmed
that all the plan diagrams were in compliance with the plast anonotonicity condition, described in
Section 4.1.

A gigabyte-sized database was created using the TPC-H bemkls synthetic generator — while the
benchmark models only uniformly distributed data, we edéehthe generator to also produce skewed
data distributions. The optimizers were all operated at thefault optimization levels and resource
settings. To support the making of informed plan choicesjroands were issued to collect statistics
on all the attributes featuring in the query templates, dedpian selections were determined using
the “explain” feature of the optimizers. It is important tota here that in all our experiments, the
optimizers are treated as “black boxes” and there is no attemcustomize or fine-tune their behavior.
The optimizers that we use include IBM DB2 v8, Oracle 10g andrdsoft SQL Server 2005, which
(due to legal restrictions) are randomly referred to as Q@BiB and OptC in the remainder of this
thesis.

7.1 Computational Efficiency

We start off by first quantitatively evaluating the runtimekthe two greedy algorithms, Area-
Greedy [19] and CostGreedy (proposed in this thesis), agpaoed to the time taken to produce the
computationally-hard optimal solution. The reductionlgyaf the algorithms is compared in the next
section. A sample set of results on OptC is shown in Table Qf8, the query template shown in Sec-
tion 1, instantiated at a grid resolution of 100 uniformlgtdbuted points per dimensidand reduction
carried out at a cost increase threshold of 10%. We see hagrewtén for this relatively coarse-grained
situation, the optimal algorithm takes several hours toete. In contrast, AreaGreedy takes only a
few seconds, while CostGreedy is an order-of-magnitudieebtttan AreaGreedy, finishing in a small
fraction of a second.

The substantial improvement of CostGreedy with regard &a&reedy is, as per the discussion in
Section 5, due to ité)(nm) complexity being significantly lower than th@(m?) of AreaGreedy, as

2The QT8 plan diagram in the Introduction was obtained witeslution of 300, resulting in a higher plan cardinality.



Table 1: Computational Efficiency (QT8, Res=100)
Algorithm | Original | Reduced| Time
Plans | (A =10%)

OptRed 50 7 4 hours
AreaGreedy] 50 7 2.8 sec
CostGreedy] 50 7 0.1 sec

—%- AreaGreedy
-6~ CostGreedy
40F A OptRed

w
o

Number of Plans
no
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Figure 10: Reduction Quality (QT8), Res=100

n < m in practice (recall that is the number of plans and is the total number of query points in the
plan diagram).

7.2 Plan Reduction Quality

Turning our attention to the reduction quality, we see inl@dbthat AreaGreedy and CostGreedy are
identical to the optimal (OptRed), all three producing reeliliplan diagrams with 7 plans (in fact, the
plans themselves are also the same in this case). The chssenthe optimal holds across the entire
operational range of cost increase thresholds, as showigume=10, which presents the reduced plan
cardinalities for the three algorithms as a function of tmes$hold — only a few representative points
were obtained for OptRed due to its extremely high companalioverheads.

Another point to note in Figure 10 is the initial steep desesia the number of plans with increasing
threshold — we have found this to be a staple feature of atléimse plan diagrams that we have investi-
gated, irrespective of the specific query template, dataierygpoint distribution, memory availability,
or database optimizer that produced the dense diagrame Beéiings may determimvehether or nota
dense plan diagram is produced, but if produced, subsdgukatreduction process produces consis-
tent results. This trend is clearly seen in Table 2, whichuas the reduction behavior of Optimizers
A, B and C, with various TPCH-based query templates on whielg produced dense plan diagrams.



TPC-H OptA OptB OptC
Query | Plan Reduced Reduced| Plan Reduced Reduced| Plan Reduced Reduced
Number | Card Plans Plans Card Plans Plans Card Plans Plans
(A=10%) (A=20%) (A=10%) (A\=20%) (A=10%) (A\=20%)
2 14 7 7 20 10 8 43 12 8
5 11 4 2 12 4 4 23 6 5
8 36 4 3 16 4 2 50 7 4
9 39 9 6 18 7 3 38 4 3
10 18 5 4 7 3 3 17 4 3
Table 2: Plan Reduction Quality (Res = 100)
TPC-H OptA OptB OptC
Query | Plan Reduced Reduced| Plan Reduced Reduced| Plan Reduced Reduced
Number | Card Plans Plans Card Plans Plans Card Plans Plans
(A=10%) (A=20%) (A=10%) (A\=20%) (A=10%) (A\=20%)
2 12 11 7 23 7 6 52 14 10
5 11 4 2 11 4 3 12 5 2
8 35 5 3 24 4 2 34 6 5
9 49 10 5 34 6 5 46 3 3
10 22 7 7 12 5 4 11 2 2

