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Abstract

To address the classical selectivity estimation problem for OLAP queries in relational databases,
a radically different approach called PlanBouquetwas recently proposed in [3], wherein the esti-
mation process is completely abandoned and replaced with a calibrated discovery mechanism. The
beneficial outcome of this new construction is that provable guarantees on worst-case performance,
measured as Maximum Sub-Optimality (MSO), are obtained thereby facilitating robust query pro-
cessing.

The PlanBouquet formulation suffers, however, from a systemic drawback – the MSO bound
is a function of not only the query, but also the optimizer’s behavioral profile over the underlying
database platform. As a result, there are adverse consequences: (i) the bound value becomes highly
variable, depending on the specifics of the current operating environment, and (ii) it becomes infea-
sible to compute the value without substantial investments in preprocessing overheads.

In this report, we first present SpillBound, a new query processing algorithm that retains
the core strength of the PlanBouquet discovery process, but reduces the bound dependency to
only the query. It does so by incorporating plan termination and selectivity monitoring mechanisms
in the database engine. Specifically, SpillBound delivers a worst-case multiplicative bound, of
D2+3D, where D is simply the number of error-prone predicates in the user query. Consequently,
the bound value becomes independent of the optimizer and the database platform, and the guarantee
can be issued simply by query inspection. We go on to prove that SpillBound is within an O(D)
factor of the best possible deterministic selectivity discovery algorithm in its class.

We next devise techniques to bridge this quadratic-to-linear MSO gap by introducing the notion
of contour alignment, a characterization of the nature of plan structures along the boundaries of the
selectivity space. Specifically, we propose a variant of SpillBound, called AlignedBound,
which exploits the alignment property and provides a guarantee in the range [2D+ 2,D2 + 3D].

Finally, a detailed empirical evaluation over the standard decision-support benchmarks indi-
cates that: (i) SpillBound provides markedly superior performance wrt MSO as compared to
PlanBouquet, and (ii) AlignedBound provides additional benefits for query instances that
are challenging for SpillBound, often coming close to the ideal of MSO linearity in D. From
an absolute perspective, AlignedBound evaluates virtually all the benchmark queries consid-
ered in our study with MSO of around 10 or lesser. Therefore, in an overall sense, SpillBound
and AlignedBound offer a substantive step forward in the long-standing quest for robust query
processing.

1 Introduction
A long-standing problem plaguing database systems is that the predicate selectivity estimates used
for optimizing declarative SQL queries are often significantly in error [10, 8]. This results in highly
sub-optimal choices of execution plans, and corresponding blowups in query response times. The rea-
sons for such substantial deviations are well documented [14], and include outdated statistics, coarse
summaries, attribute-value independence (AVI) assumptions, complex user-defined predicates, and er-
ror propagations in the query execution tree. It is therefore of immediate practical relevance to design
query processing techniques that limit the deleterious impact of these errors, and thereby provide robust
query processing.

We use the notion of Maximum Sub-Optimality (MSO), introduced in [3], as a measure of the robust-
ness provided by a query processing technique to errors in selectivity estimation. Specifically, given a
query, the MSO of the processing algorithm is the worst-case ratio, over the entire selectivity space, of
its execution cost with respect to the optimal cost incurred by an oracular system that magically knows
the correct selectivities. It has been empirically determined that MSOs can reach very large values on
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current database engines [3] – for instance, with Query 19 of the TPC-DS benchmark, it goes as high
as a million!2 More importantly, worrisomely large sub-optimalities are not rare – for the same Q19,
the sub-optimalities for as many as 40% of the locations in the selectivity space are higher than 1000.

As explained in [3], most of the previous approaches to robust query processing (e.g. [10, 1, 11, 7]),
including the influential POP and Rio frameworks, are based on heuristics that are not amenable to
bounded guarantees on the MSO measure. A notable exception to this trend is the PlanBouquet
algorithm, recently proposed in [3], which provides, for the first time, a provable MSO guarantee.
Here, the selectivities are not estimated, but instead, systematically discovered at run-time through a
calibrated sequence of cost-limited executions from a carefully chosen set of plans, called the “plan
bouquet”. The search space for the bouquet plans is the Parametric Optimal Set of Plans (POSP) [6]
over the selectivity space. The PlanBouquet technique guarantees MSO ≤ 4 ∗ |PlanBouquet|. 3

1.1 PlanBouquet
We describe the working of PlanBouquet with the help of the example query EQ shown in Fig-
ure 1, which enumerates orders for cheap parts costing less than 1000. To process this query, cur-
rent database engines typically estimate three selectivities, corresponding to the two join predicates
(part on lineitem) and (orders on lineitem), and the filter predicate (p retailprice < 1000). While it
is conceivable that the filter selectivity may be estimated reliably, it is often difficult to ensure similarly
accurate estimates for the join predicates. We refer to such predicates as error-prone predicates, or epp
in short (shown bold-faced in Figure 1).

select * from lineitem, orders, part where
p partkey = l partkey and o orderkey =
l orderkey
and p retailprice < 1000

Figure 1: Example Query (EQ)

Example Execution

Given the above query, PlanBouquet constructs a two-dimensional space, called as Error-prone
Selectivity Space (ESS) corresponding to the epps, covering their entire selectivity range ([0, 1]∗ [0, 1]),
as shown in Figure 2(a).

On this selectivity space, a series of iso-cost contours, IC1 through ICm, are drawn – each iso-cost
contour ICi has an associated cost CCi, and represents the connected selectivity curve along which the
cost of the optimal plan, as determined by the optimizer, is equal to CCi. Further, the contours are
selected such that the cost of the first contour IC1 corresponds to the minimum query cost C at the
origin of the space, and in the following intermediate contours, the cost of each contour is double that
of the previous contour. 4 That is, CCi = 2(i−1)C for 1 < i < m . The last contour’s cost, CCm, is capped
to the maximum query cost at the top-right corner of the space.

2Assuming that estimation errors can range over the entire selectivity space.
3A more precise bound is given later in this section.
4A doubling factor minimizes the MSO guarantee, as proved in [3].
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Figure 2: PlanBouquet and SpillBound

As a case in point, in Figure 2(a), there are five hyperbolic-shaped contours, IC1 through IC5, with
their costs ranging from C to 16C. Each contour has a set of optimal plans covering disjoint segments
of the contour – for instance, contour IC2 is covered by plans P2, P3 and P4.

The union of the optimal plans appearing on all the contours constitutes the “plan bouquet” – so,
in Figure 2(a), plans P1 through P14 form the bouquet. Given this set, the PlanBouquet algorithm
operates as follows: Starting with the cheapest contour IC1, the plans on each contour are sequentially
executed with a time limit equal to the contour’s budget. If a plan fully completes its execution within
the assigned time limit, then the results are returned to the user, and the algorithm finishes. Otherwise,
as soon as the time limit of the ongoing execution expires, the plan is forcibly terminated and the
partially computed results (if any) are discarded. It then moves on to the next plan in the contour and
starts all over again. In the event that the entire set of plans in a contour have been tried out without
any reaching completion, it jumps to the next contour and the cycle repeats.

As a sample instance, consider the case where the query is located at q, in the intermediate region
between contours IC3 and IC4, as shown in Figure 2(a). To process this query, PlanBouquet would
invoke the following budgeted execution sequence:

P1|C,P2|2C,P3|2C,P4|2C,P5|4C, . . . , P10|4C,P11|8C,P12|8C

with the execution of the final P12 plan completing the query.

Performance Guarantees

The overheads entailed by the “trial-and-error” exercise can be bounded, irrespective of the query
location in the space. In particular, MSO ≤ 4 ∗ ρ, where ρ is the plan cardinality on the “maximum
density” contour. The density of a contour refers to the number of plans present on it – for instance, in
Figure 2(a), the maximum density contour is IC3 which features 6 plans.

Limitations

The PlanBouquet formulation, while breaking new ground, suffers from a systemic drawback – the
specific value of ρ, and therefore the bound, is a function of not only the query, but also the optimizer’s
behavioral profile over the underlying database platform (including data contents, physical schema,
hardware configuration, etc.). As a result, there are adverse consequences: (i) The bound value be-
comes highly variable, depending on the specifics of the current operating environment – for instance,
with TPC-DS Query 25, PlanBouquet’s MSO guarantee of 24 under PostgreSQL shot up, under

4



an identical computing environment, to 36 for a commercial engine, due to the change in ρ; (ii) It be-
comes infeasible to compute the value without substantial investments in preprocessing overheads; and
(iii) Ensuring a bound that is small enough to be of practical value, is contingent on the heuristic of
“anorexic reduction” [5] holding true.

1.2 SpillBound
Our objective here is to develop a robust query processing approach that offers an MSO bound which
is solely query-dependent, irrespective of the underlying database platform. That is, we desire a “struc-
tural bound” instead of a “behavioral bound”. Accordingly, we present a new query processing algo-
rithm, called SpillBound, that achieves this objective in the sense that it delivers an MSO bound
that is only a function of D, the number of predicates in the query that are prone to selectivity estima-
tion errors. Moreover, the dependency is in the form of a low-order polynomial, with MSO expressed
as (D2 + 3D). Consequently, the bound value becomes: (i) independent of the database platform 5,
(ii) known upfront by merely inspecting the query, and not incurring any preprocessing overhead, (iii)
indifferent to the anorexic reduction heuristic, and (iv) certifiably low in value for practical values of
D.

Example Execution

SpillBound shares the core contour-wise discovery approach of PlanBouquet, but its execution
strategy differs markedly. Specifically, it achieves a significant reduction in the cost of the sequence of
budgeted executions employed during the selectivity discovery process. For instance, in the example
scenario of Figure 2(a), the sequence of budgeted executions correspond to the plans highlighted in
blue:

P1|C,P2|2C,P3|2C,P6|4C,P8|4C,P12|8C
with P12 again completing the query. Note that the reduced executions result in cost savings of more
than 50% over PlanBouquet.

The advantages offered by SpillBound are achieved by the following key properties – Half-space
Pruning and Contour Density Independent execution – of the algorithm.

Half-space Pruning

With each contour whose plans do not complete within the assigned budget, PlanBouquet is able
to prune the corresponding hypograph – that is, the search region below the contour curve. A pictorial
view is shown in Figure 2(b), which focuses on contour IC3 – here, the hypograph of IC3 is the
Region-1 marked with red dots.

However, with SpillBound, a much stronger half-space-based pruning comes into play. This
is vividly highlighted in Figure 2(b), where the half-space corresponding to Region-2 is pruned by
the (budget-limited) execution of P8, while the half-space corresponding to Region-3 is pruned by
the (budget-limited) execution of P6. Note that Region-2 and Region-3 together subsume the entire
Region-1 that is covered by PlanBouquet when it crosses IC3. Our half-space pruning property is
achieved by leveraging the notion of “spilling”, whereby operator pipelines in the execution plan tree
are prematurely terminated at chosen locations, in conjunction with run-time monitoring of operator
selectivities.

5Under the assumption that D remains constant across the platforms.
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Contour Density Independent Execution

Let us define a “quantum progress” to be a step in which the algorithm either (a) jumps to the next
contour, or (b) fully learns the selectivity of some epp (thus reducing the effective number of epps).
Then, in the example scenario, while advancing through the various contours in the discovery process,
SpillBound makes quantum progress by executing at most two plans on each contour. In general,
when there are D error-prone predicates in the user query, SpillBound is guaranteed to make quan-
tum progress based on cost-budgeted execution of at most D carefully chosen plans on the contour.

Specifically, in each contour, for each dimension, one plan is chosen for spill-mode execution. The
plan chosen for spill-mode execution is the one that provides the maximal guaranteed learning of the
selectivity along that dimension. In our example, P8 and P6 are the plans chosen for the contour IC3
along the X and Y dimensions, respectively.

1.3 Bridging the MSO Gap
At this juncture, a natural question to ask is whether some alternative selectivity discovery algorithm,
based on half-space pruning, can provide better MSO bounds than SpillBound. In this regard, we
prove that no deterministic technique in this class can provide an MSO bound less than D. Therefore,
the SpillBound guarantee is no worse than a factorO(D) as compared to the best possible algorithm
in its class.

