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Abstract

A “plan diagram” is a pictorial enumeration of the executionplan choices of a database query
optimizer over the relational selectivity space. We have shown recently that, for industrial-strength
database engines, these diagrams are often remarkably complex and dense, with a large number of
plans covering the space. However, they can often be reducedto much simpler pictures, featuring
significantly fewer plans, without materially affecting the query processing quality. Plan reduc-
tion has useful implications for the design and usage of query optimizers, including quantifying
redundancy in the plan search space, enhancing useability of parametric query optimization, iden-
tifying error-resistant and least-expected-cost plans, and minimizing the overheads of multi-plan
approaches.

We investigate here the plan reduction issue from theoretical, statistical and empirical perspec-
tives. Our analysis shows that optimal plan reduction, w.r.t. minimizing the number of plans, is an
NP-hard problem in general, and remains so even for a storage-constrained variant. We then present
a greedy reduction algorithm with tight and optimal performance guarantees, whose complexity
scales linearly with the number of plans in the diagram for a given resolution. Next, we devise fast
estimators for locating the best tradeoff between the reduction in plan cardinality and the impact on
query processing quality. Finally, extensive experimentation with a suite of multi-dimensional TPC-
H and TPC-DS based query templates on industrial-strength optimizers demonstrates that complex
plan diagrams easily reduce to “anorexic” (small absolute number of plans) levels incurring only
marginal increases in the estimated query processing costs.



1 Introduction

Modern database systems use aquery optimizerto identify the most efficient strategy to execute declar-
ative SQL queries. The efficiency of the strategies, called “plans”, is usually costed in terms of the
estimated query response time. Optimization is a mandatoryexercise since the difference between the
cost of the best plan and a random choice could be in orders of magnitude [25]. The role of query
optimizers has become especially critical in recent times due to the high degree of query complexity
characterizing current decision-support applications, as exemplified by the TPC-H benchmark [26], and
its recent incarnation, TPC-DS [27].

Plan Diagrams

For a query on a given database and system configuration, the optimizer’s plan choice is primarily a
function of theselectivitiesof the base relations participating in the query – that is, the estimated number
of rows of each relation relevant to producing the final result. In a recent paper [19], we introduced
the concept of a “plan diagram” to denote a color-coded pictorial enumeration of the execution plan
choices of a database query optimizer for a parameterized query template over the relational selectivity
space. For example, consider QT8, the parameterized 2-D query template shown in Figure 1, based on
Query 8 of the TPC-H benchmark, with selectivity variationson theSUPPLIERandLINEITEM relations
through thes acctbal :varies and l extendedprice :varies predicates, respectively. The associated
plan diagram for QT8 is shown in Figure 2(a), produced with the Picasso query optimizer visualizer
tool [17] on a popular commercial database engine.1

select oyear, sum(case when nation = ’BRAZIL’ then volume else 0 end)/ sum(volume)

from (select YEAR(oorderdate) as oyear, l extendedprice * (1 - ldiscount) as volume, n2.nname as
nation

from part, supplier, lineitem, orders, customer, nation n1, nation n2, region

where ppartkey = lpartkey and ssuppkey = lsuppkey and lorderkey = oorderkey and ocustkey =
c custkey and cnationkey = n1.nnationkey and n1.nregionkey = rregionkey and snationkey =
n2.n nationkey and rname = ’AMERICA’ and ptype = ’ECONOMY ANODIZED STEEL’
ands acctbal :variesandl extendedprice :varies

) as all nations

group by oyear

order by oyear

Figure 1:Example Query Template: QT8

In Figure 2(a), the X and Y axes determine the percentage selectivities of the SUPPLIER and
LINEITEM relations, respectively, and each color-coded region represents that a particular plan has

1Plan diagrams can be computationally expensive to produce but such investments are likely to be acceptable for canned
query templates, like those found in Web applications.



(a) Plan Diagram (b) Reduced Diagram (Threshold = 10%)

Figure 2:Sample Plan and Reduced Plan Diagrams (QT8)

been determined by the optimizer to be the optimal choice in that entire region. We find that a set of
89 different optimal plans, P1 through P89, cover the entireselectivity space. The value associated
with each plan in the legend indicates the percentage ara coverage of that plan in the diagram – P1, for
example, covers about 22% of the space, whereas P89 is chosenin only 0.001% of the space.
[Note to Readers: We request the readers to view the plan diagrams directly from the color PDF file, rather than
from a print copy since the grayscale version may not clearlyregister the various features.]

Anorexic Plan Diagrams

As is evident from Figure 2(a), plan diagrams can be extremely complex and dense, with a large number
of plans covering the space – several such instances spanning a representative set of query templates
based on the TPC-H benchmark, over a suite of commercial optimizers, are available at [17]. However,
we had also shown in [19] that these dense diagrams could typically be “reduced” to much simpler
pictures featuring significantly fewer plans,without adversely affecting the query processing quality.

For example, if we were willing to tolerate a minor cost increase of at most 10% for any query
point in the diagram relative to its original (optimizer-estimated) cost, Figure 2(a) could be reduced to
that shown in Figure 2(b), where only 7 plans remain – that is,most of the original plans have been
“completely swallowed” by their siblings, leading to a highly reduced plan cardinality. Further, note
that a 10% increase, apart from being small in absolute terms, is also well within the bounds of the
inherenterror that characterizes the estimation process of modern optimizers [14, 20, 24]. The graph
of the reduced diagram’s plan cardinality as a function of the cost increase threshold for this example
is shown in Figure 3.

In general, our experience over a wide spectrum of dense plandiagrams ranging from tens to hun-
dreds of plans, across the optimizer suite, has been that a cost increase threshold ofonly twenty percent
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Figure 3: Plan Cardinality vs Cost Threshold

is amply sufficient to bring down the number of plans in the final reduced picture towithin ten. In
short, that plan diagrams can usually be made “anorexic” while retaining acceptable query processing
performance.

Further, as we will show in detail later in this report, it is possible to achieve this reduction efficiently
since we limit our attention to only the set of plans appearing in the original plan diagram, and do not
revisit the exponentially large search space of plan alternatives from which the optimizer makes these
choices.

We hasten to add that while our focus is primarily on selectivity-based parameterization in this report,
the above observations on the reduction behavior also hold true for parameterization on thememory
made available to the database engine for query processing,a key factor impacting optimizer plan
choices [5].

Contributions

We consider here the problem of reducing plan diagrams, fromtheoretical, statistical and empirical
perspectives. We first show that finding the optimal (w.r.t. minimizing the plan cardinality) reduced
plan diagram is NP-Hard through a reduction from Set Cover. This result motivates the design of Cost-
Greedy, a greedy algorithm whose complexity isO(nm), wheren is the number of plans andm is the
number of query points in the diagram(n ≪ m). Hence, for a given picture resolution, CostGreedy’s
performance scaleslinearly with the number of plans in the diagram, making it much more efficient
than theO(m2) reduction algorithm of [19]. Further, from the reduction quality perspective, Cost-
Greedy provides a tight performance guarantee ofO(ln m), which cannot be improved upon by any
alternative deterministic algorithm.

We also consider a storage-constrained variant of the plan reduction problem and find that it retains
the hardness of the general problem. On the positive side, however, we provide ThresholdGreedy, a
greedy algorithm that delivers a performance guarantee of0.63 w.r.t. the optimal.

Using extremely coarse characterizations of the cost distributions of the optimal plans, we develop
fast but effective estimators for determining the expectednumber of plans retained for a given threshold.
These estimators can also be used to predict the location of the best possible tradeoff (i.e. the “knee”)
between the plan cardinality reduction and the cost increase threshold.

Last, through an experimental analysis on the plan diagramsproduced by industrial strength op-
timizers with TPC-H and TPC-DS based multi-dimensional query templates, we show that (a) plan



reduction can be carried out efficiently, (b) the CostGreedyalgorithm typically gives the optimal re-
duction or is within a few plans of the optimal, (c) the analytical estimates of the plan-reduction versus
cost-threshold curve are quite accurate, and finally, that (d) a 20% cost threshold is amply sufficient to
bring the plan cardinality to within or around 10, even for high dimensional query templates – this is
an especially promising result from a practical perspective.



2 Anorexic Reduction Benefits

The production of anorexic reduced plan diagrams, that is, diagrams whose plan cardinality is
within/around a small absolute number (10 is the yardstick used here), has a variety of useful implica-
tions for improving both the efficiency of the optimizer and the choice of execution plan, as outlined
below:

Quantification of Redundancy in Plan Search Space:Plan reduction quantitatively indicates the ex-
tent to which current optimizers might perhaps be over-sophisticated in that they are “doing too
good a job”, not merited by the coarseness of the underlying cost space. This opens up the
possibility of redesigning and simplifying current optimizers to directly produce reduced plan
diagrams, in the process lowering the significant computational overheads of query optimization.
An approach that we are investigating is based on modifying the set of sub-plans expanded in
each iteration of the dynamic programming algorithm to (a) include those within the cost in-
crease threshold relative to the cheapest sub-plan, and (b)remove, using stability estimators of
the plan cost function over the selectivity space, “volatile” sub-plans; the final plan choice is the
stablest within-threshold plan.

Enhancement of PQO Usability: A rich body of literature exists onparametric query optimization
(PQO) (e.g.[5, 12, 13, 8, 9, 15]). The goal here is to apriori identify the optimal set of plans for
the entire relational selectivity space at compile time, and subsequently to use at run time the
actual selectivity parameter settings to identify the bestplan – the expectation is that this would
be much faster than optimizing the query from scratch.

