
Dimensionality Reduction Techniques for
Robust Query Processing

Sanket Purandare Srinivas Karthik Jayant Haritsa

Technical Report

TR-2018-02

Database Systems Lab
Computational and Data Science Dept.

Indian Institute of Science
Bangalore 560012, India

http://dsl.cds.iisc.ac.in

Abstract

Selectivity estimation errors have been a long-standing and crippling problem in
database query optimization. Over the past few years, a new breed of robust query pro-
cessing algorithms that completely side-steps this chronic limitation has been developed.
Specifically, the brittle estimation procedure is replaced with a selectivity discovery pro-
cess that lends itself to provable worst-case performance guarantees. The new approach is
predicated on constructing, at compile-time, a multi-dimensional PSS (Predicate Selectivity
Space), where each dimension corresponds to a query predicate, and then creating a POSP
(Parametric Optimal Set of Plans) overlay on this space. Subsequently, at run-time, a cal-
ibrated sequence of time-limited executions from a carefully chosen subset of POSP plans,
called the “plan bouquet”, takes the query to completion within a bounded response-time,
relative to the optimal plan.

Notwithstanding its welcome robustness, the bouquet technique suffers from the “curse
of dimensionality” on two fronts – firstly, the overheads of constructing the POSP overlay
are exponential in the PSS dimensionality, and secondly, the performance guarantees are
quadratic in the PSS dimensionality. Since contemporary OLAP queries often have a high
ab initio PSS dimensionality, the practicality of the bouquet technique is immediately called
into question. We tackle this issue here and present a principled and efficient three-stage
pipeline, called DimRed, that incorporates schematic, geometric and piggybacking strategies,
to achieve sizeable reductions in PSS dimensionality.

DimRed has been empirically evaluated on a large suite of representative queries sourced
from the TPC-DS and JOB benchmarks. Our results indicate that the effective dimen-
sionality can be consistently brought down to five or less. The quantitative benefits of
this reduction are orders of magnitude of reduction in the compile-time overheads, and an
average improvement of around two-thirds in the performance guarantees. Therefore, in an
overall sense, DimRed offers a substantive step forward in making robust query processing
feasible on current environments.

1 Introduction

The traditional approaches for optimizing declarative OLAP queries (e.g. [21, 7]) are contingent
on estimating a host of predicate selectivities in order to find the optimal execution plan. For
instance, even the toy TPC-H query shown in Figure 1, which lists the details of cheap parts,
requires three selectivities to be estimated (one filter predicate and two join predicates).

select * from lineitem, orders, part where p partkey = l partkey
and o orderkey = l orderkey and p retailprice < 1000

Figure 1: Example TPC-H Query

Unfortunately, in practice, these estimates are often significantly in error with respect to the
values actually encountered during query execution, leading to poor plan choices and grossly
inflated response times [18]. The severity of this problem in industrial settings has also been
highlighted in a series of Dagstuhl Seminars on Robust Query Processing during the last
decade [1, 2, 3], and in the recent database literature (e.g. [10]).

Over the past few years, a new breed of robust query processing algorithms that completely
side-steps the above chronic limitation has been developed. Specifically, the brittle estimation

2

procedure is replaced with a selectivity discovery process that lends itself to provable worst-
case performance guarantees. The initial concepts for this approach were presented in the
PlanBouquet algorithm [5, 6], and subsequently refined in the SpillBound algorithm [12, 14].

1.1 Selectivity Discovery with SpillBound

The SpillBound (SB) algorithm initially constructs, at query compile-time, a D-dimensional
“Predicate Selectivity Space” (PSS), where each dimension corresponds to a query predicate
whose selectivity needs to be discovered. An example 3D selectivity space, corresponding to the
three-predicate query in Figure 1, is shown in Figure 2, with each dimension ranging over [0, 1].

Figure 2: Example 3D PSS

The next step is to identify, through repeated invocations of the query optimizer, the “para-
metric optimal set of plans” (POSP) that cover the entire selectivity space contained in the PSS.
This overlay exercise is carried out at a discretized resolution r along each dimension of the PSS,
incurring a total of Θ(rD) calls to the query optimizer.1

At run-time, starting from the origin of the PSS and moving outwards in the space, a carefully
chosen subset of POSP plans, called the “plan bouquet”, is sequentially executed, with each
execution assigned a time limit equal to the plan’s optimizer-assigned cost. The choice of plans is
such that each execution focuses on incrementally learning the selectivity of a specific predicate.
This sequence of plan executions ends when all the selectivities in the PSS have been fully
discovered. Armed with this complete knowledge, the genuine optimal plan is now correctly
identified via the query optimizer, and used to finally execute the query to completion.