Contour Alignment

Given this quadratic-to-linear gap on the MSO guarantee, we seek to characterize exploration scenarios
in which SpillBound’s MSO approaches the lower bound. For this purpose, we introduce a new
concept called contour alignment – a contour is aligned if the contour plan that is incident on the
boundary of the ESS, has its selectivity learning dimension (during spill-mode execution) matching
with the incident dimension. For instance, in the example of Figure 2, contour IC3 would be aligned
if plan P5, rather than P6, happened to be the plan providing the maximal guaranteed learning along
the Y dimension. Leveraging this notion, we show that the MSO bound can be reduced to O(D) if the
contour alignment property is satisfied at every contour encountered during its execution.

Unfortunately, in practice, we may not always find the alignment property satisfied at all contours.
Therefore, we design the AlignedBound algorithm which extracts the benefit of alignment wherever
available, either natively or through an explicit induction. Specifically, AlignedBound delivers an
MSO that is guaranteed to be in the platform-independent range [2D + 2,D2 + 3D].

1.4 Empirical Results
The bounds delivered by PlanBouquet and SpillBound are, in principle, uncomparable, due to
the inherently different nature of their parametric dependencies. However, in order to assess whether
the platform-independent feature of SpillBound is procured through a deterioration of the numerical
bound, we have carried out a detailed experimental evaluation of both the approaches on standard
benchmark queries, operating on the PostgreSQL engine. Moreover, we have empirically evaluated the
MSO obtained for each query through an exhaustive enumeration of the selectivity space.

Our experiments indicate that for the most part, SpillBound provides similar guarantees to
PlanBouquet, and occasionally, much tighter bounds. As a case in point, for TPC-DS Query 91
with 6 error-prone predicates, the MSO bound is 96 with PlanBouquet, but comes down to 54 with
SpillBound. More pertinently, the empirical MSO of SpillBound is significantly better than
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that of PlanBouquet for all the queries. For instance, the empirical MSO for Q91 decreases from
PlanBouquet’s 49 to 19 for SpillBound.

Turning our attention to AlignedBound, its performance is typically closer to the lower end of its
guarantee range, i.e. 2D + 2, and often provides substantial benefits for query instances that are chal-
lenging for SpillBound. For instance, AlignedBound brings the MSO of the above-mentioned
Q91 test case down to 10.4. Moreover, AlignedBound is able to complete virtually all the bench-
mark queries evaluated in our study with a MSO of around 10 or lower.

In a nutshell, AlignedBound consistently collapses the enormous MSOs incurred with contempo-
rary industrial-strength query optimizers, down to a single order of magnitude.

Caveats

We hasten to add that our proposed algorithms are not a substitute for a conventional query optimizer.
Instead, they are intended to complementarily co-exist with the traditional setup, leaving to the user’s
discretion, the specific approach to employ for a query instance. When small estimation errors are
expected, the native optimizer could be sufficient, but if larger errors are anticipated, our algorithms are
likely to be the preferred choice.

Organization

The remainder of this paper is organized as follows: In Section 2, a precise description of the ro-
bust execution problem is provided, along with the associated notations. The building blocks of our
algorithms are presented in Section 3. The SpillBound algorithm and the proof of its MSO bound
are presented in Section 4, followed by the lower bound analysis in Section 5. The AlignedBound
algorithm and its analysis is presented in Section 6. The experimental framework and performance
results are enumerated in Section 7, while pragmatic deployment aspects are discussed in Section 8.
The related literature is reviewed in Section 9, and our conclusions are summarized in Section 10.

2 Problem Framework
In this section, we present the key concepts, notations, and the formal problem definition. For ease
of presentation, we assume that the error-prone selectivity predicates (epps) for a given user query are
known apriori, and defer the issue of identifying these epps to Section 8.

2.1 Error-prone Selectivity Space (ESS)
Consider a query with D epps. The set of all epps is denoted by EPP = {e1, . . . , eD} where ej denotes
the jth epp. The selectivities of the D epps are mapped to a D-dimensional space, with the selectivity
of ej corresponding to the jth dimension. Since the selectivity of each predicate ranges over [0, 1], a
D-dimensional hypercube [0, 1]D results, henceforth referred to as the error-prone selectivity space, or
ESS. In practice, an appropriately discretized grid version of [0, 1]D is considered as the ESS. Note
that each location q ∈ [0, 1]D in the ESS represents a specific instance where the epps of the user
query happen to have selectivities corresponding to q. Accordingly, the selectivity value on the jth
dimension is denoted by q.j. We call the location at which the selectivity value in each dimension is 1,
i.e, q.j = 1, ∀j, as the terminus.

The notion of a location q1 dominating a location q2 in the ESS plays a central role in our framework.
Formally, given two distinct locations q1, q2 ∈ ESS, q1 dominates q2, denoted by q1 � q2, if q1.j ≥ q2.j
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for all j ∈ 1, . . . , D. In an analogous fashion, other relations, such as 6�, �, and 6≺ can be defined to
capture relative positions of pairs of locations.

2.2 Search Space for Robust Query Processing
We assume that the query optimizer can identify the optimal query execution plan if the selectivities
of all the epps are correctly known.6 Therefore, given an input query and its epps, the optimal plans
for all locations in the ESS grid can be identified through repeated invocations of the optimizer with
different selectivity values. The optimal plan for a generic selectivity location q ∈ ESS is denoted by
Pq, and the set of such optimal plans over the complete ESS constitutes the Parametric Optimal Set of
Plans (POSP) [6].7

We denote the cost of executing an arbitrary plan P at a selectivity location q ∈ ESS by
Cost(P, q). Thus, Cost(Pq, q) represents the optimal execution cost for the selectivity instance lo-
cated at q. In this framework, our search space for robust query processing is simply the set of tuples
< q, Pq, Cost(Pq, q) > corresponding to all locations q ∈ ESS.

Throughout the paper, we adopt the convention of using qa to denote the actual selectivities of the user
query epps – note that this location is unknown at compile-time, and needs to be explicitly discovered.
For traditional optimizers, we use qe to denote the estimated selectivity location based on which the
execution plan Pqe is chosen to execute the query. However, this characterization is not applicable to
plan switching approaches like PlanBouquet and SpillBound because they explore a sequence
of locations during their discovery process. So, we denote the deterministic sequence pursued for a
query instance corresponding to qa by Seqqa .

2.3 Maximum Sub-Optimality (MSO) [3]
We now present the performance metrics proposed in [3] to quantify the robustness of query processing.

A traditional query optimizer will first estimate qe, and then use Pqe to execute a query which may
actually be located at qa. The sub-optimality of this plan choice, relative to an oracle that magically
knows the correct location, and therefore uses the ideal plan Pqa , is defined as:

SubOpt(qe, qa) =
Cost(Pqe , qa)

Cost(Pqa , qa)
(1)

The quantity SubOpt(qe, qa) ranges over [1,∞).
With this characterization of a specific (qe, qa) combination, the maximum sub-optimality that can

potentially arise over the entire ESS is given by

MSO = max
(qe,qa)∈ESS

(SubOpt(qe, qa)) (2)

The above definition for a traditional optimizer can be generalized to selectivity discovery algorithms
like PlanBouquet and SpillBound. Specifically, suppose the discovery algorithm is currently
exploring a location q ∈ Seqqa – it will choose Pq as the plan and Cost(Pq, q) as the associated budget.
Extending this to the whole sequence, the analogue of Equation 1 is defined as follows:

SubOpt(Seqqa , qa) =

∑
q∈Seqqa

Cost(Pq, q)

Cost(Pqa , qa)
(3)

6For example, through the classical DP-based search of the plan space [13].
7Letter subscripts for plans denote locations, whereas numeric subscripts denote identifiers.
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leading to
MSO = max

qa∈ESS
SubOpt(Seqqa , qa) (4)

2.4 Problem Definition
With the above framework, the problem of robust query processing is defined as follows:

For a given input query Q with its EPP, and the search space consisting of tuples <
q, Pq, Cost(Pq, q) > for all q ∈ ESS, develop a query processing approach that minimizes the MSO
guarantee.

As in [3], the primary assumptions made in this paper that allow for systematic construction and
exploration of the ESS are those of plan cost monotonicity (PCM) and selectivity independence (SI).
PCM may be stated as: For any two locations qb, qc ∈ ESS, and for any plan P ,

qb � qc ⇒ Cost(P, qb) > Cost(P, qc) (5)

That is, it encodes the intuitive notion that when more data is processed by a query, signified by the
larger selectivities for the predicates, the cost of the query processing also increases. On the other hand,
SI assumes that the selectivities of the epps are all independent – while this is a common assumption
in much of the query optimization literature, it often does not hold in practice. In our future work, we
intend to extend SpillBound to handle the more general case of dependent selectivities.

2.5 Geometric View and Notations
We now present a geometric view of the discovery space and some important notations. Consider the
special case of a query with two epps, resulting in an ESS with X and Y dimensions. Now, incorporate
a third Z dimension to capture the cost of the optimal plan on the ESS, i.e, for q ∈ ESS, the value of
the Z-axis is Cost(Pq, q). This 3D surface, which captures the cost of the optimal plan on the ESS,
is called the Optimal Cost Surface (OCS). Associated with each point on the OCS is the POSP plan
for the underlying location in the ESS. A sample OCS corresponding to the example query EQ in the
Introduction is shown in Figure 3, which provides a perspective view of this surface. In this figure, the
optimality region of each POSP plan is denoted by a unique color. So, for example, the region with
blue points corresponds to those locations where the “blue plan” is the optimal plan.8

Figure 3: 3D Cost Surface on ESS

8Since Figure 3 is only a perspective view of the OCS, it does not capture all the POSP plans.
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Discretization of OCS: Let Cmin and Cmax denote the minimum and maximum costs on the OCS,
corresponding to the origin and the terminus of the 3D space, respectively (an outcome of the PCM
assumption). We define m = dlog2(

Cmax

Cmin
)e + 1 hyperplanes that are parallel to the XY plane as

follows. The first hyperplane is drawn at Cmin. For i = 2, . . . ,m − 1, the ith hyperplane is drawn at
Cmin · 2i−1. The last hyperplane is drawn at Cmax. These hyperplanes correspond to the m isocost
contours IC1, . . . , ICm. The isocost contour ICi is essentially the 2D curve obtained by intersecting
the OCS with the ith hyperplane. We denote the cost of ICi by CCi. The set of plans that are on the 2D
curve of ICi are referred to as PLi. For example, in Figure 3, PL4 includes the purple and maroon plans
(in addition to plans that are not visible in this perspective). The hypograph of an isocost contour ICi
is the set of all locations q ∈ ESS such that Cost(Pq, q) ≤ CCi.

The above geometric intuition and the formal notations readily extend to the general case of D epps,
and these notations are summarized in Table 1 for easy reference.

Table 1: NOTATIONS

Notation Meaning
epp (EPP) Error-prone predicate (its collection)
ESS Error-prone selectivity space
D Number of dimensions of ESS
e1, . . . , eD The D epps in the query
q ∈ [0, 1]D A location in the ESS space
q.j Selectivity of q in the jth dimension of ESS
Pq Optimal Plan at q ∈ ESS

qa Actual run-time selectivity
Cost(P, q) Cost of plan P at location q
ICi Isocost Contour i
CCi Cost of an isocost contour ICi
PLi Set of plans on contour ICi

3 Building Blocks of our Algorithms
The platform-independent nature of the MSO bound of the SpillBound is enabled by the key proper-
ties of half-space pruning and contour density independent execution. The AlignedBound algorithm
that provides an O(D) MSO under certain special scenarios is based on the concept of contour align-
ment. In this section, we present these building blocks of the SpillBound and AlignedBound
algorithms.

3.1 Half-space Pruning
Half-space pruning is the ability to prune half-spaces from the search space based on a single cost-
budgeted execution of a contour plan. We now present how half-space pruning is achieved by using
spilling during execution of query plans. While the use of spilling to accelerate selectivity discovery
had been mooted in [3], they did not consider its exploitation for obtaining guaranteed search properties.
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We use spilling as the mechanism for modifying the execution of a selected plan – the objective
here is to utilize the assigned execution budget to extract increased selectivity information of a specific
epp. Since spilling requires modification of plan executions, we shall first describe the query execution
model.

Execution Model

We assume the demand driven iterator model, commonly seen in database engines, for the execution
of operators in the plan tree [4]. Specifically, the execution takes place in a bottom up fashion with the
base relations at the leaves of the tree.