A practical difficulty with PQO, however, is the representation of the plan optimality boundaries,
which could, in principle, be of arbitrary complexity, making it difficult to identify specifically
which plan from the set of optimal plans is to be utilized for anewly arrived query. A workaround
for this problem is the following [13]: For the specific querycurrently supplied by the user,
evaluate its estimated execution cost witheach of the plansin the optimal set. Then, choose the
lowest cost plan for executing the query. For this workaround to be viable, the plan diagram must
have, in an absolute sense, only a small number of plans – thisis because while plan-costing is
cheap as compared to query optimization [13], the total timetaken for many such costings may
become comparable. However, as shown in Figure 2(a), the number of optimal plans can be very
large, unless plan reduction is applied.

Therefore, a direct benefit of plan reduction is that it makesPQO viable from an implementation
perspective even in the highly complex world of industrial-strength optimizers.

Identification of Error-Resistant Plans: Plan reduction can help to identify plans that provide ro-
bust performance over large regions of the selectivity space. Therefore,errors in the underlying
database statistics, a situation often encountered by optimizers in practice [14], may have much
less impact as compared to using the fine-grained plan choices of the original plan diagram,
which may have poor performance at other points in the space.

For example, in Figure 2(a), estimated selectivities of (14%,1%) leads to a choice of plan
P70. However, if the actual selectivities at runtime turn out to be significantly different, say



(50%,40%), using plan P70, whose cost increases steeply with selectivity, would be disastrous.
In contrast, this error would have had no impact with the reduced plan diagram of Figure 2(b),
since P1, the replacement plan choice at (14%,1%), remains as the preferred plan for a large
range of higher values, including (50%,40%). Quantitatively, at (50%, 40%), plan P1 has a cost
of 135, while P70 is much more expensive, aboutthree timesthis value.

In short, the final plan choices become robust to errors that lie within the optimality regions of the
replacement plans. Such stability of plan choices is especially important for industrial workloads
where often the goal is to identify plans with stable good overall performance as opposed to
selecting the best local plan with potentially risky performance characteristics [16].

Identification of Least-Expected-Cost Plans:When faced with unknown input parameter values, to-
day’s optimizers typically approximate the distribution of the parameter values using some rep-
resentative value – for example, the mean or modal value – andthen always choose this “least
specific cost” plan at runtime. It has been shown in [3, 4] thata better strategy would be to instead
optimize for the “least expected cost” plan, where the full distribution of the input parameters is
taken into account. Computing the least expected cost plan not only involves substantial com-
putational overhead when the number of plans is large, but also assumes that the various plans
being compared are all modeled at the same level of accuracy,rarely true in practice. With plan
reduction, on the other hand, both the efficiency and the quality of the comparisons can become
substantially better since there are fewer contending plans.

Minimizing Overheads of Multi-Plan Approaches: A dynamic approach for selecting the best query
plan was proposed in [1] wherein multiple candidate query plans are executedin parallel. Based
on the relative rate of progress of the various plans, slowercandidates are terminated along the
way. The viability of this strategy is based on keeping the number of parallel candidate plans to
a manageable number given the available computational resources, and plan reduction can help
satisfy this constraint.

An alternative and less resource-intensive multi-plan approach is proposed in [14] wherein dur-
ing execution of the best compile-time plan choice, based onthe observed run-time perfor-
mance, a change in the query plan could be triggered for the remaining unexecuted portion of
the query. When this approach is combined with plan reduction, the likelihood of triggering a
re-optimization becomes substantially lower, thereby reducing the associated overheads.

Supports Plan Clustering: Plan reduction fits in perfectly with the query clustering approach previ-
ously proposed in our Plastic plan recycling tool [7, 21, 22,29], where queries that are expected
to have identical plan templates are grouped together basedon similarities in their feature vec-
tors. This is because the cluster regionsinherentlycoarsen the plan diagram granularity. Further,
from an implementation perspective, having fewer distinctplans makes it easier with regard to
both storage and comparison.

Picasso Execution Diagram Time Estimation:Apart from producing compilation diagrams, the Pi-
casso tool [17] also supports the production of execution cost diagrams which show the actual
run-time costs of executing the query points in the plan diagram. As a precursor to this process,
the user is given an estimate of the time taken to produce the entire picture, and this is achieved



by first fully executing a sample query point and then extrapolating its response time to the sum
of the optimizer-estimated costs of the remaining query points. For the sample query point, we
would like to ideally choose, from an efficiency and representativeness perspective, the cheapest
query point associated with the plan that occurs most frequently in the plan diagram. In the re-
duced plan diagram, it is likely that we will find a much cheaper point represented by this most
frequent plan since the areas covered by the surviving plansincrease substantially.



3 Related Work

To the best of our knowledge, apart from the initial results presented by us in [19], there has been
no prior work on the reduction of plan diagrams with regard toreal-world industrial-strengthquery
optimizers and query templates. However, similar issues have been considered in the PQO literature
in the context of simplified optimizers and basic query workloads. Specifically, in the pioneering work
of Betawadkar & Ganguly [2], a System-R style optimizer withleft-deep join-tree search space and
linear cost models was built, the workload comprising of pure SPJ query templates with star or linear
join-graphs and one-dimensional selectivity variations.Within this context, their experimental results
indicate that, for a given cost increase threshold, plan reduction is more effective with increasing join-
graph complexity. They also find that “if the increase threshold is small, a significant percentage of the
plans have to be retained.” For example, with a threshold of 10%, more than 50% of the plans usually
have to be retained. However, this conclusion is possibly related to the low plan cardinality (less than 20
in all the experiments) in their original plan diagrams. In contrast, our results indicate that on the dense
plan diagrams seen in real-world environments, where the number of plans can be in the hundreds, not
only is the reduction very substantial even for a 10% cost increase, but even more strikingly, that the
reduced plan cardinality is small inabsolute terms.

In the subsequent work of [12, 13], Hulgeri & Sudarshan modelan optimizer along the lines of the
Volcano query engine [11], and evaluate SPJ query templateswith two, three and four-dimensional
relational selectivities. In their formulation, the cost increase threshold cannot be guaranteed in the
presence of nonlinear cost functions, a common feature in practice, and is used only as a heuristic. Even
with this relaxation, the final number of plans with a threshold of 10% can be large – for example, a 4-D
query template with 134 original plans is reduced only to 53 with the DAG-AniPOSP algorithm and
to 29 with AniPOSP. Our work differs in that (a) we guarantee to maintain the cost increase threshold,
and (b) the observed reductions are substantially higher.

Finally, we provide for the first time, efficiency and qualityguarantees for the reduction algorithms,
as well as cardinality estimators for the reduced plan diagram.



4 The Plan Reduction Problem

In this section we define the Plan Reduction Problem, hereafter referred to as PlanRed, and prove that it
is NP-Hard through a reduction from the classical Set Cover Problem [10]. For ease of exposition, we
assume in the following discussion that the source SQL querytemplate is 2-dimensional – the extension
to higher dimensions is straightforward.

4.1 Preliminaries

The input to PlanRed is a Plan Diagram, defined as follows:

Definition 1 Plan Diagram
A Plan DiagramP is a 2-dimensional[0, 100%] selectivity space S, represented by a grid of points

where:

1. Each pointq(x, y) in the grid corresponds to a unique query with (percentage) selectivitiesx, y
in the X and Y dimensions, respectively.

2. Each query pointq in the grid is associated with an optimal planPi (as determined by the
optimizer), and a costci(q) representing the estimated effort to executeq with planPi.

3. Corresponding to each planPi is a unique colorLi, which is used to color all the query points
that are assigned toPi.

The set of all colors used in the plan diagramP is denoted byLP . Also, we will usePi to both denote
the actual plan, as well as the set of query points for whichPi is the plan choice – the interpretation to
use will be clear from the context.

With the above framework, PlanRed is defined as follows:

Definition 2 PlanRed
Given an input plan diagramP, and a cost increase thresholdλ (λ ≥ 0), find a reduced plan diagram

R that has minimum plan cardinality, and for every planPi in P,

1. Pi ∈ R, or

2. ∀ query pointsq ∈ Pi, ∃Pj ∈ R, such that
cj(q)

ci(q)
≤ (1 + λ)

That is, find the minimum-sized “cover” of plans that is sufficient to recolorP (using only the colors in
LP ) without increasing the cost of any re-colored query point (i.e. whose original plan is replaced by a
sibling plan) by more than the cost increase threshold. Obviously, forλ → 0, the reduced plan diagram
will be almost identical to the original plan diagram, whereas forλ → ∞, the reduced plan diagram
will be completely covered by a single plan.

In the above definition, we need to be able to evaluatecj(q), the cost of executing query pointq with
the substitute choicePj. However, this feature is not available in all database systems, and therefore we
use a bounding technique instead to limit the value ofcj(q). Note that this means that the reductions we
discuss here areconservativein that, in principle, it may be possible to reduce the diagram even more
– such enhanced reductions will only further support the conclusions drawn later in this report.

The specific bounding technique we use is based on assuming the following:



Plan Cost Monotonicity (PCM): The cost distribution of each of the plans featured in the plan dia-
gram is monotonically non-decreasing over the entire selectivity space S.

Intuitively, what the PCM condition states is that we expectthe query execution cost of a plan to
increase with base relation selectivities. For most query templates, this is usually the case since an
increase in selectivity corresponds to processing a largeramount of input data. However, the assumption
may not hold for query templates that feature negation operators such as “set difference”, or short-
circuit operators like “exists” – we discuss how to handle such situations in A.1. For the remainder of
this report, we consider only the common case of plan diagrams in which the PCM condition applies.