Table 3: Skewed Data Distribution (Res = 100)

7.3 Skewed Data Distribution

The above results were obtained with uniformly distribudiedla generated using the TPC-H bench-
mark’s synthetic generator. We extended the generatostqoabduce skewed data distributions. When
this skewed data was used instead, the observed reducsigltsrdid not materially change. While the
specific plan diagram changed, the reduction behavior mwoati to be as before. This can be seen in
Table 3, which captures the behavior of the three optimiaerheir dense plan diagrams with skewed
data.

7.4 Exponential Distribution of Query Points

In the above diagrams, which were produced with a uniforntriigion of query points across the
selectivity space, we observed that in most cases, thetderfigilans is greater in the regions near the
axes, that is, at low selectivity values of the base relatidrhis motivated us to alter the arrangement
of query points to be exponentially distributed with a higtensity in the low selectivity region. As
expected, this led to a substantial increase in the cartiraf the original plan diagram. Despite
this, we see that the reduction process remains materiafiffected. This is highlighted in Table 4,
where we see that the plan cardinality of the reduced plagraia decreases sharply at a low cost
increase threshold, irrespective of the number of plankerotiginal plan diagram. For example, the
plan diagram cardinality increased from 38 to 225 for QT9 @t but the reduced plan diagram



TPC-H OptA OptB OptC
Query | Plan Reduced Reduced| Plan Reduced Reduced| Plan Reduced Reduced
Number | Card Plans Plans Card Plans Plans Card Plans Plans
(A=10%) (A=20%) (A=10%) (A\=20%) (A=10%) (A\=20%)
2 26 12 10 25 12 10 94 26 16
5 41 8 5 18 5 5 74 10 6
8 50 6 3 19 5 3 174 7 5
9 111 12 7 21 9 4 225 18 8
10 37 7 5 11 5 4 56 6 4
Table 4: Exponential Query Point Distribution (Res = 100)
TPC-H OptA OptB OptC
Query | Plan Reduced Reduced| Plan Reduced Reduced| Plan Reduced Reduced
Number | Card Plans Plans Card Plans Plans Card Plans Plans
(A=10%) (A=20%) (A=10%) (A\=20%) (A=10%) (A\=20%)
2 23 9 8 23 12 10 76 20 12
5 18 5 3 14 5 5 31 10 6
8 47 3 3 17 5 2 89 6 6
9 64 10 6 20 8 4 91 9 4
10 25 7 4 8 4 3 31 6 4

Table 5: Increased Grid Resolution (Res = 300)

cardinality (withA = 20%) went from 3 plans to only 8 plans.

7.5 Increased Grid Resolution

While increasing the grid resolution may increase the nurabglans in the original plan diagram (due
to the unearthing of new small-sized plans between the anexifat coarser resolutions), virtually all
of these new plans are swallowed at a low threshold itselis lows from the fact that these plans,
being optimal over a small region, tend to have costs closieage of their neighbors and are therefore
likely to be easily swallowed.

This is clearly seen in Table 5, which captures the redudietmavior of the three optimizers with
the TPCH-based query templates at a grid resolution of 30@ramly distributed query points per
dimension. For example, although the plan diagram cantynaéent up from 38 to 91 in case of QT9
on OptC, the reduced plan diagram cardinality (with= 20%) went from 3 plans to only 4 plans.
This means that for practical threshold settings, the fiteh gardinality in the reduced diagram is
essentially “scale-free” with regard to resolution.
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Figure 11: Scaling with Dimensions

Table 6: Multi-dimensional Query Templates
Dim- | Original | Knee Cost| Knee | 10-plan Cost
ension| Plans | Threshold | Plans| Threshold

2(100)| 50 8% 9 7%
2(300)| 89 9% 7 7%
3 190 11% 10 11%
7] 243 13% 14 20%

7.6 Scaling with Dimensions

The above results were obtained on 2-D query templates, amtbw move on to evaluating the effect
of increased template dimensionality. Specifically, esithg the behavior with 3-D and 4-D versions
of the QT8 template (created through the addition of preadgaacctbal :varies ando_totalprice
:varies). This experiment was carried out only with OptC as a repriedize, due to the computational
effort involved in producing these plan diagrams.