In conventional database query processing, the execution of a query plan can be partitioned into a
sequence of pipelines [2]. Intuitively, a pipeline can be defined as the maximal concurrently executing
subtree of the execution plan. The entire execution plan can therefore be viewed as an ordering on its
constituent pipelines. We assume that only one pipeline is executed at a time in the database system,
i.e, there is no inter-pipeline concurrency – this appears to be the case in current engines. To make
these notions concrete, consider the plan tree shown in Figure 4 – here, the constituent pipelines are
highlighted with ovals, and are executed in the sequence {L1, L2, L3, L4}.

Finally, we assume a standard plan costing model that estimates the individual costs of the internal
nodes, and then aggregates the costs of all internal nodes to represent the estimated cost of the complete
plan tree.

Spill-Mode of Execution

We now discuss how to execute plans in spill-mode. For expository convenience, given an internal node
of the plan tree, we refer to the set of nodes that are in the subtree rooted at the node as its upstream
nodes, and the set of nodes on its path to the root of the complete plan tree as its downstream nodes.

Suppose we are interested in learning about the selectivity of an epp ej . Let the internal node
corresponding to ej in plan P be Nj . The key observation here is that the execution cost incurred on
Nj’s downstream nodes in P is not useful for learning about Nj’s selectivity. So, discarding the output
of Nj without forwarding to its downstream nodes, and devoting the entire budget to the subtree rooted
at Nj , helps to use the budget effectively to learn ej’s selectivity. Specifically, given plan P with cost
budget B, and epp ej chosen for spilling, the spill-mode execution of P is simply the following: Create
a modified plan comprised of only the subtree of P rooted at Nj , and execute it with cost budget B.

Since a plan could consist of multiple epps (red coloured nodes in Figure 4), the sequence of spill
node choices should be made carefully to ensure guaranteed learning on the selectivity of the chosen
node – this procedure is described next.

Spill Node Identification

Given a plan and an ordering of the pipelines in the plan, we consider an ordering of epps based on the
following two rules:

Inter-Pipeline Ordering: Order the epps as per the execution order of their respective pipelines;
in Figure 4, since L4 is ordered after L2, the epp nodes N3 and N4 are ordered after N9 and N10.

Intra-Pipeline Ordering: Order the epps by their upstream-downstream relationship, i.e., if an
epp node Na is downstream of another epp node Nb within the same pipeline, then Na is ordered
after Nb; in the example, N3 is ordered after N4.
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Figure 4: Execution Plan Tree of TPC-DS Query 26
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It is easy to see that the above rules produce a total-ordering on the epps in a plan – in Figure 4, it
is N10, N9, N4, N3. Given this ordering, we always choose to spill on the node corresponding to the
first epp in the total-order. The selectivity of a spilled epp node is fully learnt when the corresponding
execution goes to completion within its assigned budget. When this happens, we remove the epp from
EPP and it is no longer considered as a candidate for spilling in the rest of the discovery process.

As a result of this procedure, note that the selectivities of all predicates located upstream of the
currently spilling epp will be known exactly – either because they were never epps, or because they
have already been fully learnt in the ongoing discovery process. Therefore, their cost estimates are
accurate, leading to the following “half-space pruning” lemma.

Lemma 3.1 Consider a plan P for which the spill node identification mechanism identifies the predi-
cate ej for spilling. Further, consider a location q ∈ ESS. When the plan P is executed with a budget
Cost(P, q) in spill-mode, then we either learn (a) the exact selectivity of ej , or (b) that qa.j > q.j.

Proof 1 For an internal node N of a plan tree, we use N.cost to refer to the execution cost of
the node. Let Nj denote the internal node corresponding to ej in plan Pq. Partition the internal
nodes of Pq into the following: Upstream(Nj), {Nj}, and Residual(Nj), where Upstream(Nj)
denotes the set of internal nodes of Pq that appear before node Nj in the execution order, while
Residual(Nj) contains all the nodes in the plan tree excluding Upstream(Nj) and {Nj}. Therefore,
Cost(Pq, q) =

∑
N∈Upstream(Nj)

N.cost+Nj.cost+
∑

N∈Residual(Nj)

N.cost. The value of the first term in the summa-

tion is known with certainty because Upstream(Nj) does not contain any epp. Further, the quantity
Nj.cost is computed assuming that the selectivity of Nj is q.j. Since the output of Nj is discarded and
not passed to downstream nodes, the nodes inResidual(Nj) incur zero cost. Thus, when Pq is executed
in spill-mode, the budget is sufficiently large to either learn the exact selectivity of ej (if the spill-mode
execution goes to completion) or to conclude that qa.j is greater than q.j.

3.2 Contour Density Independent Execution
We now show how the half-space pruning property can be exploited to achieve the contour density
independent (CDI) execution property of the SpillBound algorithm. For this purpose, we employ
the term “quantum progress” to refer to a step in which the algorithm either jumps to the next contour,
or fully discovers the selectivity of some epp. Informally, the CDI property ensures that each quan-
tum progress in the discovery process is achieved by expending no more than |EPP| number of plan
executions.

For ease of understanding, we present here the technique for the special case of two epps referred to
by X and Y , deferring the generalization for D epps to the next section.

Consider the 2D ESS shown in Figure 5, and assume that we are currently exploring contour IC3.
The two plans for spill-mode execution in this contour are identified as follows: We first identify the
subset of plans on the contour that spill on X using the spill node identification algorithm – these plans
are identified as P x

5 , P x
7 , P x

8 in Figure 5. The next step is to enumerate the subset of locations on the
contour where these X-spilling plans are optimal. From this subset, we identify the location with the
maximum X coordinate, referred to as qxmax, and its corresponding contour plan, which is denoted as
P x
max. The P x

max plan is the one chosen to learn the selectivity of X – in Figure 5, this choice is P x
8 .

By repeating the same process for the Y dimension, we identify the location qymax, and plan P y
max, for

learning the selectivity of Y – in Figure 5, the plan choice is P y
6 . Note that the location (qxmax.x, q

y
max.y)

is guaranteed to be either on or beyond the IC3 contour.
The following lemma shows that the above plan identification procedure satisfies the CDI property.
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Figure 5: Choice of Contour Crossing Plans

Lemma 3.2 In contour ICi, if plans P x
max and P y

max are executed in spill-mode, and both do not reach
completion, then Cost(Pqa , qa) > CCi, triggering a jump to the next contour ICi+1.

Proof 2 Since the executions of both P x
max and P y

max do not reach completion, we infer that qxmax.x <
qa.x and qymax.y < qa.y. Therefore, qa strictly dominates the location (qxmax.x, q

y
max.y) whose cost, by

PCM, is greater than CCi. Thus Cost(Pqa , qa) > CCi.

Consider the general case of ICi when there are more than two epps. Corresponding to an epp
ej , the location qjmax and plan P j

max are defined similar to the way qxmax and P x
max are defined (i.e, by

replacing the X coordinate with the jth coordinate corresponding to ej).

3.3 Contour Alignment
We now introduce a key concept that helps characterize search scenarios in which the MSO of the
SpillBound algorithm matches the lower bound. Again, for ease of understanding, we consider the
special case of a 2D ESS with predicates X and Y .

Consider a contour, say ICi, and a dimension j ∈ {X, Y }. A location qjext ∈ ICi is said to be an
extreme location along dimension j if the location has the maximum coordinate value for dimension j
among the contour locations belonging to ICi, i.e, qjext.j ≥ q.j, ∀q ∈ ICi. In Figure 6, these extreme
locations are highlighted by (bold) dots.

A contour ICi is said to satisfy the property of contour alignment along a dimension j if it so happens
that qjmax = qjext, i.e., the optimal plan at qjext spills on predicate ej . For ease of exposition, if a contour
satisfies the contour alignment property along at least one of its dimensions, then we refer to it as
an aligned contour. In Figure 6, contours IC2 and IC4 are aligned along the X and Y dimensions,
respectively, and are therefore aligned contours – however, contour IC3 is not so because it is not
aligned along either dimension.

Given a contour ICi, Lemma 3.2 showed the sufficiency of two plan executions to guarantee a quan-
tum progress in the discovery process. Leveraging the alignment notion, the following lemma describes
when the same progress can be achieved with exactly one execution.
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Lemma 3.3 If a contour ICi is aligned, then the execution of exactly one plan in spill-mode with
budget CCi, is sufficient to make quantum progress in the discovery process.

Proof 3 Without loss of generality, let us assume that the contour ICi satisfies contour alignment along
dimension j, i.e, the optimal plan P at the location qjext spills on dimension j. By Lemma 3.1, the spill-
mode execution of P with budget CCi ensures that we either learn the exact selectivity of ej or learn
that qa.j > qjext.j. Suppose we learn that qa.j > qjext.j, then it implies that qa lies beyond ICi. Thus,
just the execution of P in spill-mode yields quantum progress.

Note that in the general ESS case of more than two epps, there may be a multiplicity of qjmax or
qjext locations, but Lemma 3.3 can be easily generalized such that quantum progress is achieved with a
single execution in these scenarios also.

4 The SpillBound Algorithm
In this section, we present our new robust query processing algorithm, SpillBound, which leverages
the properties of half-space pruning and CDI execution. We begin by introducing an important notation:
Our search for the actual query location, qa, begins at the origin, and with each spill-mode execution
of a contour plan, we monotonically move closer towards the actual location. The running selectivity
location, as progressively learnt by SpillBound, is denoted by qrun.

During the entire discovery process of SpillBound, only POSP plans on the isocost contour are
considered for spill-mode executions. Moreover, when we mention the spill-mode execution of a par-
ticular plan on a contour, it implicitly means that the budget assigned is equal to the cost of the contour.
For ease of exposition, if the epp chosen to spill on is ej for a plan P , we shall hereafter highlight this
information with the notation P j .

For ease of exposition, we first present a version, called 2D-SpillBound, for the special case of
two epps, and then extend the algorithm to the general case of several epps.
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4.1 2D-SpillBound

To provide a geometric insight into the working of 2D-SpillBound, we will refer to the two epps,
e1 and e2, as X and Y , respectively. 2D-SpillBound explores the doubling isocost contours
IC1, . . . , ICm, starting with the minimum cost contour IC1. During the exploration of a contour, two
plans P x

max and P y
max are identified, as described in Section 3.2, and executed in spill-mode. The order

of execution between these two plans can be chosen arbitrarily, and the selectivity information learnt
through their execution is used to update the running location qrun. This process continues until one of
the spill-mode executions reaches completion, which implies that the selectivity of the corresponding
epp has been completely learnt.

Without loss of generality, assume that the learnt selectivity is X . At this stage, we know that qa lies
on the line X = qa.x. Further, the discovery problem is reduced to the 1D case, which has a unique
characteristic – each isocost contour of the new ESS (i.e. lineX = qa.x) contains only one plan, and this
plan alone needs to be executed to cross the contour, until eventually some plan finishes its execution
within the assigned budget. In this special 1D scenario, there is no operational difference between
PlanBouquet and 2D-SpillBound, so we simply invoke the standard PlanBouquet with only
the Y epp, starting from the contour currently being explored. Note that plans are not executed in spill-
mode in this terminal 1D phase because spilling in the 1D case weakens the bound. This is because,
if the plans are executed in spilling mode also in the final 1D phase, this would just lead to learning of
the actual selectivity of the left epp. Also since the tuples could be spilled out of the execution plan
tree (and not returned to the user), one more execution of a plan at qa needs to be executed in non-spill
mode (regular mode). Thus leading to a bound of one more than what is provided by Theorem 4.2 (this
also applies to multidimensional scenario).
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Figure 7: Execution trace for TPC-DS Query 91
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Execution Trace

An illustration of the execution of 2D-SpillBound on TPC-DS Query 91 with two epps is shown
in Figure 7. In this example, the join predicate Catalog Sales on Date Dim, denoted by X , and the join
predicate Customer on Customer Address, denoted by Y , are the two epps (both selectivities are shown
on a log scale).

We observe here that there are six doubling isocost contours IC1, . . . , IC6. The execution trace of
2D-SpillBound (blue line) corresponds to the selectivity scenario where the user’s query is located
at qa = (0.04, 0.1).