Based on the above, we can now state the following rule:

Definition 3 Cost Bounding Rule
Consider a pair of query points,q1(x1, y1) with optimal planP1 having costc1(q1), andq2(x2, y2)

with optimal planP2 having costc2(q2). Then the cost of executing queryq1 with planP2, i.e. c2(q1),
is upper bounded byc2(q2) if x2 ≥ x1, y2 ≥ y1.

That is, when considering the recoloring possibilities fora query pointq1, only those plan colors that
appear in thefirst quadrant, relative toq1 as the origin, should be considered. Further, if there exists a
differently colored pointq2 in the first quadrant whose cost is within theλ threshold w.r.t. the optimal
cost ofq1, thenq1 can be recolored with the color ofq2 without violating the query processing quality
guarantee. In short, condition 2 of Definition 2 is replaced by the stronger requirement

∀ query pointsq ∈ Pi, ∃Pj ∈ R, such that∃r ∈ Pj

with r in first quadrant ofq and
cj(r)

ci(q)
≤ (1 + λ).

In the remainder of the report, we will characterize any plandiagram that has more than ten plans
asdense. We usen andm to denote the number of plans and the number of query points inthe plan
diagram, respectively. Further, we usem1 andm2 to denote the diagram resolution in the X and Y axes,
respectively, withm = m1 × m2. Lastly,BottomLeftis used to denote the(1, 1) point andTopRightis
used to denote the point with coordinates(m1, m2) in the diagram.

4.2 The Set Cover Problem

We now move on to the classical Set Cover problem, defined as follows:

Definition 4 Set Cover Problem
Given a finite universal setU , and a collectionS = {S1, S2, . . . Sn} of subsets ofU such that⋃n

i=1 Si = U , find the minimum cardinality subsetC ⊆ S, such thatC coversU i.e. all elements ofU
belong to some subset inC.

Let I = (U, S) denote an instance of a Set Cover problem. From a given instance I, create a new
instanceI ′ = (U ′, Snew) such that:

1. S ′ = {e′}, wheree′ is an element not inU

2. U ′ = U
⋃

S ′, Snew = S
⋃{S ′}



Let C ′ be an optimal solution ofI ′. It is easy to see thatC = C ′ \ {S ′} is an optimal solution of the
original instanceI. Therefore, we will assume henceforth in this section that the Set Cover instance is
of the formI ′.

Lemma 1 Given a set cover instanceI ′, addition of a new elemente to U ′, to subsetS ′, and to zero or
more subsets in{S1, S2, . . . , Sn}, does not change the optimal solution ofI ′.

Proof: Let C = {S ′, Si1 , Si2, . . . , Sik} be the optimal solution ofI ′ before the addition of the element
e. After addinge to I ′, C still coversU ′, sincee ∈ S ′.

To see thatC continues to be the optimal solution ofI ′ after addinge, assume the contrary. LetC ′ be
a cover forU ′ with |C ′| < |C|. Removee from all subsets inC ′ that containe. NowC ′ coversU ′ \{e}.
This contradicts our selection ofC as the optimal solution ofI ′ before the addition ofe.

4.3 Reducing Set Cover to PlanRed

We now show that the Set Cover problem can be reduced to the Plan Reduction problem. Specifically,
Algorithm Reduce in Figure 4 converts an instance of Set Cover to an instance of PlanRed. It takes as in-
put the instanceI ′ and thresholdλ and outputs a plan diagram and another instanceInew = (Unew, S ′

new)
of Set Cover.

The data structures used in the algorithm are as follows:

1. cur(q): integer denoting the smallesti such that query pointq ∈ Si (i.e. denotes current plan that
q belongs to in the plan diagram)

2. belong(q): list storing allj, such thatq ∈ Sj andj 6= cur(q) (denotes the set of plans that can be
used instead of the current plan in the reduced plan diagram)

3. cost(q): value indicating the cost ofq in the plan diagram

4. color(q): integer denoting the color (equivalently, plan) ofq in the plan diagram

In addition, the valuen + 1 is used to denote the setS ′, i.e. Sn+1 = S ′ in cur andbelong.
Algorithm Reduce works as follows: Consider a Set Cover instanceI ′ = (U ′, Snew). For each subset

Si ∈ Snew, a unique colorLi which represents the planPi is created. Each elementq ∈ U ′ represents
a query point inP, and letq be in subsetsSi1 , Si2 , . . . Sik for eachSij ∈ Snew, j = 1, 2, . . . k and
i1 < i2 < . . . < ik. PlanPi1 is chosen as the representative forq and becomes the plan with whichq
is associated. For each of the other subsets in whichq is present, a new query pointr is created and
placed to the right ofq in the plan diagram, with its color corresponding to the subset it represents and
its cost being(1 + λ) times the cost ofq. Intuitively this means that planPi1 can be replaced by plans
Pij , j = 2, 3 . . . k. Then, a query pointt is created having planP ′ corresponding to the subsetS ′ with
a cost(1+ λ)2 times the cost ofq – this point is added to the right of all the points that were previously
created forq. This means thatt can in turn replace all the other points that were created forq, but notq
itself. (Note that this process is identical to the element addition process of Lemma 1.) When moving
from the last element of one row to the first element of the nextrow, the cost is further increased by a
factor of(1 + λ).



Reduce(Set CoverI ′)

1. Initialize Inew = I ′; ∀q ∈ U ′, setbelong(q) = NULL

2. For each elementq ∈ U ′

(a) Letq belong to setsSi1, Si2 , . . . , Sik ; 1 ≤ i1 < i2 < . . . < ik ≤ n + 1

(b) Setcur(q) = i1

(c) Add i2, i3, . . . , ik to belong(q)

3. Letm = |U ′|; mx = maxq(|belong(q)|) + 2 , q ∈ U ′; i=1; Initialize cost

4. Createn + 1 colorsL1, L2, . . . , Ln+1

5. Create anm × mx grid

6. For each elementq ∈ U ′

(a) Addq at point(i, 1) in the grid

(b) Setcolor(q) = cur(q); cost(q) = cost; cost = cost ∗ (1 + λ); p = 2

(c) For eachj ∈ belong(q)

i. Create elementr. Setcur(r) = j

ii. ∀z, z ∈ belong(q) such thatz > j, addz to belong(r)

iii. Add (n + 1) to belong(r)

iv. Add r at position(i, p) in the grid.p = p + 1

v. Setcolor(r) = j, cost(r) = cost

vi. Add r to instanceInew such thatr ∈ Sj, if j = cur(r) or j ∈ belong(r)

(d) Create elementt. Setcur(t) = n + 1, belong(t) = NULL

(e) cost = cost ∗ (1 + λ)

(f) Add t at position(i, p) in the grid

(g) Setcolor(t) = n + 1; cost(t) = cost; cost = cost ∗ (1 + λ).

(h) Add t to Inew.

(i) Seti = i + 1

7. For every empty point in the grid:

(a) Create a new elementq. Setcur(q) = n + 1, belong(q) = NULL.

(b) Add q to the empty point. Setcolor(q) = n + 1

(c) Setcost(q) = cost of row’s rightmost point with colorLn+1

(d) Add q to Inew

8. End Algorithm Reduce

Figure 4: Algorithm Reduce



Figure 5: Example of Algorithm Reduce

Starting from the bottom row and moving upwards, the above procedure is repeated for each element,
resulting in each element and its associated generated points being assigned to different rows in the
plan diagram. Finally, for each empty point in the grid, a newquery pointq is created having plan
P ′ corresponding to the subsetS ′ with a cost equal to the cost of the rightmost point in its row with
the planP ′. An example of this reduction, withλ = 10%, is shown in Figure 5, where each point
is represented by a square block. The blocks in the first column of the output plan diagram represent
the elements originally inU , while the remaining blocks are added during the reduction process. The
values in the blocks represent the costs associated with thecorresponding points, and each subset is
associated with a color, as shown in the legend.

We now show that Algorithm Reduce does indeed produce a plan diagram whose optimal solution
gives the optimal solution to the Set Cover instance used, and hence that PlanRed is NP-Hard.

Lemma 2 The gridG produced by Algorithm Reduce is an instance of PlanRed.

Proof:

1. Each point inG is associated with a color (equivalently, plan) and a cost.

2. For any point(x, y) onG, wherex andy represent the row and column respectively, letc = cost
associated with(x, y). At point (x, y + 1), the cost associated is eitherc or c ∗ (1 + λ). At point
(x + 1, y) the cost is greater thanc ∗ (1 + λ) because Algorithm Reduce increases the cost by a
factor of (1 + λ) while moving from one row to the next. Therefore, the cost bounding rule of
Definition 3 holds.

Hence the gridG satisfies the conditions necessary for the Plan Diagram of PlanRed.

Lemma 3 The optimal solution for the instance of the plan diagram generated by Algorithm Reduce
gives the optimal solution for the Set Cover instanceI ′ used as input to the algorithm.



Proof: Consider the plan diagram gridG and the Set Cover instanceInew = (Unew, S ′
new) that is the

output of the algorithm. For every pointq(x, y) on the grid that can be recolored, there must exist a
point with that color to the right ofq(x, y) with cost eitherc or c ∗ (1+λ) wherec is the cost ofq(x, y).
Also, the color’s index will be in thebelong list of the element corresponding to that point.

For each such pointq(x, y), there is an elementr in Inew, such thatr belongs to the subsetsSj ∈ S ′
new,

whenevercur(q) = j or j ∈ belong(q). Hence, from the above property, if pointq(x, y) has colorLi

in the reduced plan diagramR, then the corresponding element inInew will be an element of setSi.
Therefore, ifR has colors (plans)LR = {Li1 , Li2 , . . . , Lik} , since every point is colored with some

color inLR, its corresponding element inInew will belong to some subset inCnew = {Si1 , Si2, . . . , Sik}.
Therefore,Cnew coversUnew. Hence we just need to show that ifLR is the optimal color set (with least
number of colors), thenCnew is the optimal set cover forInew.