The results are shown in Figure 11 for 2-D with resolution$@® and 300 query points per dimen-
sion, 3-D with a resolution of 100 query points per dimensemmd 4-D with a resolution of 30 query
points per dimension. We see here that while the number okplathe original plan diagram goes
up steeply with increasing dimensionality, the reductiehdwior is qualitatively similar across all the
templates. Further, as shown in Table 6, the reduction behiawemarkably stable: First, the location
of the knee of the plan cardinality vs. cost increase threlsti@aph varies only marginally, occurring
in the neighborhood of 10%. Second, the threshold requaditihg the reduced plan diagram cardi-
nality down to 10 plans is within 20%, a very practical valveni a user perspective, even in a 4-D
setting. Again, this seems to suggest that for practicaistmold settings, the final plan cardinality in
the reduced plan diagram is essentially “scale-free” watiard to dimension.
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7.7 Estimator Performance

Our next experiment studies the quality of threee estimategrovided by the estimators. The results
are shown in Figure 12 for QT8 on OptC (the results for oth@rgtemplates and database engines are
similar in nature) and indicate that AvgEst and AmmEst aaso@ably accurate despite using extremely
coarse characterizations of the cost distributions of piantheir optimality regions. Further, their
orders-of-magnitude runtime efficiency relative to the tGosedy algorithm, for iteratively computing
the knee, is captured in Table 7.

The estimator performance in characterizing the full plotemluced plan cardinality versusis
shown in Figures 13(a)-13(d) for 2D-100, 2D-300, 3D-100 4bBd30, respectively, the CostGreedy
performance being used as the yardstick. We see here thggnigral, the simple AvgEst estimator
provides estimates that are closer to CostGreedy than Aranitesvever, an advantage of AmmEst
is that it producegonservativeestimates, whereas AvgEst can on occasion slightly overats the
degree of plan reduction, as is seen in Figures 13(a) and.13(b

Table 7: Running Time of Estimators vs CostGreedy

TPC-H Query | Estimator Time(ms) | CostGreedy time(ms)
Template (for Knee) (for Knee)
2 25 2733
5 8 1675
8 26 3648
9 71 2382
10 12 546
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Table 8: OptA- Varying memory

Buffer | Sort | Minimum | Maximum | Original | Reduced Plans| Reduced Plans
Pages | Heap Cost Cost Plans (A =10%) (A =20%)
10 10 1.54e4 2.75e7 34 16 14
10 50000 1.54e4 2.71e7 21 10 9
50000 | 10 1.56e4 6.11e5 37 10 9
50000 | 50000| 1.56e4 5.55e5 27 9 7

7.8 Effect of Memory Availability

In all the above results, the query parameterization waherselectivities of the base relations. An-
other parameter that is well-known to have significant impacplan choices is the amount of system
memory available for query processing (e.g. Nested Loapsjaiay be favored in low-memory envi-
ronments, whereas Hash Joins may be a more attractiveatiterim memory-rich situations). In fact,
plan costs can be highly non-linear or ewdiscontinuoust low memory availabilities [3, 4].

We found that the memory budget certainly had significantaobn the spatial layouts and cardi-
nalities of the plan diagrams. For instance, with QT2 on Qpitv& plan cardinality varied between 21
and 37 with varying memory for the buffer pages and the saaphas shown in Table 8. However,
the basic observation that dense plan diagrams can be ktlueefew plans with low cost increase
thresholds remained unchanged as shown in the last two oslofrirable 8.

For OptC, we found that changing the parameter settingsefiores memory did not appreciably
change the cost of the query points. We intend to investifjgessue further in collaboration with the
developers of the OptC database engine.

7.9 TPC-DS

We also validated our results on TPC-DS, the recently relbdecision support benchmark [27]. TPC-
DS models the decision support functions of a retail produpplier, including data loading, multiple
types of queries and data maintenance. The database sookistultiple snowflake schemas with
shared dimension tables, skewed data and a large query sets&l a 100 GB sample database which
has 24 tables, generated using the TPC-DS benchmark’setingfenerator, on OptC. Representative
results are shown in Table 9 for sample query templates basedde TPC-DS queries. These plan
diagrams were produced with 100 query points per dimensioiiormly distributed in the selectiv-
ity space. We see in the table that though these plan diagaeendense, the plan reduction process
produces reduced plan diagrams of low cardinality, seelyinglependenbf the properties and com-
plexity of the underlying database.



