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Abstract

Information Retrieval(IR) systems and RDBMS have remained largely disjoint. RDBMS
has been used as a black box to store and obtain data on which IR scoring functions are
applied to provide relevant answers to the users. Keyword Search on RDBMS is a classic
example of IR systems which use RDBMS as a black box. Recently, result ranking in
Keyword Search systems have been performed through SQL queries [7] and it has achieved
loose coupling at the schematic level between RDBMS and Keyword Search systems.

Schema integration of result set dependent scoring functions, such as Labrador [1], is
inefficient. The result set dependent property necessitates the creation of on-the-fly indexes
to perform scoring which can degrade performance if the indexes are stored on the disk.
However, in this work we will show that result set dependent scoring functions can be
efficiently implemented through first class RDBMS operators. These new operators achieve
tight coupling between RDBMS and IR systems.

In this work, the benefits of Labrador scoring function [1] wrt user relevance are demon-
strated empirically. Three different techniques to integrate result ranking of Keyword Search
systems inside RDBMS using Labrador scoring [1] function are proposed and evaluated.
The first technique called SQL-Wrapper achieves schema integration. The second, called
the Root Rank introduces first class operator inside RDBMS to perform the result ranking
task. This operator is introduced at the root position of the plan tree. Finally, the third
technique called the Join Rank performs the same task of result ranking but inside the top-
most join node of the plan tree. These new operators are implemented and incorporated
inside PostgreSQL(9.1.2). Accurate cost models have been developed to achieve seamless
integration with the Query Optimizer. The cost models have been validated to obtain
good correlation with actual run time costs. Empirical results over real data sets exhibit
substantial performance gains of Root Rank and Join Rank operators over SQL-Wrapper.

1 Introduction

Keyword search on RDBMS has been an active area of research for over a decade due
to the critical need of querying over relational systems through the World Wide Web [9].
Keyword search systems are classified as Candidate Network(CN) models and Data Graph
models. In the quest of performing efficient keyword search on RDBMS, new graph search
algorithms [21] and innovative systems [3] have been developed. It has also initiated efforts
to couple RDBMS and Information Retrieval(IR) systems [7].

1.1 Candidate Network Systems

The CN model system was first proposed in DISCOVER [3]. The term Candidate Network
refers to a joined network of relations whose result set provides answer to the keyword
query. The result set of CN is a collection of tuple trees. Each row of the result set is
formed by connecting various tuples of different relations. Hence, it is viewed as a tuple
tree. Consider a keyword query Data Mining applied on DBLP dataset. For which a
possible CN might be, Proceeding.titleData × InProceeding.titlemining. This means that, Data
term is mapped to Proceeding relation wrt title attribute and Mining term is mapped to
InProceeding relation wrt title attribute. The keyword query is answered by result set of the
join of both these relations. This is a very basic definition and it needs to satisfy additional
properties in order to be called a CN:

1. The CN has to be complete which means that each tuple tree ∈ CN should contain
all the terms in the keyword query.
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2. The CN has to be minimal which means that if any relation is removed from the CN,
it should not provide the required answer for the keyword query.

Scoring functions are applied on the tuple trees to provide top-K ranked tuple trees.
Many scoring functions have been proposed in the literature. All the CN scoring functions
are analyzed below to explore their structure and to find out why schema integration of
these scoring functions with the singular exception of Labrador [1] are sufficient to couple
them with RDBMS.

1.1.1 Efficient [20]

Discover system [3] was modified to include IR style keyword ranking mechanism. This
system, is denoted as Efficient [20]. A new scoring function which includes the rich IR
properties was adapted inside the Discover system [3] to perform scoring on Candidate
Network result sets. Consider a tuple tree T ∈ Candidate Network(CN). Each text attribute
ai of the tuple tree where the keyword gets mapped is scored by the following equation.

score(ai, Q) =
∑

w∈Q∩ai

1 + log(1 + log(tf))

(1− s) + s dl
avdl

∗ logN + 1

df

The variable Q indicates the keyword query, tf indicates the term frequency of the word
w in ai, dl is the size of ai in characters, avdl is the average attribute value size, N is the
number of tuples in relation which contains ai, s is a constant. The scoring function is
given by Finalscore(T ) in Equation 1.

Finalscore(T ) =

∑
ai∈T score(ai, Q)

size(T )
(1)

Let T ,T ′ be the tuple trees of a given CN. Let a1, a2...an be the attributes of T and let
b1, b2.......bn be the attributes of T ′. The scoring function is said to have tuple monotonicity
property if it satisfies the below condition.

If score(ai, Q) ≤ score(bi, Q) ∀ i then, Finalscore(T,Q) ≤ Finalscore(T ′, Q). The
tuple monotonicity property is an essential requirement to develop time optimal [20] algo-
rithms for providing top-K answers and it is satisfied by Equation 1.

1.1.2 Effective [28]

Effective is another IR style keyword search scoring function on Candidate Networks.

weight(k,Di) =
ntf ∗ idfg

ndl ∗Nsize(T )

weight(k, T ) = comb(weight(k,D1), weight(k,D2)......, weight(k,Dm))

For a given tuple tree T ∈ CN , k is the keyword query term, Di is an attribute to which
term k is mapped. Every text attribute Di is considered as a collection of documents wrt
its base relation.

ntf = 1 + log(1 + log(tf))
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Nsize(T ) = (1− s) + s ∗ size(T )

avgsize

ndl = ((1− s) + s+
dl

avgdl
)(1 + log(avgdl))

idfg = log(
Ng

dfg + 1
)

Frequency of the term k in the attribute Di ∈ T is given by tf , s is a tunable constant,
Size(T ) gives the number of relations in T , Avgsize is the average size of all the trees that
are generated for the keyword query, dl is the length of the attribute Di in the tree T , avgdl
is the average length of all attributes in tuple tree, Ng is the total number of text columns
in the database, dfg is the frequency of the term in the entire database.

comb = maxwgt ∗ (1 + log(1 + log
sumwgt

maxwgt
)) (2)

The combine function is given by Equation 2, maxwgt is the maximum weight of
weight(k,Di) ∀i, sumwgt is the sum of the weights weight(k,Di) ∀i, weight(k,Q) is the
weight of the keyword term k wrt query Q. This is given by the frequency of the term k in
the query Q.

score(Q,T ) =
∑
k∈Q

weight(k,Q) ∗ weight(k, T ) (3)

The scoring function in Equation 3 lacks the tuple monotonicity property.

1.1.3 Spark [23]

Spark is a candidate network keyword search system which improves upon the scoring
function given in Efficient [20]. The scoring function score(T,Q) in Equation 4 has 3
components.

score(T,Q) = scorea(T,Q) ∗ scoreb(T,Q) ∗ scorec(T,Q) (4)

Here T is an tuple tree ∈ CN and Q is the keyword query.

scorea(T,Q) =
∑

w∈T∩Q

1 + log(1 + log(tfw(T )))

(1− s) + s ∗ dlT
avdlCN(T )

∗ log(idfw)

tfw(T ) =
∑
t∈T

tfw(t).

Here tfw(t) indicates the frequency of the term w in the tuple t which ∈ tree T , s is a
tunable constant.

idfw =
1

1−
∏

j(1− pw(Rj))
.
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s1 and s2 are tunable parameters.

scoreb(T,Q) = 1− (

∑
1≤i≤m(1− T.i)p

m
)
1
p

T.i = (
tfwi(T )

max1≤j≤mtfwj (T )
)(

idfwi

max1≤j≤midfwj

)

scorec(T,Q) = (1 + s1 − s1 ∗ size(CN))(1 + s2 − s2 ∗ size(CNnf ))

Here Rj is a relation which ∈ CN , pw(Rj) is the percentage of tuples in the relation Rj

that contains w, dlT is the combined length of the text attributes in T , avdlCN(T ) is the
average combined length of the text attributes that ∈ T wrt their base relations, m is the
number of keywords in the query Q, p is a tuning parameter, size(CN) is the number of
relations in CN , CNnf is the number of relations to which keywords are not mapped in
CN .

