
Query Processing without Estimation

Anshuman Dutt Jayant R. Haritsa

Technical Report
TR-2014-01

Database Systems Lab
Supercomputer Education and Research Centre

Indian Institute of Science
Bangalore 560012, India

http://dsl.serc.iisc.ernet.in

(This report replaces the earlier version TR-2013-01)

Abstract
Selectivity estimates for optimizing OLAP queries often differ significantly from those actually

encountered during query execution, leading to poor plan choices and inflated response times. We
propose here a conceptually new approach to address this problem, wherein the compile-time es-
timation process is completely eschewed for error-prone selectivities. Instead, a small “bouquet”
of plans is identified from the set of optimal plans in the query’s selectivity error space, such that
at least one among this subset is near-optimal at each location in the space. Then, at run time,
the actual selectivities of the query are incrementally “discovered” through a sequence of partial
executions of bouquet plans, eventually identifying the appropriate bouquet plan to execute. The
duration and switching of the partial executions is controlled by a graded progression of isocost
surfaces projected onto the optimal performance profile. We prove that this construction results in
bounded overheads for the selectivity discovery process and consequently, guaranteed worst-case
performance. In addition, it provides repeatable execution strategies across different invocations of
a query.

The plan bouquet approach has been empirically evaluated on both PostgreSQL and a com-
mercial DBMS, over the TPC-H and TPC-DS benchmark environments. Our experimental results
indicate that, even with conservative assumptions, it delivers substantial improvements in the worst-
case behavior, without impairing the average-case performance, as compared to the native optimiz-
ers of these systems. Moreover, the bouquet technique can be largely implemented using existing
optimizer infrastructure, making it relatively easy to incorporate in current database engines.

Overall, the bouquet approach provides novel guarantees that open up new possibilities for
robust query processing.

1 Introduction
Cost-based database query optimizers estimate a host of selectivities while identifying the ideal exe-
cution plan for declarative OLAP queries. For example, consider EQ, the simple SPJ query shown
in Figure 1 for enumerating orders of cheap parts – here, the optimizer estimates the selectivities of
a selection predicate (p retailprice) and two join predicates (part Z lineitem, lineitem Z orders).
In practice, these estimates are often significantly in error with respect to the actual values subse-
quently encountered during query execution. Such errors, which can even be in orders of magnitude
in real database environments [17], arise due to a variety of well-documented reasons [22], includ-
ing outdated statistics, attribute-value independence(AVI) assumptions, coarse summaries, complex
user-defined predicates, and error propagation in the query execution operator tree [15]. Moreover, in
environments such as ETL workflows, the statistics may actually be unavailable due to data source
constraints, forcing the optimizer to resort to “magic numbers” for the values (e.g. 1/10 for equality
selections [21]). The net result of these erroneous estimates is that the execution plans recommended
by the query optimizer may turn out to be poor choices at run-time, resulting in substantially inflated
query response times.

select * from lineitem, orders, part
where p partkey = l partkey and l orderkey =

o orderkey and p retailprice < 1000

Figure 1: Example Query (EQ)

A considerable body of literature exists on proposals to tackle this classical problem. For instance,
techniques for improving the statistical quality of the meta-data include improved summary struc-

2

tures [1, 18], feedback-based adjustments [22], and on-the-fly re-optimization of queries [16, 4, 19].
A complementary approach is to identify robust plans that are relatively less sensitive to estimation
errors [9, 3, 4, 13]. While these prior techniques provide novel and innovative formulations, they are
limited in their scope and performance, as explained later in the related work section.

Plan Bouquet Approach
In this paper, we investigate a conceptually new approach, wherein the compile-time estimation pro-
cess is completely eschewed for error-prone selectivities. Instead, these selectivities are systematically
discovered at run-time through a calibrated sequence of cost-limited plan executions. In a nutshell, we
attempt to side-step the selectivity estimation problem, rather than address it head-on, by adopting a
“seeing is believing” viewpoint on these values.

1D Example We introduce the new approach through a restricted 1D version of the EQ example query
wherein only the p retailprice selection predicate is error-prone. First, through repeated invocations of
the optimizer, we identify the “parametric optimal set of plans” (POSP) that cover the entire selectivity
range of the predicate. A sample outcome of this process is shown in Figure 2, wherein the POSP set
is comprised of plans P1 through P5. Further, each plan is annotated with the selectivity range over
which it is optimal – for instance, plan P3 is optimal in the (1.0%, 7.5%] interval. (In Figure 2, P =

Part, L = Lineitem, O = Order, NL = Nested Loops Join, MJ = Sort Merge Join, and HJ = Hash Join) .

Figure 2: POSP plans on p retailprice dimension

The optimizer-generated costs of these POSP plans over the selectivity range are shown (on a log-
log scale) in Figure 3. On this figure, we first construct the “POSP infimum curve” (PIC), defined
as the trajectory of the minimum cost from among the POSP plans – this curve represents the ideal
performance. The next step, which is a distinctive feature of our approach, is to discretize the PIC
by projecting a graded progression of isocost (IC) steps onto the curve. For example, in Figure 3,
the dotted horizontal lines represent a geometric progression of isocost steps, IC1 through IC7, with
each step being double the preceding value. The intersection of each IC with the PIC (indicated by �)
provides an associated selectivity, along with the identity of the best POSP plan for this selectivity. For
example, in Figure 3, the intersection of IC5 with the PIC corresponds to a selectivity of 0.65% with
associated POSP plan P2. We term the subset of POSP plans that are associated with the intersections
as the “plan bouquet” for the given query – in Figure 3, the bouquet consists of {P1, P2, P3, P5}.

The above exercises are carried out at query compilation time. Subsequently, at run-time, the correct
query selectivities are explicitly discovered through a sequence of cost-limited executions of bouquet
plans. Specifically, beginning with the cheapest isocost step, we iteratively execute the bouquet plan
assigned to each step until either:

3

Figure 3: POSP performance (log-log scale)

1. The partial execution overheads exceed the step’s cost value – in this case, we know that the
actual selectivity location lies beyond the current step, motivating a switch to the next step in the
sequence; or

2. The current plan completes execution within the budget – in this case, we know that the actual
selectivity location has been reached, and a plan that is at least 2-competitive wrt the ideal choice
was used for the final execution.

Example To make the above process concrete, consider the case where the selectivity of p retailprice
is 5%. Here, we begin by partially executing plan P1 until the execution overheads reach IC1 (1.2E4 |
0.015%). Then, we extend our cost horizon to IC2, and continue executing P1 until the overheads reach
IC2 (2.4E4| 0.03%), and so on until the overheads reach IC4 (9.6E4 | 0.2%). At this juncture, there is
a change of plan to P2 as we look ahead to IC5 (1.9E5 | 0.65%), and during this switching all the
intermediate results (if any) produced thus far by plan P1 are jettisoned. The new plan P2 is executed
till the associated overhead limit (1.9E5) is reached. The cost horizon is now extended to IC6 (3.8E5 |
6.5%), in the process jettisoning plan P2’s intermediate results and executing plan P3 instead. In this
case, the execution will complete before the cost limit is reached since the actual location, 5%, is less
than the selectivity limit of IC6. Viewed in toto, the net sub-optimality turns out to be 1.78 since the
exploratory overheads are 0.78 times the optimal cost, and the optimal plan itself was (coincidentally)
used for the final execution.

Extension to Multiple Dimensions When the above approach is generalized to the multi-
dimensional selectivity environment, the IC steps and the PIC curve become surfaces, and their inter-
sections represent selectivity surfaces on which multiple bouquet plans may be present. For example,
in the 2-D case, the IC steps are horizontal planes cutting through a hollow 3D PIC surface, typically

4

resulting in hyperbolic intersection contours with different plans associated with disjoint segments of
this contour – an instance of this scenario is shown in Figure 7.

Notwithstanding these changes, the basic mechanics of the bouquet algorithm remain virtually iden-
tical. The primary difference is that we jump from one IC surface to the next only after it is determined
(either explicitly or implicitly) that none of the bouquet plans present on the current IC surface can
completely execute the given query within the associated cost budget.

Performance Characteristics
At first glance, the plan bouquet approach, as described above, may appear to be utterly absurd and
self-defeating because: (a) At compile time, considerable preprocessing may be required to identify
the POSP plan set and the associated PIC; and (b) At run-time, the overheads may be hugely expensive
since there are multiple plan executions for a single query – in the worst scenario, as many plans as are
present in the bouquet!

However, we will attempt to make the case in the remainder of this paper, that it is indeed possible,
through careful design, to have plan bouquets efficiently provide robustness profiles that are markedly
superior to the native optimizer’s profile. Specifically, if we define robustness to be the worst-case
sub-optimality in plan performance that can occur due to selectivity errors, the bouquet mechanism
delivers substantial robustness improvements, while providing comparable or improved average-case
performance.

Figure 4: Bouquet Performance (log-log scale)

For instance, the runtime performance of the bouquet technique on EQ is profiled in Figure 4 (dark
blue curve). We observe that its performance is much closer to the PIC (dark green) as compared to the
worst case profile for the native optimizer (dark red), comprised of the supremum of the individual plan
profiles. In fact, the worst case sub-optimality for the bouquet is only 3.6 (at 6.5%), whereas the native

5

optimizer suffers a sub-optimality of around 100 when P5 (which is optimal for large selectivities) is
mistakenly chosen to execute a query with a low selectivity of 0.01%. The average sub-optimality of
the bouquet, computed over all possible errors, is 2.4, somewhat worse than the 1.8 obtained with the
native optimizer. However, when the enhancements described later in this paper are incorporated, the
optimized bouquet’s performance (dashed blue) improves to 3.1 (worst case) and 1.7 (average case),
thereby dominating the native optimizer on both metrics.

Our motivation for the cost-based discretization of the PIC is that it leads to guaranteed bounds on
worst-case performance. For instance, we prove that the cost-doubling strategy used in the 1D ex-
ample results in an upper-bound of 4 for the worst-case sub-optimality – this bound is inclusive of
all exploratory overheads incurred by the partial executions, and is irrespective of the query’s actual
selectivity. In fact, we can go further to show that 4 is the best competitive factor achievable by any
deterministic algorithm. For the multi-dimensional case, the bound becomes 4 times the bouquet cardi-
nality (more accurately, the plan cardinality of the densest contour), and we present techniques to limit
this cardinality to a small value. To our knowledge, these robustness bounds are the first such guaran-
tees to be presented in the database literature (although similar characterizations are well established in
the algorithms community [8]). Further, we also present a variety of design optimizations that result in
a practical performance which is well within the theoretical bounds.

In order to empirically validate its utility, we have evaluated the bouquet approach on PostgreSQL
and a popular commercial DBMS. Our experiments utilize a rich set of complex decision support
queries sourced from the TPC-H and TPC-DS benchmarks. The query workload includes selectivity
spaces with as many as five error-prone dimensions, thereby capturing environments that are extremely
challenging from a robustness perspective. Our performance results indicate that the bouquet approach
typically provides orders of magnitude improvements, as compared to the optimizer’s native choices.
As a case in point, for Query 19 of the TPC-DS benchmark with 5 error prone join selectivities, the
worst-case sub-optimality plummeted from about 106 to just 10! The potency of the approach is also
indicated by the fact that for many queries, the bouquet’s average performance is within 4 times of the
corresponding PICs.