A perhaps surprising outcome of SpillBound’s plan-switching strategy is that the additional
execution costs incurred during the progressive discovery process can be bounded relative to the
optimal, irrespective of the query location in the space. Specifically, let us use Maximum Sub-
Optimality (MSO), as defined in [6], to capture the worst-case sub-optimality ratio of a query
processing algorithm over the entire D-dimensional PSS, relative to an oracle that magically
knows the correct query location and therefore directly uses the ideal plan. Then, the MSO of
SpillBound has the following upper bound:

MSOSB(D) ≤ D2 + 3D (1)

This bound represents the first-such guarantee in the literature. Moreover, its numerical values
are very low in comparison to the orders of magnitude slowdowns reported for contemporary
query optimizers [18, 17, 19].

1Strictly speaking, SpillBound does not require characterization of the entire PSS, but the exponential depen-
dency on D remains even in the optimized versions [6].

3

Notwithstanding the unique and welcome benefits of SpillBound with regard to robust query
processing, it suffers from the “curse of dimensionality” on two important fronts – firstly, the
overheads of constructing the POSP overlay are exponential in the PSS dimensionality, and
secondly, the MSO guarantees are quadratic in this dimensionality. Since contemporary OLAP
queries often have a high ab initio PSS dimensionality, a legitimate question that arises is whether
the bouquet technique can be made practical for current database environments. As a case in
point, consider the SPJ version of TPC-DS Query 27 shown in Figure 3, whose raw dimensionality
is 9 (comprised of 4 join predicates, 4 equality filter predicates, and 1 set membership predicate).
Constructing its PSS at even a modest resolution of r = 20 (corresponding to 5% increments in
the selectivity space) would require making about 0.5 trillion calls to the query optimizer, and
the MSO would exceed 100.

Figure 3: TPC-DS Query 27 (SPJ version)

In the research heretofore on plan bouquets, the PSS dimensionality issue was handled by
manually identifying and eliminating dimensions that were either accurately estimated by the
optimizer, or whose errors did not materially impact the overall plan performance – the resulting
reduced space was termed as the Error Selectivity Space (ESS). This inspection-based approach is
not a scalable solution, and moreover, may have missed opportunities for dimension removal due
to its ad-hoc nature. We have therefore investigated the development of automated techniques
for converting high-dimensional PSS into equivalent low-dimensional ESS, and report on the
outcomes here.

1.2 Problem Definition

Given the above framework, a mandatory criterion for our dimensionality reduction algorithm
is that the MSO of the resultant ESS should be no worse than that of the initial PSS – that
is, the reduction should be “MSO-safe”. Within this constraint, there are two ways in which
the optimization problem can be framed – we can choose to either minimize the compilation
overheads, or to minimize the MSO, leading to the following problem definitions:

Overheads Metric: Develop an MSO-safe time-efficient ESS construction algorithm that, given
a query Q with its PSS, removes the maximum number of PSS dimensions.

MSO Metric: Develop an MSO-safe time-efficient ESS construction algorithm that, given a
query Q with its PSS, removes a set of PSS dimensions such that the resulting MSO is
minimized.

4

1.3 The DimRed Procedure

In this paper, we tackle the above-mentioned PSS dimensionality problem. Specifically, we present
a principled and efficient process, called DimRed, that incorporates a pipeline of reduction strate-
gies whose collective benefits ultimately result in ESS dimensionalities that can be efficiently
handled by modern computing environments.

The DimRed procedure is composed of three components: SchematicRemoval, MaxSelRemoval,
and WeakDimRemoval that are applied in sequence in the processing chain from the user query
submission to its execution with SpillBound, as shown in Figure 4. Here, SchematicRemoval
and MaxSelRemoval reduce the overheads through explicit removal of PSS dimensions, whereas
WeakDimRemoval improves the MSO through implicit removal of dimensions. To illustrate
DimRed’s operation, we use TPC-DS Query 27 (Figure 3) as the running example.