To prove the above, assume the contrary, that is, thatC ′
new = {Sj1 , Sj2, . . . , Sjl

}, l < k is the optimal
cover ofUnew. By construction of the grid, every point in the grid corresponding to an element inSji

i ∈ {1, 2, ...l}, can be colored with colorLji
. Apply this color to the point in the grid and set the cost

of this point to be the cost of the point with the matching color to its right. After recoloring the grid
in this manner, we get a new color setL′

R = {Lj1, Lj2, . . . , Ljl
} that covers the whole grid with

|L′
R| < |LR|. This contradicts the assumption thatLR was the optimal color set. Hence, the optimal

solution to the grid gives the optimal solution for the set cover instanceInew.
The newly created elements that are added toI ′ to createInew by the algorithm are in accordance

with Lemma 1. Hence the optimal solution forI ′ is the same as the optimal solution ofInew. Thus
the optimal solution for the instance of plan diagram generated by Algorithm Reduce gives the optimal
solution for the Set Cover instanceI ′ used as its input.

Armed with the above lemmas, we now state the main theorem:

Theorem 1 The Plan Reduction Problem is NP-Hard.

Proof: It can be seen that

1. Algorithm Reduce has a polynomial time complexity ofO(nm).

2. ForI ′ = (U ′, Snew), the grid created has in the worst case|U ′| ∗ (|Snew|) elements with|Snew|
plans. It is a valid plan diagram. (Lemma 2)

3. The optimal solution for Set Cover InstanceI ′ can be obtained by the optimal solution of the plan
diagram generated by the algorithm. (Lemma 3)

Hence the theorem.

In the hope of finding a polynomial-time optimal solution we also considered a situation where,
rather than allowing a plan to be collectively swallowed by agroup of sibling plans, we mandate that
a plan can be swallowed only if it can be entirely replaced by asinglesibling plan. That is, all query
points of a swallowed plan have the identical replacement color. Unfortunately, however, this constraint
does not change the complexity of the problem, as proved in Appendix A.2.



4.4 Storage-budgeted Plan Reduction

In practice, it is often the case that a fixed storage budget isprovided to hold the set of plans for a query
template. That is, a budget in terms of the number of stored plans, sayk, is specified, and the goal is
to identify the best set ofk plans that would minimize the cost increase in the Reduced Plan Diagram.
This problem is thedual of PlanRed, in terms of exchanging the constraint and the objective, and is
defined as follows:

Definition 5 Storage-budgeted Plan Reduction Problem
Given a plan diagramP and storage constraint of retaining at mostk plans, find thek plans to be

chosen so as to minimize the maximum cost increase of the query points in the reduced plan diagram
R.

A Karp Reduction [10] can be used to show that Storage-budgeted PlanRed is NP-Hard by using it
to solve the general Plan Reduction problem, leading to the following theorem (Proof in A.3):

Theorem 2 The Storage-budgeted Plan Reduction Problem is NP-Hard.



5 Greedy Plan Reduction

Given the hardness results of the previous section, it is clearly infeasible to provide optimal plan reduc-
tion, and therefore we now turn our attention to developing efficient greedy algorithms.

We first consider AreaGreedy, the reduction algorithm proposed in [19], where the greedy heuristic
is based on plan areas. Then we present CostGreedy, a new reduction algorithm that is greedy on
plan costs. Its computational efficiency and reduction quality guarantees are quantified for the general
PlanRed. We then present a greedy algorithm ThresholdGreedy that has strong performance bounds for
the storage-budgeted version. As before, for ease of exposition, we assume that the input plan diagram
is 2-dimensional – the algorithms can be easily generalizedto higher dimensions, while the theoretical
results are independent of the dimensionality.

5.1 The AreaGreedy Algorithm

The AreaGreedy algorithm first sorts the plans featuring in the plan diagram in ascending order of their
area coverage. It then iterates through this sequence, starting with the smallest-sized plan, checking in
each iteration whether the current plan can be completely swallowed by the remaining plans – if it can,
then all its points are recolored using the colors of the swallower plans, and these points are added to
the query sets of the swallowers.

An important point to note here is that when a plan that has already swallowed some other query
points is itself considered for swallowing, then theoriginal costs of the previously swallowed query
points are used in computing the cost increase with the current candidate swallowers. This ensures that
in the final reduced plan diagram, the cost increase of all query points is within the threshold even if
these points have been subject to multiple swallowings by different plans in the iterative process.

The intuition behind the design of AreaGreedy is two-fold: First, using an area basis for the swallow-
ing iterations is likely to reduce the number of small-sizedplans. This would contribute towards plan
stability as discussed in the Introduction. Second, small-sized plans tend to be found near the origin
and the axes of the plan diagram [18, 13, 19] – this means that they offer more scope for swallowing
since their first quadrants are big and therefore likely to have many more candidate swallower plans
as compared to the larger-sized plans which occur in the higher regions of the selectivity space. The
algorithm is given in A.4

By inspection, it is obvious that AreaGreedy has a time complexity ofO(m2), wherem is the number
of query points in the plan diagram. With respect to reduction quality, letAG denote the solution
obtained by AreaGreedy, and letOpt denote the optimal solution. We have shown in A.5 that the upper

bound of the approximation factor
|AG|
|Opt| will be atleast0.5

√
m.

5.2 The CostGreedy Algorithm

We now propose CostGreedy, a new greedy reduction algorithm, which provides significantly improved
computational efficiency and approximation factor as compared to AreaGreedy.

Consider an instance of PlanRed that has anm1 × m2 grid with n plans andm = m1 × m2 query
points. By scanning through the grid, we can populate thecur andbelong data structures (introduced
in Section 4.3) for every point. This can be done as follows: For each query pointq with planPi in



the grid, setcur(q) to be i, and add tobelong(q) all j such thatPj can replaceq. Using this, a Set
Cover instanceI = (U, S) can be created with|U | = m and|S| = n. HereU will consist of elements
that correspond to all the query points andS will consists of sets corresponding to the plans in the plan
diagram. The elements of each set will be the set of query points that can be associated with the plan
corresponding to that set.

The following lemma shows that the reduction solution for the plan diagram can be obtained from
the Set Cover instance created above.

Lemma 4 The optimal solution of the created Set Cover instanceI gives the optimal reduction solution
to the plan diagramP that is used to create the instance.

Proof: Let C = {Si1, Si2 , . . . Sik} be the optimal solution ofI. For each query pointq in P, if it
belongs to a subsetSij ∈ C, then colorq with color Lij . This is a valid coloring because the element
q will be in subsetSij only if q can be replaced by planPij . Hence,LR = {Si1, Si2 , . . . Sik} colors all
points in the plan diagram.

To show thatLR is optimal, assume that there existsL′
R = {Li1, Li2 , . . . Lil} which covers all plans

in the plan diagram withl < k. The coverC ′ = {Si1 , Si2, . . . Sil} is a cover ofI, since if a point can be
colored withLij ∈ L′

R, then it will belong to the corresponding setSij . SinceL′
R covers all points in

the plan diagram,C ′ coversU . This contradicts the assumption thatC is the optimal cover ofI. Hence
the lemma.

Lemma 4 is explicitly used in the design of CostGreedy, shownin Figure 6. In Lines 1 through 6,
an instanceI = {U, S} of Set Cover is created. Then, in Line 8, CostGreedy calls Algorithm Greedy
Setcover, shown in Figure 7, which takes this input instanceand outputs the coverC ⊆ S.

By definition, the TopRight query point inP cannot be re-colored since there are no points in its first
quadrant. Therefore, its color inP has to perforce also appear inR. Hence, we remove its corresponding
set from the Set Cover instance (Line 7) before applying Algorithm Greedy Setcover, and then add it
to the solution at the end (Line 10).

Finally, an attractive feature of CostGreedy is that a swallowed point is recolored only once, in
contrast to AreaGreedy where a swallowed point can be recolored multiple times.

5.2.1 Complexity Analysis

In the following theorem we show that the time complexity of CostGreedy isO(nm). Since it is
guaranteed thatn ≤ m, and typicallyn ≪ m, this means that CostGreedy is significantly more
efficient than AreaGreedy, whose complexity isO(m2). Further, it also means that for a given diagram
resolution, the performance islinear in the number of plans in the plan diagram.

Theorem 3 The time complexity of CostGreedy isO(mn), wherem and n are the number of query
points and plans, respectively, in the input plan diagramP.

Proof: Let P be anm1 × m2 grid. While populating thebelong andcur lists, we maintain another
two-dimensional arraymincost of dimensionm1 × n. This array is used to store the minimum costs
of the query points corresponding to each plan appearing in the partial-column located above each cell
in the row above the one that is currently being processed. The initial values inmincost are all∞.



CostGreedy (Plan DiagramP, Threshold λ)

1. For each pointq from TopRight to BottomLeft do

(a) setcur(q) = color(q)

(b) updatebelong(q) with plans that are inq’s first quadrant with cost within the given threshold

2. Letm = m1 × m2.

3. Createn setsS = {S1, S2, . . . Sn} corresponding to then plans.

4. LetU = {1, 2, . . . m} correspond to them query points.

5. Define∀i = 1 . . . n, Si = {j : i ∈ belong(r) or i = cur(r) for query pointr corresponding toj,
∀j = 1 . . . m}

6. LetI = (U,S), I be an instance of the Set Cover problem.

7. LetLn be the color of theTopRight point. Remove setSn and all its elements fromI.

8. Apply Algorithm Greedy Setcover toI. Let C be the solution found.

9. C = C
⋃{Sn}

10. Recolor the grid with colors corresponding to the sets inC and update new costs appropriately. If a point
belongs to more than one subset, then color it with the color that requires the least cost increase.