On each contour, the plans executed by 2D-SpillBound in spill-mode are marked in blue – for
example, on IC2, plan P4 is executed in spill-mode for the epp Y . Further, upon each execution of a
plan, an axis-parallel line is drawn from the previous qrun to the newly discovered qrun, leading to the
Manhattan profile shown in Figure 7. For example, when plan P6 is executed in spill-mode for X , the
qrun moves from (2E-4,6E-4) to (8E-4,6E-4). To make the execution sequence unambiguously clear,
the trace joining successive qruns is also annotated with the plan execution responsible for the move –
to highlight the spill-mode execution, we use pi to denote the spilled execution of Pi. So, for instance,
the move from (2E-4,6E-4) to (8E-4,6E-4) is annotated with p6.

With the above framework, it is now easy to see that the algorithm executes the sequence
p2, p4, p6, p7, p10, p11, which results in the discovery of the actual selectivity of Y epp. After this,
the 1D PlanBouquet takes over and the selectivity of X is learnt by executing P11 and P19 in regular
(non-spill) mode.

This example trace of 2D-SpillBound exemplifies how the benefits of half-space pruning and
CDI execution are realized. It is important to note that 2D-SpillBound may execute a few plans
twice – for example, plan P11 – once in spill-mode (i.e., p11) and once as part of the 1D PlanBouquet
exploration phase. In fact, this notion of repeating a plan execution during the search process substan-
tially contributes to the MSO bound in the general case of D epps.

Performance Bounds

Consider the situation where qa is located in the region between ICk and ICk+1, or is directly on ICk+1.
Then, the 2D-SpillBound algorithm explores the contours from 1 to k + 1 before discovering qa.
In this process,

Lemma 4.1 The 2D-SpillBound algorithm ensures that at most two plans are executed from each
of the contours IC1, . . . , ICk+1, except for one contour in which at most three plans are executed.

Proof 4 Let the exact selectivity of one of the epps be learnt in contour ICh, where 1 ≤ h ≤ k + 1.
From CDI execution, we know that 2D-SpillBound ensures that at most two plans are executed
in each of the contours IC1, · · · , ICh. Subsequently, PlanBouquet begins operating from contour
ICh, resulting in three plans being executed in ICh, and one plan each in contours ICh+1 through
ICk+1.

We now analyze the worst-case cost incurred by 2D-SpillBound. For this, we assume that the
contour with three plan executions is the costliest contour ICk+1. Since the ratio of costs between two
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consecutive contours is 2, the total cost incurred by 2D-SpillBound is bounded as follows:

TotalCost ≤ 2 ∗ CC1 + . . .+ 2 ∗ CCk + 3 ∗ CCk+1

= 2 ∗ CC1 + . . .+ 2 ∗ 2k−1 ∗ CC1 + 3 ∗ 2k ∗ CC1
= 2 ∗ CC1

(
1 + . . .+ 2k

)
+ 2k ∗ CC1

= 2 ∗ CC1
(
2k+1 − 1

)
+ 2k ∗ CC1

≤ 2k+2 ∗ CC1 + 2k ∗ CC1
= 5 ∗ 2k ∗ CC1 (6)

From the PCM assumption, we know that the cost for an oracle algorithm (that apriori knows the
location of qa) is lower bounded by CCk. By definition, CCk = 2k−1 ∗ CC1. Hence,

MSO ≤ 5 ∗ 2k ∗ CC1
2k−1 ∗ CC1

= 10 (7)

leading to the theorem:

Theorem 4.2 The MSO bound of 2D-SpillBound for queries with two error-prone predicates is
bounded by 10.

Remark: Note that even for a ρ value as low as 3, the MSO bound of 2D-SpillBound is better than
the bound, 4 ∗ 3 = 12, offered by PlanBouquet.

4.2 Extending to Higher Dimensions
We now present SpillBound, the generalization of the 2D-SpillBound algorithm to handle D
error-prone predicates e1, . . . , eD. Before doing so, we hasten to add that the EPP set, as mentioned
earlier, is constantly updated during the execution, and epps are removed from this set as and when
their selectivities become fully learnt. Further, when a contour ICi is explored, the effective search
space is the subset of locations on ICi whose selectivity along the learnt dimensions matches the learnt
selectivities. From now on, in the context of exploration, references to ICi will mean its effective
search space.

The primary generalization that needs to be achieved is to select, prior to exploration of a con-
tour ICi, the best set (wrt selectivity learning) of |EPP| plans that satisfy the half-space pruning prop-
erty and ensure complete coverage of the contour. To do so, we consider the (location, plan) pairs
(q1max, P

1
max), . . . , (q

|EPP|
max , P

|EPP|
max ) as defined at the end of the Section 3.2. The set of |EPP| plans that

satisfy the contour density independent execution property is {P 1
max, . . . , P

|EPP|
max }.

A subtle but important point to note here is that, during the exploration of ICi, the identity of P j
max

may change as the contour processing progresses. This is because some of the plans that were assigned
to spill on other epps, may switch to spilling on ej due to their original epps being completely learnt
during the ongoing exploration. Accordingly, we term the first execution of a P j

max in contour ICi as a
fresh execution, and subsequent executions on the same epp as repeat executions.

Finally, it is possible that a specific epp may have no plan on ICi on which it can be spilled –
this situation is handled by simply skipping the epp. The complete pseudocode for SpillBound is
presented in Algorithm 1 – here, Spill-Mode-Execution(P j

max,ej ,CCi) refers to the execution of plan
P j
max spilling on ej with budget CCi.
With the above construction, the following lemma can be proved in a manner analogous to that of

Lemma 3.2:
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Algorithm 1 The SpillBound Algorithm
Init: i=1, EPP = {e1, . . . , eD};
while i ≤ m do . for each contour

if |EPP| = 1 then . only one epp left
Run PlanBouquet to discover the selectivity of the remaining epp starting from the present
contour;
Exit;

end if
Run the spill node identification procedure on each plan in the contour ICi, i.e, plans in PLi, and
use this information to choose plan P j

max for each epp ej;
exec-complete = false;
for each epp ej do

exec-complete = Spill-Mode-Execution(P j
max,ej ,CCi);

Update qrun.j based on selectivity learnt for ej;
if exec-complete then

/*learnt the actual selectivity for ej*/
Remove ej from the set EPP;
Break;

end if
end for
if ! exec-complete then

i = i+1; /* Jump to next contour */
end if
Update ESS based on learnt selectivities;

end while

Lemma 4.3 In contour ICi, if no plan in the set {P j
max|ej ∈ EPP} reaches completion when executed

in spill-mode, then Cost(Pqa , qa) > CCi, triggering a jump to the next contour ICi+1.

Performance Bounds

We now present proof of how the MSO bound is obtained for SpillBound. In the worst-case analysis
of 2D-SpillBound, the exploration cost of every intermediate contour is bounded by twice the cost
of the contour. Whereas the exploration cost of the last contour (i.e., ICk+1) is bounded by three times
the contour cost because of the possible execution of a third plan during the PlanBouquet phase.
We now present how this effect is accounted for in the general case.

Repeat Executions: As explained before, the identity of plan P j
max may dynamically change during

the exploration of a contour ICi, resulting in repeat executions. If this phenomenon occurs, the new
P j
max plan would have to be executed to ensure compliance with Lemma 4.3. We observe that each

repeat execution of an epp is preceded by an event of fully learning the selectivity of some other epp,
leading to the following lemma:

Lemma 4.4 The SpillBound algorithm executes at most D fresh executions in each contour, and

the total number of repeat executions across contours is bounded by
D(D − 1)

2
.
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Proof 5 Consider any contour ICi for 1 ≤ i ≤ k+1. Note that the number of possible fresh executions
on contour ICi is bounded byD (in fact, it is equal to |EPP| when the algorithm enters the contour ICi).

As mentioned earlier, a repeat execution in a contour can happen only when the exact selectivity of
one of the epps is learnt on the contour. Let us say that when the exact selectivity of a epp is learnt,
it marks the beginning of a new phase. If |EPP| is the number of error-prone predicates just before the
beginning of a phase, it is easy to see that there are at most |EPP|−1 repeat executions within the phase.
Further, in each phase the size of EPP decreases by 1. Therefore, total number of repeat executions is
bounded by

∑D−1
l=1 l = D(D−1)

2
. �

Suppose that the actual selectivity location qa is located in the range (ICk, ICk+1]. Then, the
SpillBound algorithm explores the contours from 1 to k + 1 before discovering qa. Thus, the
total cost incurred by the SpillBound algorithm is essentially the sum of costs from fresh and re-
peat executions in each of the contours IC1 through ICk+1. Further, the worst-case cost incurred by
SpillBound is when all the repeat executions happen at the costliest contour, ICk+1. Hence, the
total cost of the SpillBound algorithm is given by

k+1∑
i=1

(#fresh executions(ICi)) ∗ CCi + D(D−1)
2
∗ CCk+1 (8)

Since the number of fresh executions on any contour is bounded by D, we obtain the following
theorem:

Theorem 4.5 The MSO bound of the SpillBound algorithm for any query withD error-prone pred-
icates is bounded by D2 + 3D.

Proof 6 By substituting the values for no. of fresh executions in each contour by D in equation 8, the
total cost for the SpillBound is

≤ D ∗ (
k+1∑
i=1

CCi) +
D(D − 1)

2
∗ CCk+1

= D ∗ (
k∑
i=1

CCi) +
D(D + 1)

2
∗ CCk+1

= D ∗ (CC1 + . . .+ 2k−1CC1) +
D(D + 1) ∗ 2kCC1

2

= D ∗ (2k − 1)CC1 +
D(D + 1) ∗ 2kCC1

2

(9)

The cost for an oracle algorithm that a priori knows the correct location of qa is lower bounded by
2k−1CC1. Hence,

MSO ≤
D ∗ (2k − 1)CC1 + D(D+1)∗2kCC1

2

2k−1CC1
≤ 2D +D(D + 1) = D2 + 3D

(10)

�

Remark: Note that the plan located at the end of the principal diagonal in the ESS hypercube is
guaranteed to ensure the termination of the 2D-SpillBound and SpillBound algorithms for any
qa ∈ ESS.
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Remark: While proving that PlanBouquet delivers an MSO guarantee of 4 ∗ ρ, the authors of [3]
also showed that the constant term, i.e. 4, in the guarantee is minimized when the cost ratio, r, between
the successive contours is 2. For ease of exposition of SpillBound, we have retained the same factor
of 2. However it is interesting to note that 2 is not the ideal choice for SpillBound – in fact, the
following lemma shows that SpillBound’s MSO is minimized by setting

r = 1 +

√
2

D + 1

leading to

MSO ≤

(
√
D +

√
D(D + 1)

2

)2

Lemma 4.6 The MSO minimizing choice of r for SpillBound is r = 1 +
√

2
D+1

.

Proof 7 We know that the total cost incurred by SpillBound is atmost D ∗ (
∑k+1

i=1 CCi) + D(D−1)
2
∗

CCk+1. Again considering that cost for an oracle algorithm that a priori knows the correct location of
qa is lower bounded by rk−1CC1, we get

MSO ≤ D ∗ (1 +
1

r
+

1

r2
+ . . .) +

D(D + 1)

2
∗ r

= D ∗ (
r

r − 1
) +

D(D + 1)

2
∗ r

(11)

Differentiating the above MSO expression wrt r, gives us that MSO is minimized at r = 1 +
√

2
D+1

.
So, for instance, with D = 2, the optimal value of r is 1.8, resulting in an MSO of 9.9, marginally

lower in comparison to the 10 obtained with r = 2. Overall, for the range of D values covered in our
study, only minor benefits were obtained by using the optimal r value, and we have therefore retained
the doubling factor in our evaluation.

4.3 Cost Modeling Errors
Thus far, we had assumed that the cost model was perfect but in practice, this is certainly not the case.
However, if the modeling errors were to be unbounded, it appears hard to ensure robustness since, in
principle, the estimated cost of any plan could be arbitrarily different to the actual cost encountered
at run-time. Thus, in a “unbounded estimation errors, bounded modeling errors” framework wherein
the modeling errors are non-zero but bounded specifically, the estimated cost of any plan, given correct
selectivity inputs, is known to be within a δ error factor of the actual cost. That is, cestimated

cactual
∈ [ 1

(1+δ)
, (1+

δ)]. Our construction is lent credence to by the recent work of [15], wherein static cost model tuning
was explored in the context of PostgreSQL they were able to achieve an average δ value of around 0.4
for the TPC-H suite of queries. This is then amenable to robustness analysis and leads to following
result.