What is even more gratifying is that the above performance profiles are conservative since we assume
that at every plan switch, all previous intermediate results are completely thrown away – in practice, it
is conceivable that some of these prior results could be retained and reused in the execution of a future
plan.

Apart from improving robustness, there is another major benefit of the bouquet mechanism: On a
given database, the execution strategy for a particular query instance, i.e. the sequence of plan execu-
tions, is repeatable across different invocations of the query instance – this is in marked contrast to prior
approaches wherein plan choices are influenced by the current state of the database statistics and the
query construction. Such stability of performance is especially important for industrial applications,
where considerable value is attributed to reproducible performance characteristics [3].

Finally, with regard to implementation, the bouquet technique can be largely constructed using tech-
niques (e.g. abstract plan costing) that have already found expression in modern DB engines, as ex-
plained later in Section 5.5.

Thus far, we had tacitly assumed the optimizer’s cost model to be perfect – that is, only optimizer
costs were used in the evaluations. While this assumption is certainly not valid in practice, improving
the model quality is, in principle, an orthogonal problem to that of estimation. Notwithstanding, we also
analyze the robustness guarantees in the presence of bounded modeling errors. Moreover, to positively
verify robustness improvements, explicit run-time evaluations are also included in our experimental
study.

In closing, we wish to highlight that from a deployment perspective, the bouquet technique is in-

6

tended to complementarily co-exist with the classical optimizer setup, leaving it to the user or DBA to
make the choice of which system to use for a specific query instance – essential factors that are likely
to influence this choice are discussed in the epilogue.

Organization The remainder of the paper is organized as follows: In Section 2, a precise description
of the robust execution problem is provided, along with the associated notations. Theoretical bounds on
the robustness provided by the bouquet technique are presented in Section 3. We then discuss its design
methodology, the compile-time aspects in Section 4 and the run-time mechanisms in Section 5. The
experimental framework and performance results are reported in Section 6. Related work is reviewed
in Section 7, while Section 8 presents a critical review of the bouquet approach. Finally, we conclude
in Section 9.

2 Problem Framework
In this section, we present our robustness model, the associated performance metrics, and the notations
used in the sequel. Robustness can be defined in many different ways and there is no universally
accepted metric [12] – here, we use the notion of performance sub-optimality to characterize robustness.

The error-prone selectivity space is denoted as ESS and its dimensionality D is determined by the
number of error-prone selectivity predicates in the query. The space is represented by a grid of D-
dimensional points with each point q(s1, s2, ..., sD) corresponding to a unique query with selectivity s j

on the jth dimension. The cost of a plan Pi at a query location q in ESS is denoted by ci(q).
For simplicity, we assume that the estimated query locations and the actual query locations are uni-

formly and independently distributed over the entire discretized selectivity space – that is, all estimates
and errors are equally likely. This definition can easily be extended to the general case where the
estimated and actual locations have idiosyncratic probability distributions.

Given a user query Q, denote the optimizer’s estimated location of this query by qe and the actual
location at runtime by qa. Next, denote the plan chosen by the optimizer at qe as Poe, and the optimal
plan at qa by Poa. With these definitions, the sub-optimality incurred due to using Poe at qa is simply
defined as the ratio:

SubOpt(qe, qa) =
coe(qa)
coa(qa)

∀qe, qa ∈ ESS (1)

with S ubOpt ranging over [1, ∞). The worst-case S ubOpt for a given query location qa is defined to
be wrt the qe that results in the maximum sub-optimality, that is, where selectivity inaccuracies have
the maximum adverse performance impact:

SubOptworst(qa) = max
qe∈ESS

(SubOpt(qe, qa)) ∀qa ∈ ESS (2)

With the above, the global worst-case is simply defined as the (qe, qa) combination that results in the
maximum value of S ubOpt over the entire ESS, that is,

MSO = max
qa∈ESS

(SubOptworst(qa)) (3)

Further, given the uniformity assumption about the distribution of estimated and actual locations, the
average sub-optimality over ESS is defined as:

ASO =

∑
qe∈ESS

∑
qa∈ESS

SubOpt(qe, qa)∑
qe∈ESS

∑
qa∈ESS

1
(4)

7

The above MSO and ASO definitions are appropriate for the way that modern optimizers behave,
wherein selectivity estimates are made at compile-time, and a single plan is executed at run-time.
However, in the plan bouquet technique, neither of these characteristics is true – error-prone selectivities
are not estimated at compile-time, and multiple plans may be invoked at run-time. Notwithstanding, we
can still compute the corresponding statistics by: (a) substituting qe with a “don’t care” ∗; (b) replacing
Poe with Pb to denote the plan bouquet mechanism; and (c) having the cost of the bouquet, cb(qa),
include the overheads incurred by the exploratory partial executions. Further, the running selectivity
location, as progressively discovered by the bouquet mechanism, is denoted by qrun.

Even when the bouquet algorithm performs well on the MSO and ASO metrics, it is possible that
for some specific locations qa ∈ ESS, it performs poorer than the worst performance of the native
optimizer – it is therefore harmful for the queries associated with these locations. This possibility is
captured using the following MaxHarm metric:

MH = max
qa∈ESS

(
SubOpt(∗, qa)

SubOptworst(qa)
− 1) (5)

Note that MH values lie in the range (−1,MS Obouquet − 1] and harm occurs whenever MH is positive.
An assumption that fundamentally underlies the entire bouquet mechanism is that of Plan Cost

Monotonicity (PCM) – that is, the costs of the POSP plans increase monotonically with increasing
selectivity values. This assumption has often been made in the literature [5, 6, 14], and holds for
virtually all the plans generated by PostgreSQL on the benchmark queries. The only exception we
have found is for queries featuring existential operators, where the POSP plans may exhibit decreasing
monotonicity with selectivity. Even in such scenarios, the basic bouquet technique can be utilized by
the simple expedient of plotting the ESS with (1 − s) instead of s on the selectivity axes. Thus, only
queries whose optimal cost surfaces have a maxima or minima in the interior of the error space, are not
amenable to our approach.

3 Robustness Bounds
We begin our presentation of the plan bouquet approach by characterizing its performance bounds with
regard to the MSO metric, initially for the 1D scenario, and then extending it to the general multi-
dimensional case.

3.1 1D Selectivity Space
As described in the Introduction, the 1D PIC curve is discretized by projecting a graded progression
of isocost steps onto the curve. We assume that the PIC is an increasing function (by virtue of PCM)
and continuous throughout ESS; its minimum and maximum costs are denoted by Cmin and Cmax,
respectively. Now, specifically consider the case wherein the isocost steps are organized in a geometric
progression with initial value a (a > 0) and common ratio r (r > 1), such that the PIC is sliced
with m = logrd

Cmax
Cmin
e cuts, IC1, IC2, . . . ICm, satisfying the boundary conditions a/r < Cmin ≤ IC1 and

ICm−1 < Cmax = ICm, as shown in Figure 5.
For 1 ≤ k ≤ m, denote the selectivity location where the kth isocost step (ICk) intersects the PIC by

qk and the corresponding bouquet plan as Pk. All the qk locations are unique by definition due to the
PCM and continuity requirements on the PIC curve. However, it is possible that some of the Pk plans
may be common to multiple intersection points (e.g. in Figure 3, plan P1 was common to steps IC1

through IC4). Finally, for mathematical convenience, assign q0 to be 0.

8

Figure 5: 1D Selectivity Space

With this framework, the bouquet execution algorithm operates as follows in the most general case,
where a different plan is associated with each step: We start with plan P1 and budget IC1, progressively
working our way up through the successive bouquet plans P2, P3, . . . until we reach the first plan Pk

that is able to fully execute the query within its assigned budget ICk. It is easy to see that the following
lemma holds:

Lemma 1 If qa resides in the range (qk−1, qk], 1 ≤ k ≤ m, then plan Pk executes it to completion in the
bouquet algorithm.

Proof 1 We prove by contradiction: If qa was located in the region (qk, qk+1], then Pk could not have
completed the query due to the PCM restriction. Conversely, if qa was located in (qk−2, qk−1], Pk−1 itself
would have successfully executed the query to completion. With similar reasoning, we can prove the
same for the remaining regions that are beyond qk+1 or before qk−2.

Performance Bounds Consider the generic case where qa lies in the range (qk−1, qk]. Based on
Lemma 1, the associated worst case cost of the bouquet execution algorithm is given by the following
expression:

Cbouquet(qa) = cost(IC1) + cost(IC2) + ... + cost(ICk)

9

for step = 1 to m do
start executing Pstep

while run cost(Pstep) ≤ cost-budget(ICstep) do
execute Pstep

if Pstep finishes execution then return query result
stop Pstep

Figure 6: Bouquet Algorithm (1D)

= a + ar + ar2 + ... + ark−1 =
a(rk − 1)

r − 1
(6)

The corresponding cost for an “oracle” algorithm that magically apriori knows the correct location of
qa is lower bounded by ark−2, due to the PCM restriction. Therefore, we have

S ubOpt(∗, qa) ≤
a(rk−1)

r−1

ark−2 =
r2

r − 1
−

r2−k

r − 1
≤

r2

r − 1
(7)

Note that the above expression is independent of k, and hence of the specific location of qa. Therefore,
we can state for the entire selectivity space, that:

Theorem 1 Given a query Q on a 1D error-prone selectivity space, and the associated PIC discretized
with a geometric progression having common ratio r, the bouquet execution algorithm ensures that:

MS O ≤
r2

r − 1

Further, the choice of r can be optimized to minimize this value – the RHS reaches its minima at
r = 2, at which the value of MSO is 4. The following theorem shows that this is the best performance
achievable by any deterministic online algorithm – leading us to conclude that the doubling based
discretization is the ideal solution.

Theorem 2 No deterministic online algorithm can provide an MSO guarantee lower than 4 in the 1D
scenario.

Proof 2 We prove by contradiction, assuming there exists an optimal online robust algorithm, R* with
a MSO of f , f < 4.

Firstly, note that R* must have a monotonically increasing sequence of plan execution costs,
a1, a2, . . . , ak∗+1 in its quest to find a plan Pk∗+1 that can execute the query to completion. The proof
is simple: If ai > a j with i < j, then we could construct another algorithm that skips the a j execution
and still execute the query to completion using Pk∗+1, and therefore has less cumulative overheads than
R*, which is not possible by definition.

Secondly, if R* stops at Pk∗+1, then qa has to necessarily lie in the range (qk∗ , qk∗+1] (Lemma 1 holds

for any monotonic algorithm). Therefore, the worst-case performance of R* is given by
∑i=k∗+1

i=1 ai

ak∗
≤ f .

Since qa could be chosen to lie in any interval, this inequality should hold true across all intervals, i.e.

∀ j ∈ 1, 2, . . . , k∗:
∑i= j+1

i=1 ai

a j
≤ f

Using the notation A j to represent
∑ j

i=1 ai and Y j to represent the ratio A j+1

A j
, we can rewrite the above as:

10

A j+1

a j
≤ f ⇒ A j+1 ≤ f (A j − A j−1)⇒ A j+1

A j
≤ f (A j−A j−1)

A j

that is, Y j ≤ f (1 − 1
Y j−1

).
We can show through elementary algebra that ∀z > 0, (1 − 1

z) ≤ z
4 . Therefore, we have that

Y j ≤ (f
4)Y j−1, leading to Yk∗ ≤ (f

4)
k∗−1

Y1. Using the assumption of f < 4, we can find a sufficiently large

k∗ such that (f
4)

k∗−1
Y1 < 1 . Hence, Yk∗ < 1 which implies that Ak∗+1 < Ak∗ , a contradiction.