Figure 4: DimRed Pipeline

In the first component, SchematicRemoval, a dimension d is removed whenever we expect
that the selectivity estimates made by the optimizer, using either the metadata statistics or the
physical schema, will be highly accurate. For instance, database engines typically maintain exact
frequency counts for columns with only a limited number of distinct values in their domains –
therefore, the dimensions corresponding to the d year and s state columns in Q27 can be safely
removed from the PSS.

The second component, MaxSelRemoval, takes a cost-based approach to identify “don’t-care”
dimensions where the actual selectivity value does not play a perceptible role on overall perfor-
mance. Specifically, given a candidate dimension d, it conservatively assumes that dimension
d’s selectivity is the maximum possible (typically, 1). Due to this movement to the ceiling
value, there are countervailing effects on the MSO guarantee – on one hand, the value of D is
decremented by one in Equation 1, but on the other, an inflation factor αd is suffered due to
SpillBound’s choice of bouquet plan executions being now dictated by the maximum selectivity,
rather than the actual value. The good news is that αd can be bounded and efficiently computed,
as explained in Section 4. Therefore, we can easily determine whether the benefits outweigh the
losses, and accordingly decide whether or not to remove a dimension. For instance, in Figure 3,
the three filter predicates on cd gender, cd marital status and cd education status can be removed
since their inflation factors are small, collectively amounting to just 1.34.

After the explicit dimension removal by the SchematicRemoval and MaxSelRemoval compo-
nents, the POSP overlay of the ESS is computed. Subsequently, rather than separately discovering
the selectivity of each of the remaining dimensions, we attempt, using the WeakDimRemoval com-
ponent, to piggyback the selectivity discovery of relatively “weak” dimensions on their “strong”
siblings – here, the strength of a dimension is characterized by its αd value, as computed pre-
viously by the MaxSelRemoval module. That is, a dimension d with low αd is discovered con-
currently with a high inflation counterpart – again, there are countervailing factors since the
concurrent discovery effectively reduces the dimensionality by one, but incurs a second inflation

5

factor βd due to the increased budgetary effort incurred in this process. However, the good news
again is that βd can be bounded and efficiently computed if the ESS is available, as explained in
Section 5, and it can be easily determined whether the benefits outweigh the losses. For instance,
in Figure 3, the last two join predicates are implicitly removed through this process, since their
execution is piggybacked on the first two join predicates.

1.4 Performance Results

The summary theoretical characterization of the DimRed procedure, with regard to dimensional-
ity, computational overheads and MSO guarantees, is captured in Table 1. In this table, ks and km
denotes the number of dimensions that are explicitly removed thanks to the SchematicRemoval

and MaxSelRemoval components, respectively, while kw denotes the number of implicitly removed
dimensions from the WeakDimRemoval component. αM captures the collective MSO inflation fac-
tor arising from the removal of the km don’t-care dimensions, while βW indicates the net inflation
factor arising out of the kw piggybacked discoveries. The last column compares the cumulative
overheads incurred after applying the DimRed pipeline relative to what would have been incurred
on the native PSS.

Table 1: Summary Performance Characterization

Dimensionality Maximum Suboptimality
Overheads
(Opt Calls)

PSS D MSOSB(D) rD

Schematic

Removal
D − ks MSOSB(D − ks) rD−ks−km+

θ(2D−1 ∗D ∗ r)MaxSel

Removal
(D − ks − km)

αM ∗
MSOSB(D − ks − km)

WeakDim

Removal
(D − ks − km − kw)

αM ∗ βW ∗
MSOSB(D − ks − km − kw)

Given this characterization, we need to assess whether the values of ks, km and kp are sub-
stantial enough in practice to result in a low-dimensional ESS, and we have therefore conducted
a detailed empirical evaluation of the DimRed procedure. Specifically, we have evaluated its be-
havior on a representative suite of 50-plus queries, sourced from the popular TPC-DS and JOB
benchmarks. Our results indicate that DimRed is consistently able to bring down the PSS dimen-
sionality of the workload queries, some of which are as high as 12, to 5 or less. A sample outcome
for Query 27 is shown in Table 2, and we see here that the original dimensionality of 9 is brought
down to as low as 1 when optimizing for overheads, and as low as 2 when optimizing for MSO.
Further, the preprocessing time taken before query execution can actually begin is now down to
seconds from days. Finally, the resulting MSOs are not only safe, but significantly better than
those on the original system – for instance, optimizing for MSO produces a huge improvement
from 108 to less than 20.