The scoring function of Spark also lacks the tuple monotonicity property.

1.1.4 Labrador [1]

Labrador is again a Candidate Network model system.
For the CN Proceeding.titleData × InProceeding.titleMining, the scoring function for rank-

ing the result set tuple trees of the CN is given in Equation 5.

score(T ) = n ∗ cos(p.title,
−−−→
p.title) + cos(i.title,

−−−→
i.title)

2
(5)

cos(p.title,
−−−→
p.title) =

wdata√∑
w2
k

wk = log(1 +
total tuples retrieved

fk
)

wdata = log(1 +
total tuples retrieved

fdata
)

cos(i.title,
−−−→
i.title) =

wmining√∑
w2
r

wmining = log(1 +
total tuples retrieved

fmining
)

wr = log(1 +
total tuples retrieved

fr
)

score(T ) is the score for the tuple tree T ∈ CN ,
n is a constant,
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wk is the weight of the term k ∈ p.title of the result set,
wr is the weight of the term r ∈ i.title of the result set,
wdata is the weight of the term data ∈ p.title of the result set,
wmining is the weight of the term mining ∈ i.title of the result set,
fk is the frequency of the term k ∈ p.title of the result set,
fr is the frequency of the term r ∈ i.title of the result set,
fdata is the frequency of the term data ∈ p.title of the result set,
fmining is the frequency of the term mining ∈ i.title of the result set.
For a k term keyword query, the scoring function assumes the form given in Equation 6.

Here A1, A2.....Ak are the attributes on which the keyword query terms are mapped.

score(T ) = n ∗
∑k

i=1 cos(Ai,
−→
Ai)

size(T )
(6)

Number of relations involved in the tuple tree T is given by size(T ).
The Labrador scoring function has tuple monotonicity property. It also has a unique

challenge of result set dependency. This is because in order to calculate the weight of a
term, frequency of the term in the result set of the Candidate Network is required. This
forces the result set to be materialized for obtaining term frequency statistics.

The number of Candidate Networks that can be generated grows exponentially with the
number of keywords [20]. This makes evaluating these CN extremely expensive. Most of
the current systems use a threshold parameter to restrict the number of relations in the
CN. The CN system execution procedure involves four steps in providing top-K answers for
the keyword query:

1. Generate all the CN by using the threshold parameter through the Candidate Network
generator module.

2. Execute each CN to obtain the result set through SQL queries.
3. Apply the scoring function on tuple trees of the result set of each CN.
4. Rank the tuple trees and provide the top-K answers by merging and sorting the result

set of all CN.
The ordering of the top-K results may alter with different values of threshold parameter.

Ideally the threshold parameter should be set such that large nunber of Candidate Networks
are not generated and also the most important Candidate Networks are not left out from
the result set. This is again customized for a specific database through empirical validation.

The CN systems have basically 2 components. The first component is CN generation
module and the second is result ranking. The first step mentioned in the CN system execu-
tion procedure is done by the first component. The remaining three steps are performed by
the second component. In the literature [3, 20, 23] performance analysis has been done by
including both the components. In the empirical analysis performed in this work by using
the DBLP dataset. The CN generation module in most of the cases incurs around 10% of
the total cost of providing the answer to the keyword query. Thus it is the result generat-
ing component which is significantly costlier and needs particular attention wrt improving
performance.

1.2 Data Graph Systems

The Data Graph model systems construct a graph index to store the tuple inter-connectivity
of the database. For a given keyword query the graph index is searched to find the potential
tuple trees which are also known as Steiner trees [9] that can provide the answer. The task of
finding minimal steiner trees is known to be NP-hard [9] and hence approximate solutions
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have been proposed [9, 21]. Specially designed scoring functions which consider the link
properties in the graph index are applied to rank the steiner trees. Data graph systems,
unlike the CN systems, have a single component which is the result ranking component.
Many different graph traversal algorithms [7, 9, 21] have been proposed to improve the
performance of result ranking component.

1.2.1 Banks [9]

Banks assigns weight to each node of the steiner tree T , N(v) indicates the weight of the
node v ∈ T which is the in degree of the node, s(R1, R2) indicates the similarity between
the relations R1 and R2. The function value depends on the type of link between the two
relations. Consider two nodes such as u and v. If (u, v) exists then s(R(u), R(v)) is assigned
as the edge weight or edge score. Here R(u) and R(v) are the relations to which u and v
belong. If (v, u) exists then Iv(u)s(R(v), R(u)) is assigned as the edge weight where Iv(u)
is the in degree of u due to the tuples of relation R(v). If both the edges (u, v) and (v, u)
exists then min(Iv(u)s(R(v), R(u)), s(R(u), R(v)) will be the edge weight. Average node
weight of the nodes in the steiner tree is given by Nscore, Escore is the normalized edge
score, λ is a tunable constant. The scoring function used in Banks [9] is given in Equation 7.

Escore =
1∑

e∈T edgescore(e)

Score(T ) = (1− λ)Escore+ (λ)Nscore (7)

Bidirectional [21] also uses the same scoring function but it has a different graph traversal
algorithm.

1.2.2 Blinks [10]

The Blinks scoring function employs a dual approach wherein both the links and the content
are used as parameters to the scoring function of a data graph model system. Similar to
Banks [9], it maintains a graph index of the inter connectivity between the tuples. For a
given tuple tree T there exists a node r from which a path exists to all the keyword nodes
in the tuple tree. They define tuple tree T as T =< r, (n1, n2....., nk) > where n1, n2...nk
are keyword nodes in the tree for the given query (w1, w2.....wk).

Score(T ) = f(Sr(r) +
k∑

i=1

Sn(ni, wi) + Sp(r, ni)) (8)

The function f takes in 3 parameters, Sr(r) assigns a score to the root node, Sn(ni, wi)
measures the similarity between the keywords of the query and the keyword nodes of the
tuple tree. This is again calculated by using the base relation statistic. This score is
obtained by scanning the contents of the individual nodes in the tuple tree. The function
Sp(r, ni) calculates the minimal path distance between the root node to the keyword node
in the graph index.

1.3 Schema Integration of Result Ranking

RDBMS provides a rich set of features which have largely remained unused wrt keyword
search domain. Discover [3], Efficient [20] and other CN model systems created an inverted
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select name , s e a r c h i d ,(1+ log (1+ log ( t f ) ) ) / (0 . 2∗ dl / avdl +0.8)∗ l og (N+1/
df ) as s co r e from(

select name , s e a r c h i d , term frequency (name , ’ denze l ’ ) as t f , ( select
avg ( char length (name) ) from name) as avdl , l ength (name) as dl , (
select f r equency from document frequency where term=’ denze l ’ and
r e l a t i o n = ’name ’ and a t t r i b u t e = ’name ’ ) as df , ( select count (∗ )
from name) as N from name where name i l i k e ’%denze l%’ ) as query1
order by s co r e DESC;

Figure 1: Schema Integration of CN result scoring(Efficient)

index as a relation to store the term frequencies. This index was accessed through SQL
queries and ultimately the scoring was performed through imperative programming. For
the first time, schema integration was performed to score the data graph model system [7].
The function parameters and link information were stored in the relations and top-K steiner
trees were provided through a complex SQL query. The entire functionality of top-K result
production shifted from imperative space to declarative space. By using imperative scoring
many SQL queries have to be executed which leads to frequent shifts from programming
space to RDBMS space which can reduce the performance efficiency of the system. If one
monolithic SQL query performs the scoring then there would be limited shifts from RDBMS
space to programming space and back. This was also proved empirically for the data graph
model systems [7] where the declarative approach gave much better performance benefits
over the imperative approach.