3.2 Multi-dimensional Selectivity Space

Figure 7: 2D Selectivity Space

We now move to the general case of multi-dimensional selectivity error spaces. A sample 2D sce-
nario is shown in Figure 7a, wherein the isocost surfaces ICk are represented by contours that represent
a continuous sequence of selectivity locations (in contrast to the single location in the 1D case). Fur-
ther, multiple bouquet plans may be present on each individual contour as shown for ICk wherein four
plans, Pk

1, Pk
2, Pk

3, Pk
4, are the optimizer’s choices over disjoint x, y selectivity ranges on the contour.

Now, to decide whether qa lies below or beyond ICk, in principle every plan on the ICk contour has
to be executed – only if none complete, do we know that the actual location definitely lies beyond the
contour.

This need for exhaustive execution is highlighted in Figure 7b, where for the four plans lying on ICk,
the regions in the selectivity space on which each of these plans is guaranteed to complete within the
ICk budget are enumerated (the contour superscripts are omitted in the figure for visual clarity). Note
that while several regions are “covered” by multiple plans, each plan also has a region that it alone
covers – the hashed regions in Figure 7b. For queries located in such regions, only the execution of the
associated unique plan would result in confirming that the query is within the contour.

The basic bouquet algorithm for the multi-dimensional case is shown in Figure 8, using the notation
nk to represent the number of plans on contour k.

11

for cid = 1 to m do . for each cost-contour cid

for i = 1 to ncid do . for each plan on cid

start executing Pcid
i

while running-cost(Pcid
i) ≤ cost-budget(ICcid) do

execute plan Pcid
i . cost limited execution

if Pcid
i finishes execution then
return query result

stop executing Pcid
i

Figure 8: Multi-dimensional Bouquet Algorithm

Performance Bounds Given a query Q with qa located in the range (ICk−1, ICk], the worst-case total
execution cost for the multi-D bouquet algorithm is given by

Cbouquet(qa) =

k∑
i=1

[ni × cost(ICi)] (8)

Using ρ to denote the number of plans on the densest contour, and upper-bounding the values of the ni

with ρ, we get the following performance guarantee:

Cbouquet(qa) ≤ ρ ×
k∑

i=1

cost(ICi) (9)

Now, following a similar derivation as for the 1D case, we arrive at the following theorem:

Theorem 3 Given a query Q with a multidimensional error-prone selectivity space, the associated PIC
discretized with a geometric progression having common ratio r and maximum contour plan density ρ,

the bouquet execution algorithm ensures that: MS O ≤ ρ
r2

r − 1

Proof 3 Setting r = 2 in this expression ensures that MS O ≤ 4 ρ.

3.3 Minimizing IsoCost Surface Plan Density
To the best of our knowledge, the above MSO bounds are the first such guarantees in the literature.
While the 1D bounds are inherently strong giving a guarantee of 4 or better, the multi-dimensional
bounds, however, depend on ρ, the maximum plan density over the isocost surfaces. Therefore, to have
a practically useful bound, we need to ensure that the value of ρ is kept to the minimum.

This can be achieved through the anorexic reduction technique described in [14]. Here, POSP plans
are allowed to “swallow” other plans, that is, occupy their regions in the ESS space, if the sub-optimality
introduced due to these swallowings can be bounded to a user-defined threshold, λ. In [14], it was
shown that even for complex OLAP queries, a λ value of 20% was typically sufficient to bring the
number of POSP plans down to “anorexic levels”, that is, a small absolute number within or around 10.

When we introduce the anorexic notion into the bouquet setup, it has two opposing impacts on the
sub-optimality guarantees – on the one hand, the constant multiplication factor is increased by a factor
(1 + λ); on the other, the value of ρ is significantly reduced. Overall, the deterministic guarantee is
altered from 4 ρposp to 4 (1 + λ) ρanorexic .

Empirical evidence that this tradeoff is very beneficial is shown in Table 1, which compares for
a variety of multi-dimensional error spaces, the bounds (using Equation 8) under the original POSP

12

configuration and under an anorexic reduction (λ = 20%). As a particularly compelling example,
consider 5D DS Q19, a five-dimensional selectivity error space based on Q19 of TPC-DS – we observe
here that the bound plunges by more than an order of magnitude, going down from 379 to 30.4.

Error ρ MSO ρ MSO
Space posp Bound anorexic Bound

3D H Q5 11 33 3 12.0
3D H Q7 13 34 3 9.6
4D H Q8 88 213 7 24.0
5D H Q7 111 342.5 9 37.2

3D DS Q15 7 23.5 3 12.0
3D DS Q96 6 22.5 3 13.0
4D DS Q7 29 83 4 17.8

4D DS Q26 25 76 5 19.8
4D DS Q91 94 240 9 35.3
5D DS Q19 159 379 8 30.4

Table 1: Performance Guarantees (POSP versus Anorexic)

3.4 Cost Modeling Errors
Thus far, we had catered to arbitrary errors in selectivity estimation, but assumed that the cost model
itself was perfect. In practice, this is certainly not the case, but if the modeling errors were to be
unbounded, it appears hard to ensure robustness since, in principle, the estimated cost of any plan
could be arbitrarily different to the actual cost encountered at run-time. However, we could think of
an intermediate situation wherein the modeling errors are non-zero but bounded – specifically, the
estimated cost of any plan, given correct selectivity inputs, is known to be within a δ error factor of the

actual cost. That is,
cestimated

cactual
∈ [

1
(1 + δ)

, (1 + δ)].

Our construction is lent credence to by the recent work of [23], wherein static cost model tuning was
explored in the context of PostgreSQL – they were able to achieve an average δ value of around 0.4 for
the TPC-H suite of queries.

This “unbounded estimation errors, bounded modeling errors” framework is then amenable to ro-
bustness analysis and leads to following result.

Theorem 4 If the cost-modeling errors are limited to error-factor δ with regard to the actual cost, the

bouquet algorithm ensures that: MS O ≤ (1 + δ)2ρ
r2

r − 1

Proof 4 Recall from Equation 9 that, for any given query instance qa ∈ (ICk−1, ICk], the performance
of bouquet algorithm with perfect cost model assumption was given by:

Cbouquet(qa) ≤ ρ ×
k∑

i=1

cost(ICi)

Now, in the presence of cost modeling error, the sub-optimality of the bouquet technique will degrade
most when all the partial execution costs were underestimated and the corresponding cost for ”oracle”
algorithm is overestimated to the largest extent. The actual costs in such a case would be -

13

Cbouquet(qa) ≤ ρ ×
k∑

i=1

(1 + δ) cost(ICi) and Coracle(qa) ≥
cost(ICk−1)

(1 + δ)

Thus, the sub-optimality in this case would be:

S ubOpt(∗, qa) =
Cbouquet

Coracle
≤ ρ(1 + δ)2

∑k
i=1 cost(ICi)

cost(ICk−1)
= ρ(1 + δ)2 ×

1
ark−2 ×

a(rk − 1)
r − 1

S ubOpt(∗, qa) ≤ ρ(1 + δ)2 r2

r − 1
(10)

Thus, we can conclude from Theorem 3 and Theorem 4 that,

MS Obounded modeling error ≤ MS Oper f ect model ∗ (1 + δ)2 (11)

The effectiveness of this result is clear from the fact that, when δ = 0.4, corresponding to the average in
[23], the MSO increases by at most a factor of 2. Such low value of δ is also corroborated by the views
of industry experts [24] based on their experience in real world scenarios.

4 Bouquet: Compile-Time
In this section, we describe the compile-time aspects of the bouquet algorithm, whose complete work-
flow is shown in Figure 9.

Figure 9: Architecture of Bouquet Mechanism

4.1 Selectivity Space Construction
Given a user query Q, the first step is to identify the error-prone selectivity dimensions in the query.
For this purpose, we can leverage the approach proposed in [16], wherein a set of uncertainty modeling

14

rules are outlined to classify selectivity errors into categories ranging from “no uncertainty” to “very
high uncertainty”. Alternatively, a log could be maintained of the errors encountered by similar queries
in the workload history. Finally, there is always the fallback option of making all predicates where
selectivities are evaluated, to be selectivity dimensions for the query.

The chosen dimensions form the ESS selectivity space. In general, each dimension ranges over the
entire [0,100] percentage range – however, due to schematic constraints, the range may be reduced. For
instance, the maximum legal value for a PK-FK join is the reciprocal of the PK relation’s minimum
row cardinality.

4.2 POSP Generation
The next step is to determine the parametric optimal set of plans (POSP) over the entire ESS. Producing
the complete POSP set requires repeated invocations of the query optimizer at a high degree of resolu-
tion over the space. This process can, in principle, be computationally very expensive, especially for
higher-dimensional spaces. However, user queries are often submitted through “canned” form-based
interfaces – for such environments it appears feasible to offline precompute the entire POSP set.

Further, even when this is not the case, the overheads can be made manageable by leveraging the
following observation: The full POSP set is not required, only the subset that lies on the isocost
surfaces. Therefore, we begin by optimizing the two locations at the corners of the principal diagonal
of the selectivity space, giving us Cmin and Cmax. From these values, the costs of all the isocost contours
are computed. Then, the ESS is divided into smaller hypercubes, recursively dividing those hypercubes
through which one or more isocost contours pass – a contour passes through a hypercube if its cost is
within the cost range established by the corners of the hypercube’s principal diagonal. The recursion
stops when we reach hypercubes whose sizes are small enough that it is cheap to explicitly optimize all
points within them (As specified in Section 2, ESS has been discretized in the form of a high resolution
grid). In essence, only a narrow “band” of locations around each contour is optimized.

Finally, note that the POSP generation process is “embarrassingly parallel” since each location in
the ESS can be optimized independent of the others. Therefore, hardware resources in the form of
multi-processor multi-core platforms can also be leveraged to bring the overheads down to practical
levels.

Selectivity Injection As discussed above, we need to be able to systematically generate queries with
the desired ESS selectivities. One option is to, for each new location, suitably modify the query con-
stants and the data distributions, but this is clearly impractically cumbersome and time-consuming. We
have therefore taken an alternative approach in our PostgreSQL implementation, wherein the optimizer
is instrumented to directly support injection of selectivity values in the cost model computations. In-
terestingly, some commercial optimizer APIs already support such selectivity injections to a limited
extent (e.g. IBM DB2 [26]).

4.3 Plan Bouquet Identification
Armed with knowledge of the plans on each of the isocost contour surfaces, which is usually in the
several tens or hundreds of plans, the next step is to carry out a cost-based anorexic reduction [14] in
order to bring the plan cardinality down to a manageable number. That is, we identify a smaller set
of plans, such that each replaced location now has a new plan whose cost is within (1+λ) times the
optimal cost. We denote the set of plans on the surface of ICk with Bk and the union of these sets of
plans provides the final plan bouquet i.e. B = ∪m

k=1 Bk. Finally, the isocost surfaces (IC), annotated with

15

their updated costs (the original costs are inflated by 1 + λ to account for the anorexic reduction), and
B, the set of bouquet plans, are passed to the run-time phase.