11. End Algorithm CostGreedy

Figure 6: CostGreedy

Greedy Setcover(Set CoverI)

1. SetC = ∅

2. WhileU 6= ∅ do:

(a) Select setSj ∈ S, such that|Sj| = max(|Si|);∀Si ∈ S (in case of tie, select set with smallest index)

(b) U = U \ Sj, S = S \ {Sj}
(c) C = C

⋃{Sj}

3. ReturnC

4. End Algorithm Greedy Setcover

Figure 7: Algorithm Greedy Setcover



Figure 8:Updating mincostin Algorithm CostGreedy

We start the scan of the grid from right to left, beginning with the top row of the grid. For each
point q with plan Pk at columni in the current row, if it can be replaced by any other planPj, then
mincost[i][Pj ] should be within the increase threshold of the cost ofq. Hence, through a single scan
of mincost[i], we can populatebelong(q). Then the cost ofq is updated formincost[i][Pk]. Since the
values in the columnmincost[i] are candidates for the minimum values of the columni−1, mincost[i−
1] is updated with the valuemin(mincost[i], mincost[i − 1]). An example is shown in Figure 8. The
arraymincost contains updated values after processing all the columns ofthe first three rows of the
plan diagram.

With the above procedure, when moving to the next row to be processed, the columnsmincost[i]
will automatically contain the minimum costs of all the plans appearing in the first quadrant of the
query point at theith column of the previous row. When a query point at columni is being processed,
due to the cumulative updation of the costs of the plans visited on that row,mincost[i] will be updated
with the minimum costs of all the plans in that point’s first quadrant.

So each query point requires2n iterations to be made, and there arem query points. Hence the time
required for populating the data structurescur andbelong is of the orderO(mn).

Obtaining the Set Cover instance from the above data structures takesO(mn) time, and the Algo-
rithm Greedy Setcover also has a time complexity ofO(mn). Thus the CostGreedy has an overall time
complexity ofO(mn). Hence the theorem.

5.2.2 Approximation Factor

We now quantitatively assess the approximation factor thatcan always be guaranteed by the CostGreedy
algorithm with respect to the optimal.



Lemma 5 CostGreedy has an approximation factor
|CG|
|Opt| = O(lnm), wherem is the number of query points in the plan diagram.

Proof: It has been shown in [6, 23] that Algorithm Greedy Setcover (GS) has an approximation factor
|GS|
|Opt| ≤ H(m), wherem is the cardinality of the universal set, andH(m) is themth harmonic

number. The input to GS can have at most(m − 1) elements in its universal set (this occurs when the
TopRight query point has a unique color not shared by any other point in the entire diagram). Therefore,

|CG|
|Opt| =

|GS|
|Opt| ≤ H((m − 1)) = O(lnm) (1)

Tightness of Bound. It is shown in [23] that given anyk, l where|Greedy| = k and|Opt| = l, a Set
Cover instance can be generated with(k + l) sets andm elements such thatm ≥ G(k, l), whereG(k, l)
is a recursively defined greedy number:

G(l, l) = l

G(k + 1, l) = ⌈ l

l − 1
∗ G(k, l)⌉

It is also shown in [23] that the following tight bound ofln m for Set Cover can be achieved using such
a construction whenm = G(k, l):

ln m − ln lnm − 0.31 ≤ k

l
≤ ln m − ln lnm + 0.78 (2)

These results are used in the following lemma.

Lemma 6 The bound specified by Lemma 5 is tight.

Proof: The construction process in [23] of the above-mentioned SetCover instance, withm = G(k, l),
is such that every element belongs to exactlytwo sets. For a givenk, l, first construct the Set Cover
instance using the construction in [23]. Using this create another Set Cover instance of the formI ′ with
(k + l +1) sets and(m+1) elements, as mentioned in Section 4.2. When Algorithm Reduce is applied
to this new instance, it creates a grid withm′ = 3∗(m+1) elements. This is because, for each element,
since it is in two sets, it can be colored by two colors in the plan diagram. One of these will represent its
current plan, and for the other plan, a new element will be created and added to its right. Then another
element will be created to its right which can replace this newly created element and having the color
representing the plan corresponding to the setS ′. Hence, each of them + 1 rows will have 3 elements.

From Equation 2 we know that

|Greedy|
|Opt| ≥ lnm − ln ln m − 0.31 (3)



Sincem =
m′

3
− 1 it is easy to see that

|Greedy|
|Opt| = Θ(ln m′)

Optimality of the Bound. It has been shown in [6] that the bound ofO(lnm) for Set Cover is the
best possible bound below which Set Cover cannot be approximated efficiently, unless NP has slightly
super-polynomial-time algorithms. This result is used in the following theorem:

Theorem 4 The bound specified by Lemma 5 is the best possible threshold below which PlanRed can-
not be approximated efficiently unless NP has slightly super-polynomial-time algorithms.

Proof: Assume that there exists some deterministic algorithm,DetX, that improves on the bounds of
O(lnm) for PlanRed. Then, for the instance of the grid created from aSet Cover instance, we will
have a reduced bound. This means we can get a reduced bound on Set Cover by reducing it into a plan
diagram and applyingDetX to it. But this would contradict the result of [6].

5.3 The ThresholdGreedy Algorithm

We now turn our attention to developing an efficient greedy algorithm for the Storage-budgeted varia-
tion of the PlanRed problem. Specifically, we present ThresholdGreedy, a greedy algorithm that selects
plans based on maximizing the benefits obtained by choosing them. The benefit of a plan is defined to
be the extent to which it decreases the cost thresholdλ of the reduced plan diagram when it is chosen,
which means that at each step ThresholdGreedy greedily chooses the plan whose selection minimizes
the effectiveλ.

The least number of plans that can be in the reduced plan diagram isa single planwhich corresponds
to the plan of the TopRight query point in the plan diagram. This can be always achieved by setting the
cost increase thresholdλ to equal the ratio between the costs of the TopRight and BottomLeft query
points in the plan diagram, i.e.λSinP lan = cost(TopRight)/cost(BottomLeft).

We now bootstrap the selection algorithm by choosing this plan and subsequently choose additional
plans based on their relative benefits. The details of the algorithm can be found in Figure 16. Let
Benopt andBengreedy be the total benefit of choosingk plans by the optimal and greedy algorithms,
respectively. This means that the final cost increase threshold with the optimal selection isλSinP lan −
BenOpt, and with the threshold greedy solution isλSinP lan−BenTG. The following theorem quantifies
the approximation factor of ThresholdGreedy (proof in A.6)

Theorem 5 Given a storage budget ofk plans, letBenopt be the benefit obtained by the optimal so-
lution’s selection, andBenTG be the benefit obtained by the ThresholdGreedy algorithm’s selection.
Then

BenTG

BenOpt

≥ 1 − (
k − 1

k
)k

Fork = 10, which we consider to be a reasonable budget in practice, theabove ratio works out to about
0.65, while fork → ∞, the ratio asymptotically goes down to 0.63. In an overall sense, this means that
ThresholdGreedy is always guaranteed to provide close totwo-thirds of the optimal benefit.



6 Estimators for Plan Reduction

Our experience has been that CostGreedy takes about a minuteto carry out a single reduction on plan
diagrams that have in the order of a million query points. While this appears sufficiently fast, it is likely
that users may need to iteratively try out several reductions with different cost increase thresholds in
order to identify the one appropriate for their purpose. Forexample, the user may wish to identify the
“knee” of the tradeoff between plan cardinality reduction and the cost threshold – that is, the location
which gives the maximum reduction with minimum threshold.

In the above situations, using the CostGreedy method repeatedly to find the desired setting may prove
to be extremely cumbersome and slow. Therefore, it would be helpful to design fast but accurate esti-
mators that would allow users to quickly narrow down their focus to the interesting range of threshold
values. In the remainder of this section, we present such estimators.

Our first estimator, AvgEst, takes as input the plan diagramP and a cost increase thresholdλ, and
returns the estimated number of plans in the reduced plan diagramR obtained with that threshold. It
uses the average of the costs of all the query points associated with a plan, to summarize the plan’s cost
distribution. All these averages can be simultaneously computed with a single scan of the Plan Diagram.
AvgEst then sets up an instance of Set Cover, as shown in Figure 9, with the number of elements equal
to the number of plans, and the set memberships of plans is based on their representative average costs
satisfying theλ threshold. On this instance, the Greedy Set Cover algorithm, introduced earlier in
Figure 7, is executed. The cardinality of the solution is returned as an estimate of the number of plans
that will feature inR.

AvgEst (Plan Diagram P, Threshold λ)

1. LetCost(i),∀i = 1 . . . n denote the average cost of PlanPi

2. SetU = {1, 2, . . . n}

3. SetSi = {1, 2, . . . n}, ∀i = 1 . . . n

4. for each planPi do

(a) For all plansPj such thatCost(j) < Cost(i) or Cost(j) is not within the threshold ofCost(i), set
Sj = Sj \ {i}

5. Apply Algorithm Greedy Setcover toI. Let C be the solution found

6. return|C|

7. End Algorithm AvgEst

Figure 9: Algorithm AvgEst

Our second estimator, AmmEst, uses in addition to the average value, the minimum and maximum
cost values of the query points associated with a plan. That is, each plan is effectively represented by
three values. Subsequently, the algorithm is identical to AvgEst, the only change being that the check
for set membership of a plan is based on not just the average value but on all three representative values
(min, max and avg) satisfying the membership criterion.