Theorem 4.7 If the cost-modeling errors are limited to error-factor δ with regard to the actual cost,
the bouquet algorithm ensures that:

MSObounded modeling error ≤MSOperfect model ∗ (1 + δ)2 (12)

when δ = 0.4, corresponding to the average in [15], the MSO increases by at most a factor of 2.

21



5 Lower Bound
In this section, we present a lower bound on the MSO for a class of deterministic half-space pruning
algorithms denoted by E . Consider an algorithm A ∈ E . Half-space pruning means the following:
A can select an epp j and a plan P , and execute it in such a manner that the selectivity of ej can be
partly/completely learnt. Let PredCost(P, ej, `) denote the budget required by an execution of plan P ,
that allows A to conclude that qa.j > `. For a given epp ej , we let CompPredCost(P, ej) denote the
minimum budget required byA to learn the selectivity of ej completely, using P . Thus an execution of
P with budget B to learn ej allows A to conclude that

1. qa.j exceeds `, so that CompPredCost(P, ej) > PredCost(P, ej, `).

2. qa.j is at most `, so that CompPredCost(P, ej) ≤ PredCost(P, ej, `); in this case, qa.j is
learned completely.

Note that not all plans P can be used to learn ej; in this case PredCost(P, ej, `) is∞, for any ` ≥ 0.
A spill-mode execution is one of the mechanisms for realizing half-space pruning in practice.

Given a query with an unknown selectivity qa, the goal of A is to execute the query to completion.
For this, the actions and outcomes of a generic step of A can be one of the following: (i) a plan P is
executed to completion incurring Cost(P, qa), (ii) a plan P is executed with budget B and it infers that
q 6� qa for all q ∈ ESS with Cost(P, q) ≤ B, (iii) a plan P is executed with budget PredCost(P, ej, `),
for selectivity j, and learns that (a) qa.j > ` or (b) infer qa.j exactly.

An example of an algorithm that has the capability of executing only (i) and (ii) is PlanBouquet,
while SpillBound is an example of an algorithm that has the capability of executing (i), (ii) and (iii).
Thus the limitations of the algorithms in E apply to PlanBouquet and SpillBound. An example
of an algorithm that has the capability of executing only (i) above is that of the native optimizer.

Notion of Separation: For a given q ∈ ESS, we let A(q) denote the sequence of steps taken by A,
when the unknown point qa is q. A convenient way of describing A(qa), i.e. the execution of A, is by
keeping track of the regions of the ESS where qa is likely to be. At any step of its execution, if the action
performed by A is hypograph pruning (action (ii)) or half space pruning (action (iii)), then it rejects
certain locations in the ESS as possible qa locations. At the completion of step t, we let W qa

t be the set
of locations of the ESS which are not pruned by A, and let T qa be the total number of steps performed
by A(qa). Thus W qa

0 = ESS, and we describe A(qa) to be the sequence W qa
0 ,W

qa
1 , . . . ,W

qa
T qa . Hence

we can view the execution of A as a sequence of steps in which locations of the ESS are separated out
from the unknown qa, until the query is successfully executed. Note thatA need not explicitly maintain
the W qa

t ; it is simply a means of describing the execution of A.
We say that A(qa) separates q1, q2 ∈ ESS if at some step t in its execution, q1 ∈ W qa

t , q2 6∈ W qa
t ,

while q1, q2 were both in W qa
t−1. More generally, for two disjoint subsets of the ESS, U1 and U2, we say

that A(qa) separates the set U1 ∪ U2 into U1 and U2, if there is a step t such that U1 ∪ U2 ⊆ W qa
t−1, but

U1 ⊆ W qa
t and U2 ∩W qa

t = φ (i.e. U1 is a subset of W qa
t , while U2 is disjoint from W qa

t ).
Consequence of Deterministic Behavior: The algorithms we consider are deterministic. Thus the

action ofA at a step is determined completely by the actions and outcomes of previous steps. A formal
way to capture this is as follows. Let q1 and q2 be two points of the ESS. Let t be the largest number
such that q2 ∈ W q1

t , and t′ be the largest number such that q1 ∈ W q2
t′ . Since W q1

0 = W q2
0 = ESS, these

points exist. At min(t, t′), and W q1
i = W q2

i for i = 0, 1, . . . , t. We are now ready to prove the lower
bound.

Theorem 5.1 For any algorithmA ∈ E and D ≥ 2, there exists a D-dimensional ESS where the MSO
of A is at least D.
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Figure 8: ESS for Theorem 5.1

Construction of ESS: Suppose the MSO of A is strictly less than D. We construct a special D-
dimensional search space on which the contradiction is shown. It is constructed with the help of a set
of locations V = {q1, . . . , qD} given by qi.j = 1/D if j = i, else qi.j = 1. Further, our construction is
such that the ESS will have exactly D plans P1, P2, . . . , PD. The cost structure is as follows:

Cost(Pi, q) = D ∗ q.i ∀q ∈ ESS

Cost(Pi, q.j) = D ∗ q.j ∀q ∈ ESS, epp j

Thus the POSP plan at qi is Pi and has a cost of 1. For a two dimensional ESS and a cost c, the iso-
cost curves correspond to L shaped objects, consisting of two segments, blue and red, as shown in the
figure 8. The blue segments consist of all points q with q.x = c/2, and q.y ≥ c/2. Similarly, the red
segments consist of all points q with q.y = c/2, and q.x ≥ c/2. The points q1 and q2 correspond to
(1/2, 1) and (1, 1/2) respectively.

We verify the PCM property as follows. For a plan Pj , if q1 � q2, then q1.j ≤ q2.j; then
Cost(Pj, q1) = D ∗ q1.j ≤ D ∗ q2.j ≤ Cost(Pj, q2). Note that we have allowed equality in the
definition of the PCM for ease of exposition. We explain the proof with this relaxed version of the
PCM, and in the last part of this section we show a modification to the costs that allows the same proof
to work for the strict version of the PCM property.

Claim 5.1 Let qa ∈ V . Let V1, V2 be such that V1 ∩ V2 = φ and V1 ∪ V2 = V3 ⊆ V . If A separates V3
into V1 and V2, then either |V1| = 1 or |V2| = 1.

If the claim is false, then A(qa) splits V3 into V1 and V2 each of size at least two. Let qi1 , qi2 and qi3 , qi4
be the locations in V1 and V2 respectively. Then A separates qi1 , qi2 from qi3 , qi4 in the same step. By
the conditions on A, at least one of the following must have happened.

1. A explores a location q and concludes that qi1 , qi2 both ≺ q, while qi3 , qi4 6≺ q (or vice-versa,
in which case interchange the roles of V1 and V2). By construction of V , if qi1 , qi2 both ≺ q,
then q has to be such that q.j = 1 ∀j ∈ 1, . . . , D, i.e, q = 1. But, this implies that qi3 , qi4 � q
(contradiction).

2. A identifies an epp j, a plan P and budget B such that qi1 .j, qi2 .j are learned, while qi3 .j, qi4 .j
cannot be learned within budgetB. Since i1 6= i2, the budget utilized for learning the selectivities
is at least D. Since qa ∈ V , its POSP cost is 1. So, the MSO of A is at least D (contradicting the
assumption that MSO is less than D).
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This proves the above claim. From the above, we see that to split V3, A needs a cost of at least 1. We
are now ready to prove the Theorem 5.1.

Proof 8 (of Theorem 5.1) Suppose A ∈ E has an MSO less than D. The POSP plan at qi ∈ V is Pi,
and it incurs a cost of 1 to execute. The cost of executing Pi at qj ∈ V , where j 6= i is D. Since the
MSO of A is less than D, the final step of A(qi) cannot be the same for two different qi, qj . Thus the
execution of A(qi) and A(qj) differs and A separates qi and qj . Choose qa arbitrarily from V0 = V
and execute A. Consider the step in which A separates V0 the first time. Suppose q1 is separated from
V1 = V0 \ {q1} in this step. Then choose qa arbitrarily from V1, and execute A(qa) again. Since A is
deterministic, A(q1) and A(qa) are identical till V0 is first separated. Thus, it will first separate V0 and
then V1. Suppose it separates q2 from V2 = V1 \{q2}. Choose qa arbitrarily from V2, and executeA(qa)
again. It will first separate V0, then V1, and then V2. Suppose it separates q3 from V3 = V2 \ {q3}.
Choose qa arbitrarily from V3 and repeat this process inductively. Say qD is left at the starting of Dth
step, then qa = qD, A separates each of V0, V1, . . . , VD−1 in different steps, and finally complete qa
successfully. As each separation step needs a cost of at least 1, and a cost of at least 1 to execute qa, A
pays a cost of at least D for qa = qD. But, the cost of PD at qD is 1. Thus, the MSO of A is at least D,
which contradicts our assumption.

We thus have the following corollary.

Corollary 5.2 For D ≥ 2, there exists an ESS, where any deterministic half-space pruning based
algorithm has an MSO of at least D

Dealing with strict PCM: The strict PCM property is as follows: if q1 and q2 are two points of
the ESS such that q1 ≺ q2, then for all plans P , Cost(P, q1) < Cost(P, q2). The cost function we
constructed above does not satisfy this property. However, the following cost functions follow the strict
PCM property. The plans are P1, . . . , PD as before. Their cost structure is now as follows.

Cost(Pi, q) = D ∗ q.i+ δ
∑
j 6=i

q.j ∀q ∈ ESS

Cost(Pi, q.j) = D ∗ q.j ∀q ∈ ESS, epp j

In the above δ is a very small positive constant whose exact value is chosen based on what we are
trying to prove. Note that since the cost function is a sum of increasing linear terms, the full function is
an increasing linear function.

Claim 5.2 The above cost function Cost(., .) obey the strict PCM property.

Proof 9 Let q1 and q2 be points in the ESS such that q1 ≺ q2. Since the cost function corresponding to
any plan Pi are increasing, we have

D(q1.i) + δ
∑
j 6=i

q1.j ≤ D(q2.i) + δ
∑
j 6=i

q2.j

So that

D(q2.i− q1.i) + δ
∑
j 6=i

(q2.j − q1.j) ≥ 0

Since q1 ≺ q2, the above is a sum of non-negative terms. Since the relation is strict, there is at least one
k in 1, . . . , D, such that q1.k < q2.k, the above sum is strictly greater than zero.
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Note that Cost(Pi, qi) = 1 + δ(D − 1), and Cost(Pi, qj) = D + δ(D − 2 + 1/D). We then modify
the above theorem as follows.

Theorem 5.3 For any algorithm A ∈ E and ε > 0, for every D, there is a D-dimensional ESS where
the MSO of A is at least D − ε.

To prove the above theorem, we note the following. Let U ⊆ V , and qi ∈ U be such thatA separates
qi from U \ {qi}. Then either A discovers a point q such that qi � q while it does not dominate any
point of U or vice versa. This means that q dominates some point of V . So the cost of executing a plan
at q is at least 1 + δ(D− 1) which exceeds 1. Thus, to separate any two points of V , a cost of at least 1
is required.

Now suppose A has an MSO of at most D − ε for some ε > 0. Take δ = ε
D2−1 . Then it is easy to

verify that Cost(Pi, qj)/Cost(Pi, qi) exceeds D − ε. So, the final step of A(qi) cannot be the same for
two different qi, qj . We now proceed on similar lines to the proof of Theorem 5.1.

6 The AlignedBound Algorithm
Given the quadratic-to-linear gap on MSO, we now identify exploration scenarios in which the MSO
of SpillBound matches the Ω(D) lower bound – we do so by leveraging the contour alignment
notion. Consider the scenario in which all the contours are aligned – then by Lemma 3.3, each of
these contour requires only a single execution to make quantum progress. Following the lines of the
analysis of SpillBound, and the fact that the most expensive execution sequence occurs when all the
selectivities are learnt in the last contour (ICk+1), the total cost incurred in the worst-case would be:

TotalCost = CC1 + · · ·+ CCk +D ∗ CCk+1

= CC1 + · · ·+ 2k−1CC1 +D ∗ 2kCC1

≤ (2k−1CC1)(2D + 2)

leading to the following theorem:

Theorem 6.1 If the contour alignment property is satisfied at every step of the algorithm’s execution,
then the MSO bound is 2D + 2.