Schema integration for CN scoring functions(excluding Labrador [1]) is straight forward.
The SQL query in Figure 1 performs scoring on a single keyword CN, NameDenzel. It uses
the Efficient [20] scoring function.

The relation documentfrequency(term,relation,attribute,frequency) stores the term fre-
quencies wrt base relation. Building of this relation is a one time cost, unless the base
relations are modified. The User Defined Function termfrequency(string1,string2) returns
the count of string2 occurrence in string1.

Schema integration of Labrador scoring function (eq 6) can be achieved in two phases
(refer section 3 for details):

1. In the first phase the result set is scanned to build the inverted index to store the
term frequencies wrt result set. The inverted index is stored in a relation.

2. In the second phase result set is again scanned to apply the scoring function. This
is again achieved by a complex SQL query which uses the inverted index built in the first
phase.

The only implementation technique that is available for Labrador scoring function (eq 6)
is the imperative version [1]. In our work, a schema integrated approach similar to the
scheme described in Figure 1 called SQL-Wrapper is implemented and evaluated.

1.4 Operator Integration of Result Ranking

In the schema integrated approach for Labrador scoring function(eq 6), disk-resident in-
verted index has to be built on the fly during the ranking process for every CN. This
disk-resident implementation can pull down the performance which was seen in many real
world data sets such as IMDB, Mondial, Wikipedia and DBLP. This problem motivates
to build first class SQL operators to perform scoring and ranking the result set of CN.
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SQL operators provide the flexibility to build suitable indexes that can boost performance
whereas in schema approach only disk resident indexes have to be used.

Two new ranking operators called Root Rank and Join Rank will be introduced in this
work:

1. Root Rank operator performs scoring and ranking at the root of the plan tree. Given
any plan tree the ranking operator will be introduced at the root.

2. For the Join Rank operator, scoring and ranking will be pushed inside the top join
node of the plan tree.

Both these operators work in two phases:
1. In the first phase, disk resident inverted index of schema approach is replaced with

memory-disk resident inverted index(refer section 4) to store the term frequencies. This
index provides the same advantage as a disk resident index wrt scalability. It also provides
an added advantage of performance improvement due to in-memory operations that are
involved.

2. The second phase performs the scoring and ranking by applying the scoring function
using memory-disk resident index built in the first phase.

These two ranking operators achieve high degree of tight coupling between RDBMS and
IR systems.

2 Quality Analysis

A benchmark technique has been proposed [26] which evaluates the keyword search system
for user relevant results. In the benchmark technique, datasets, queries and user relevant
results are generated first and later a given keyword search system is evaluated for result
quality. The systems that were used in the study were Discover [3], Efficient [20], Banks [9],
Bidirectional [21], Blinks [10], Effective [28], DPBF [24], CD [25] and Spark [23]. Entire
keyword search system involves many components such as CN generator module, scoring
functions and CN optimization module. In this scenario different keyword search systems
might generate different Candidate Networks and different result set.

The Labrador scoring function(eq 6) needs to be assessed for result quality to justify
its usage in keyword search systems. So, we perform empirical study only on the scoring
function quality effectiveness by using the benchmark technique [26]. This involves using a
single set of Candidate Networks for each keyword query. The different scoring functions
are applied on the merged result set of these CN to perform the quality analysis. This
study also involves modified Banks [9] scoring function called CNBanks. The CNBanks
scoring function uses the Banks [9] scoring function on the CN result set. This experiment
is conducted to analyze the effectiveness of data graph model scoring functions on CN
systems.

Two metrics are used for result quality analysis. Reciprocal rank is the reciprocal of
the highest ranked relevant result for a given query. We consider the mean reciprocal rank
over a set of queries as the mean reciprocal rank (MRR) metric. Average precision for a
query is the average of the precision values calculated after each relevant result is retrieved
for a given query. Mean average precision(MAP ) metric is given by the mean of average
precision values for a set of queries. The experimental procedure used datasets such as
IMDB, Mondial and Wikipedia. Each system was subjected to around 50 user queries
through which, MAP and reciprocal rank metric values are obtained. Figure 2 and 3
respectively indicate the MAP and MRR analysis of keyword search systems. Labrador
scoring function (eq 6) comes with an added advantage of high user relevance as seen in
Figure 2 and 3.
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Figure 2: MAP ranking Figure 3: MRR ranking

3 SQL-Wrapper System

SQL-Wrapper performs Candidate Network result ranking of Labrador scoring function
(eq 6) by schema integration. In pursuit of this goal the index that is created on the fly is
stored as a relation and all the ranking is performed through the aid of such relations.

The relation labterms(rowid integer, term text, attribute text, frequency integer) is used
when the required attribute of the result set is split and the terms are stored in this relation,
frequency attribute has the default value as 1, rowid is the identifier for the result row,
term is the word that is extracted from splitting the tuple and attribute is the attribute to
which the term belongs. The relation labvalue( term text, attribute text, frequency integer)
stores the frequency of each term in the attribute of the result set. In fact this is the
main index which is required for ranking. The relation numterms(rowid integer, attribute
text, numeratorweight float) is used for storing the numerator part of the cosine value given
in Equation( 6). The relation denomterms(rowid integer, attribute text, denominatorweight
float) has got the same purpose as above but for denominator part of the cosine value. The
relation finalscore(rowid integer, score float) stores the final score of a tuple in the result set.

select ∗
from i nproceed ing
where t i t l e i l i k e ’%system%’ ;

Figure 4: SQL query generated for a Candidate Network

We will consider a simple case wherein there is a single term keyword query system.
For this keyword query lets assume that the Candidate Network Inproceeding.titlesystem is
generated. The SQL query(base query) in Figure 4 is generated for the Candidate Network.

The first SQL query in Figure 5 splits the string in the specified attribute of the tuple
and stores the terms inside a relation called labterms. This action is accomplished through
the user defined Pl/PGSQL function labsplitstringintoterms(). The second SQL query is
calculating the frequency of each term in the result set and inserting the result into the
relation labvalue. The third SQL query applies the scoring function on the result set but
calculates only the numerator part of the cosine value of the scoring function and inserts
the result into numterms. The fourth SQL query calculates the denominator part of the
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cosine value of the scoring function on each tuple and inserts into denomterms. The fifth
SQL query calculates the final score of the query tuples and inserts into finalscore. The
last query presents the base query answers along with their scores in an ordered fashion.
Performance of SQL-Wrapper is accelerated by building indexes on all the relations which
will be used.

SQL-Wrapper exploits the inbuilt features of RDBMS to perform CN result scoring and
ranking. It suffers performance issues due to frequent disk access performed for each term
in scoring process(refer to section 7).

4 Root Rank Operator

The Root Rank operator is a first class operator to perform Candidate Network result
ranking by using the Labrador scoring function (eq 6). Since, this scoring function has the
property of result set dependency, the complete information of the result set is essential.
The Root Rank operator is introduced at the root of the plan tree because at this position
the complete result set can be materialized.