By iteratively running the estimator for various cost thresholds, we can quickly plot a graph of
plan cardinality against threshold, and the knee of this curve can be used as the estimated knee. Our
measurements show that this estimation process executes ina few milliseconds, orders of magnitude
faster than calculating the knee using CostGreedy. Further, this estimate can be used as a starting point
to find the actual knee which is likely to be in the neighborhood, as shown in the experimental results
of the following section.



7 Experimental Results

Having considered the theoretical and statistical aspectsof plan diagram reduction in the previous sec-
tions, we now move on to presenting our experimental results. The testbed is the Picasso optimizer
visualization tool [17], executing on a Sun Ultra 20 workstation equipped with an Opteron Dual Core
4GHz processor, 4 GB of main memory and 240 GB of hard disk, running the Windows XP Pro operat-
ing system. Through the GUI of the Picasso tool, users can submit a query template, the grid resolution
and distribution at which the instances of this template should be spread across the selectivity space, the
parameterized relations (axes) and their attributes on which the diagrams should be constructed, and
the choice of query optimizer. With this information, the tool automatically generates the associated
SQL queries, submits them to the optimizer to generate the plans, and finally produces the color-coded
plan, cost and cardinality diagrams.

We conducted our plan reduction experiments over dense plandiagrams produced from a variety
of multi-dimensional TPC-H and TPC-DS based query templates evaluated over a suite of industrial-
strength database query optimizers. The templates were instantiated at a variety of grid resolutions,
based on the experimental objectives and ensuring viable diagram production times. We also confirmed
that all the plan diagrams were in compliance with the plan cost monotonicity condition, described in
Section 4.1.

A gigabyte-sized database was created using the TPC-H benchmark’s synthetic generator – while the
benchmark models only uniformly distributed data, we extended the generator to also produce skewed
data distributions. The optimizers were all operated at their default optimization levels and resource
settings. To support the making of informed plan choices, commands were issued to collect statistics
on all the attributes featuring in the query templates, and the plan selections were determined using
the “explain” feature of the optimizers. It is important to note here that in all our experiments, the
optimizers are treated as “black boxes” and there is no attempt to customize or fine-tune their behavior.
The optimizers that we use include IBM DB2 v8, Oracle 10g and Microsoft SQL Server 2005, which
(due to legal restrictions) are randomly referred to as OptA, OptB and OptC in the remainder of this
thesis.

7.1 Computational Efficiency

We start off by first quantitatively evaluating the runtimesof the two greedy algorithms, Area-
Greedy [19] and CostGreedy (proposed in this thesis), as compared to the time taken to produce the
computationally-hard optimal solution. The reduction quality of the algorithms is compared in the next
section. A sample set of results on OptC is shown in Table 1 forQT8, the query template shown in Sec-
tion 1, instantiated at a grid resolution of 100 uniformly distributed points per dimension2 and reduction
carried out at a cost increase threshold of 10%. We see here that even for this relatively coarse-grained
situation, the optimal algorithm takes several hours to complete. In contrast, AreaGreedy takes only a
few seconds, while CostGreedy is an order-of-magnitude better than AreaGreedy, finishing in a small
fraction of a second.

The substantial improvement of CostGreedy with regard to AreaGreedy is, as per the discussion in
Section 5, due to itsO(nm) complexity being significantly lower than theO(m2) of AreaGreedy, as

2The QT8 plan diagram in the Introduction was obtained with a resolution of 300, resulting in a higher plan cardinality.



Table 1: Computational Efficiency (QT8, Res=100)
Algorithm Original Reduced Time

Plans (λ = 10%)
OptRed 50 7 4 hours

AreaGreedy 50 7 2.8 sec
CostGreedy 50 7 0.1 sec
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Figure 10: Reduction Quality (QT8), Res=100

n ≪ m in practice (recall thatn is the number of plans andm is the total number of query points in the
plan diagram).

7.2 Plan Reduction Quality

Turning our attention to the reduction quality, we see in Table 1 that AreaGreedy and CostGreedy are
identical to the optimal (OptRed), all three producing reduced plan diagrams with 7 plans (in fact, the
plans themselves are also the same in this case). The closeness to the optimal holds across the entire
operational range of cost increase thresholds, as shown in Figure 10, which presents the reduced plan
cardinalities for the three algorithms as a function of the threshold – only a few representative points
were obtained for OptRed due to its extremely high computational overheads.

Another point to note in Figure 10 is the initial steep decrease in the number of plans with increasing
threshold – we have found this to be a staple feature of all thedense plan diagrams that we have investi-
gated, irrespective of the specific query template, data or query point distribution, memory availability,
or database optimizer that produced the dense diagram. These settings may determinewhether or nota
dense plan diagram is produced, but if produced, subsequently the reduction process produces consis-
tent results. This trend is clearly seen in Table 2, which captures the reduction behavior of Optimizers
A, B and C, with various TPCH-based query templates on which they produced dense plan diagrams.



TPC-H OptA OptB OptC
Query Plan Reduced Reduced Plan Reduced Reduced Plan Reduced Reduced

Number Card Plans Plans Card Plans Plans Card Plans Plans
(λ=10%) (λ=20%) (λ=10%) (λ=20%) (λ=10%) (λ=20%)

2 14 7 7 20 10 8 43 12 8
5 11 4 2 12 4 4 23 6 5
8 36 4 3 16 4 2 50 7 4
9 39 9 6 18 7 3 38 4 3
10 18 5 4 7 3 3 17 4 3

Table 2: Plan Reduction Quality (Res = 100)

TPC-H OptA OptB OptC
Query Plan Reduced Reduced Plan Reduced Reduced Plan Reduced Reduced

Number Card Plans Plans Card Plans Plans Card Plans Plans
(λ=10%) (λ=20%) (λ=10%) (λ=20%) (λ=10%) (λ=20%)

2 12 11 7 23 7 6 52 14 10
5 11 4 2 11 4 3 12 5 2
8 35 5 3 24 4 2 34 6 5
9 49 10 5 34 6 5 46 3 3
10 22 7 7 12 5 4 11 2 2

Table 3: Skewed Data Distribution (Res = 100)

7.3 Skewed Data Distribution

The above results were obtained with uniformly distributeddata generated using the TPC-H bench-
mark’s synthetic generator. We extended the generator to also produce skewed data distributions. When
this skewed data was used instead, the observed reduction results did not materially change. While the
specific plan diagram changed, the reduction behavior continued to be as before. This can be seen in
Table 3, which captures the behavior of the three optimizerson their dense plan diagrams with skewed
data.

7.4 Exponential Distribution of Query Points

In the above diagrams, which were produced with a uniform distribution of query points across the
selectivity space, we observed that in most cases, the density of plans is greater in the regions near the
axes, that is, at low selectivity values of the base relations. This motivated us to alter the arrangement
of query points to be exponentially distributed with a higher density in the low selectivity region. As
expected, this led to a substantial increase in the cardinality of the original plan diagram. Despite
this, we see that the reduction process remains materially unaffected. This is highlighted in Table 4,
where we see that the plan cardinality of the reduced plan diagram decreases sharply at a low cost
increase threshold, irrespective of the number of plans in the original plan diagram. For example, the
plan diagram cardinality increased from 38 to 225 for QT9 on OptC, but the reduced plan diagram



TPC-H OptA OptB OptC
Query Plan Reduced Reduced Plan Reduced Reduced Plan Reduced Reduced

Number Card Plans Plans Card Plans Plans Card Plans Plans
(λ=10%) (λ=20%) (λ=10%) (λ=20%) (λ=10%) (λ=20%)

2 26 12 10 25 12 10 94 26 16
5 41 8 5 18 5 5 74 10 6
8 50 6 3 19 5 3 174 7 5
9 111 12 7 21 9 4 225 18 8
10 37 7 5 11 5 4 56 6 4

Table 4: Exponential Query Point Distribution (Res = 100)

TPC-H OptA OptB OptC
Query Plan Reduced Reduced Plan Reduced Reduced Plan Reduced Reduced

Number Card Plans Plans Card Plans Plans Card Plans Plans
(λ=10%) (λ=20%) (λ=10%) (λ=20%) (λ=10%) (λ=20%)

2 23 9 8 23 12 10 76 20 12
5 18 5 3 14 5 5 31 10 6
8 47 3 3 17 5 2 89 6 6
9 64 10 6 20 8 4 91 9 4
10 25 7 4 8 4 3 31 6 4

Table 5: Increased Grid Resolution (Res = 300)

cardinality (withλ = 20%) went from 3 plans to only 8 plans.

7.5 Increased Grid Resolution

While increasing the grid resolution may increase the number of plans in the original plan diagram (due
to the unearthing of new small-sized plans between the ones found at coarser resolutions), virtually all
of these new plans are swallowed at a low threshold itself. This follows from the fact that these plans,
being optimal over a small region, tend to have costs close tothose of their neighbors and are therefore
likely to be easily swallowed.

This is clearly seen in Table 5, which captures the reductionbehavior of the three optimizers with
the TPCH-based query templates at a grid resolution of 300 uniformly distributed query points per
dimension. For example, although the plan diagram cardinality went up from 38 to 91 in case of QT9
on OptC, the reduced plan diagram cardinality (withλ = 20%) went from 3 plans to only 4 plans.
This means that for practical threshold settings, the final plan cardinality in the reduced diagram is
essentially “scale-free” with regard to resolution.
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Figure 11: Scaling with Dimensions

Table 6: Multi-dimensional Query Templates
Dim- Original Knee Cost Knee 10-plan Cost
ension Plans Threshold Plans Threshold
2(100) 50 8% 9 7%
2(300) 89 9% 7 7%

3 190 11% 10 11%
4 243 13% 14 20%

7.6 Scaling with Dimensions

The above results were obtained on 2-D query templates, and we now move on to evaluating the effect
of increased template dimensionality. Specifically, evaluating the behavior with 3-D and 4-D versions
of the QT8 template (created through the addition of predicatesc acctbal :varies ando totalprice
:varies). This experiment was carried out only with OptC as a representative, due to the computational
effort involved in producing these plan diagrams.