In practice, however, the contour alignment property may not be natively satisfied at all contours –
for instance, as enumerated later in Table 2, as few as 18 percent of the contours were aligned for a 3D
ESS with TPC-DS Query 96. Therefore, we propose in this section the AlignedBound algorithm
which operates in three steps: First, it exploits the property of alignment wherever available natively.
Second, it attempts to induce this property, by replacing the optimal plan with an aligned substitute
if the substitution does not overly degrade the performance. Finally, it investigates the possibility of
leveraging alignment at a finer granularity than complete contours.

To aid in description of the algorithm, we denote by Ext(i, j) the set of all extreme locations on a
contour ICi along a dimension j. With this, a contour ICi is said to satisfy contour alignment along
dimension j if qjmax ∈ Ext(i, j), i.e, at least one of the extreme locations along dimension j has an
optimal plan that spills on ej . Secondly, the set of all plans that spill on predicate ek is denoted by Pk.
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6.1 Induced Contour Alignment
Given a contour ICi that does not satisfy contour alignment, we induce contour alignment on the con-
tour as follows: Consider a plan P which spills on ek ∈ EPP. It is a candidate replacement plan for any
location qkext ∈ Ext(i, k) in order to obtain alignment along dimension k – the cost of the replacement
is equal to Cost(P, qkext). Therefore, the minimum cost of inducing contour alignment along dimension
k is given by the pair (P k ∈ Pk, qkext ∈ Ext(i, k)) for which Cost(P k, qkext) is minimized. Next, we
find the dimension j for which the cost of the replacement pair (P j, qjext) is minimum across all dimen-
sions. Finally, the optimal plan at qjext is replaced by P j , and the penalty λ of this replacement is the
ratio of Cost(P j, qjext) to Cost(Pqjext , q

j
ext).

The usefulness of induced contour alignment depends on the penalty incurred in enforcing the prop-
erty. To assess this quantitatively, we conducted an empirical study, whose results are shown in Table 2.
Here, each row is a query instance. The “Original” column indicates the percentage of the contours
that satisfy contour alignment without any replacements. A column with a particular λ value, say c,
indicates the percentage of the contours satisfying contour alignment when the replacement plans are
not allowed to exceed a penalty of c. The last column shows the minimum penalty that needs to be
incurred for all the contours to satisfy contour alignment.

We see from the table that there are cases where full contour alignment can be induced relatively
cheaply – for instance, a 50 percent penalty threshold is sufficient to make Query 5D Q29 completely
aligned. However, there also are cases, such as 3D Q96, where extremely high penalty needs to be
paid to achieve contour alignment. Therefore, we now develop a weaker notion of alignment, called
“predicate set alignment”, which operates at a finer granularity than entire contours, and attempts to
address these problematic scenarios.

Table 2: COST OF ENFORCING CONTOUR ALIGNMENT

Query Originalλ =
1.2

λ =
1.5

λ =
2.0

Max
λ

3D Q96 18 18 27 45 130
4D Q7 70 70 90 90 3.62
4D Q26 20 30 40 50 66.95
4D Q91 67 67 77 77 5.38
5D Q29 40 70 100 - 1.35
5D Q84 100 - - - 1

6.2 Predicate Set Alignment (PSA)
We say that a set T ⊆ EPP satisfies predicate set alignment (PSA) with the leader dimension j if, for any
location q ∈ ICi whose optimal plan spills on any dimension in T , q.j ≤ qjmax.j. The set of all locations
in ICi whose optimal plan spills on a dimension corresponding to a predicate in T , is denoted by ICi|T .
For convenience, we assume that the predicate corresponding to the leader dimension belongs to T .
Note that PSA is a weaker notion of alignment – while contour alignment with leader dimension j
mandates that qjmax.j ≥ q.j for any q ∈ ICi, PSA only requires that qjmax.j ≥ q.j for all q ∈ ICi|T .

Lemma 6.2 Suppose T1, . . . , Tl are sets of epps satisfying predicate set alignment such that ∪k=lk=1Tk =
EPP, then ∪k=lk=1ICi|Tk = ICi.

Proof 10 Every q ∈ ICi spills on one of the dimensions in EPP. Therefore, it belongs to at least one
ICi|T .
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Lemma 6.3 Suppose T1, . . . , Tl are sets of epps satisfying predicate set alignment such that ∪k=lk=1Tk =
EPP, then spill-mode execution of l POSP plans on ICi is sufficient to make quantum progress.

Proof 11 Let j1, . . . jl be the leader dimensions for T1, . . . , Tl, respectively. Then, the l POSP plans
chosen for the execution are P

q
jk
max

for k = 1, . . . , l. By definition of PSA,

For k=1 to l , qjkmax.jk ≥ q.j for all q ICi|Tk (13)

From Lemma 3.3 and equation (13), each of the ICi|Tk would make quantum progress. This observa-
tion along with Lemma 6.2 proves the lemma.

Inducing Predicate Set Alignment

Consider a contour ICi, and a candidate set T ⊆ EPP with a leader dimension j ∈ T . We now present
a mechanism to induce predicate set alignment on T with leader dimension j.

We consider the extreme location along the dimension j among all the locations in ICi|T , i.e, qjT =
arg maxq∈ICi|T q.j (in case of a multiplicity of such points, any one point can be picked). Consider the
set S = {q ∈ ICi ∧ q.j = qjT .j}, i.e, all the locations belonging to ICi whose coordinate value on jth
dimension is equal to the coordinate value on jth dimension of an extreme location in ICi|T . It is easy
to see that T satisfies predicate set alignment if the optimal plan at any of the locations in S is replaced
with a plan P that spills on ej . We now find a pair (P ∈ Pj, q ∈ S) such that Cost(P, q) is minimum.
The predicate set alignment property is induced by replacing the optimal plan at q with the plan P . The
penalty λ for the replacement is defined as before.

We will now discuss the implementation intricacies for inducing predicate set alignment in brief.
Section 3 explains the process of Spill Node Identification which produces a total ordering on the epps
in a plan using Inter-Pipeline and Intra-Pipeline Ordering. Given this ordering, we choose to spill on
the node corresponding to the first epp in the total-order. As a result of this procedure, the selectivities
of all the predicates located in the upstream of the current spilling epp will be known exactly.

We try to achieve this property while exploring plans with a user-defined epp. For a query, explo-
ration of plans inside the optimizer takes places using the dynamic programming paridigm. In the
optimizer, we change the code of generation of DP lattice such that, at each node of the DP lattice, it
prunes away all plans(or sub-plans) which has user-defined epp in the downstream of any other epp.

Finding Minimum Cost Predicate Set Cover

Lemma 6.3 essentially says that a set of predicate sets T1, . . . , Tl that cover EPP can be leveraged to
make quantum progress. We now argue that it is sufficient to limit the search to merely the set of
partition covers of EPP.

Consider a set T which satisfies PSA along dimension j. The cover cost of T1, . . . , Tl is said to be
sum of cost of enforcing PSA for each of the Tis. We say that T satisfies maximal PSA with leader
dimension j if no super-set of T satisfies the property with same or lesser cost. Consider T1, . . . , Tl
which cover EPP and have been enforced to satisfy maximal PSA. We now obtain a partition cover
whose cover cost is at most the cover cost of T1, . . . , Tl.

Let j1, . . . , jl be the leader dimensions for T1, . . . , Tl. The maximal property of the Tis implies
that no dimension can be a leader dimension for more than one Ti. Therefore, the following sets
π1 = T1 + {j1} − ∪m=l

m=2{jm}, πk = Tk + {jk} − ∪m=l
m=1,m6=k{jm} − ∪m<km=1πm for k = 2, . . . l − 1, and

πl = Tl − ∪m=l−1
m=1 πm provide a partition cover with the same set of leader dimensions j1, . . . , jl. It

follows that the cover cost of π1, . . . , πl is at most the cover cost of T1, . . . , Tl.
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Let j1, . . . jl be the leader dimensions for T1, . . . , Tl. Let CPSA(Ti, ji) denote the minimum cost
required to induce Predicate Set Alignment for set Ti with leader dimension ji. The maximal property
of the Tis implies that no dimension can be a leader dimension for more than one Ti. Therefore, the
following sets π1 = T1+{j1}−∪m=l

m=2jm, πk = Tk+{jk}−∪m=l,m6=k
m=1 {jm}−∪m<km=1πm for k = 2, . . . l−1,

and πl = Tl − ∪m=l−1
m=1 πm provide a partition cover with the same set of leader dimensions j1, . . . , jl.

Lemma 6.4 CPSA(T/j) ≥ CPSA(T ′/j), if T ′ ⊆ T

Proof 12 By definition of leader dimension, if j induces Predicate Set Alignment on T with cost
CPSA(T/j), it also induces Predicate Set Alignment on T ′ with atmost the same cost.

Lemma 6.5
i=l∑
i=1

CPSA(Ti/ji) ≥
i=l∑
i=1

CPSA(πi/ji)

Proof 13 From above, we know that no dimension can be leader dimension for more than one Ti. Since
we are removing dimensions from Ti to obtain πi, πi ⊆ Ti Moreover, the leader dimension of Ti and πi
is same. Thus, from Lemma 6.4 and the above arguments, we prove the lemma.

Thus the cover cost of π1, . . . , πl is at most the cover cost of T1, . . . , Tl. Therefore, we can restrict
the search for EPP cover to only partition covers without incurring any increase in the penalty of the
EPP cover. The benefit of this is that the number of partition covers of a set is much smaller than the
number of different ways of covering a set with its subsets.

Given a partition cover π = {π1, . . . , πl}, πλ denotes the sum of the penalties incurred in enforcing
PSA for each of the πis along their leader dimensions.

6.3 Algorithm Description
The AlignedBound algorithm is presented in Algorithm 2. The steps that are identical to the steps
in SpillBound are not presented again and simply captured as comments.

The key steps of the algorithm are S1 and S2 which are executed using the partition cover and
predicate set alignment techniques described in Section 6.2.

A legitimate concern at this point is whether in trying to induce alignment, the D2 + 3D guarantee
may have been lost along the way. The key to the analysis is an alternate way of understanding the
O(D2) MSO of SpillBound. At each inner for-loop of SpillBound it incurs a penalty of |EPP|,
i.e, a penalty of 1 for each of the epp in EPP. On the last contour, in the outer while-loop, the penalty
of the inner for-loop is incurred for at most D − 1 repeat executions.

With this perspective, we prove the following theorem.

Theorem 6.6 The MSO bound of AlignedBound algorithm for any query with D error-prone pred-
icates is bounded by D2 + 3D.

Proof 14 (i) At each execution of S1 step, there is a trivial way to obtain penalty equal to |EPP| by
considering just singleton parts corresponding to each remaining epp. So, the penalty of this step is
upper bounded by |EPP|, (ii) The number of repeat executions also continues to be bounded by D − 1
as in the case of SpillBound. So MSO is bounded by D2 + 3D, similar to SpillBound.

Theorem 6.7 In the best case, MSO bound of AlignedBound is O(D)
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Proof 15 In the best case, the penalty of the chosen partitions in the S1 steps is a constant. This can
happen even when contour alignment is not satisfied, because a partition cover with constant number
of parts, each having a constant penalty, is also sufficient to obtain a constant penalty at step S1. This
will lead to MSO of O(D)

Thus, it captures a larger set of search scenarios in which an MSO of O(D) can be obtained. Finally,
from an empirical point of view, the algorithm is designed to take advantage of PSA to whatever extent
possible during the search. We show the empirical benefits of this optimization in the experimental
section, especially for query instances on which the empirical MSO of SpillBound is relatively
larger.

Algorithm 2 The AlignedBound Algorithm
1: Init: i=1, EPP={e1, . . . , eD};
2: while i ≤ m do . for each contour
3: /* Handle special 1-D case when it is encountered */
4: S0: Π = Set of all partitions of EPP (remaining epps);
5: S1: We pick π ∈ Π with minimum πλ;
6: for each part πk ∈ π do
7: S2: Let jk be the leader dimension, P the replacement plan along dimension jk, and q the

location whose optimal plan is replaced with P ;
8: exec-complete = Spill-Mode-Execution(P, ejk , Cost(P, q));
9: Update qrun.jk based on selectivity learnt for ejk ;

10: if exec-complete then
11: Remove ejk from the part πk and the set EPP;
12: Break;
13: end if
14: end for
15: /* Update ESS, jump contour as in SpillBound */
16: end while

7 Experimental Evaluation
As mentioned earlier, the MSO guarantees delivered by PlanBouquet and SpillBound are not
directly comparable, due to the inherently different nature of their dependencies on the ρ and D
parameters, respectively. However, we need to assess whether the platform-independent feature of
SpillBound is procured at the expense of a deterioration in the numerical bounds. Accordingly,
we present in this section an evaluation of SpillBound on a representative set of complex OLAP
queries, and compare its MSO performance with that of PlanBouquet. Furthermore, we also con-
duct an evaluation of AlignedBound over the same set of queries to appraise its performance benefits
over SpillBound. The experimental framework, which is similar to that used in [3], is described first,
followed by an analysis of the results.