This operator uses a memory-disk resident index to store the term frequencies which
means that the index provides both disk and memory storage facility. Since, Labrador scor-
ing function(eq 6) uses the string equality operation to calculate term frequencies, hashing
technique is used to build the memory-disk resident index. Simple Hashing technique is
used for building the index for evaluation purpose. In future advanced techniques can be
used to build the index depending on the performance requirements. This index is used for
both updating and accessing the term frequencies.

The structure of the index is shown in Figure 6. The index in Figure 6 has a two level
architecture. The first level are the In-Memory hash buckets. The second level are the hash
files which are chained to these hash buckets.

The terms and their frequencies are stored in the corresponding In-Memory hash buck-
ets. If a collision occurs then the term along with its other parameters are updated into
the hash file chained to the hash bucket. Since hashing is invoked even for disk storage, the
duration of I/Os are also limited. Facility has been added to the Root Rank operator where
in the main memory usage can be controlled by assigning usage value to a system variable.
This decides the number of In-Memory hash buckets used in the Root Rank operator.

Algorithm 1 Root Rank Operator Execution Algorithm

Let PL be the root of the plan tree returned by the optimizer before Root Rank operator is
added.
Let rnode be the new empty plan node created for Root Rank operator.
rnode.cardinality = PL.cardinality
rnode.cost be assigned by using Equation 19.
rnode.leftchild = PL
rnode.rightchild = NULL
Invoke Algorithm 2 on rnode during the executor phase of the database engine to build the
index.
Invoke Algorithm 3 on rnode during the executor phase to rank the tuples.

Figure 7 indicates the operator presence in the plan tree. Algorithm 1 explains the
details of the algorithm used by the Root Rank operator for execution. There are 2 scans
performed on the result set. The first pass is used for updating the frequency of each term.
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select l a b s p l i t s t r i n g i n t o t e r m s ( inproceed ing id , t i t l e , ’ i nproceed ing ’ ,
’ t i t l e ’ , ’ 1 ’ ) from i nproceed ing where t i t l e i l i k e ’%system%’ ;

Figure 5(a): First SQL Query of SQL-Wrapper

insert into l abva lue select term , a t t r i bu t e ,sum( f requency ) from
labterms group by term , a t t r i b u t e ;

Figure 5(b): Second SQL Query of SQL-Wrapper

insert into numterms select id , a t t r ,sum( l og (1+( select count (∗ )
from i nproceed ing where t i t l e i l i k e system )/ f r e q ) ) as weight
from ( select t . rowid as id , v . a t t r i b u t e as att r , t . term as term ,
v . f requency as f r e q from labterms as t , l abva lue as v where
t . term =system and v . term=t . term and v . a t t r i b u t e=t . a t t r i b u t e ) as
a group by id ;

Figure 5(c): Third SQL Query of SQL-Wrapper

insert into denomterms select rowid , a t t r i bu t e ,
s q r t (sum( weight∗weight ) ) as denom from ( select id as rowid , a t t r
as a t t r i bu t e , l og (1+( select count (∗ ) from i nproceed ing where t i t l e
i l i k e system )/ f r e q ) as weight from ( select t . rowid as id , t . a t t r i b u t e
as att r , t . term as term , v . f requency as f r e q from l abva lue as v ,
labterms as t where v . term=t . term and v . a t t r i b u t e = t . a t t r i b u t e )
as d) as a group by rowid ;

Figure 5(d): Fourth SQL Query of SQL-Wrapper

insert into f i n a l s c o r e select ids , ( select weight from numterms
where id=i d s )/d from( select d . rowid as ids , d . weight as d from
numterms as n , denomterms as d where n . id=d . id ) as a ;

Figure 5(e): Fifth SQL Query of SQL-Wrapper

select ∗ from Inproceed ing as i , f i n a l s c o r e as f
where i . i np ro c e ed ing id=f . id and i . t i t l e i l i k e ’%system%’
order by s co r e DESC;

Figure 5(f): Sixth SQL Query of SQL-Wrapper

Figure 5: SQL-Wrapper
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Algorithm 2 Index Creation Algorithm

while There are tuples present in the left child of rnode do
Extract a tuple T from the left child of rnode.
Let (A1, A2, ....An) be the attributes of T where the keyword search is performed for a n

keyword query.
for i = 1→ n do.

split(Ai).
The split() function performs the tokenization of terms in the attribute Ai.
Let there be m In-Memory hash buckets allocated for the algorithm run.
for each term tij ∈ Ai do.

bucketij = hash(tij)
The function hash() maps the term tij to a memory slot bucketij
if bucketij.f ill = 0 then

bucketij.term = tij
bucketij.frequency = 1
bucketij.attribute = Ai

bucketij.f ill = 1
else if bucketij.f ill = 1 AND bucketij.term = tij AND bucketij.attribute = Ai

then
bucketij.frequency + +

else
open(fileij)
The open() function invokes the hash file attached to the corresponding bucket.
update(fileij, tij, Ai)
The update() function updates the term frequency inside the hash file.

end if
end for

end for
store the tuple T inside disk.

end while

13



Hash Funtion

Bucket n

Bucket 3

Bucket 2

Bucket 1

Hash File n

Hash File 3

Hash File 2

Hash File 1

Main Memory Buckets

Attached Hash Files
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dent index.
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Figure 7: presence of Root Rank oper-
ator in plan tree.

Algorithm 3 Tuple Ranking Algorithm

while Result tuples are present in the disk do
Extract a tuple T from the disk.
for i = 1→ n do.

split(Ai).
for each term tij ∈ Ai do.

bucketij = hash(tij)
if bucketij.term = tij AND bucketij.attribute = Ai then tij.frequency =

bucketij.frequency
else

open(fileij)
tij.frequency = seek(fileij, tij, Ai)
The seek() function extracts the frequency of the term tij from the hash file.

end if
end for

end for
apply the scoring function listed in (eq 6).

end while
sort the tuples and provide the top-K answers.
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Each tuple is scanned in the required attributes and terms are obtained by splitting the
string. Each term is directed towards their hash bucket and if the term is already present
inside the bucket, the frequency is updated or in the case where collision occurs then it is
updated into the hash file. In the next pass, the scoring function (eq 6) is applied which
requires term frequencies. The splitting operation is performed on the same attributes and
the term frequency is obtained by the hash bucket or by scanning the hash file. After
obtaining the individual scores of the tuples, top-K results are provided by sorting the
scores.

4.1 I/O Cost Modeling

In this section mathematical model for the I/O performed during the execution of Root
Rank operator is established. This I/O model is used for building the optimizer cost model
for Root Rank operator.

Consider the index building stage. Here, for a given hash file i the total number of
terms that are mapped to it is indicated by totali and distincti is the number of distinct
terms present among the terms that are mapped to the hash file i. Let tavi indicate the
average size of terms mapped to a hash file i. In both the update and access case for the
index, page miss scenario is assumed. This scenario implies that when a term has to be
updated or accessed in a hash file then, the required page has to be loaded from the disk.
The page size of the hash files is given by psize. Consider a scenario for the index building
phase where the distinct terms from the terms that are mapped to the hash file i are first
mapped and the remaining terms in any order are later mapped to the hash file i. This
scenario actually gives the largest I/O cost incurred for a hash file which is indicated below.

(totali − distincti) ∗ dtavi ∗ distincti/psizee+ distincti
If there are k hash files allocated for the run of operator. By using the approximation,
dtavi ∗ distincti/psizee ≈ tavi ∗ distincti/psize

Xu =

k∑
i=1

(totali − distincti) ∗ distincti ∗ tavi/psize + distincti (9)

The number of I/O performed during the index building phase(Xu) is given by equa-
tion 9.