Organization.

The remainder of this paper is organized as follows: The problem framework and notations
are formalized in Section 2. The three components of DimRed, namely, SchematicRemoval,
MaxSelRemoval and WeakDimRemoval, are presented and theoretically analyzed in Sections 3,
4 and 5, respectively. The experimental framework and performance results are highlighted in
Section 6. Finally, our conclusions are summarized in Section 7.

6

Table 2: Results for TPC-DS Q27

Overheads Metric MSO Metric
Retained

Dimensions.
MSO

Overheads
(Opt calls)

Retained
Dimensions.

MSO
Overheads
(Opt calls)

PSS 9 108 0.5 trillion 9 108 0.5 trillion
Schematic

Removal
7 70

40700
(9.2 secs)

7 70
202300

(45 secs)MaxSel

Removal
1 70 4 37.5

WeakDim

Removal
- - 2 20

2 Problem Framework

We begin by reviewing the key concepts and assumptions underlying our approach to robust
query processing [6, 12].

2.1 Selectivity Spaces

Given an SQL query, any predicate for which the optimizer invokes the selectivity estimation
module is referred to as a selectivity predicate, or sp. For a query with D sps, the set of all
sps is denoted by SP = {s1, . . . , sD}, where sj denotes the jth sp. The selectivities of the D
sps are mapped to a D-dimensional space, with the selectivity of sj corresponding to the jth

dimension. Since the selectivity of each predicate ranges over [0, 1], a D-dimensional hypercube
[0, 1]D results, henceforth referred to as the predicate selectivity space (PSS). Note that each
location q ∈ [0, 1]D in the PSS represents a specific query instance where the sps happen to have
the selectivities corresponding to q. Accordingly, the selectivity value of q on the jth dimension
is denoted by q.j.

For tractability, the PSS is discretized at a fine-grained resolution r in each dimension. We
refer to the location corresponding to the minimum selectivity in each dimension as the origin
of the PSS, and the location at which the selectivity value in each dimension is maximum as the
terminus.

As shown in this paper, some selectivity dimensions may not be error-prone, and are therefore
liable to be removed by SchematicRemoval. Further, some other dimensions may be error-
prone, but their errors do not materially impact the overall processing cost, and can therefore
be removed by MaxSelRemoval. The dimensions that are retained after these pruning steps are
called as impactful error-prone predicates, or epp, and they collectively form the Error Selectivity
Space (ESS).

2.2 POSP Plans

The optimal plan for a generic selectivity location q ∈ PSS is denoted by Pq, and the set of such op-
timal plans over the complete PSS constitutes the Parametric Optimal Set of Plans (POSP) [11].2

We denote the cost of executing any plan P at a selectivity location q ∈ PSS by Cost(P, q). Thus,
Cost(Pq, q) represents the optimal execution cost for the selectivity instance located at q . For
ease of presentation, we will hereafter use cost of a location to refer to the cost of the optimal
plan at that location, and denote it by Cost(q). Finally, we assume that the query optimizer can

2Letter subscripts for plans denote locations, whereas numeric subscripts denote identifiers.

7

identify the optimal query execution plan if the selectivities of all the sps are correctly known.3

2.3 Maximum Sub-Optimality (MSO)

We now move on to describing the MSO performance metric used in [12] to quantify the robust-
ness of query processing. For this purpose, let qa denote the PSS location corresponding to the
actual selectivities of the user query epps – note that this location is unknown at compile-time,
and needs to be explicitly discovered. SpillBound carries out a sequence of budgeted plan execu-
tions in order to discover the location of qa. We denote this sequence by Seqqa , with each element
ti in the sequence being a pair, (Pi, ωi) indicating that plan Pi is executed with a maximum time
budget of ωi.

The sub-optimality of this plan sequence is defined relative to an oracle that magically knows
the correct query location apriori and therefore directly uses the ideal plan Pqa . That is,

SubOpt(Seqqa) =

∑
ti∈Seqqa

ωi

Cost(qa)

from which we derive
MSO = max

qa∈PSS
SubOpt(Seqqa)

In essence, MSO represents the worst-case suboptimality that can occur with regard to plan
performance over the entire PSS space.