7.1 Database and System Framework
Our test workload is comprised of representative SPJ queries from the TPC-DS benchmark, operating at
the base size of 100GB. The number of relations in these queries range from 4 to 10, and a spectrum of
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join-graph geometries are modeled, including chain, star, branch, etc. The number of epps range from
2 to 6, all corresponding to join predicates, giving rise to challenging multi-dimensional ESS spaces.

To succinctly characterize the queries, the nomenclature xD Qz is employed, where x specifies the
number of epps, and z the query number in the TPC-DS benchmark. For example, 3D Q15 indicates
TPC-DS Query 15 with three of its join predicates considered to be error-prone.

The database engine used in our experiments is a modified version of PostgreSQL 8.4 [12] engine,
with the primary changes being the (1) selectivity injection - to generate the ESS, (2) abstract plan
execution - to instruct the execution engine to execute a particular plan, (3) time-limited execution
of plans and (4) spilling - to execute plans in spill-mode. In addition, we implement a feature that
obtains a least cost plan from optimizer which spills on a user-specified epp. This is primarily needed
for AlignedBound algorithm to find the minimum penalty replacement pair which is mentioned in
Section 6.

The remainder of this section is organized as follows. For ease of presentation, first we com-
pare the performance of PlanBouquet and SpillBound, and subsequently move on to com-
paring SpillBound and AlignedBound. We use the abbreviations PB, SB and AB to refer to
PlanBouquet, SpillBound and AlignedBound, respectively. Further, we use MSOg (MSO
guarantee) and MSOe (MSO empirical) to distinguish between the MSO guarantee and the empirically
evaluated MSO obtained on our suite of queries.

7.2 SpillBound v/s PlanBouquet
The MSO guarantee for PlanBouquet on the original ESS typically turns out to be very high due to
the large values of ρ. Therefore, as in [3], we conduct the experiments for PlanBouquet only after
carrying out the anorexic reduction transformation [5] at the default λ = 0.2 replacement threshold –
we use ρRED to refer to this reduced value.

Comparison of MSO guarantees (MSOg)

A summary comparison of MSOg for PB and SB over almost a dozen TPC-DS queries of varying
dimensionality is shown in Figure 9 – for PB, they are computed as 4(1 + λ)ρRED, whereas for SB,
they are computed as D2 + 3D.

We observe here that in a few instances, specifically 4D Q26, 4D Q91 and 6D Q91, SB’s guarantee
is noticeably tighter than that of PB – for instance, the values are 28 and 52.8, respectively, for 4D Q91.
In the remaining queries, the bound quality is roughly similar between the two algorithms. Therefore,
contrary to our fears, the MSO guarantee is not found to have suffered due to incorporating platform
independence.

Figure 9: Comparison of MSO Guarantees (MSOg)
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Variation of MSO Guarantee with Dimensionality

In our next experiment, we investigated the behavior of MSOg as a function of ESS dimensionality
for a given query. We present results here for an example TPC-DS query, namely Query 91, wherein
the number of epps were varied from 2 upto 6 – the corresponding performance profile is shown in
Figure 10. We observe here that while SB is marginally worse at the lowest dimensionality of 2, it
becomes appreciably better than PB with increasing dimensionality – in fact, at 6D, the values are 96
and 54 for PB and SB, respectively.

Figure 10: Variation of MSOg with Dimensionality (Q91)

Comparison of Empirical MSO (MSOe)

We now turn our attention to evaluating the empirical MSO, MSOe, incurred by the two algorithms.
There are two reasons that it is important to carry out this exercise: Firstly, to evaluate the looseness of
the guarantees. Secondly, to evaluate whether PB, although having weaker bounds in theory, provides
better performance in practice, as compared to SB.

The assessment was accomplished by explicitly and exhaustively considering each and every location
in the ESS to be qa, and then evaluating the sub-optimality incurred for this location by PB and SB.
Finally, the maximum of these values was taken to represent the MSOe of the algorithm.

The MSOe results are shown in Figure 11 for the entire suite of test queries. Our first observation
is that the empirical performance of SB is far better than the corresponding guarantees in Figure 9. In
contrast, while PB also shows improvement, it is not as dramatic. For instance, considering 6D Q18,
PB reduces its MSO from 57.6 to 35.2, whereas SB goes down from 54 to just 16.

The second observation is that the gap between SB and PB is accentuated here, with SB performing
substantially better over a larger set of queries. For instance, consider query 5D Q29, where the MSOg

values for PB and SB were 52.8 and 40, respectively – the corresponding empirical values are 42.3 and
15.1 in Figure 11.

Finally, even for a query such as 4D Q7, where PB had a marginally better bound (24 for PB and 28
for SB in Figure 9), we find that it is SB which behaves better in practice (16.1 for PB and 13.9 for SB
in Figure 11).

Analysis of Looseness of SB’s MSOg

We now profile the execution of the queries to investigate the significant gap between SB’s MSOg

and MSOe values. Recall that the analysis (Section 4.2) bounded the cost of repeat executions by
attributing all of them to the last contour, i.e., ICk+1. Moreover, the number of fresh executions in all
the contours, including ICk+1, was assumed to be D. This results in the execution cost over ICk+1

being the dominant contributor to MSOg. To quantitatively assess this contribution, we present in
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Figure 11: Comparison of Empirical MSO (MSOe)

Table 3 the drilled-down information of: (i) the number of fresh executions of plans on ICk+1, and
(ii) the number of repeat executions of plans on ICk+1. For each of these factors, we present both the
theoretical and empirical values. Note that the specific qa locations used for obtaining these numbers
corresponds to the locations where the MSO was empirically observed.

Table 3: SUB-OPTIMALITY CONTRIBUTION OF ICk+1

Query Fresh
Executions

in ICk+1

Repeat
Executions

in ICk+1

Bound Empirical Bound Empirical
3D Q15 3 2 3 1
3D Q96 3 2 3 0
4D Q7 4 3 6 0

4D Q26 4 4 6 4
4D Q27 4 4 6 0
4D Q91 4 3 6 0
5D Q19 5 2 10 0
5D Q29 5 4 10 2
5D Q84 5 3 10 1
6D Q18 6 4 15 1
6D Q91 6 6 15 7

Armed with the statistics of Table 3, we conclude that the main reasons for the gap are the following:
Firstly, while the number of repeat executions in contour ICk+1, as per the analysis, is D(D−1)/2, the
empirical count is far fewer – in fact there are no repeat executions in queries such as 3D Q96, 4D Q7,
4D Q27, 4D Q91 and 5D Q19. While it is possible that repeat executions did occur in the earlier lower
cost contours, their collective contributions to sub-optimality are not significant.

Secondly, by the time the execution reaches the ICk+1 contour, it is likely that the selectivities of
some of the epps have already been learnt. The bound however assumes that all selectivities are learnt
only in the last contour. As a case in point, for 5D Q19, the selectivities of three of the five epps had
been learnt prior to reaching the last contour.

Average-case Performance (ASO)

A legitimate concern with our choice of MSO metric is that its improvements may have been purchased
by degrading average-case behavior. To investigate this possibility, we have considered ASO, the aver-
age case equivalent of MSO, which is defined as follows under the assumption that all qa’s are equally
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likely:

ASO =

∑
qa∈ESS

SubOpt(qe, qa)∑
qa∈ESS

1
(14)

We evaluated the ASO of PB and SB for all the test queries, and these results are shown in Figure 12.
Observe that, contrary to our fears, SB provides much better performance, especially at higher dimen-
sions, as compared to PB. For instance, with 5D Q19, the ASO for SB is nearly 100% better than PB,
going down from 17 to 8.6. Thus, SB offers significant benefits over PB in terms of both worst-case
and average-case behavior.

Figure 12: Comparison of ASO performance

Sub-Optimality Distribution

In our final analysis, we profile the distribution of sub-optimality over the ESS. That is, a histogram
characterization of the number of locations with regard to various sub-optimality ranges. A sample
histogram, corresponding to query 4D Q91, is shown in Figure 13, with sub-optimality ranges of width
5. We observe here that for over 90% of the ESS locations, the sub-optimality of SB is less than
5. Whereas this performance is achieved for only 35% of the locations using PB. Similar patterns
were observed for the other queries as well, and these results indicate that from both global and local
perspectives, SB has desirable performance characteristics as compared to PB.

Figure 13: Sub-optimality Distribution (4D Q91)
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7.3 Wall-Clock Time Experiments
All the experiments thus far were based on optimizer cost values. We have also carried out experiments
wherein the actual query response times were explicitly measured for the native optimizer, SB and AB.
As a representative example, we have chosen TPC-DS Q91 featuring 4 error-prone predicates, referred
to as e1, . . . , e4. In this experiment, the optimal plan took less than a minute (44 secs) to complete the
query. However, the native optimizer required more than 10 minutes (628 secs) to process the data,
thus incurring a sub-optimality of 14.3.

In contrast, SB took only around 4 minutes (246 secs), corresponding to a sub-optimality of 5.6. Ta-
ble 4 shows the drilled down information of plan executions for every contour with SB. In addition, the
selectivities learnt for the corresponding epp during every execution are also captured. The selectivity
information learnt in each contour, shown in %, is indicated by boldfaced font in the table. Further,
for each execution, the plan employed, and the overheads accumulated so far, are enumerated. A plan
P executed in spill-mode is indicated with a p. As can be seen in the table, the execution sequence
consists of partial executions of 13 plans spanning 6 consecutive contours, and culminates in the full
execution of plan P10 which produces the query results.

Finally, we also conducted the above mentioned Q91 experiment with AB. The algorithm needed less
than 3 minutes (165.1 secs) for completing the query, involving 10 partial plan executions before the
culminating full execution. Thus, AB brings the sub-optimality down to just 3.8 in this example.

Table 4: SpillBound EXECUTION ON TPC-DS QUERY 91

Contour
no.

e1
(plan)

e2
(plan)

e3
(plan)

e4
(plan)

Time
(sec.)

1 0 0 0 0.08
(p1)

1.3

2 0.02
(p3)

0 0 0.3
(p2)

7.5

3 0.08
(p4)

0 0 1 (p5) 21

4 0.2
(p4)

0 0 12
(p5)

51.2

5 5 (p9) 0.8
(p6)

0 12 86.3

5 30
(p9)

0.8 5 (p8) 60
(p7)

176.4

6 80
(P10)

0.8 5 60 246.4

7.4 AlignedBound v/s SpillBound
We now turn our attention to evaluating how the predicate set alignment (PSA) property, exploited by
AB, impacts its empirical performance as compared to SB. Specifically, we assess the MSOe incurred
by the two algorithms, along with the comparison on other metrics, such as ASO and sub-optimality
distribution.

Comparison of Empirical MSO

The MSOe numbers for SB and AB are captured in Figure 14. First, we highlight that the MSOe values
for AB are consistently less than around 10, for all the queries. Second, AB significantly brings down
the MSOe numbers for the several queries whose MSOe values with SB are greater than 15. As a case
in point, AB brings down the MSOe of 6D Q91 from 19 to 10.4.

Rationale for AB’s Performance Benefits

Recall that AB provides an MSO guarantee in the range [2D+2, D2+3D]. As can be seen in Figure 14,
the MSOe values for AB are closer to the corresponding 2D + 2 bound value, shown with dotted lines

34



Figure 14: Comparison of Empirical MSO (MSOe)

in the figure. These results suggest that the empirical performance of AB approaches the O(D) lower
bound on MSO.

We now shift our focus to examining the reasons for AB’s MSOe performance benefits over SB. In
Table 5, the maximum penalty over all partitions encountered during execution is tabulated for the var-
ious queries. The important point to note here is that these penalty values are lower than 3, even for 6D
queries. Since the highest cost investment for quantum progress in any contour is the maximum penalty
times the cost of the contour, the low value for penalty results in the observed benefits, especially for
higher dimensional queries.