Xa =
k∑

i=1

totali ∗ distincti ∗ tavi/psize (10)

In the scoring phase where term frequency is accessed from the hash files, the number
of I/O performed during this stage (Xa) is given by equation 10.

Xroot = Xu +Xa + 2 ∗ card(rs) (11)

The total I/O cost(Xroot) of the Root Rank operator is given by combining the cost of
two stages which is given by equation 11. Here card(rs) indicates the cardinality of result
set. The result set is written and read once during the tuple ranking process which is added
to the final I/O cost.

4.2 Optimizer Cost Modeling

The optimizer cost model for the Root Rank operator is derived from the I/O cost model
developed in the previous section. Fixed number of tuples are obtained as a sample from
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the base relations which contain attributes on which keyword search is performed. Let Ac

be the attribute for which optimizer cost model statistics are built. Let sampleset(Ac) be
the set of tuples obtained as a sample from the base relation which contains attribute Ac.
The equations below are derived to build the cost model statistics for attribute Ac. The
tuples that are used for this process are obtained from sampleset(Ac).

Let k be the number of memory buckets allotted for the Root Rank operator execution,
Xi is the random variable to denote the number of terms that will be mapped to the hash
file of memory bucket Bi during index creation phase from sampleset(Ac), |Bi| be the
number of distinct terms that can be mapped to the bucket Bi from sampleset(Ac), tij
denotes the distinct term j that is mapped to Bi, f(tij) indicates the frequency of the term
tij in sampleset(Ac).

Let X be the random variable to denote the number of terms that will be mapped to
all the hash files. By using expectation conditioning.

E[Xi] =

j=|Bi|∑
j=1

E[Xi|Bi = tij ]P (Bi = tij) (12)

The expression Bi = tij denotes the condition wherein term tij is stored in bucket Bi.

E[Xi] =

j=|Bi|∑
j=1

((
f(tij)∑
r f(tir)

)(

r=|Bi|∑
r=1

(f(tir)− 1) : r 6= j)) + |Bi| − 1 (13)

Since,

E[X] =
i=k∑
i=1

E[Xi] (14)

E[X] =

i=k∑
i=1

j=|Bi|∑
j=1

((
f(tij)∑
r f(tir)

)(

r=|Bi|∑
r=1

(f(tir)− 1) : r 6= j)) + |Bi| − 1 (15)

Let Iu be the random variable which denotes the I/O’s performed during the index
creation phase. The expected value is obtained by using the I/O cost model in eq 9

E[Iu] =

i=k∑
i=1

j=|Bi|∑
j=1

((
f(tij)∑
r f(tir)

)(

r=|Bi|∑
r=1

(f(tir)− 1) : r 6= j)(
tavi ∗ (|Bi| − 1)

psize
))

+|Bi| − 1

(16)

Ia is the random variable which denotes I/O’s performed during index access phase. The
expected value can be derived in a similar fashion by using the I/O cost model in eq 10.

E[Ia] =

i=k∑
i=1

j=|Bi|∑
j=1

((
f(tij)∑
r f(tir)

)(

r=|Bi|∑
r=1

f(tir) : r 6= j)(
tavi ∗ (|Bi| − 1)

psize
)) (17)

rootcost(Ac) =
(E[Iu] + E[Ia]) ∗ card(Ac)

|sampleset(Ac)|
(18)

Here, card(Ac) is the cardinality of base relation which contains attributeAc, |sampleset(Ac)|
is the cardinality of sampleset(Ac).

The rootcost(Ac) is the cost model statistic which is built for the Root Rank opera-
tor WRT attribute Ac. It is stored in the meta data table to be used during the cost
optimization phase.
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For a n term keyword query Q which is mapped to n attributes A1, A2.........An.

rootplancost = n ∗
i=n∑
i=1

rootcost(Ai) ∗ |RS|
card(Ai)

+ 2 ∗ |RS| (19)

|RS| is the estimated output cardinality of the node just below the Root Rank operator
in the plan tree. Optimizer plan cost for the Root Rank operator is given by rootplancost
in Equation 19.

5 Join Rank Operator

Root Rank operator can be seen as a first step for tightly coupling keyword search result
ranking with RDBMS. But, in certain queries the top most join node in the plan tree might
be time expensive compared to the Root Rank operator. In this situation the bulk of the
query execution time is consumed in executing this costly join node(refer section 7) rather
than ranking the result set. This situation can be optimized for better performance by
applying the Join Rank operator. Join Rank helps in cutting down on the cost of expensive
join node and also provides the required top-K answers by directly pulling the ranking
process inside the top most join node. Join Rank operator is a modified version of Rank
Join operator [2] which performed result ranking inside a join node.

Rank Join operator [2] had the following constraints:
1. The scoring function should be monotonic as illustrated in Equation 1.
2. It should also be result set independent.
The main goal of the operator was to prevent the complete search of the join space and

provide the top-K answers by using subset of the search space. In order to perform this, the
relations on which the Rank Join is performed should be sorted on those attributes which
participate in the scoring function. These sorted inputs can be easily obtained through the
interesting order mechanism of the optimizers. Finally, the top-K answers are provided by
applying Ripple Join [31] procedure over these sorted inputs.

select ∗
from a , b , c
where a . 1 = b . 1 and b . 2 = c . 2
order by ( 0 . 6∗ a .1+0.9∗b . 2 )
stop a f t e r 10 ;

Figure 8: Top-K SQL query

The top-K SQL query in the Figure 8 has a scoring function which satisfies both the
constraints mentioned above. The query plan in Figure 9 shows the plan without the Rank
Join operator. The ranking is performed at the root of the tree similar to the Root Rank
operator. The alternate query plan in Figure 10 exhibits the presence of Rank Join operator.
As mentioned above it receives inputs ordered on those attributes which participate in
scoring function.

The Rank Join operator [2] was not designed for result set dependent scoring functions
such as Labrador (eq 6). The Join Rank operator proposed in Algorithm 4 is specifically
designed for result set dependent scoring functions. The query plan tree in Figure 11 repre-
sents the query plan for the CN Proceedingdata × Inproceedingmining × Publisherspringer.
The Join Rank operator seen in Figure 11 is applied at the top most join node which is
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Figure 11: Join Rank operator for keyword search.
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a prerequisite. This is due to the requirement of final join column values for its effective
implementation.

The Join Rank operator builds two memory-disk resident indexes. The first for storing
the join column value frequencies of the left and right input of the Join Rank node. The
second is for storing the term frequencies of the keyword search attributes of both left and
right input tuples. In the first step index is built for the join column value frequencies. The
second step is an optimization step where the tuples that do not participate in the join are
dropped. For this procedure the index for the join column value will be used.

For each tuple in the left input of the Join Rank node, the number of tuples it joins with
the right input is calculated using the join column value index. If there is no join the tuple
is dropped otherwise the terms of the keyword search attributes of the left input tuple are
updated inside the second index. This update process uses the join cardinality of the left
input tuple as a parameter. So, if a term t ∈ left input tuple and if its join cardinality is
nt then the frequency of t is considered as nt. Identical procedure is employed for the right
input tuples.

In the last phase each tuple in the left and right inputs are scored and sorted. Finally,
Ripple Join [31] algorithm is applied to provide top-K answers.