5 Bouquet: Run Time
In this section, we present the run-time aspects of the bouquet mechanism, as per the work-flow shown
in Figure 9.

The basic bouquet algorithm (Figure 8) discovers the location of a query by sequentially executing
the set of plans on each contour in a cost-limited manner until either one of them completes, or the
plan set is exhausted, forcing a jump to the next contour. Note that in this process, no explicit moni-
toring of selectivities is required since the execution statuses serve as implicit indicators of whether we
have reached qa or not. However, as we will show next, consciously tracking selectivities can aid in
substantively curtailing the discovery overheads. In particular, the tracking can help to (a) reduce the
number of plan executions incurred in crossing contours; and (b) develop techniques for increasing the
selectivity movement obtained through each cost-limited plan execution.

5.1 Reducing Contour Crossing Executions
In this optimization, during the processing of a contour, the location of qrun is incrementally updated
after each (partial) plan execution to reflect the additional knowledge gained through the execution. An
example learning sequence is shown in Figure 10 – here, the qrun known at the conclusion of ICk−1

is progressively updated via q1
run and q2

run to reach q3
run on ICk, with the corresponding plan execution

sequence being P1, P4, P3 (the contour superscripts are omitted for ease of exposition). The important
point to observe here is that the contour crossing was accomplished without executing P2.

Figure 10: Minimizing Contour Crossing Executions

We now discuss how the plan execution sequence is decided. The strategy used is to ensure that
at all times, the actual location is in the first quadrant with respect to the current location as origin –
this invariant allows us to use the positive axes as a “pincer” movement towards reaching the desired

16

target, in the process eliminating from consideration some plans on the contour. Specifically, at each
qrun location, we first identify AxisPlans, the set of bouquet plans present at the intersection of the
isocost contour with the dimensional-axes corresponding to qrun as origin. For example, in Figure 10,
AxisPlans(qrun) is comprised of P4 and P1, corresponding to the x and y dimensions, respectively. Then,
from within this set, we heuristically pick, using a combination of structure and cost considerations,
the plan that promises to provide the maximum movement towards qa. The specific heuristic used is
the following: The plans in AxisPlans are first ordered based on their costs at qrun, and then clustered
into “equivalence groups” based on the closeness of these costs. From the cheapest equivalence group,
the plan with an error-prone node occurring deepest in the plan-tree is chosen for execution. The
expectation is that being cheapest at qrun provides the maximum spare budget, while having error-prone
nodes deep within the plan-tree ensures that this spare budget is not uselessly spent on processing
error-free nodes.

In Figure 10, the above heuristic happens to chose P1 at qrun and thereby reach q1
run. The process is re-

peated with qrun set to q1
run – now AxisPlans (q1

run) is {P2, P4}, and P4 is chosen by the heuristic, resulting
in a movement to q2

run. Finally, with qrun set to q2
run, AxisPlans (q2

run) contains only P3 which is executed
to reach q3

run, and hence ICk. Note, as mentioned before, that P2 is eliminated from consideration in
this incremental process.

There is a further advantage of the incremental updates to qrun: When we reach q3
run in Figure 10, we

not only learn that qa lies beyond ICk but can also ab initio eliminate 3 plans (Pi, Pi+4, Pi+5) from the
list of candidate plans for crossing ICk+1, since these plans lie outside the first quadrant of q3

run.

5.2 Monitoring Selectivity Movement
Having established the utility of incremental updates to qrun, we now go into the details of its imple-
mentation. Consider the scenario wherein Figure 10 represents the selectivity updation process for a
TPC-H based query with error-prone join selectivities ssl and soc on the x and y dimensions, respec-
tively. Correspondingly, let plans P1 through P4 be as shown in Figure 11. Further, each node j of these
plans is labeled with the corresponding tuple count, t j, obtained at the end of the cost-limited execution
– these annotations are explicitly shown for P1 in Figure 11.

Figure 11: Plans on the kth contour

After P1’s execution, the tuple count on node sl can be utilized to update the running selectivity ŝsl
as

t
sl

|s|e × |l|e
where |s|e and |l|e denote the cardinalities of the input relations to the SL join. The values

in the denominator are clearly known before execution as these nodes are assumed to be error-free.
Note that ŝsl is a lower bound on ssl, and therefore continues to maintain the “first quadrant” invariant
required by the bouquet approach.

17

The other selectivity soc, is not present as an independent node in plan P1. If we directly use ŝoc =
t
sloc

t
slo
× |c|e

, there is a danger of overestimation wrt qa(oc) since tslo may not be known completely due to

the cost-budgeted execution of P1. Such overestimations may lead to violation of the “first quadrant”
property, and are therefore impermissible. Consequently, we defer the updating of soc to the subsequent
execution of plans P4 and P3 where it can be independently computed from fully known inputs.

In general, given any plan-tree, we can learn the lower bound for an error-prone selectivity only after
the cardinalities of its inputs are completely known. This is possible when either the inputs are apriori
error-free, or any error-prone inputs have been completely learnt through the earlier executions. The
latter method of learning allows the bouquet approach to function even in the (unlikely) case where it
does not possess plans with independent appearances for all the error-prone selectivities. In the above
discussion, an implicit assumption is that all selectivities are independent with respect to each other
– this is in conformance with the typical modeling framework of current optimizers. (Note that, the
above discussion assumes independence of selectivities but not the other traditional assumptions like
uniform distribution assumption or random placement assumption and hence there is a possibility of
overestimation while learning any selectivity whenever complete inputs are not known).

5.3 Maximizing Selectivity Movement
Now we discuss how individual cost-limited plan executions can be modified to yield maximum move-
ment of qrun towards qa in return for the overheads incurred in their partial executions – that is, to “get
the maximum selectivity bang for the execution buck”.

In executing a budgeted plan to determine error-prone selectivities, we would ideally like the cost
budget to be utilized as far as possible by the nodes in the plan operator tree that can provide us
useful learning. However, there are two hurdles that come in the way: Firstly, the costs incurred by
upstream nodes that precede the error nodes in the plan evaluation. Secondly, the costs incurred by the
downstream nodes in the pipeline featuring the error nodes.

The first problem of upstream nodes can be ameliorated by preferentially choosing during the Axis-
Plans routine, as mentioned earlier, plans that feature the error-prone nodes deeper (i.e. earlier) in the
plan-tree. The second problem of downstream nodes can be solved by deliberately breaking the pipeline
immediately after first error node and spilling its output, which ensures that the downstream nodes do
not get any data/tuples to process. These changes help to maximize the effort spent on executing the
error-prone nodes, and thereby increase the selectivity movement with a given cost budget.

Movement Example We now illustrate, using the same example scenario as Figure 10, as to how
spill-based execution is utilized to achieve increased selectivity movement. In Figure 12, the spilled
versions of the plans P1 through P4 are shown, denoted using P̃. The modified selectivity discovery
process using the spilled partial executions is shown in Figure 13, with the progressive selectivity
locations being qa

run, qb
run, qc

run and qd
run.

The discovery process starts with executing plan P̃1 until its cost-limit is reached. The tuple count
on the error-prone node sl is then used to calculate ŝsl, as discussed earlier. Since the budget allotted
for the full plan is now solely focused on learning ssl, it is reasonable to expect that there will be
materially more movement in ssl as compared to executing generic P1. In fact, it is easy to prove that,
at the minimum, crossing of qrun from the third quadrant 1 f the P1 segment to its fourth quadrant is
guaranteed – this minimal case is shown in Figure 13 as location qa

run.

1The quadrants for a curve (in 2D) are constructed by placing the negative X axis and the positive Y axis at the left-most
point of the curve, and the positive X axis and the negative Y axis at the right-most point on the curve.

18

Figure 12: Plans (spilled version) and their movement direction

After P̃1 exhausts its cost-budget, the AxisPlans routine chooses P̃4 to take over, which starts learning
soc, and ends up reaching at least qb

run in Figure 13. Continuing in similar vein, P̃2 is executed to reach
qc

run, and finally, P̃3 is executed to reach qd
run on the next contour. Due to focusing our energies on

learning only a single selectivity in each plan execution, the movement of qrun follows a Manhattan
profile from the origin upto qa, as shown in Figure 13.

Figure 13: Maximizing Selectivity Movement

A high-level pseudocode of the full bouquet algorithm, incorporating the above optimizations, is
presented in Figure 14.

Re-execution with Spilled Approach Although the spill-based approach serves to enhance the se-
lectivity movement, there is also a downside – it requires a re-execution of the generic plan if the spilled
plan’s execution reaches the final destination on that dimension, signalled by the spilled plan complet-
ing before its budget is exhausted. This is because we need to verify whether the entire query, and not
just the spilled segment, would complete within the cost budget. For instance, consider the case where
qa was located in the fourth quadrant of qb

run – in this scenario, P̃4 would complete early, after which

19

qrun = (0,0, ...,0); cid = 1 . initialization

loop
Pcur = AxisPlanRoutine(qrun, cid) . next plan selection

while running-cost(Pcur) ≤ cost-budget(ICcid) do
execute Pcur . cost limited execution

if Pcur finishes execution then
return query result

update qrun . selectivity updation

if optimal-cost(qrun) ≥ cost-budget(ICcid) then
cid ++ . early contour change

Figure 14: Optimized Bouquet algorithm

generic P4 would have to be executed to deliver the query results.
Note that in order to maintain the MSO bound, we need to ensure that a contour is fully processed

using only its assigned overall contour budget, even in the face of such re-executions. Therefore, we
employ spilled executions selectively based on the following criteria: “Execute the spilled version only
if the remaining number of dimensions to be learnt is less than the number of allotted plan executions
remaining for the contour”.

5.4 TPC-H Example
To make the above notions concrete, we now present an example of the bouquet algorithm operating
on TPC-H Query 8. Assume that the error-prone selectivities of this query are the P ./ L, S ./ L and
O ./ C joins, and that the actual selectivity location, qa, is (0.8%, 0.25%, 30%). The optimal cost at
this location is 2.35 × 105, and the worst case performance of the native optimizer, S ubOptworst(qa), is
198.7.

The error-selectivity space of the query has 5 isocost contours lying between Cmin = 1.95E4 and
Cmax = 5.5E5. Further, the number of POSP plans is 102, which reduce to just 9 plans after anorexic
reduction with λ = 20%. In this case, all 9 plans also feature in the bouquet, and the corresponding
MSO bound (computed using Equation 8) is 18.5.

The detailed sequence of plan executions by the bouquet mechanism is shown in Table 2, where
the selectivity learnt in each step is boldfaced. We also show, for each step, the plan employed, the
assigned cost budget, and the overheads accumulated thus far. Further, the group of steps corresponding
to individual contours are clubbed together in separate boxes.

In Table 2, we observe that the execution sequence is comprised of eight partial plan executions
spanning four contours and five plans, and ending with the full execution of plan P9 which returns the
query results to the user. The overall MSO is 6.7, a significant drop from the 198.7 of the native opti-
mizer, and well within the bound of 18.5. Moreover, the overheads incurred in Table 2 are overstated
– if optimizations such as sub-plan reuse are incorporated, the MSO would have gone down further to
only 4.