Table 5: MAXIMUM PENALTY FOR AB

Query max. penalty for AB
3D Q15 2.42
3D Q96 3
4D Q7 2

4D Q26 2.25
4D Q27 2
4D Q91 2.05
5D Q19 2.5
5D Q29 1.81
5D Q84 1.1
6D Q18 1.92
6D Q91 1.25

Comparison of ASO

We also see that, in Figure 15, the AB’s ASO numbers improve significantly over SB. For 6D Q91 the
ASO reduces from 12 for SB to 4.7 for AB.

7.5 SubOptimal Distribution
We now profile the distribution of the sub-optimalities over the ESS. In Figure 16, we observe that more
than 80% of the ESS locations have SO between 3 and 6 when we use AlignedBound algorithm
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Figure 15: Comparison of ASO performance

as compared to SpillBound which only has around 35% locations within this performance range.
Similar pattern was observed for other queries as well. These results indicate that AlignedBound
has desirable performace characteristics as compared to SpillBound.

Figure 16: Sub-optimality distribution (4D Q7)

7.6 Evaluation on the JOB Benchmark
All the above experiments were conducted on the TPC-DS benchmark, an industry standard. Recently
a new benchmark, called Join Order Benchmark (JOB), specifically designed to provide challenging
workloads for current optimizers, was proposed in [8]. Given its design objective, it appears appropriate
to evaluate our query processing algorithms on this platform. A difficulty, however, is that all the
queries in the JOB benchmark feature cyclic predicates, directly nullifying our selectivity independence
assumption. Therefore, as an interim work-around, we shut off the optimizer’s automatic inclusion of
implicit join predicates, and verified that the consequent optimizer plans either remained the same or
were only marginally sub-optimal.

We now present results for a representative Query 1a from the JOB benchmark. For this query, we
found that, as expected by design, the native optimizer’s performance was substantially worse, with the
MSO going well above 6000. In marked contrast, SB continued to retain its strong performance profile
with an MSO of only around 12. And AB reduced this even further to below 9.

8 Deployment Aspects
Over the preceding sections, we have conducted a theoretical characterization and empirical evaluation
of our proposed algorithms. We now discuss some pragmatic aspects of its usage in real-world contexts.
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Most of these issues have already been previously discussed in [3], in the context of the PlanBouquet
algorithm, and we therefore only summarize the salient points here for easy reference.

First, our assumption of a perfect cost model. If we were to be assured that the cost modeling errors,
while non-zero, are bounded within a δ error factor, then the MSO guarantees in this paper will carry
through modulo an inflation by a factor of (1 + δ)2. That is, the MSO guarantee of SpillBound (and
AlignedBound) would be (D2 + 3D)(1 + δ)2. Moreover, the errors induced by cost model are fairly
small. For instance, δ = 0.3 is reported in [9].

Second, with regard to identification of the epps that constitute the ESS, we could leverage applica-
tion domain knowledge and query logs to make this selection, or simply be conservative and assign all
uncertain combination of predicates to be epps.

Third, the construction of the contours in the ESS is certainly a computationally intensive task since
it is predicated on repeated calls to the optimizer, and the overheads increase exponentially with ESS

dimensionality. However, for canned queries, it may be feasible to carry out an offline enumeration;
alternatively, when a multiplicity of hardware is available, the contour constructions can be carried out
in parallel since they do not have any dependence on each other.

At first glance, our move to half-space pruning algorithms (which is currently intrusive, since half-
space pruning is achieved through spilling) may appear surprising given that hypograph-pruning based
approaches are preferable from an implementation perspective due to their non-invasive nature. How-
ever, we show in Appendix A, dependency on ρ is an organic characteristic of the entire class of
hypograph-pruning algorithms – we are therefore forced to consider half-space pruning approaches in
our quest to be platform-independent, since achieving half-space pruning while being non-invasive is
currently not known.

Finally, while PlanBouquet can directly work off the API of existing query optimizers,
SpillBound and AlignedBound are intrusive since they require changes in the core engine to
support plan spilling and monitoring of operator selectivities. However, our experience with Post-
greSQL is that these facilities can be incorporated relatively easily – the full implementation required
only a few hundred lines of code.

9 Related Work
Our work materially extends the PlanBouquet approach presented in [3], which is the first work to
provide worst-case guarantees for query processing performance. As already highlighted, the primary
new contribution is the provision of a structural bound with SpillBound (and AlignedBound),
whereas PlanBouquet delivered a behavioral bound. Further, the performance characteristics of both
our algorithms are substantively superior to those of PlanBouquet, as illustrated in the experimental
study.

A detailed comparison to the prior literature on selectivity estimation issues is provided in [3]. Since
SpillBound and AlignedBound belong to the class of plan switching approaches, they may ap-
pear similar at first sight to influential systems such as POP [10] and Rio [1]. However, there are key
differences: First, they start with the optimizers estimate as the initial seed and then conduct a full-scale
re-optimization if the estimate is found to be significantly in error. In contrast, our proposed algorithms
always start executing plans from the origin of the selectivity space, ensuring both repeatability of the
query execution strategy as well as controlled switching overheads.

Second, both POP and Rio are based on heuristics and do not provide any performance bounds. In
particular, POP may get stuck with a poor plan since its selectivity validity ranges are defined using
structure-equivalent plans only. Similarly, Rios sampling-based heuristics for monitoring selectivities
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may not work well for join-selectivities, and its definition of plan robustness based solely on the per-
formance at the corners of the ESS has not been validated.

10 Conclusions and Future Work
We presented SpillBound, a query processing algorithm that deliver a worst-case performance guar-
antee dependent solely on the dimensionality of the selectivity space (D2 + 3D). This substantive
improvement over PlanBouquet is achieved through a potent pair of conceptual enhancements:
half-space pruning of the ESS thanks to a spill-based execution model, and bounded number of ex-
ecutions for jumping from one contour to the next. The new approach facilitates porting of the bound
across database platforms, easy knowledge and low magnitudes of the bound value, and indifference
to the efficacy of the anorexic reduction heuristic. Further, we also showed that SpillBound is
within an O(D) factor of the best deterministic selectivity discovery algorithm in its class. Finally,
we introduced the contour alignment and predicate set alignment properties and leveraged them to
design AlignedBound with the objective of bridging the quadratic-to-linear MSO gap between
SpillBound and the lower bound.

A detailed experimental evaluation on complex high-dimensional OLAP queries demonstrated that
our algorithms provide competitive guarantees to their PlanBouquet counterpart, while their empiri-
cal performance is significantly superior. Moreover, AlignedBound’s performance often approaches
the ideal of MSO linearity in D.

In our future work, we wish to develop automated assistants for guiding users in deciding whether to
use the native query optimizer or our algorithms for executing their queries. We also plan to work on
extending SpillBound and AlignedBound to handle the case of dependent predicate selectivities.
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Appendix
A PlanBouquet’s MSO Dependency on ρ
In this section we prove lower bounds on the MSO for the class of Hypograph-Pruning Algorithms
such as PlanBouquet. The input to the algorithms is as given in Section 2.4, i.e, they have access to
the query Q, the D epps, and the knowledge of POSP plans in the ESS. Let us denote the set of POSP
plans by P . For a plan P ∈ P , the algorithm can pre-compute and store the set of all the locations in the
ESS for which P is the optimal plan, denoted by S(P ). Further, the algorithm may even pre-compute
and store the Cost(P, q) for all q ∈ S(P ).

The hypograph-pruning algorithms considered in this section are of the following type. They explore
a sequence of (P,B) pairs where P ∈ P is executed with a execution cost budget of B. If the plan
execution reaches completion within the budget B, then, the exact selectivity location qa is discovered.
Otherwise, the algorithm can only infer that qa 6� q for all q ∈ S(P ) such that Cost(P, q) ≤ B. Let us
denote the ith pair explored by the algorithm as (Pi, Bi). We say that an hypograph-pruning algorithm
is deterministic, if, the pair explored in the (k + 1)st step is determined solely by the sequence of
(Pi, Bi) pairs, i = 1, . . . , k. The aggregate cost of the execution cost budgets of the sequence of pairs
explored by the algorithm before termination is taken to be its overall execution cost. It is easy to
see that the PlanBouquet falls into this class and considers only the (Pi, Bi) pairs on the doubling
isocost contours.

We refer to the location in the ESS where all the epps have selectivity of 1 by 1 and the location
where all the epps have selectivity 0 by 0. We denote the set of all deterministic hypograph-pruning
algorithms by IM and denote an algorithm in this set by A. In the rest of the section, we abuse the
notation Seqq introduced in Section 2.3 to instead refer to the sequence of (plan, budget) pairs explored
by an algorithm when qa = q. The following claim is true for any A ∈ IM .

Claim A.1 Let q1 and q2 be two selectivity locations of ESS. Let the sequence of (Pi, Bi) pairs that
any A ∈ IM explores to discover q1 and q2 be denoted by Seqq1 and Seqq2 respectively. Then either
Seqq1 is a prefix of Seqq2 or Seqq2 is a prefix of Seqq1 .

Proof 16 Let Seq1 = {(P1, B1), . . . , (Pk, Bk)} be the sequence explored by A when qa = 1. Let Seqq
be the sequence that A explores when qa = q ∈ ESS. Consider the first step of A in the two cases of
qa = 1 and qa = q. Since the information it has is same in the beginning, both the sequences explore
the same pair (P1, B1). Inductively, if both the sequences have not discovered 1 and q respectively at
the end of ith step, then, the information they have at the end of ith step is exactly same and hence,
their next steps are same. Further, at any point, if the sequence discovers 1, then, it is also guaranteed
to discover q since 1 � q (due to PCM). This establishes that either both of them discovered via the
same sequence or q is discovered via strict prefix of Seq1. Therefore, both Seqq1 and Seqq2 are prefixes
of Seq1. So, one of them must be a prefix of the other.

We would like to highlight that the above claim is indeed satisfied by PlanBouquet. The above
claim implies that, for a given input, every deterministic hypograph-pruning algorithm is completely
characterized by its sequence Seq1.

For a given input ESS and corresponding P and the cost of POSP plans at all the locations, we let ρ
denote the maximum number of plans of same cost.

Theorem A.1 There exists an ESS and corresponding POSP profile P for which the MSO of any
algorithm A ∈ IM is at least ρ.
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Proof 17 We consider the following ESS with associated P plans with special cost structures as fol-
lows:

1. It has a special isocost contour IC with the maximum number of POSP plans PL =
{P1, P2, . . . , Pρ}. The cost IC is denoted by CC.

2. Consider any potential plan P 6∈ PL. For all locations q below IC, Cost(P, q) is at most 1; for
all locations q, on or above IC, Cost(P, q) is at least ρCC. We would like to clarify that, here, Pi
is used to only indicate a POSP plan and not to be confused with the notation of (Pi, Bi) pair for
denoting ith step of an algorithm.

3. For each of the plans Pi ∈ PL, Cost(Pi, q) ≥ ρCC if q ∈ IC. Further, for every location q on
IC for which Pi is not the POSP plan, Cost(Pi, q) is at least ρCC. For a location q below IC,
Cost(Pi, q) is at most 1.

It can be checked that the above cost structure over the entire set of plans satisfies the PCM property.
Suppose α < ρ is the MSO of A on the above ESS. Since the plans Pi for i = 1, . . . , ρ are distinct,
there are ρ distinct locations q1, q2, . . . , qρ on IC, such that the POSP plan for qi is Pi. From the ESS
properties, if any location qi is discovered using a plan P which is different from the POSP plan Pi,
then its overall execution cost is at least ρCC. Since the POSP cost at qi is CC, the MSO is at least ρ,
which contradicts the assumption that α < ρ. Thus, to discover each qi, A executes the corresponding
POSP plan Pi with a budget CC. Thus this budget is insufficient for discovering any other qj for j 6= i.
Therefore, we can conclude that each of the locations qi are discovered at different steps of SeqA. Let
qk be the location that is discovered last in the sequence SeqA, among the locations {q1, . . . , qρ}, i.e,
the sequence for qk contains the sequence for other qis as prefix. But, to discover each of the qis, a
separate cost CC has to be incurred. Thus, the sequence for qk has to incur a cost of at least ρCC before
discovering qk. Since the POSP plan Pk has cost CC, A has an MSO of at least ρ, contradicting our
assumption.
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