2.4 Assumptions

The notion of a location q1 spatially dominating a location q2 in the ESS plays a central role in
our robust query processing framework. Formally, given two distinct locations q1, q2 ∈ PSS, q1
spatially dominates q2, denoted by q1 � q2, if q1.j ≥ q2.j for all j ∈ {1, . . . , D}. Given spatial
domination, an essential assumption that allows SpillBound to systematically explore the PSS

is that the cost functions of the plans appearing in the PSS all obey Plan Cost Monotonicity
(PCM). This constraint on plan cost function (PCF) behavior may be stated as follows: For any
pair of distinct locations qb, qc ∈ PSS, and for any plan P ,

qb � qc ⇒ Cost(P, qb) > Cost(P, qc)

That is, it encodes the intuitive notion that when more data is processed by a query, signified
by the larger selectivities for the predicates, the cost of the query processing also increases. In a
nutshell, spatial domination implies cost domination.

2.5 Notations

For easy reference, the notations used in the remainder of the paper are summarized in Table 3.

3For example, through the classical Dynamic Programming-based search of the plan enumeration space [21].

8

Table 3: Notations

Notation Meaning
PSS Predicate Selectivity Space
D Dimensionality of the PSS

s1, ..., sD Selectivity predicates in the query
ESS Error Selectivity Space
epp (EPP) Error-prone predicates
q ∈ [0, 1]D A location in the selectivity space
q.j Selectivity of q in the jth dimension
Pq Optimal Plan at q
qa Actual selectivity of query
Cost(P, q) Cost of plan P at location q
Cost(q) Cost of the optimal plan at location q
αd Max cost inflation of MaxSelRemoval for dimension d
βd Max cost inflation of WeakDimRemoval for dimension d
αM Cumulative cost inflation of MaxSelRemoval
βW Cumulative cost inflation of WeakDimRemoval

3 Schematic Removal of Dimensions

We now present an approach for schematic removal of dimensions from the PSS. This component
is based on the observation that using standard meta-data structures such as histograms, and
physical schema structures such as indexes, it is feasible to establish the selectivities of some of
the query predicates with complete or very high accuracy. Further, even if an almost-precise
value cannot be established, the metadata could serve to provide tighter lower and upper bounds
for selectivities as compared to the default (0, 1] range – these bounds can be leveraged by the
subsequent MaxSelRemoval stage of the DimRed pipeline. We hasten to add that while what
we describe here is largely textbook material, we include it for completeness and because of its
significant reduction impact on typical OLAP queries, as highlighted in our experimental results
of Section 6.

For starters, consider the base case of a filter predicate on an ordered domain, a very common
occurrence in OLAP queries, whose selectivity analysis can be carried out as follows for equality
and range comparisons, respectively.

Equality Predicates: Database engines typically store the exact frequency counts for the most
commonly occurring values in a column. Therefore, if the equality predicate is on a value in this
set, the selectivity estimate can be made accurately. On the other hand, values outside of this
set will be associated with some bucket of the column’s histogram. Therefore, the selectivity
range can be directly bounded within [0, BucketFrequency].

An alternate approach to selectivity estimation is to use, if available, an index on the queried
column. This is guaranteed to provide accurate estimates, albeit at higher computational cost
arising out of index traversal. However, since the typical running times for OLAP queries are in
several minutes, investing a few seconds on such accesses appears to be an acceptable tradeoff,
especially given that choosing wrong plans due to incorrect estimates could result in arbitrary
blowups of the response time.

Range Predicates: In this case, histograms can be easily leveraged to obtain tighter bounds,

9

especially with equi-depth histogram implementations. Specifically, the lower bound for the
selectivity range is the summation of the frequencies of the buckets that entirely fall within
the given range, and the upper bound is the summation of the frequencies of the buckets that
partially or completely overlap with the given range.

Similar to equality predicates, if an index is available on the predicate column, then accurate
estimates are guaranteed while incurring the index traversal costs.

String predicates: The traditional meta-data structures for string queries often do not yield
satisfactory accuracy for selectivity estimation, and typically tend to under-estimate the expected
cardinalities. Moreover, they are not particularly useful for obtaining tight lower and upper
bounds. Hence, we leverage the strategy described in [15], where summary structures based on
q-grams are proposed for storing string-related metadata. But for combining the selectivities of
the individual sub-string predicates and obtaining deterministic tight bounds, we make use of
the Short Identifying Substring Hypothesis stated and applied in [4, 16]. We also hasten to add
that even though these aforementioned strategies provide point estimates for the selectivities, we
just adopt their mechanisms for providing bounds on the selectivity range.