Had the above query been executed with the basic bouquet algorithm, it would have required 17
partial executions of 9 bouquet plans, resulting in an MSO of 10.7 – these statistics highlight the
effectiveness of the optimizations described earlier in this section.

20

PL SL OC Plan Cost-Budget Overheads
0 0 0 0 - - -
1 0.008 0 0 P̃4 3.4 × 104 3.4 × 104

2 0.008 0 1.0 P̃1 6.8 × 104 1.02 × 104

3 0.008 0.016 1.0 P̃8 1.36 × 105 2.38 × 105

4 0.008 0.016 4.0 P̃1 1.36 × 105 3.74 × 105

5 0.16 0.016 4.0 P̃4 1.36 × 105 5.10 × 105

6 0.16 0.25 4.0 P̃2 2.72 × 105 7.82 × 105

7 0.16 0.25 13.0 P̃1 2.72 × 105 1.05 × 106

8 0.8 0.25 13.0 P̃4 2.72 × 105 1.32 × 106

9 0.8 0.25 30.0 P9 2.72 × 105 1.58 × 106

Table 2: Example Bouquet Execution

5.5 Implementation Details
For implementing the bouquet mechanism, the database engine needs to support the following func-
tionalities: (1) abstract plan costing; (2) selectivity injection during query optimization; (3) cost-limited
partial execution of plans (generic and spilled); and (4) selectivity monitoring on a running basis. Ab-
stract plan costing is supported by quite a few commercial engines including SQL Server [25], while
limited selectivity injection is provided in DB2 [26]. The other two features were found to be easy
to implement since they leverage pre-existing engine resources. For example, in PostgreSQL, the
node-granularity tuple counter required for cost-limited execution, as well as selectivity monitoring,
is available through the instrumentation data structure [29].

5.5.1 Cost-limited Execution in PostgreSQL

The basic bouquet approach requires, in principle, only a simple “timer” that keeps track of elapsed
time and terminates plan executions if they exceed their assigned contour budgets. No material changes
need to be made in the engine internals to support this feature (assuming perfect cost model).

To elaborate, we have an external program, the “Bouquet Driver” which treats the query optimizer
and executor as black-boxes. First, it explores the ESS to determine the isocost contours and plan bou-
quet. Then it performs partial executions of plans using an execution client and a monitoring client.
The execution client selects the plan to be executed next and the monitoring client keeps track of
time elapsed and aborts the execution after the allotted time-budget has been exhausted. In Post-
greSQL, this can be achieved by invoking the following command at the monitoring client: “select
pg cancel backend(process id)”. The required process id (of the execution client) can be found in the
view pg stat activity, which is maintained by the engine itself.

5.6 Summary of Features
We complete this discussion of the mechanics of the bouquet approach with a synopsis of its dis-
tinctive features: (a) Compile-time estimation is completely eschewed for error-prone selectivities;
(b) Plan switch decisions are triggered by predefined isocost contours (in contrast to dynamic crite-
ria of [16, 17]); (c) Plan switch choices are restricted to an anorexic set of precomputed POSP plans;
(d) AVI assumptions on intra-relational predicates are dispensed with since selectivities are explicitly

21

monitored; (e) A first-quadrant invariant between the actual selectivity and the running selectivity is
maintained, supporting monotonic progress towards the objective.

6 Experimental Evaluation
We now turn our attention towards profiling the performance of the bouquet approach on a variety of
complex OLAP queries, using the MSO, ASO and MH metrics enumerated in Section 2. In addition,
we also provide experiments that show – (a) spatial distribution of robustness in ESS; (b) low bouquet
cardinalities; (c) run time improvements using actual query executions; (d) scalability of the approach
with large datasets; (e) low sensitivity of the MSO bound to λ parameter; and (e) that improvements
extend to commercial databases as well.

Before going to the evaluation details, we start with the database and system setup used in evaluation
and rationale behind choice of comparative techniques followed by a brief discussion on the compile-
time overheads incurred by the bouquet algorithm.

6.1 Experimental Setup
Database Environment The test queries, whose full-text are given in the appendix, are chosen from
the TPC-H and TPC-DS benchmarks to cover a spectrum of join-graph geometries, including chain,
star, branch, etc. with the number of base relations ranging from 4 to 8. The number of error-prone
selectivities range from 3 to 5 in these queries, all corresponding to join-selectivity errors, for making
challenging multi-dimensional ESS spaces. We experiment with the TPC-H and TPC-DS databases
at their default sizes of 1GB and 100GB, respectively, as well as larger scaled versions. Finally, the
physical schema has indexes on all columns featuring in the queries, thereby maximizing the cost
gradient Cmax

Cmin
and creating “hard-nut” environments for achieving robustness.

The summary query workload specifications are given in Table 3 – the naming nomenclature for the
queries is xD y Qz, where x specifies the number of dimensions, y the benchmark (H or DS), and z
the query number in the benchmark. So, for example, 3D H Q5 indicates a three-dimensional error
selectivity space on Query 5 of the TPC-H benchmark.

Query Join-graph Cmax Query Join-graph Cmax

(# relations) Cmin (# relations) Cmin

3D H Q5 chain(6) 16 3D DS Q96 star(4) 185
3D H Q7 chain(6) 5 4D DS Q7 star(5) 283
4D H Q8 branch(8) 28 5D DS Q19 branch(6) 183
5D H Q7 chain(6) 50 4D DS Q26 star(5) 341

3D DS Q15 chain(4) 668 4D DS Q91 branch(7) 149

Table 3: Query workload specifications

System Environment For the most part, the database engine used in our experiments is a modified
version of PostgreSQL 8.4 [28], incorporating the changes outlined in Section 5.5. We also present
sample results from a popular commercial optimizer. The hardware platform is a vanilla Sun Ultra 24
workstation with 8 GB memory and 1.2 TB of hard disk.

In the remainder of this section, we compare the bouquet algorithm (with anorexic parameter
λ = 20%) against the native PostgreSQL optimizer, and the SEER robust plan selection algorithm [13].
SEER uses a mathematical model of plan cost behavior in conjunction with anorexic reduction to

22

provide replacement plans that, at all locations in ESS, either improve on the native optimizer’s perfor-
mance, or are worse by at most the λ factor – it is therefore expected to perform better than the native
optimizer on our metrics. It is important to note here that, in the SEER framework, the comparative
yardstick is Poe, the optimal plan at the estimated location, whereas in our work, the comparison is with
Poa, the optimal plan at the actual location.2

For ease of exposition, we will hereafter refer to the bouquet algorithm, the native optimizer, and the
SEER algorithm as BOU, NAT and SEER, respectively, in presenting the results.

6.2 Rationale behind choice of comparative technique
We have chosen to compare the bouquet technique with SEER and not to compare the performance
with re-optimization techniques. The detailed reasoning behind these choices is given below.

6.2.1 Choice of SEER

The bouquet technique provides guarantees on MSO across all error-combinations in ESS i.e. irrespec-
tive of qe and qa, it provides an absolute bound on technique cost(qa)

optimal cost(qa) . To the best of our knowledge, none of
the already proposed techniques provided such absolute bound.

Although, SEER also did not provide an absolute bound on technique cost(qa)
optimal cost(qa) , but it guarantees that

technique cost(qe, qa)
native cost(qe, qa)

≤ (1 + λ)

OR
technique cost(qe, qa)

optimal cost(qa)
≤ (1 + λ)

native cost(qe, qa)
optimal cost(qa)

That is,

MS OS EER ≤ (1 + λ)MS Onative

Also, the experimental analysis showed [13] that for a significant fraction of error situations (qe, qa)
of the ESS, SEER provided significant help, which means

technique cost(qe, qa)
native cost(qe, qa)

� 1

⇒ technique cost(qe, qa) � native cost(qe, qa)

Hence, it can be expected that even if SEER cannot give an absolute bound, MS OS EER is expected
to be much less than MS Onative. Similar argument holds for ASO – improvement in many individual
error combinations means improvement in ASO.

6.2.2 Re-optimization techniques

In this section, we use example query EQ (from Section 1) with qe = 70% and show the performance
of re-optimization techniques over all possible errors (Figure 15). It shows that the re-optimization
techniques can have arbitrarily high MSO, even in the case of one error-prone selectivity. The per-
formance of re-optimization techniques is expected to get worse in case of multiple selectivity errors

2Purely heuristic-based reoptimization techniques, such as POP [17] and Rio [4], are not included in the evaluation suite
since their performance could be arbitrarily poor with regard to both Poe and Poa, as explained in the Section 6.2.

23

due to various reasons. Firstly, the heuristics that they employ are relatively more suited for 1D-spaces
(e.g. near-optimal at principal diagonal corners imply near-optimal in interior space, where to intro-
duce checkpoints, the approximate validity range by comparing only with structure equivalent plans).
Secondly, the size of error space increases exponentially with dimensions and the effort required to
recover from larger selectivity errors is expected to increase with the number of errors.

Performance of POP The execution will start with optimizer choice plan at the estimated location
i.e. P5 with its validity range associated to it. But, in this case there is no other structure-equivalent
(join-order without regard to commutativity) plan that is better than P5 in any range of selectivity.
Hence, there will be no re-optimization and P5 will be executed to completeness irrespective of the
actual selectivity observed at run-time. Now, since P5 has sub-optimality as large as 92.5, implying
MS O ≥ 92.5.

Figure 15: Performance of Re-optimization strategies with qe = 70%

Performance of Rio When the bounding box is limited around qe (using 4− = 0.1 and 4+ = 0.2 [4]),
it would cause P5 to be chosen as the robust choice plan inside the bounding box. In case the random
sample obtained during execution identify the location to be outside the bounding box, it will cause
re-optimization. In this case, the performance curve would be similar to that of POP due to fixed high
initial overheads of plan P5.

Now, let us consider the case when the bounding box is assumed to cover full range of selectivity, i.e.
qmin ≈ 0%, qe = 70% and qhigh ≈ 100%. Since these locations does not have either same optimal plan
or one near-optimal plan in the set P1 and P5. Clearly, Rio tries to create switchable plan [4], such that
one of the member plan is near optimal at each of the 3 locations. Fortunately enough, P4 is switchable
with P1 (optimal at qmin) and near optimal at both qe and qhigh. So, Rio chooses a switchable plan with
P1 and P4 as member plans. Now, for any particular qa,

P1 is chosen if qmin <= ŝrandom <= 35% and P4 is chosen if 35% < ŝrandom <= qhigh causing MSO to
be at least 9.7 (Figure 15).

24

Observations It is clear from above discussion that the re-optimization strategies make no visible
effort to limit worst case performance and hence may cause very high MSO. In the current example,
POP got stuck with a plan due to its validity range defined using structure equivalent plans only whereas
Rio performed bad due to its heuristic assumption of robustness using only plans at principal corners
of the bounding box and heuristic nature of switching decision.

6.3 Compile-time Overheads
The computationally expensive aspect of BOU’s compile-time phase is the identification of the POSP
set of plans in ESS. For this task, we use the contour-focused approach described in Section 4, which
ignores most of the space lying between contours. In all of our queries, the number of contours was no
more than 10. Therefore, the contour-POSP was generated within a few hours even for 5D scenarios
on our generic workstation, which appears a feasible investment for canned queries. Moreover, as
described in Section 4.2, these overheads could be brought down to a few minutes, thanks to the inherent
parallelism in the task.