Algorithm 4 Join Rank node executor algorithm

Build Join Column Index().
Build Term Index for Join Rank().
Perform Join Rank()

Algorithm 5 Build Join Column Index()

while There are tuples in left child of Join Rank node do
Extract a tuple Tl from the left child of Join Rank node.
let jl be the join attribute of Tl and tjl be its value.
Ij is the index built for the join attributes.
insert(Ij, jl, tjl, 1)
The insert() function inserts the term tjl into the index Ij.
Store tuple Tl in the disk.

end while
while There are tuples in right child of Join Rank node do

Extract a tuple Tr from the right child of Join Rank node.
let jr be the join attribute of Tr and tjr be its value.
insert(Ij, jr, tjr, 1)
Store tuple Tr in the disk.

end while

5.1 I/O Cost Modeling

The I/O cost model for the Join Rank operator is developed by using the I/O cost model
of the Root Rank operator. In the first stage I/O cost model for building and accessing the
index for the join columns is developed.

Xuj =

kj∑
i=1

(totalij − distinctij ) ∗ distinctij ∗ tavij/psize + distinctij (20)
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Algorithm 6 Build Term Index for Join Rank()

while There are tuples Tl present in the disk do
Extract a tuple Tl from the disk.
Let (A1, A2, ....An) be the attributes of Tl where the keyword search is performed for a

n+m keyword query.
if (!access(Ij, jr, tjl)) then

access() extracts the frequency of term tij from the index Ij WRT attribute jr.
joinfrequency = access(Ij, jr, tjl)
for i = 1→ n do.

split(Ai).
for each term tij ∈ Ai do.

insert(It, Ai, tij, joinfrequency)
It is the index built to store the terms of the keyword search attributes.

end for
end for

end if
Mark and store the tuple Tl inside disk.

end while
while There are tuples Tr present in the disk do

Extract a tuple Tr from the disk.
Let (B1, B2, ....Bm) be the attributes of Tr where the keyword search is performed for a

n+m keyword query.
if (!access(Ij, jl, tjr)) then

joinfrequency = access(Ij, jl, tjr)
for i = 1→ m do.

split(Bi).
for each term tij ∈ Bi do.

insert(It, Bi, tij, joinfrequency)
end for

end for
end if
Mark and store the tuple Tr inside disk.

end while
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Algorithm 7 Perform Join Rank()

while There are marked tuples Tl present in the disk do
Extract a marked tuple Tl from the disk.
for i = 1→ n do.

split(Ai).
for each term tij ∈ Ai do.

tij.frequency = access(It, Ai, tij)
end for

end for
apply the scoring function (eq 6) on Tl and store in disk.

end while
while There are marked tuples Tr present in the disk do

Extract a marked tuple Tr from the disk.
for i = 1→ m do.

split(Bi).
for each term tij ∈ Bi do.

tij.frequency = access(It, Bi, tij)
end for

end for
apply the scoring function (eq 6) on Tr and store in disk.

end while
Ripplejoin(list(Tl), list(Tr))

Ripplejoin() procedure performs the Ripple Join [31] to provide top-K tuples. The list(Tl)
and list(Tr) contains the sorted tuples which will be used in the RippleJoin procedure.

Algorithm 8 insert(index, attribute, term, frequency)

index.bucketterm = jhash(term, index)
The function jhash() maps the term to a slot bucketterm for the given index.
if index.bucketterm.f ill = 0 then

index.bucketterm.term = term
index.bucketterm.frequency = frequency
index.bucketterm.attribute = attribute
index.bucketterm.f ill = 1

else if index.bucketterm.f ill = 1 AND index.bucketterm.term = term AND
index.bucketterm.attribute = attribute then

index.bucketterm.frequency = index.bucketterm.frequency + frequency
else

jopen(fileterm, index)
The jopen() function invokes the hash file attached to the corresponding bucket for the

given index.
jupdate(fileterm, term, attribute, frequency, index)
The jupdate() function updates the term frequency inside the hash file for the given index.

end if
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Algorithm 9 access(index, attribute, term)

index.bucketterm = jhash(term, index)
if index.bucketterm.term = term AND index.bucketterm.attribute = attribute then return
index.bucketterm.frequency
else

jopen(fileterm, index)
return jseek(fileterm, term, attribute, index)
The jseek() function extracts the frequency of the term from the hash file for the given

index.
end if

totalij = totalil + totalir (21)

distinctij = distinctil + distinctir (22)

Xaj =

kj∑
i=1

(lookupil + lookupir) ∗ distinctij ∗ tavij/psize (23)

The number of I/O performed during index building for the join columns is given by
Xuj . The terms totalil and totalir are the no of terms that are mapped to the hash file i
by the left and right inputs, respectively. Similarly, distinctil and distinctir are the no of
distinct terms that are stored in the hash file i by the left and right input. The average
term size inside hash file i is given by tavij . The no of buckets allotted for building the
index for join columns is given by kj . The no of terms that are mapped to the hash file
i from left input to perform the frequency lookup inside right input is given by lookupil .
Similarly, lookupir indicates the same concept but for the right input, Xaj is the number
of I/O performed during the index access for the join columns.

Xut =

kt∑
i=1

(totalit − distinctit) ∗ distinctit ∗ tavit/psize + distinctit (24)

Xat =

kt∑
i=1

totalit ∗ distinctit ∗ tavit/psize (25)

Xrankjoin = Xuj+Xaj+Xut+Xat+2∗(card(rsl)+card(rsr))+2∗(α∗card(rsl)+β∗card(rsr))
(26)

The I/O performed during the index build and index access stage for the keyword
search attributes is given by Xut and Xat . The total no of terms and distinct terms that
are mapped to hash file i is given by totalit and distinctit . The no of buckets that are
allotted to build the index is indicated by kt. The average term size inside hash file i is
given by tavit The cardinality of left and right input is given by card(rsl) and card(rsr).
The scaling factors α and β are used to obtain the actual tuples in left and right input
that participate in join(marked tuples). The total no of I/O performed during Join Rank is
given by Xrankjoin. The left and right input is written and read once. Similarly, the marked
tuples are written and read once. These costs are added to the final I/O cost in (eq 26).

22



5.2 Optimizer Cost Model

The optimizer cost model for the Join Rank operator is derived from the I/O cost model
developed in the previous section, A and R are the relations which can be joined through
the join columns An and Rm respectively. Let sampleset(An) and sampleset(Rm) be the
set of tuples obtained as a sample from the base relations. The equations below are derived
to build the cost model statistics for attribute pair (An, Rm). The tuples that are used for
this process are obtained from sampleset(An) and sampleset(Rm).

Let kj be the number of memory buckets allotted for the Join Rank operator execu-
tion WRT join columns, Xi is the random variable to denote the number of terms that
will be mapped to the hash file of memory bucket Bi during index creation phase from
sampleset(An) ∪ sampleset(Rm), |Bi| be the number of distinct terms that can be mapped
to the bucket Bi. Similarly, |Bia | and |Bir | be the number of distinct terms that can be
mapped to the bucket Bi from sampleset(An) and sampleset(Rm) respectively, tavi is the
average term size of those terms that can be mapped to Bi. Let, gij be the distinct term
j that is mapped to Bi from sampleset(An) ∪ sampleset(Rm), f(gij) is the frequency of
the term gij , aij is the distinct term j that is mapped to Bi from sampleset(An), rij is the
distinct term j that is mapped to Bi from sampleset(Rm), X is is the random variable to
denote the number of terms that will be mapped to all the hash files.

E[Xi] =

j=|Bi|∑
j=1

E[Xi|Bi = gij ]P (Bi = gij) (27)

Equation 27 is obtained through expectation conditioning. The expression Bi = gij
denotes that term gij is stored in memory bucket Bi.