Table 9: TPC-DS

TPC-DS Query | Original | Reduced Plans| Reduced Plans
Template Plans (A =10%) (A = 20%)
12 13 5 4
17 39 2 2
18 47 11 6
19 36 10 8
25 43 2 2

8 Conclusions

In this report, we investigated from a variety of perspexgivthe problem of reducing the dense plan
diagrams produced by modern query optimizers, without e affecting the query processing qual-
ity. Our analysis shows that while finding the optimal redutis NP-hard, the CostGreedy algorithm
proposed here is able to efficiently provide a tight and ogtiperformance guarantee. Further, the
experimental assessment on commercial optimizers irefiddat in practice CostGreedy is always
within a plan or two of the optimal, frequently giving the opal itself. The AvgEst and AmmEst
estimators are able to rapidly provide a fairly accuratessment of the tradeoff between reduced plan
cardinality and the cost threshold, helping users to focuthe interesting threshold ranges. Finally,
the experimental study indicates that the graph of cariljnegrsus threshold is typically steep and
that the number of plans in the reduced plan diagram is likelye brought down to anorexic levels
(within/around ten) with thresholds of around twenty peatceven for high-dimensional query tem-
plates. These results are even more striking when we carthidiethey areconservativesince a cost
bounding rule was used, rather than the actual costs ofa@plent plans at query points.

In closing, our study has shown that plan reduction can kréecbout efficiently and can bring down
the plan cardinality to a manageable number of plans whilmtaiaing acceptable query processing
quality. It has also shown that while the optimization psxEs sensitive to many parameters including
guery construction, data distribution, memory resourets, the reduction process on the other hand
is relatively indifferent to these factors. We expect these results would be of value to optimizer
designers and users.



A APPENDIX

A.1 PCM violation

For bounding the cost of a query point when it is to be repldned substitute plan, we assumed the
Plan Cost Monotonicity (PCM) behaviour. While this is trioe most of the query templates, for those
that contain negation operators such as "set differencshort-circuit operators like "exists”, the PCM
condition may not apply. In such cases, the query executishaf a plan will be monotonically non-
decreasing in another quadrant. For example, if there ayatiom operators for both the attributes in
which selectivities vary and there is a reduction in the Itesardinality, the cost function may be non-
decreasing as we move in the third quadrant (i.e. it will be-mzreasing with increase in the selectivity
of input relations). In general, we assume that the cost\bebiais monotonic as we increase input
selectivities. In such situations, to upper bound the cbatquery pointy, we need to only consider
the costs of all the query points in the appropriate quadrattie plan diagram witly as the origin.
Table 10 shows the quadrant that is to be considered for tbsilje cost behaviours in 2 dimensions.
Thus, we only assume monotonicity in each dimension.

Table 10: Reduction Quadrants
Behaviour in Behaviour in | Dominating
X dimension Y dimension Quadrant

Non-decreasing Non-decreasing I
Non-increasing| Non-decreasing Il
Non-increasing| Non-increasing 11
Non-decreasing Non-increasing \Y

A.2 Single-swallowing PlanRed

The Single-swallowing PlanRed problem is defined as follows

Definition 6 Single-swallowing PlanRed
Given an input plan diagrar®, and a threshold\, find the reduced plan diagraR with minimum
plan cardinality such that for every plah; in P,

1. P, € R, or

ci(q)
Applying the bounding rule of Section 4.1, the second caowlits converted to the stronger require-
ment:

2. dP; € R,

3dP; € R, such that/ query points; € P, 3r € P,

with r in first quadrant of; andm < (1+N).

ci(q)



We find that enforcing the single-swallowing restrictioredaot change the complexity of the plan
reduction problem. We show this by reducing a variation efflominating Set problem in a Directed
Graph into an instance of Single-swallowing PlanRed.

For the purpose of our reduction, we will be using an instari¢be Dominating Set problem where
the directed acylic grapy = (V, E) is connected and has the following structure

1. |V| = n+ m + 1 for some positive integers, m
2. There is one node(root) withidegree = 0
3. There is a directed edge between the rootranddes starting from the root.

4. There are a set df > 0 egdes between the aborenodes and the remaining nodes starting
from the set of, nodes.

Lemma 7 The Dominating Set problem in a Directed graph with the gis&acture is NP-Hard.