6.4 Worst-case Performance (MSO)
In Figure 16, the MSO performance is profiled, on a log scale, for a set of 10 representative queries
submitted to NAT, SEER and BOU. The first point to note is that NAT is not inherently robust – to the
contrary, its MSO is huge, ranging from around 103 to 107. Secondly, SEER also does not provide any
material improvement on NAT – this may seem paradoxical at first glance, but is only to be expected
once we realize that not all the highly sub-optimal (qe, qa) combinations in NAT were necessarily
helped in the SEER framework. Finally, and in marked contrast, BOU provides orders of magnitude
improvements over NAT and SEER – as a case in point, for 5D DS Q19, BOU drives MSO down from
106 to around just 10. In fact, even in absolute terms, it consistently provides an MSO of less than ten
across all the queries.

Figure 16: MSO Performance (log-scale)

6.5 Average-case Performance (ASO)
At first glance, it may be surmised that BOU’s dramatic improvement in worst-case behavior is pur-
chased through a corresponding deterioration of average-case performance. To quantitatively demon-
strate that this is not so, we evaluate ASO for NAT, SEER and BOU in Figure 17, again on a log scale.

25

We see here that for some queries (e.g. 3D DS Q15), ASO of BOU is much better than that of NAT,
while for the remainder (e.g. 4D H Q8) the performance is comparable. Even more gratifyingly, the
ASO in absolute terms is typically less than 4 for BOU. On the other hand, SEER’s performance is
again similar to that of NAT – this is an outcome of the high dimensionality of the error space which
makes it extremely difficult to find universally safe replacements that are also substantively beneficial.

Figure 17: ASO Performance (log-scale)

6.6 Spatial Distribution of Robustness
We now profile for a sample query, namely 5D DS Q19, the percentage of locations for which BOU
has a specific range of improvement over NAT. That is, the spatial distribution of enhanced robustness,
S ubOptworst(qa)
S ubOpt(∗, qa)

. This statistic is shown in Figure 18, where we find that for the vast majority of

locations (close to 90%), BOU provides two or more orders of magnitude improvement with respect
to NAT. SEER, on the other hand, provides significant improvement over NAT for specific (qe, qa)
combinations, but may not materially help the worst-case instance for each qa. Therefore, we find that
its robustness enhancement is less than 10 at all locations in the ESS.

Figure 18: Distribution of enhanced Robustness (5D DS Q19)

6.7 Adverse Impact of Bouquet (MH)
Thus far, we have presented the improvements due to BOU. However, as highlighted in Section 2, there
may be individual qa locations where BOU performs poorer than NAT’s worst-case, i.e. S ubOpt(∗, qa)
> S ubOptworst(qa). This aspect is quantified in Figure 19 where the maximum harm is shown (on a
linear scale) for our query test suite. We observe that BOU may be upto a factor of 4 worse than
NAT. Moreover, SEER steals a march over BOU since it guarantees that MH never exceeds λ (= 0.2).

26

However, the important point to note is that the percentage of locations for which harm is incurred
by BOU is less than 1% of the space. Therefore, from an overall perspective, the likelihood of BOU
adversely impacting performance is rare, and even in these few cases the harm is limited (≤ MSO-
1), especially when viewed against the order of magnitude improvements achieved in the beneficial
scenarios.

Figure 19: MaxHarm performance

6.8 Plan Cardinalities

Figure 20: Plan Cardinalities (log-scale)

The plan cardinalities of NAT, SEER and BOU are shown on a log-scale in Figure 20. We observe
here that although the original POSP cardinality may be in the several tens or hundreds, the number
of plans in SEER is orders of magnitude lower, and those retained in BOU is even smaller – only
around 10 or fewer, even for the 5D queries. This is primarily due to the initial anorexic reduction and
the subsequent confinement to plan contours. The important implication of these statistics is that the
bouquet size is, to the first degree of approximation, effectively independent of the dimensionality and
complexity of the error space.

6.9 Query Execution Times (TPC-H)
To verify that the promised benefits of BOU are actually delivered at run-time, we also carried out ex-
periments wherein query response times were explicitly measured for NAT and BOU. For this purpose,
we crafted query instance 2D H Q8a, shown in Figure 21, whose qa was (33.7%, 45.6%), but NAT
erroneously estimated the location to be qe = (3.8%, 0.02%) due to incorrect AVI assumptions.3 As a

3We explicitly verified that there were no estimation errors in the remaining selectivity dimensions of the query.

27

select
o year,
sum(case when nation = ’BRAZIL’ then volume
else 0 end) / sum(volume) as mkt share

from
(
select

DATE PART(’YEAR’,o orderdate) as o year,
l extendedprice * (1 - l discount) as volume,
n2.n name as nation

from
part, supplier, lineitem, orders,
customer, nation n1, nation n2, region

where
p partkey = l partkey
and s suppkey = l suppkey
and l orderkey = o orderkey
and o custkey = c custkey
and c nationkey = n1.n nationkey
and n1.n regionkey = r regionkey
and r name = ’AMERICA’
and s nationkey = n2.n nationkey
and l receiptdate ≤ l shipdate + integer ’60’
and l receiptdate ≤ l commitdate + integer ’130’
and l extendedprice ≤ 25000
and c name like ’%er#000%’
and c acctbal ≤ 4000

) as all nations
group by

o year
order by

o year

Figure 21: Example query based on TPC-H query 8

result, the plan chosen by NAT took almost 580 seconds to complete, whereas the optimal plan at qa

finished in merely 16 seconds, i.e SubOpt(qe, qa) ≈ 36.
When BOU was invoked on the same 2D H Q8a query, it identified 6 bouquet plans spread across

7 isocost contours, resulting in an MSO bound of less than 20 (Equation 8). Subsequently, basic BOU
produced the query result in about 117 seconds, involving 18 partial executions to cross 5 contours
before the final full execution. Moreover, optimized BOU further brought the running time down to
less than 70 seconds, using only 11 partial executions.

The isocost-contour-wise breakups of both basic and optimized BOU are given in Table 4, along
with a comparative summary of their performance. Overall, the sub-optimality of optimized BOU is
≈ 4, almost an order of magnitude lower than that of NAT (≈ 36). Note that the intended doubling of
execution times across contours does not fully hold in Table 4 – this is an artifact of the imperfections
in the underlying cost model of the PostgreSQL optimizer, compounded by our not having tuned this
default model.

28

Contour Avg Plan # Exec. Time(sec) # Exec. Time(sec)
ID Exec. Time (Basic (Basic (Opt. (Opt.

(in sec) BOU) BOU) BOU) BOU)
1 0.6 2 1.2 2 1.2
2 3.1 4 12.4 2 6.2
3 4.8 4 19.2 3 14.4
4 6.2 5 31.0 3 18.6
5 12.2 3 36.6 1 12.2
6 16.1 1 16.1 1 16.1

Total 19 116.5 12 68.7

Performance Summary NAT Basic BOU Opt. BOU Optimal
(in seconds) 579.4 116.5 68.7 16.1

Table 4: Bouquet execution for 2D H Q8a

6.10 Query Execution Times (for progressive errors)
The previous section shows an example TPC-H query where the selectivity estimation errors are suc-
cessfully handled by bouquet technique. Now, we present evaluation of BOU technique under more
challenging conditions, that are realized by – (1) forcing BOU to learn few more error-free selectivities
in addition to the error-prone selectivities, (2) artificially creating progressively larger estimation errors.

Consider the 4D H Q8b query (full text given in the appendix) with qa = (99%, 7.5%, 7.5%, 99%),
which happens to be estimated by NAT as qe = (99%, 0.5%, 0.5%, 99%) (i.e. it is accurate in two
dimensions and erroneous in the remaining two). In this scenario, the plan chosen by NAT took almost
500 seconds to complete, whereas the optimal plan at qa finished in just 12 seconds.

Turning our attention to BOU, although two selectivities are accurate, we deliberately made it a
difficult case by assuming that all four selectivities are erroneous. This forced BOU to learn all of them
from scratch. In spite of this handicap, the basic BOU produced the query result in about 192 seconds,
involving 41 partial executions before the final full execution. Moreover, the optimized BOU brought
the running time down to around 48 seconds, using only 10 partial executions.

The iso-contour-wise breakups of both basic and optimized BOU are given in Table 5. Overall, the
sub-optimality of optimized BOU is ≈ 4, an order of magnitude lower than that of NAT (≈ 42). Note
that the intended doubling of execution times across contours does not fully hold in Table 5. This is
an artifact of the imperfections in the underlying cost model of the optimizer, compounded by our not
having tuned the default model.

The above experiment showcased an individual error instance. For the same setup, we also evaluated
NAT and BOU on a sequence of locations located on the principal diagonal of the erroneous dimensions
– that is, we gradually ramped up the estimation error from no error (qa = qe) to gross errors (qa � qe)
on the two error-prone dimensions. The results of this experiment are shown in Figure 22, where the
error locations are on the X-axis and the execution times (log-scale) are on the Y-axis.

We see in the figure that the SubOpt for NAT steadily increases with growing error and at the farthest
location of the ESS (99%,99% 99%,99%), reaches as high as 2100. In contrast, the SubOpt for the
basic BOU increases in the immediate neighborhood of the estimated location to around 17 at (99%,
7.5%, 7.5%, 99%) but then flattens out and remains relatively constant. At first glance, the flattening
out might seem surprising given our claim that each new contour incurs twice the cost of the previous
contour – the reason for this behavior is that, in this example, there were only 6 contours and 5 of them
were already crossed while reaching qa = (99%, 7.5%, 7.5%, 99%) from origin, as shown in Table 5.

29

Contour Avg Plan # Exec. Time(sec) # Exec. Time(sec)
ID Exec. Time (Basic (Basic (Opt. (Opt.

(in sec) BOU) BOU) BOU) BOU)
1 0.3 8 0.24 4 0.12
2 1.2 8 9.6 2 2.4
3 3.8 9 34.2 1 3.8
4 6.8 10 68.0 1 6.8
5 11.0 6 66.0 2 22.0
6 12.0 1 12.0 1 12.0

Total 42 192.2 11 48.2

Table 5: Bouquet execution for 4D H Q8

When we consider the optimized BOU, its qualitative profile is similar to that of basic BOU, but
quantitatively, it brings down the maximum sub-optimality down from 17 to 4.2.

On the other hand, with regard to the harm metric, the maximum harm occurs for qa =

(99%, 0.5%, 0.5%, 99%). Here, basic BOU has a harm of 3.9 which is brought down to just 0.5 by
the optimized BOU. Recall that, MH is defined with respect to S uboptworst(qa), whose value here is
2.2.

Overall, if we restrict our attention to just this set of error locations, the usage of optimized BOU
improves the MSO from 2100 to 4.2, ASO from 87.3 to 3.9 with MH value limited to just 0.5.

It is interesting to note that it takes only a small absolute error of around 8% (i.e. qa = (99%, 8%,
8%, 99%), for NAT to start performing worse than basic BOU, and an even smaller error of around 1%
(i.e. qa = (99%, 1.5%, 1.5%, 99%), to perform worse than optimized BOU.