The results are shown in Figure 11 for 2-D with resolutions of100 and 300 query points per dimen-
sion, 3-D with a resolution of 100 query points per dimension, and 4-D with a resolution of 30 query
points per dimension. We see here that while the number of plans in the original plan diagram goes
up steeply with increasing dimensionality, the reduction behavior is qualitatively similar across all the
templates. Further, as shown in Table 6, the reduction behavior is remarkably stable: First, the location
of the knee of the plan cardinality vs. cost increase threshold graph varies only marginally, occurring
in the neighborhood of 10%. Second, the threshold required to bring the reduced plan diagram cardi-
nality down to 10 plans is within 20%, a very practical value from a user perspective, even in a 4-D
setting. Again, this seems to suggest that for practical threshold settings, the final plan cardinality in
the reduced plan diagram is essentially “scale-free” with regard to dimension.
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Figure 12: Knee Estimates

7.7 Estimator Performance

Our next experiment studies the quality of theknee estimatesprovided by the estimators. The results
are shown in Figure 12 for QT8 on OptC (the results for other query templates and database engines are
similar in nature) and indicate that AvgEst and AmmEst are reasonably accurate despite using extremely
coarse characterizations of the cost distributions of plans in their optimality regions. Further, their
orders-of-magnitude runtime efficiency relative to the CostGreedy algorithm, for iteratively computing
the knee, is captured in Table 7.

The estimator performance in characterizing the full plot of reduced plan cardinality versusλ is
shown in Figures 13(a)–13(d) for 2D-100, 2D-300, 3D-100 and4D-30, respectively, the CostGreedy
performance being used as the yardstick. We see here that, ingeneral, the simple AvgEst estimator
provides estimates that are closer to CostGreedy than AmmEst– however, an advantage of AmmEst
is that it producesconservativeestimates, whereas AvgEst can on occasion slightly overestimate the
degree of plan reduction, as is seen in Figures 13(a) and 13(b).

Table 7: Running Time of Estimators vs CostGreedy
TPC-H Query Estimator Time(ms) CostGreedy time(ms)

Template (for Knee) (for Knee)
2 25 2733
5 8 1675
8 26 3648
9 71 2382
10 12 546
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(a) Est-2D (100)
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(b) Est-2D (300)
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(c) Est-3D
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Figure 13: Estimator Performance



Table 8: OptA- Varying memory
Buffer Sort Minimum Maximum Original Reduced Plans Reduced Plans
Pages Heap Cost Cost Plans (λ = 10%) (λ = 20%)

10 10 1.54e4 2.75e7 34 16 14
10 50000 1.54e4 2.71e7 21 10 9

50000 10 1.56e4 6.11e5 37 10 9
50000 50000 1.56e4 5.55e5 27 9 7

7.8 Effect of Memory Availability

In all the above results, the query parameterization was on the selectivities of the base relations. An-
other parameter that is well-known to have significant impact on plan choices is the amount of system
memory available for query processing (e.g. Nested Loop joins may be favored in low-memory envi-
ronments, whereas Hash Joins may be a more attractive alternative in memory-rich situations). In fact,
plan costs can be highly non-linear or evendiscontinuousat low memory availabilities [3, 4].

We found that the memory budget certainly had significant impact on the spatial layouts and cardi-
nalities of the plan diagrams. For instance, with QT2 on OptA, the plan cardinality varied between 21
and 37 with varying memory for the buffer pages and the sort heap, as shown in Table 8. However,
the basic observation that dense plan diagrams can be reduced to a few plans with low cost increase
thresholds remained unchanged as shown in the last two columns of Table 8.

For OptC, we found that changing the parameter settings for server memory did not appreciably
change the cost of the query points. We intend to investigatethis issue further in collaboration with the
developers of the OptC database engine.

7.9 TPC-DS

We also validated our results on TPC-DS, the recently released decision support benchmark [27]. TPC-
DS models the decision support functions of a retail productsupplier, including data loading, multiple
types of queries and data maintenance. The database consists of multiple snowflake schemas with
shared dimension tables, skewed data and a large query set. We used a 100 GB sample database which
has 24 tables, generated using the TPC-DS benchmark’s synthetic generator, on OptC. Representative
results are shown in Table 9 for sample query templates basedon the TPC-DS queries. These plan
diagrams were produced with 100 query points per dimension,uniformly distributed in the selectiv-
ity space. We see in the table that though these plan diagramsare dense, the plan reduction process
produces reduced plan diagrams of low cardinality, seemingly independentof the properties and com-
plexity of the underlying database.



Table 9: TPC-DS
TPC-DS Query Original Reduced Plans Reduced Plans

Template Plans (λ = 10%) (λ = 20%)
12 13 5 4
17 39 2 2
18 47 11 6
19 36 10 8
25 43 2 2

8 Conclusions

In this report, we investigated from a variety of perspectives, the problem of reducing the dense plan
diagrams produced by modern query optimizers, without adversely affecting the query processing qual-
ity. Our analysis shows that while finding the optimal reduction is NP-hard, the CostGreedy algorithm
proposed here is able to efficiently provide a tight and optimal performance guarantee. Further, the
experimental assessment on commercial optimizers indicates that in practice CostGreedy is always
within a plan or two of the optimal, frequently giving the optimal itself. The AvgEst and AmmEst
estimators are able to rapidly provide a fairly accurate assessment of the tradeoff between reduced plan
cardinality and the cost threshold, helping users to focus on the interesting threshold ranges. Finally,
the experimental study indicates that the graph of cardinality versus threshold is typically steep and
that the number of plans in the reduced plan diagram is likelyto be brought down to anorexic levels
(within/around ten) with thresholds of around twenty percent even for high-dimensional query tem-
plates. These results are even more striking when we consider that they areconservativesince a cost
bounding rule was used, rather than the actual costs of replacement plans at query points.

In closing, our study has shown that plan reduction can be carried out efficiently and can bring down
the plan cardinality to a manageable number of plans while maintaining acceptable query processing
quality. It has also shown that while the optimization process is sensitive to many parameters including
query construction, data distribution, memory resources,etc., the reduction process on the other hand
is relatively indifferent to these factors. We expect that these results would be of value to optimizer
designers and users.



A APPENDIX

A.1 PCM violation

For bounding the cost of a query point when it is to be replacedby a substitute plan, we assumed the
Plan Cost Monotonicity (PCM) behaviour. While this is true for most of the query templates, for those
that contain negation operators such as ”set difference” orshort-circuit operators like ”exists”, the PCM
condition may not apply. In such cases, the query execution cost of a plan will be monotonically non-
decreasing in another quadrant. For example, if there are negation operators for both the attributes in
which selectivities vary and there is a reduction in the result cardinality, the cost function may be non-
decreasing as we move in the third quadrant (i.e. it will be non-increasing with increase in the selectivity
of input relations). In general, we assume that the cost behaviour is monotonic as we increase input
selectivities. In such situations, to upper bound the cost of a query pointq, we need to only consider
the costs of all the query points in the appropriate quadrantof the plan diagram withq as the origin.
Table 10 shows the quadrant that is to be considered for the possible cost behaviours in 2 dimensions.
Thus, we only assume monotonicity in each dimension.

Table 10: Reduction Quadrants
Behaviour in Behaviour in Dominating
X dimension Y dimension Quadrant

Non-decreasing Non-decreasing I
Non-increasing Non-decreasing II
Non-increasing Non-increasing III
Non-decreasing Non-increasing IV

A.2 Single-swallowing PlanRed

The Single-swallowing PlanRed problem is defined as follows:

Definition 6 Single-swallowing PlanRed
Given an input plan diagramP, and a thresholdλ, find the reduced plan diagramR with minimum

plan cardinality such that for every planPi in P,

1. Pi ∈ R, or

2. ∃Pj ∈ R,
cj(q)

ci(q)
≤ (1 + λ)

Applying the bounding rule of Section 4.1, the second condition is converted to the stronger require-
ment:

∃Pj ∈ R, such that∀ query pointsq ∈ Pi ∃r ∈ Pj

with r in first quadrant ofq and
cj(r)

ci(q)
≤ (1 + λ).



We find that enforcing the single-swallowing restriction does not change the complexity of the plan
reduction problem. We show this by reducing a variation of the Dominating Set problem in a Directed
Graph into an instance of Single-swallowing PlanRed.

For the purpose of our reduction, we will be using an instanceof the Dominating Set problem where
the directed acylic graphG = (V, E) is connected and has the following structure

1. |V | = n + m + 1 for some positive integersn, m

2. There is one node(root) withindegree = 0

3. There is a directed edge between the root andn nodes starting from the root.

4. There are a set ofk > 0 egdes between the aboven nodes and the remainingm nodes starting
from the set ofn nodes.

Lemma 7 The Dominating Set problem in a Directed graph with the givenstructure is NP-Hard.