Proof: Let = (U, S) be a set cover instance witti| = m and|S| = n. Create a grapty = (V, F)
such that

1. For eachS; € S, create a node; (v hodes) and for each elemente U create a node; (u
nodes). Create another node

2. LetV = {uq,ug, ... Uy, v, v, ... 05w}
3. LetE = {(vi,u;) : e; € S;} U{(w,v;),Vi=1...n}

Let D' = w, w;,, Wiy, - - - Uiy, Vjy , Vj, - . . v;, DE the minimum dominating set féf. Every nodeu; has
a parent;. Hence, we can get another minimum dominatingi3et w, v,,,v.,, ... %, Vj,, Vj, - - . Vj,
for G. This means that these setwohodes has atleast one edge to all theodes. This implies that
C ={5.,54,...5:,5,,5j,,...5j,} coversU. To see that” is the optimal cover, if there was a
coverC’ = {S;,, Suy, ... Sz, }, with |C'| < |C|, then we can geD" = {w,v,,, vy, ... 0, } @S @
minimum dominating set fofz, due to the construction aF, with |D”| < |D|. This contradicts the
assumption thab is the minimum dominating set.

Hence, we can reduce a Set Cover problem to an instance ofdhenting set problem for the
directed graph structure mentioned above. Hence the Lemma.

We now reduce the above dominating set problem to Singldiamiag PlanRed problem.
Theorem 6 The Single-swallowing Plan Reduction Problem is NP-Hard.

Proof: Let G = (V, E) be a directed acyclic graph having the structure mentioagiice LetV =
{v1,v,...v,} and set/ = ()

1. For each node, create a sef; = {¢;} andU = U U{¢}
2. For each edgey;, v;) performS; = S; U{q;}



ReducePlansPlanDiagramP, threshold)
1. Initialize minplans = All Plans inP
2. fori=ntoldo

(@) plans = FindPlans(i)
(b) th = findT hreshold(plans)
(c) if threshold < th

i. returnminplans

(d) minplans = plans

3. End Algorithm ReducePlans

Figure 14: Algorithm ReducePlans

It can be seen thdt/, S) forms an instance of the set cover problem whose optimatisalgives
the optimal solution of the Directed Dominating Set prohlem

This instance of the set cover problem can then be convarteaiplan diagram by using the Algo-
rithm Reduce given in Table 4. We make a slight modificatioAligorithm Reduce, wherein, rather
than choosing the set with smallest index as its represeatedlor, we will instead choose the set
with the same index as the element as its representative c@lbis can be done because, while a
set is created, a corresponding element is also createt).faWeé know by Lemma 3 that the optimal
solution of the Plan Diagram formed by Algorithm Reduce gitlee optimal solution of the Set Cover
instance used as input to it. Also, this reduction runs ilypainial time. Hence, it will suffice for us to
just show that the optimal solution to the plan diagram tloused conforms with the aforementioned
restriction.

LetC' = {C4,Cy,...C} whereC; € S = {5, 5, ..5,,} be the optimal solution to the plan reduction
problem. (Recall that we represent a Plan by its corresponst inS). Let planS; ¢ C. Since the
only element ofS; that is colored with colo€’; in the plan diagram is;, it should be in some sét; in
the optimal solution. Hence, as required by the restrictioa planS; completely replaces;,. =

A.3 Storage-budgeted PlanRed
Theorem 7 The Storage-budgeted Plan Reduction Problem is NP-Hard.

Proof: We prove the hardness of the problem by using it to solve the Reduction problem. Assume
that a polynomial time solution exists for the Storage-midd PlanRed problem. Létind Plans be
polynomial time algorithm for the same. The algoritlhitind Plans takes as input the number of plans,
and returns the plans chosen that minimizes the threshaddled the method indT hreshold take as
input these plans and return the threshold by which the ddbeayuery point increases.

Consider the algorithm ReducePlans given in Figure 14. Algm ReducePlans takes as input the
threshold and returns the optimal number of plans that galace the other plans without increasing
the cost query points of beyond the given threshold.



1. Create a bucke®; for each different plan in P, and put all query points having the same plan in
the corresponding bucket.

2. Create a border buckétB; for each different plar in P. Using the Edge Detector algorithm,
identify the border points of each contiguous plan regiod anly insert those points into the
corresponding bucket.