Figure 22: Execution Times (log-scale) with Progressive Errors

30

6.11 Scalability with Database Size
To study the impact of increase in database size on BOU’s performance, we present the performance
for the 3D H Q5 and 4D H Q8 queries on a scaled 10 GB TPC-H database in Figure 23. We find here,
as should be expected, that the Cmax value increases, resulting in a steeper Cmax

Cmin
gradient – for example,

for 4D H Q8, the ratio increased from 28 to 40. This results in a significant increase in the MSO and
ASO metrics for the native optimizer. However, BOU is largely unaffected with regard to both the
guaranteed bound (bouquet cardinality) as well as the empirical performance.

Figure 23: Performance (log-scale) with 10GB TPCH Database

6.12 MSO sensitivity to λ setting
The results thus far were all obtained with λ set to 20%, a value that had been found in [14] to routinely
provide anorexic reduction over a wide range of database environments. However, a legitimate question
remains as to whether the ideal choice of λ requires query and/or data-specific tuning. To assess this
quantitatively, we show in Figure 24 the MSO bound values as a function of λ over the (0,100) percent
range for a spectrum of query templates. The observation here is that the MSO bounds drop steeply
as λ is increased to 10%, and subsequently are relatively flat in the (10,30) percent interval, suggesting
that our 20% choice for λ is a safe bet in general.

Figure 24: MSO bound vs Cost-threshold(λ)

31

6.13 Commercial Database Engine
All the results presented thus far were obtained on our instrumented PostgreSQL engine. We now
present sample evaluations on a popular commercial engine, hereafter referred to as COM. Since
COM’s API does not directly support injection of selectivities, we constructed queries 3D H Q5b and
4D H Q8b(query text in appendix), wherein all error dimensions correspond to selection predicates
on the base relations – the selectivities on such dimensions can be indirectly set up through changing
only the constants in the query. The database and system environment remained identical to that of the
PostgreSQL experiments.

Focusing on the performance aspects, shown in Figure 25, we find that here also large values of MSO
and ASO are obtained for NAT and SEER. Further, BOU continues to provide substantial improvements
on these metrics with a small sized bouquet. Again, the robustness enhancement is at least an order
of magnitude for more than 90% of the query locations, without incurring any harm at the remaining
locations (MH < 0). These results imply that our earlier observations are not artifacts of a specific
engine.

Figure 25: Commercial Engine Performance (log-scale)

7 Related Work
A rich body of literature is available pertaining to selectivity estimation issues [11]. We start with
the overview of the closely related techniques which can be collectively termed as plan-switching
approaches, as they involve run-time switching among complete query plans. At first glance, our
bouquet approach, with its partial execution of multiple plans, may appear very similar to run-time
re-optimization techniques such as POP [17] and Rio [4]. However, there are key differences: Firstly,
they start with the optimizer’s estimate as the initial seed, and then conduct a full-scale re-optimization
if the estimate are found to be significantly in error. In contrast, we always start from the origin of
the selectivity space, and directly choose plans from the bouquet for execution without invoking the
optimizer again. A beneficial and unique side-effect of this start-from-origin approach is that it assures
repeatability of the query execution strategy.

Secondly, both POP and Rio are based on heuristics and do not provide any performance bounds.
In particular, POP may get stuck with a poor plan since its validity ranges are defined using structure-
equivalent plans only. Similarly, Rio’s sampling-based heuristics for monitoring selectivities may not
work well for join-selectivities and its definition of plan robustness on the basis of performance at
corners (principal diagonal) has not been justified.

Recently, a novel interleaved optimization and execution approach was proposed in [19] wherein plan
fragments are selectively executed, when recommended by an error propagation framework, to guard

32

against the fallout of estimation errors. The error framework leverages an elegant histogram construc-
tion mechanism from [18] that minimizes the multiplicative error. While this technique substantively
reduces the execution overheads, it provides no guarantees as it is largely based on heuristics.

Techniques that use a single plan during the entire query execution [9, 3, 13, 18, 6] run into the
basic infeasibility of a single plan to be near-optimal across the entire selectivity space. The bouquet
mechanism overcomes this problem by identifying a small set of plans that collectively provide the
near-optimality property. Further, it does not require any prior knowledge of the query workload or
the database contents. On the other hand, the use of only one active plan (at a time) to process the
data makes the bouquet algorithm dissimilar from Routing-based approaches wherein different data
segments may be routed to different simultaneously active plans – for example, plan per tuple [2] and
plan per tuple group [20].

Our technique may superficially look similar to PQO techniques, (e.g. PPQO [5]), since a set of
plans are identified before execution by exploring the selectivity space. The primary difference is that
these techniques are useful for saving on optimization time for query instances with known parameters
and selectivities. On the other hand, our goal is to regulate the worst case performance impact when
the computed selectivities are likely to be erroneous.

Further, the bouquet technique does not modify plan structures at run-time (modulo spilling direc-
tives). This is a major difference from “plan-morphing” approaches, where the execution plan may be
substantially modified at run-time using custom-designed operators, e.g. chooseplan [10], switch [4],
feedback [7].

Finally, we emphasize that our goal of minimizing the worst case performance in the presence of
unbounded selectivity errors, does not coincide with any of the earlier works in this area. Previously
considered objectives include (a) improved performance compared to the optimizer generated plan [4,
13, 16, 17, 19]; (b) improved average performance and/or reduced variance [9, 6, 3]; (c) improved
accuracy of selectivity estimation structures [1]; and (d) bounded impact of multiplicative estimation
errors [18].

8 Critique of Bouquet Approach
Having presented the mechanics and performance of the bouquet approach, we now take a step back
and critique the technique.

The bouquet approach is intended for use in difficult estimation environments – that is, in database
setups where accurate selectivity estimation is hard to achieve. However, when estimation errors are
apriori known to be small, re-optimization techniques such as [17, 4], which use the optimizer’s esti-
mate as the initial seed, are likely to converge much quicker than the bouquet algorithm, which requires
starting at the origin to ensure the first quadrant invariant. But, if the estimates were apriori guaranteed
to be under-estimates, then the bouquet algorithm can also leverage the initial seed.

Being a plan-switching approach, the bouquet technique suffers from the drawbacks generic to such
approaches: Firstly, they are poor at serving latency-sensitive applications as they have to perforce
wait for the final plan execution to return result tuples. Secondly, they are not recommended for
update queries since maintaining transactional consistency with multiple executions may incur sig-
nificant overheads to rollback the effects of the aborted partial executions. Finally, with single-plan
optimizers, DBAs use their domain knowledge to fine-tune the plan using “plan-hints”. But this is not
straightforward in plan-switching techniques since the actual plan sequence is determined only at run-
time. Notwithstanding the limitations, such techniques are now featured even in commercial products
(e.g. [27]).

33

There are also a few problems that are specific to the bouquet approach: Firstly, while it is inherently
robust to changes in data distribution, since these changes only shift the location of qa in the existing
ESS, the same is not true with regard to database scale-up. That is, if the database size increases
significantly, then the original ESS no longer covers the entire error space. An obvious solution to
handle this problem is to recompute the bouquet from scratch, but most of the processing may turn out
to be redundant. Therefore, developing incremental bouquet maintenance strategies is an interesting
future research challenge.

Secondly, the bouquet identification overheads increase exponentially with dimensionality. Apart
from the obvious amortization over repeated query invocations, we also described some mechanisms
for reducing these overheads in Section 6.3. Further, a complex query does not necessarily imply
a commensurately large number of error dimensions because: (i) The selectivities of base relation
predicates of the form “column op constant” can be estimated accurately with current techniques; (ii)
The join-selectivities for PK-FK joins can be estimated accurately if the entire PK-relation participates
in the join; (iii) The partial derivatives of the POSP plan cost functions along each dimension can be
computed on a low resolution mapping of the ESS, and any dimension with a small derivative across
all the plans can be eliminated since its cost impact is marginal.

Thirdly, the identification of ESS dimensions may not always be straightforward. For example, in
cyclic queries, different plans may combine predicates in different ways. One option to handle this
scenario is to first construct the ESS using individual predicates as dimensions. Then, assuming that
predicate independence holds, the selectivity of any predicate combination could be inferred using the
existing values for the individual constituent predicates.

Given the above discussion, the bouquet approach is currently recommended specifically for pro-
viding response-time robustness in large archival read-only databases supporting complex decision-
support applications that are likely to suffer significant estimation errors. We expect that many of
today’s OLAP installations may fall into this category.

9 Conclusions
Selectivity estimation errors resulting in poor query processing performance is part of the database
folklore. In this paper, we investigated a new approach to this classical problem, wherein the estimation
process was completely jettisoned for error-prone predicates. Instead, such selectivities were explicitly
and progressively discovered at run-time through a carefully graded sequence of partial executions from
a “plan bouquet”. The execution sequence, which followed a cost-doubling geometric progression,
ensured that the overheads are bounded, thereby limiting the MSO incurred by the execution to 4 times
the plan cardinality of the densest isocost contour. To the best of our knowledge, such bounds have not
been previously presented in the database literature.

To ensure that the actual overheads in practice were much lower than the worst-case bound values,
we also proposed the Anorexic Reduction, AxisPlans and Spilling optimizations for minimizing the
bouquet size, minimizing the number of partial executions, and maximizing the selectivity movement
in each execution, respectively. Their collective benefits ensured that MSO was less than 10 across all
the queries in our evaluation set, an enormous improvement compared to the performance of the native
optimizer, wherein this metric ranged from the thousands to the millions. Further, the optimizations
also ensured that the bouquet’s ASO performance was always either comparable to or much better than
the native optimizer. Finally, while the bouquet algorithm did occasionally perform worse than the
native optimizer for specific query locations, such situations occurred at less than 1% of the locations,
and the performance degradation was relatively small, a factor of 3 or less.

34

Overall, the bouquet approach promises guaranteed performance and repeatability in query execu-
tion, features that had hitherto not been available, thereby opening up new possibilities for robust query
processing.

Acknowledgments. We thank the anonymous reviewers and S. Sudarshan, Prasad Deshpande,
Srinivas Karthik, Sumit Neelam and Bruhathi Sundarmurthy for their constructive comments on this
work.

References
[1] A. Aboulnaga and S. Chaudhuri, “Self-tuning Histograms: Building Histograms without Looking

at Data”, ACM SIGMOD Conf., 1999.

[2] R. Avnur and J. Hellerstein, “Eddies: Continuously Adaptive Query Processing”, ACM SIGMOD
Conf., 2000.

[3] B. Babcock and S. Chaudhuri, “Towards a Robust Query Optimizer: A Principled and Practical
Approach”, ACM SIGMOD Conf., 2005.

[4] S. Babu, P. Bizarro and D. DeWitt, “Proactive Re-Optimization”, ACM SIGMOD Conf., 2005.

[5] P. Bizarro, N. Bruno, D. Dewitt, “Progressive Parametric Query Optimization”, IEEE TKDE,
21(4), 2009.

[6] S. Chaudhuri, H. Lee and V. Narasayya, “Variance aware optimization of parameterized queries”,
ACM SIGMOD Conf., 2010.