E[Xi] =

j=|Bi|∑
j=1

((
f(gij)∑
r f(gir)

)(

r=|Bi|∑
r=1

(f(gir)− 1) : r 6= j)) + |Bi| − 1 (28)

Since,

E[X] =

i=kj∑
i=1

E[Xi] (29)

E[X] =

i=kj∑
i=1

j=|Bi|∑
j=1

((
f(gij)∑
r f(gir)

)(

r=|Bi|∑
r=1

(f(gir)− 1) : r 6= j)) + |Bi| − 1 (30)

Let Iu be the random variable which denotes the I/O’s performed during the index
creation phase. The expected value is obtained by using the I/O cost model in eq 20

E[Iu] =

i=kj∑
i=1

j=|Bi|∑
j=1

((
f(gij)∑
r f(gir)

)(

r=|Bi|∑
r=1

(f(gir)− 1) : r 6= j)(
tavi ∗ (|Bi| − 1)

psize
))

+|Bi| − 1

(31)

Ia is the total I/O’s performed during index access phase, Ial and Iar are the I/O’s
performed during index access phase by sampleset(An) and sampleset(Rm).

Ial =

i=k∑
i=1

j=|Bia |∑
j=1

lookup(aij)(
tavi ∗ (|Bi| − 1)

psize
) (32)
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lookup(aij) =

{
0, if Bi

∼= aij .

f(aij), otherwise.
(33)

Iar =
i=k∑
i=1

j=|Bir |∑
j=1

lookup(rij)(
tavi ∗ (|Bi| − 1)

psize
) (34)

lookup(rij) =

{
0, if Bi

∼= rij .

f(rij), otherwise.
(35)

The expression Bi
∼= aij denotes match for the term aij in memory bucket Bi during

index access stage.

Ia = Ial + Iar (36)

rankjoincost(An, Rm) =
(E[Iu] + Ia) ∗ (card(An) + card(Rm))

|sampleset(An)|+ |sampleset(Rm)|
(37)

rankjoinplancost(A,R) =

i=n1∑
i=1

rootcost(Ai) ∗ |RS|
card(Ai)

+

i=n2∑
i=1

rootcost(Ri) ∗ |RS|
card(Ri)

+

rankjoincost(An, Rm) ∗ (|ARS |+ |RRS |)
card(An) + card(Rm)

+ 4 ∗ (|ARS |+ |RRS |)

(38)

The statistic rankjoincost(An, Rm) is stored in the meta data tables which will be
used during query optimization phase. This statistic is built for all join column pairs of
relations which will participate in keyword search. Facility has been provided to manually
update both rootcost(Ac) for Root Rank and rankjoincost(An, Rm) for Join Rank by using
ANALY ZE command of Postgres.

Consider a n1+n2 term keyword query Q which is mapped to attributes A1, A2.........An1

of A and R1, R2.........Rn2 of R with An and Bm as the join attributes. The optimizer
estimated cost for the rankjoin node is given by rankjoinplancost(A,R) in Equation 38,
|RS| is the estimated result set of the join , |ARS | and |RRS | are the estimated cardinality
of left and right input of the Join Rank node.

6 Implementation Details

Both the Root Rank and Join Rank operator for simplicity are introduced without any addi-
tion to the SQL language inside PostgreSQL(9.1.2). The presence of an ilike operator inside
the SQL query signals the invocation of both the operators. The SQL query(Q) in Figure 12
is a typical example of a keyword search query. By using, SET enable Rootoperator = false
and SET enable JoinRank = false both these operators can be disabled which will result
in normal execution of the queries without applying keyword search ranking functionality.
By using, SET ScoreMemory the memory required to execute both the operators can be
assigned. For the Join Rank operator assigned memory is split into 3 : 1 ratio. This means
that 3/4 of memory is allotted for building keyword search attribute index and the remain-
ing is used for building join value index. The ratio is used because keyword search index
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select ∗
from Proceeding as p , Inproceed ing as i , Pub l i she r as l
where p . t i t l e i l i k e ’%data%’ and i . t i t l e i l i k e ’%mining%’
and l . name i l i k e ’%s p r i n g e r%’
and p . proceed ing id=i . p roceed ing id
and l . p u b l i s h e r i d=i . p u b l i s h e r i d
l imit 10 ;

Figure 12: Top-K SQL query (Q) for keyword search

Proceeding

σtitle ilike ′data′

σtitle ilike ′mining′

Inproceeding

Nl Join

Publisher

Hash Join

σName ilike ′springer′

Root Rank operator

top-10

Figure 13: Query plan for (Q) having the Root Rank operator

usually requires bigger storage than join index. In case of Root Rank operator the entire
memory is allotted for the keyword search attribute index.

6.1 Parser

The first stage of query execution involves the parser which verifies the syntax and builds
the parse tree. The parse tree is stored in the structure ParseState. Since, no new SQL
language addition is made for the new operators the parser stage is used without any
modification.

6.2 Analyzer

The second stage involves the analyzer phase where a parse tree is converted into query
tree. The analyzer phase performs the semantic analysis of the SQL query by using the
parse tree. In this stage the presence of an ilike operator is detected. If successful, then
new structures are created to store the attribute, relation and ilike term information which
will be used in the later stages. The query tree is stored in the structure Query.

6.3 Optimizer

The optimization process is performed by using the structure Query obtained during the
analyzer phase. The Join Rank operator is implemented by using equivalence class strategy
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Proceeding

σtitle ilike ′data′

σtitle ilike ′mining′

Inproceeding

Nl Join

Publisher

Join Rank

σName ilike ′springer′

top-10

Figure 14: Alternate query plan for (Q) having the Join Rank operator

which most of the current optimizers use. In Figure 14 the DP-Lattice algorithm creates
the Join Rank node as an equivalence class which produces two alternate plans(refer to
Figure 13). The final optimal plan is obtained by evaluating the complete cost of both the
plan trees. The final query plan tree is stored in the structure PlanState. An extra field
is created in this structure to store the new structures that were created during analyzer
phase.

6.4 Executor

The state information of the executor gives the execution road map which is stored in the
PlanState structure. Executor module uses the algorithms illustrated in Algorithm 1 and
Algorithm 4 to execute the Root Rank and Join Rank operator.

The keyword search and join index are implemented as an array of structures called
Hashscoreindex[size1] and Hashjoinindex[size2]. The former is for the keyword search
attributes and the latter for join columns. Each structure element is tailed with a file which
acts as a hash file. The API MakeSingleTupleTableSlot is used for copying of tuples.
The data inside the tuples are stored in Datum format which is basically a pointer to
the actual data. The actual value has to be extracted by the API DatumGetCString.
The API ExecCopySlotMinimalTuple writes tuples to files by compressing them. Tuple
compression provides an opportunity to perform many instances of storage and sorting
operations inside memory. Otherwise, in many cases these operations had to be performed
through disk. Thus, providing much needed performance benefits. Postgres provides a
dynamic memory allocation through palloc. The memory allotted through this mechanism
need not be freed individually. Once the executor completes its execution all the memory
allotted through palloc is freed automatically. This mechanism provides a shield against
accidental memory leakage.

The steps mentioned below illustrates the Root Rank operator implementation inside
executor routine:

1. Hashscoreindex[size1] is initialized by allotting the required memory through palloc.
Similarly, the corresponding hash files are also initialized.

2. Since Root Rank operator has only left child. Each tuple is extracted from left child
through the API ExecProcNode. Every tuple that is extracted is deep copied through the
API MakeSingleTupleTableSlot. If the tuples have to be stored on the disk then the API

ExecCopySlotMinimalTuple is invoked.
3. The tuples are probed for the relevant attributes through the structure tupleDescriptor.
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Number Query Candidiate Network
1 mining InProceedingmining

2 operating InProceedingoperating

3 algorithm InProceedingalgorithm

4 network InProceedingnetwork

5 data InProceedingdata

6 system InProceedingsystem

7 data Proceedingdata

8 system Proceedingsystem

Table 1: Single Keyword Queries

The required values are extracted through the API DatumGetCString. The extracted val-
ues are used to build the required index.