3. Sort the bucket®; in ascending order of the areas covered by their associéiad mP. Let this
sorted listbeB,, B, ..., B,

4. fori=1ton

(a) Swallow(B;) = true
(b) for each poinp in B;
(c) forj =1tonand(j # i)

i. find, if available, a poing in BB, such thay is in first quadrant w.rp, cost(q) is within
[100%, (100 + A)%)] of cost(p), andcost(q) is the minimum across all such qualifying
points inBB;

(d) if one or morey points are identified from the above step, choose;theint with the lowest
cost(q), and mark that point can be assigned s bucket

(e) else SwallowB;) = false
() break

(9) if Swallow(B;)= true, move all the points if3; to their assigned replacement buckets, then
deleteB; and BB;

L

5. Output all the points dP with their current plan assignments based on their assignekkts, an
use the associated coloring to form the reduced plan diagam

Figure 15: Algorithm AreaGreedy

It can be seen that the algorithm runs in polynomial timedlitscthe algorithnFind Plans atmostn
times wheren is the number of plans in the Plan Diagram). Thus, we haveynpatial time solution
to the PlanRed Problem if we have polynomial time solutioth&oStorage-budgeted PlanRed Problem,
which means we have a polynomial time solution to the Set Corablem. Hence the theorem. m

A.4 AreaGreedy Algorithm
The detailed AreaGreedy Algorithm is given in Figure 15.

A.5 Efficiency of AreaGreedy
Lemma 8 The approximation facto%’;“ > 0.5y/m



Proof: Construct the plan diagram as follows.
1. Initialise cost.
2. foreachh =2...n—1do

(a) create an element of colds, costc andn — 1 elements of coloZ;, costc x (1 + A), and
an element of colof.,,, costc x (1 + A\)? and add it to row — 1 of the grid
(b) setc=c x (1+\)?
The plan diagram created above has= n? — n — 2 points. The AreaGreedy algorithm will output the
reduced sePyq = { 1%, P, ..., P, } while the optimal solution i$%,: = { P, P,}. Hence
|AG|  n—1
Opt] 2

It can be seen that
vm+1-1 <n—1 _ vm+1
2 2 2

Hence, for this plan diagram ,
|AG]

=~ ~0.5y/m
|Opt|

Hence the Lemma. =

A.6 Performance bound of Algorithm ThresholdGreedy

Theorem 8 Given a storage budget &f plans, letBen,,; be the benefit obtained by the optimal so-
lution’s selection, and3enrg be the benefit obtained by the ThresholdGreedy algorithRiggife 16)
selection. Then

Benpg 1 (k:— 1)k
- k

Benopt

Proof: Given that we need to chooselans, letl'G = { P, ... P, } be the plans chosen in order by the
greedy algorithm. LeOpt = {Q1, Qs, ...Qx} be the plans chosen by the optimal solution. Bet:p,
andBeny, be the benefits of choosing the plaisand(); respectively after choosing the previous1
plans. It can be seen that

k
Benpg = Z Benp, 4)
i=0
k
Beng, = Y _ Beng, (5)

1=0



ThresholdGreedy (PlanDiagramP, Budgetk)

1. Let P, be the plan of th& opRight query point.

2. SetC' = {P,}
3 _  cost(TopRight)
) = cost(BottomLeft)

4. fori =2tok do
(a) For each plan if® calculate the benefit of choosing that plan in addition toplaas inC'.
Let P; correspond to the plan which gives the maximum benefit.
(b) Let Ben correspond to the benefit provided by
(c) SetC =CU{P;}
(d) SetA =\ — Ben
5. Recolor the grid with colors corresponding to the sets imnd update new costs appropriately. If

a point can be colored with more than one color then colortih wie color that requires the least
cost increase.

6. End Algorithm ThresholdGreedy

Figure 16: Algorithm ThresholdGreedy

Define B;; to be the sum over all plans B of the amount of the benefiten), that is attributed ta>;
. An inequality that holds for eachis

SinceP;, is chosen first, it can be seen that
Vi, BenQi < Benp2

This is true because if there was soien,, > Benp,, then; would have been chosen by the
algorithm instead of>.
Similarly for P; the following inequality can be formed.

Vi, Beng, — Biy < Benp,.

This inequality holds because, pléh competes with other plans when selecting the second pldn wit
its initial benefitBeng, minus the benefit that was covered By
In general these inequalities can be written as

Vi, BenQi — Bil — BZQ — Bij—l S Benpj.



Adding the above set of equations overiadind using (4) and (5) we obtain the following setkof
inequalities.

Bengy < k.Benp,

Beney < k.Benp, + Benp,

Bengy < k.Benp, + Benp, + Benp,

Bengy < k.Benp, + Benp, , + Benp, , + Benp, ,... + Benp,

For a fixedBenr¢ the tightest bound oBen,,; occurs when all of the right side in the above set of
inequalities are equal, in which case we etp, = ﬁBean. Using this we get

k
k )
Benyg = Z(m)z_lBenpk

i=1

k
Bengy < k(m)k_lBenpk
Using the above two equations we get
BenTG >1_ k—1
Beng, —
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