[7] S. Chaudhuri, V. Narasayya and R. Ramamurthy, “A Pay-As-You-Go Framework for Query Exe-
cution Feedback”, PVLDB, 1(1), 2008.

[8] M. Chrobak, C. Kenyon, J. Noga and N. Young, “Incremental Medians via Online Bidding”,
Algorithmica, 50(4), 2008.

[9] F. Chu, J. Halpern and J. Gehrke, “Least Expected Cost Query Optimization: What Can We
Expect”, ACM PODS Conf., 2002.

[10] R. Cole and G. Graefe, “Optimization of Dynamic Query Evaluation Plans”, ACM SIGMOD
Conf., 1994.

[11] A. Deshpande, Z. Ives and V. Raman, “Adaptive Query Processing”, Foundations and Trends in
Databases, Now Publishers, 2007.

[12] G. Graefe et al, “Robust Query Processing (Dagstuhl Seminar 12321)”, Dagstuhl Reports, 2(8),
2012.

[13] Harish D., P. Darera and J. Haritsa, “Identifying Robust Plans through Plan Diagram Reduction”,
PVLDB, 1(1), 2008.

[14] Harish D., P. Darera and J. Haritsa, “On the Production of Anorexic Plan Diagrams”, VLDB Conf.,
2007.

35

[15] Y. Ioannidis and S. Christodoulakis, “On the Propagation of Errors in the Size of Join Results”,
ACM SIGMOD Conf. 1991.

[16] N. Kabra and D. DeWitt, “Efficient Mid-Query Re-Optimization of Sub-Optimal Query Execution
Plans”, ACM SIGMOD Conf. 1998.

[17] V. Markl et al, “Robust Query Processing through Progressive Optimization”, ACM SIGMOD
Conf., 2004.

[18] G. Moerkotte, T. Neumann and G. Steidl, “Preventing Bad Plans by Bounding the Impact of
Cardinality Estimation Errors”, PVLDB, 2(1), 2009.

[19] T. Neumann and C. Galindo-Legaria, “Taking the Edge off Cardinality Estimation Errors using
Incremental Execution”, BTW Conf., 2013.

[20] N. Polyzotis, “Selectivity-based partitioning: A Divide and Union Paradigm for Effective Query
Optimization”, ACM CIKM Conf., 2005.

[21] P. Selinger et al, “Access Path Selection in a Relational Database Management System”, ACM
SIGMOD Conf., 1979.

[22] M. Stillger, G. Lohman, V. Markl and M. Kandil, “LEO – DB2’s LEarning Optimizer”, VLDB
Conf., 2001.

[23] W. Wu et al, “Predicting Query Execution Times: Are Optimizer Cost Models Really Usable?”,
IEEE ICDE Conf., 2013.

[24] G. Lohman, “Is Query Optimization a “solved” problem?”, ACM SIGMOD Blog (April 2014)
http://wp.sigmod.org/?author=20

[25] technet.microsoft.com/en-us/library/ms186954(v=sql.105).aspx

[26] www.ibm.com/developerworks/data/library/tips/dm-0312yip/

[27] www.oracle.com/ocom/groups/public/@otn/documents/webcontent/1963236.pdf

[28] www.postgresql.org/docs/8.4/static/release.html

[29] doxygen.postgresql.org/structInstrumentation.html

36

10 Appendix

10.1 Query Text (based on benchmark queries)

select
n name,
l extendedprice * (1 - l discount) as revenue

from
customer, orders, lineitem, supplier, nation, region

where
c custkey = o custkey and l orderkey = o orderkey
and l suppkey = s suppkey and c nationkey = s nationkey
and s nationkey = n nationkey and n regionkey = r regionkey
and o orderdate >= 1994-01-01
and o orderdate < 1994-01-01 + interval ’25’ day
and c acctbal <= 9900 and s acctbal <= 9900

Figure 26: 3D H Q5 (Based on TPC-H Query 5)

select
n name,
sum(l extendedprice * (1 - l discount)) as revenue

from
customer, orders, lineitem, supplier, nation, region

where
c custkey = o custkey
and l orderkey = o orderkey
and l suppkey = s suppkey
and c nationkey = s nationkey
and s nationkey = n nationkey
and n regionkey = r regionkey
and r name = ’ASIA’
and o totalprice ≤ $X1
and c acctbal ≤ $X2
and l extendedprice ≤ $X3

group by
n name

order by
revenue desc

Figure 27: 3D H Q5b (Based on TPC-H Query 5)

.

37

select
supp nation, cust nation, l year, volume

from (
select

n1.n name as supp nation, n2.n name as cust nation,
extract(year from l shipdate) as l year, l extendedprice * (1- l discount)
as volume

from
supplier,lineitem, orders, customer, nation n1, nation n2

where
s suppkey = l suppkey and o orderkey = l orderkey
and c custkey = o custkey and s nationkey = n1.n nationkey
and c nationkey = n2.n nationkey
and l shipdate between date ’1995-01-01’ and date ’1996-12-31’
and c acctbal <= 9900 and s acctbal <= 9900)

Figure 28: 3D H Q7 (Based on TPC-H Query 7)

select
supp nation, cust nation, l year, volume

from (
select

n1.n name as supp nation, n2.n name as cust nation,
extract(year from l shipdate) as l year, l extendedprice * (1- l discount)
as volume

from
supplier,lineitem, orders, customer, nation n1, nation n2

where
s suppkey = l suppkey and o orderkey = l orderkey
and c custkey = o custkey and s nationkey = n1.n nationkey
and c nationkey = n2.n nationkey
and ((n1.n name = ’FRANCE’ and n2.n name = ’GERMANY’)
or (n1.n name = ’GERMANY’ and n2.n name = ’FRANCE’))
and l shipdate between date ’1995-01-01’ and date ’1996-12-31’
and c acctbal <= 9900 and s acctbal <= 9900)

Figure 29: 5D H Q7 (Based on TPC-H Query 7)

.

38

select
o year, volume

from (
select

extract(year from o orderdate) as o year, l extendedprice *
(1-l discount) as volume, n2.n name as nation

from
part, supplier, lineitem, orders, customer, nation n1, nation n2, region

where
p partkey = l partkey and s suppkey = l suppkey
and l orderkey = o orderkey and o custkey = c custkey
and c nationkey = n1.n nationkey and n1.n regionkey = r regionkey
and s nationkey = n2.n nationkey
and o orderdate between date ’1995-01-01’ and date ’1995-09-01’
and p type = ’ECONOMY ANODIZED STEEL’
and c acctbal <= 9900 and s acctbal <= 9900)

Figure 30: 4D H Q8 (Based on TPC-H Query 8)

.

39

select
o year,
sum(case when nation = ’BRAZIL’ then volume
else 0 end) / sum(volume) as mkt share

from
(
select

DATE PART(’YEAR’,o orderdate) as o year,
l extendedprice * (1 - l discount) as volume,
n2.n name as nation

from
part, supplier, lineitem, orders,
customer, nation n1, nation n2, region

where
p partkey = l partkey
and s suppkey = l suppkey
and l orderkey = o orderkey
and o custkey = c custkey
and c nationkey = n1.n nationkey
and n1.n regionkey = r regionkey
and r name = ’AMERICA’
and s nationkey = n2.n nationkey
and p retailprice ≤ $X1
and s acctbal ≤ $X2
and l extendedprice ≤ $X3
and o totalprice ≤ $X4

) as all nations
group by

o year
order by

o year

Figure 31: 4D H Q8b (Based on TPC-H Query 8)

.

40

select
i item id, ss quantity, ss list price,
ss coupon amt, ss sales price

from
store sales, customer demographics, date dim, item, promotion

where
ss sold date sk = d date sk and ss item sk = i item sk and
ss cdemo sk = cd demo sk and ss promo sk = p promo sk and
cd gender = ’F’ and cd marital status = ’M’ and cd education status = ’College’
and (p channel email = ’N’ or p channel event = ’N’) and d year = 2001
and i current price < 99 and p cost <= 1000

Figure 32: 4D DS Q7 (Based on TPC-DS Query 7)

select
ca zip, cs sales price

from
catalog sales, customer, customer address, date dim

where
cs bill customer sk = c customer sk and c current addr sk = ca address sk
and (substr(ca zip,1,5) in (’85669’, ’86197’,’88274’, ’83405’,
’86475’, ’85392’, ’85460’, ’80348’, ’81792’)
or ca state in (’CA’,’WA’,’GA’))
and cs sold date sk = d date sk and d qoy = 2 and d year = 1999

Figure 33: 3D DS Q15 (Based on TPC-DS Query 15)

select
i brand id brand id, i brand brand, i manufact id,
i manufact, ss ext sales price

from
date dim, store sales, item, customer, customer address, store

where
d date sk = ss sold date sk and ss item sk = i item sk
and i manager id=97 and d moy=12 and d year=2002
and ss customer sk = c customer sk and c current addr sk
=ca address sk and substr(ca zip,1,5) <> substr(s zip,1,5)
and ss store sk = s store sk
and s tax percentage <= 0.1

Figure 34: 5D DS Q19 (Based on TPC-DS Query 19)

.

41

select
i item id, avg(cs quantity) , avg(cs list price) ,
avg(cs coupon amt) , avg(cs sales price)

from
catalog sales, customer demographics, date dim, item, promotion

where
cs sold date sk = d date sk and cs item sk = i item sk and
cs bill cdemo sk = cd demo sk and cs promo sk = p promo sk
and cd gender = ’F’ and cd marital status = ’U’ and cd education status
= Unknown’ and (p channel email = ’N’ or p channel event = ’N’) and
d year = 2002 and i current price <= 99

group by
i item id

order by
i item id

Figure 35: 4D DS Q26 (Based on TPC-DS Query 26)

select
cc call center id , cc name , cc manager , sum(cr net loss)

from
call center,catalog returns, date dim, customer, customer address,
customer demographics, household demographics

where
cr call center sk = cc call center sk and cr returned date sk =
d date sk and cr returning customer sk= c customer sk and cd demo sk
=c current cdemo sk and hd demo sk = c current hdemo sk and
ca address sk = c current addr sk and d year = 2000 and d moy = 12
and ((cd marital status = ’M’ and cd education status = ’Unknown’)
or(cd marital status = ’W’ and cd education status = ’Advanced Degree’))
and hd buy potential like ’5001-10000%’ and ca gmt offset = -7

group by
cc call center id,cc name,cc manager,cd marital status, cd education status

order by
sum(cr net loss) desc

Figure 36: 4D DS Q91 (Based on TPC-DS Query 91)

.

42

select s store name, hd dep count, ss list price, s company name
from

store sales, household demographics, time dim, store
where

ss sold time sk = time dim.t time sk and
ss hdemo sk = household demographics.hd demo sk and
ss store sk = s store sk and time dim.t hour = 8
and time dim.t minute >= 30 and
household demographics.hd dep count = 2
and store.s store name = ’ese’

Figure 37: 3D DS Q96 (Based on TPC-DS Query 96)

.

43

10.2 Query Join Graphs (Experiments)
Here, we show the query join graphs with base-relation selectivities, the error-prone selectivities (shown
in dark red) and error-free selectivities (shown in dark green). There are ten queries involving chain,
branch and star graphs from TPCH and TPCDS schemas.

Figure 38: Query Join Graphs

44