4. Once the tuple scoring phase is completed. All the sorted tuples are indexed by their
rank and are returned to the destination port. For the Join Rank operator, two indexes
Hashscoreindex[size1] and Hashjoinindex[size2] are initialized. The operator has both
left and right child so the tuples are extracted by using the API’s ExecProcNode(outernode)
and ExecProcNode(innernode). All the other executor functionalities remain similar to
Root Rank operator.

7 Experiments

All the three systems SQL-Wrapper, Root Rank operator and Join Rank operator were
subjected to performance experiments. The DBLP database which has become a de facto
benchmark in keyword search system evaluation [9,10,21,23] has been used in these exper-
iments. The dataset has around 600 MB of data, 9 relations, 25 text attributes and 7000k
of tuples. Since benchmark keyword queries do not exist for this dataset, we have used
queries from three sources,

1. Queries which were used in expert finding technique [30]. This procedure involved
finding the experts in different fields by using the DBLP dataset. The field names on which
expert finding algorithm was executed were used as keyword query in this experiment.

2. Queries which were used in other keyword search systems [10].
3. Queries that were self constructed.
The SQL queries were divided according to number of joins(m) that were involved in

them. Table 1 enumerates the single term keyword queries and their corresponding CN.
Figure 15 exhibits the performance of SQL-Wrapper and Root Rank operator for the key-
word queries listed in Table 1. The number of results retrieved was kept static(k=100). As
expected, Root Rank operator has a considerable performance benefits over SQL-Wrapper.
This is largely due to the in-memory index which provides superior performance benefits
over purely disk based index used in SQL-Wrapper.

The optimizer cost model developed for both Root Rank and Join Rank operators
models the I/O cost. In Figure 16 the correlation between the actual I/O performed during
runtime and optimizer cost is plotted for Root Rank operator wrt Table 1 queries. The
plan trees utilized the perfect selectivity estimation scenario. In this case the queries were
executed once and the correct selectivity at all nodes of the plan tree was calculated and
used in cost estimation. In this scenario the deficiency in the cost model can be analyzed
because if the cost model performs poorly it is evident that the selectivity estimation is not
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Figure 15: SQL-Wrapper vs Root (m=0, k=100).
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Figure 16: Optimizer cost vs Run Time I/O(Table 1)
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Figure 17: SQL-Wrapper vs Root Rank vs Join Rank(m=1, k=100).
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Number Query Candidiate Network
1 system data InProceedingsystem ×

Proceedingdata

2 system data InProceedingdata ×
Proceedingsystem

3 computer science InProceedingcomputer ×
Proceedingscience

4 computer science InProceedingscience ×
Proceedingcomputer

5 software system InProceedingsoftware ×
Proceedingsystems

6 elsevier performance Publisherelsevier ×
Proceedingperformance

7 springer algorithm Publisherspringer ×
Proceedingalgorithm

Table 2: Two Term Keyword Queries
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Figure 18: Root Rank vs Join Rank (skew version).
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Figure 19: Optimizer cost vs Run Time I/O(Table 2)

Number Query Candidiate Network
1 computer science Seriescomputer × Proceeding ×

InProceedingScience

2 computer science network Seriescomputer × Proceedingnetwork ×
InProceedingScience

3 springer data Publisherspringer × Proceeding ×
InProceedingdata

4 michael database Personmichael ×
RelationPersonInProceeding ×
InProceeding × Proceedingdatabase

5 kevin statistical Personkevin ×
RelationPersonInProceeding ×
InProceeding × Proceedingstatistical

Table 3: Keyword Queries for m > 1
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Figure 20: SQL-Wrapper vs Root Rank vs Join Rank (m > 1, k = 100).
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the problem but the cost model fits poorly to the operator. Perfect straight line fit cannot
be observed in Figure 16 because the operator is applied on text attributes and meta data
tables only store partial information of the text data.

Table 2 enumerates the two term keyword queries along with their CN. In Figure 17
performance of keyword queries listed in Table 2 are plotted. SQL-Wrapper again suffers
from performance bottleneck WRT both Root Rank and Join Rank operator. Both the
operators do not exhibit large variations in their performance. The main reason being
that Join Rank requires two indexes to be built and this can be a suboptimal choice in
certain queries. Root Rank operator is beneficial when the final join node has a minimal
cost. Similarly, Join Rank is beneficial choice when final join node has a huge cost due
to skewed distribution of join column values which can hamper the normal join algorithms
performance (In this scenario hash join becomes disk oriented rather than finishing the task
inside memory which can degrade performance).

Since, the normal DBLP has a negligible skew. Artificial skew is introduced in the join
columns for Table 2 queries in order to exhibit the superior performance of Join Rank.
Figure 18 exhibits performance benefits of such a situation where the degree of skewness
was 20 percent. Consider a situation for a query where both the join columns had a single
common value and a high join input cardinality. In this situation Hash Join algorithm
exhausts memory. But, Join Rank only updates the join column frequency inside the
memory-disk resident index. Similarly, the term index updates only the corresponding
term frequency. Thus, Join Rank saves itself from burning out of memory. In fact, when
the degree of skewness reached around 30 percent many queries exhausted their memory
using the Root Rank operator.

Figure 19 plots the correlation between runtime I/O against the optimizer cost for
Table 2 queries. Again, perfect selectivity estimation scenario was utilized. Both the
operators exhibited small variations in their relative predicted cost for the same set of
queries. This also substantiates the empirical result which does not exhibit large variations
in the relative performance of these operators.

Table 3 enumerates the keyword queries which produce CN with more than one join.
Figure 20 plots the relative performance of all the three systems for Table 3 queries. In
these SQL queries the total execution cost of plan tree below the Join Rank node is also
plotted as LowerJoin. As seen in Figure 20 most of the cost has been due to the ranking
functionality. If skew is introduced in the join columns this can alter situation where in
some instances the joins in the lower level of the plan tree would incur higher cost.

As explained above skewness in a dataset can be eliminated by the help of Join Rank
operator. But, this is largely effective on a single join queries. For those queries with
multiple joins, ranking functionality can become lighter than the lower level joins. In the
current work four practical datasets have been examined namely DBLP, IMDB, Mondial
and Wikipedia. In all these datasets, degree of skewness is not significant.

8 Conclusions

In this work three different techniques have been introduced to perform keyword search
result ranking on RDBMS. Out of which two new operators have been introduced to achieve
the long desired goal of tightly coupling IR systems and RDBMS. The new operators have
justified their introduction by providing excellent performance benefits over SQL-Wrapper
technique. The Labrador scoring function which has been used in this task has justified its
usage by providing high user relevant answers.

There are two major future extensions for this work:
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1. The Join Rank operator has been introduced only at the top most join node. The
Join Rank operator [2] can be introduced at join nodes which are located at all levels of
plan tree. The task of introducing Join Rank operator at all levels is a hard problem. At
lower levels of plan tree it is difficult to know the complete information about the final join
column values which is essential to apply the Join Rank algorithm.

2. There is a need of new operators not just in the traditional RDBMS but also in
recent systems such as column database and probabilistic database systems. These database
systems currently do not even have result scoring functions. By developing scoring functions
and operators, complete integration of IR and all kinds of Database systems can be achieved.
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