Proof: Let I = (U, S) be a set cover instance with|U | = m and|S| = n. Create a graphG = (V, E)
such that

1. For eachSi ∈ S, create a nodevi (v nodes) and for each elementei ∈ U create a nodeui (u
nodes). Create another nodew.

2. LetV = {u1, u2, . . . um, v1, v2, . . . vn, w}

3. LetE = {(vi, uj) : ej ∈ Si}
⋃{(w, vi), ∀i = 1 . . . n}

Let D′ = w, ui1, ui2, . . . uik, vj1 , vj2 . . . vjl
be the minimum dominating set forG. Every nodeui has

a parentvj . Hence, we can get another minimum dominating setD = w, vz1
, vz2

, . . . zik , vj1, vj2 . . . vjl

for G. This means that these set ofv nodes has atleast one edge to all theu nodes. This implies that
C = {Sz1

, Sz2
, . . . Szk

, Sj1, Sj2, . . . Sjl
} coversU . To see thatC is the optimal cover, if there was a

coverC ′ = {Sx1
, Sx2

, . . . Sxh
}, with |C ′| < |C|, then we can getD′′ = {w, vx1

, vx2
, . . . vxh

} as a
minimum dominating set forG, due to the construction ofG, with |D′′| < |D|. This contradicts the
assumption thatD is the minimum dominating set.

Hence, we can reduce a Set Cover problem to an instance of the Dominating set problem for the
directed graph structure mentioned above. Hence the Lemma.

We now reduce the above dominating set problem to Single-swallowing PlanRed problem.

Theorem 6 The Single-swallowing Plan Reduction Problem is NP-Hard.

Proof: Let G = (V, E) be a directed acyclic graph having the structure mentioned earlier. LetV =
{v1, v2, ...vn} and setU = ∅

1. For each nodevi create a setSi = {qi} andU = U
⋃{qi}

2. For each edge(vi, vj) performSi = Si

⋃{qj}



ReducePlans(P lanDiagramP , threshold)

1. Initializeminplans = All Plans inP

2. for i = n to 1 do

(a) plans = FindP lans(i)

(b) th = findThreshold(plans)

(c) if threshold ≤ th

i. returnminplans

(d) minplans = plans

3. End Algorithm ReducePlans

Figure 14: Algorithm ReducePlans

It can be seen that(U, S) forms an instance of the set cover problem whose optimal solution gives
the optimal solution of the Directed Dominating Set problem.

This instance of the set cover problem can then be converted into a plan diagram by using the Algo-
rithm Reduce given in Table 4. We make a slight modification inAlgorithm Reduce, wherein, rather
than choosing the set with smallest index as its representative color, we will instead choose the set
with the same index as the element as its representative color. (This can be done because, while a
set is created, a corresponding element is also created for it). We know by Lemma 3 that the optimal
solution of the Plan Diagram formed by Algorithm Reduce gives the optimal solution of the Set Cover
instance used as input to it. Also, this reduction runs in polynomial time. Hence, it will suffice for us to
just show that the optimal solution to the plan diagram thus formed conforms with the aforementioned
restriction.

Let C = {C1, C2, ...Ck} whereCi ∈ S = {S1, S2, ..Sn} be the optimal solution to the plan reduction
problem. (Recall that we represent a Plan by its corresponding set inS). Let planSi /∈ C. Since the
only element ofSi that is colored with colorCi in the plan diagram isxi, it should be in some setSj in
the optimal solution. Hence, as required by the restriction, the planSj completely replacesSi.

A.3 Storage-budgeted PlanRed

Theorem 7 The Storage-budgeted Plan Reduction Problem is NP-Hard.

Proof: We prove the hardness of the problem by using it to solve the Plan Reduction problem. Assume
that a polynomial time solution exists for the Storage-budgeted PlanRed problem. LetFindP lans be
polynomial time algorithm for the same. The algorithmFindP lans takes as input the number of plans,
and returns the plans chosen that minimizes the threshold, and let the methodfindThreshold take as
input these plans and return the threshold by which the cost of the query point increases.

Consider the algorithm ReducePlans given in Figure 14. Algorithm ReducePlans takes as input the
threshold and returns the optimal number of plans that can replace the other plans without increasing
the cost query points of beyond the given threshold.



1. Create a bucketBi for each different plani in P, and put all query points having the same plan in
the corresponding bucket.

2. Create a border bucketBBi for each different plani in P. Using the Edge Detector algorithm,
identify the border points of each contiguous plan region and only insert those points into the
corresponding bucket.

3. Sort the bucketsBi in ascending order of the areas covered by their associated plans inP. Let this
sorted list beB1, B2, . . . , Bn

4. for i = 1 to n

(a) Swallow(Bi) = true

(b) for each pointp in Bi

(c) for j = 1 to n and(j 6= i)

i. find, if available, a pointq in BBj such thatq is in first quadrant w.r.tp, cost(q) is within
[100%, (100 + λ)%] of cost(p), andcost(q) is the minimum across all such qualifying
points inBBj

(d) if one or moreq points are identified from the above step, choose theq point with the lowest
cost(q), and mark that pointp can be assigned toqs bucket

(e) else Swallow(Bi) = false

(f) break

(g) if Swallow(Bi)= true, move all the points inBi to their assigned replacement buckets, then
deleteBi andBBi

5. Output all the points ofP with their current plan assignments based on their assignedbuckets, and
use the associated coloring to form the reduced plan diagramR

Figure 15: Algorithm AreaGreedy

It can be seen that the algorithm runs in polynomial time (it calls the algorithmFindP lans atmostn
times wheren is the number of plans in the Plan Diagram). Thus, we have a polynomial time solution
to the PlanRed Problem if we have polynomial time solution tothe Storage-budgeted PlanRed Problem,
which means we have a polynomial time solution to the Set Cover problem. Hence the theorem.

A.4 AreaGreedy Algorithm

The detailed AreaGreedy Algorithm is given in Figure 15.

A.5 Efficiency of AreaGreedy

Lemma 8 The approximation factor|AG|
|Opt|

≥ 0.5
√

m



Proof: Construct the plan diagram as follows.

1. Initialise costc.

2. for eachi = 2 . . . n − 1 do

(a) create an element of colorL1, costc andn − 1 elements of colorLi, costc × (1 + λ), and
an element of colorLn, costc × (1 + λ)2 and add it to rowi − 1 of the grid

(b) setc = c × (1 + λ)3

The plan diagram created above hasm = n2 −n−2 points. The AreaGreedy algorithm will output the
reduced setPAG = {P2, P3, . . . , Pn} while the optimal solution isPOpt = {P1, Pn}. Hence

|AG|
|Opt| =

n − 1

2

It can be seen that √
m + 1 − 1

2
<

n − 1

2
<

√
m + 1

2

Hence, for this plan diagram ,
|AG|
|Opt| ≈ 0.5

√
m

Hence the Lemma.

A.6 Performance bound of Algorithm ThresholdGreedy

Theorem 8 Given a storage budget ofk plans, letBenopt be the benefit obtained by the optimal so-
lution’s selection, andBenTG be the benefit obtained by the ThresholdGreedy algorithm’s (Figure 16)
selection. Then

BenTG

BenOpt

≥ 1 − (
k − 1

k
)k

Proof: Given that we need to choosek plans, letTG = {P2, ...Pk} be the plans chosen in order by the
greedy algorithm. LetOpt = {Q1, Q2, ...Qk} be the plans chosen by the optimal solution. LetBenPi

andBenQi
be the benefits of choosing the plansPi andQi respectively after choosing the previousi−1

plans. It can be seen that

BenTG =
k∑

i=0

BenPi
(4)

Benopt =
k∑

i=0

BenQi
(5)



ThresholdGreedy (P lanDiagramP, Budgetk)

1. LetP1 be the plan of theTopRight query point.

2. SetC = {P1}

3. λ = cost(TopRight)
cost(BottomLeft)

4. for i = 2 to k do

(a) For each plan inP calculate the benefit of choosing that plan in addition to theplans inC.
Let Pj correspond to the plan which gives the maximum benefit.

(b) LetBen correspond to the benefit provided byPj

(c) SetC = C
⋃{Pj}

(d) Setλ = λ − Ben

5. Recolor the grid with colors corresponding to the sets inC and update new costs appropriately. If
a point can be colored with more than one color then color it with the color that requires the least
cost increase.

6. End Algorithm ThresholdGreedy

Figure 16: Algorithm ThresholdGreedy

DefineBij to be the sum over all plans inP of the amount of the benefitBenQi
that is attributed toPj

. An inequality that holds for eachj is

k∑

i=1

Bij ≤ BenPj

SinceP2 is chosen first, it can be seen that

∀i, BenQi
≤ BenP2

This is true because if there was someBenQi
> BenP2

, thenQi would have been chosen by the
algorithm instead ofP2.

Similarly for P3 the following inequality can be formed.

∀i, BenQi
− Bi1 ≤ BenP3

.

This inequality holds because, planQi competes with other plans when selecting the second plan with
its initial benefitBenQi

minus the benefit that was covered byP2.
In general these inequalities can be written as

∀i, BenQi
− Bi1 − Bi2... − Bij−1 ≤ BenPj

.



Adding the above set of equations over alli and using (4) and (5) we obtain the following set ofk
inequalities.

Benopt ≤ k.BenP2

Benopt ≤ k.BenP3
+ BenP2

Benopt ≤ k.BenP4
+ BenP3

+ BenP2

...

Benopt ≤ k.BenPk
+ BenPk−1

+ BenPk−2
+ BenPk−3

... + BenP2

For a fixedBenTG the tightest bound onBenopt occurs when all of the right side in the above set of
inequalities are equal, in which case we getBenPi

= k
k−1

BenPi+1
. Using this we get

BenTG =
k∑

i=1

(
k

k − 1
)i−1BenPk

Benopt ≤ k(
k

k − 1
)k−1BenPk

Using the above two equations we get

BenTG

Benopt

≥ 1 − (
k − 1

k
)k
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