The above discussion was for individual predicates. However, in general, there may be multiple
filter predicates on a base relation. In such cases, we first compute the ranges or values for each
individual predicate (in the manner discussed above), and then use these individual bounds to
compute bounds on the relational selectivity as a whole. For instance, when there are conjunctive
predicates on a relation, the upper bound on the relational selectivity is simply the upper bound
of the least selective predicate. Analogously, for disjunctive predicates, the lower bound is simply
the maximum lower bound among the individual predicates. After determining the bounds of the
relational selectivity, we vary the individual predicates between [0, 1], discarding any selectivity
combinations that violate the relational selectivity bounds.

4 MaxSel Removal of Dimensions

After the schematic removal of dimensions is completed, we know that the optimizer may not be
able to accurately estimate the selectivities of the remaining dimensions. However, it may still be
feasible to consider some of these selectivities as “don’t-cares” (i.e. ∗ in regex notation), which is
equivalent to removing the dimensions, while provably continuing to maintain overall MSO-safety.
The systematic identification and removal of such don’t-care dimensions is carried out by the
MaxSelRemoval module – it does so by the simple expedient of assigning the maximum selectivity
(typically, 1) to the candidate dimensions. This maximal assignment guarantees, courtesy the
PCM assumption (Section 2.4), that the time budgets subsequently allocated by SpillBound

to the bouquet plans in the reduced space are sufficient to cover all selectivity values for these
dimensions. What is left then is to check whether these deliberately bloated budgets could result
in a violation of MSO-safety – if not, the dimensions can be removed.

We describe the operation of the MaxSelRemoval module in the remainder of this section.
For ease of understanding, we first consider the baseline case of a 2D PSS, and then extend the
design to higher dimensions. This is followed by an analysis of the module’s algorithmic efficiency.
Further, for ease of notations we assume D dimensions are retained post the SchematicRemoval

phase.

10

4.1 Baseline Case: 2D Selectivity Space

Consider a 2D PSS with dimensions X and Y , as shown in Figure 5, and let the actual (albeit
unknown) selectivity of the query in this space be an arbitrary location qa(x, y). Now assume
that we wish to establish whether the X dimension can be dropped in an MSO-safe manner. We
begin by projecting qa to the extreme X-boundaries of the PSS, that is, to X = 0 and X = 1,
resulting in qmin

a = (0, qa.y) and qmax
a = (1, qa.y), respectively, as shown in Figure 5.

Figure 5: Example 2D PSS

Next, we compute a bound on the sub-optimality of using SpillBound with bloated time
budgets based on qmax

a .

Lemma 4.1 The sub-optimality for qa is at most 4∗ Cost(qmax
a)

Cost(qmin
a)

after removing dimension X from
the 2D PSS.

Proof Let the total execution cost incurred by the SpillBound algorithm be denoted by
CostSB(qmax

a). Then, its sub-optimality is given by

SOSB =
CostSB(qmax

a)

Cost(qa)

=
CostSB(qmax

a)

Cost(qmax
a)

∗ Cost(qmax
a)

Cost(qa)

From Equation 1, we know that the MSO of SB for a single dimension is 4, and therefore
CostSB(qmax

a)

Cost(qmax
a)

is also upper-bounded by 4. Hence,

SOSB ≤ 4 ∗ Cost(qmax
a)

Cost(qa)

Now by the PCM assumption, we know that Cost(qa) ≥ Cost(qmin
a). Therefore, we have

SOSB ≤ 4 ∗ Cost(qmax
a)

Cost(qmin
a)

The ratio
Cost(qmax

a)

Cost(qmin
a)

captures the inflation in sub-optimality for qa. But note that qa can be

located anywhere in the 2D space, and we therefore need to find the maximum inflation over all

11

possible values of y for qa, and this is denoted by αX . Formally, the αX for removing dimension
X is defined as:

αX := max
qa.y∈[0,1]

Cost(qa
max)

Cost(qamin)

This leads us to the generalization:

Corollary 4.2 After removing a single dimension d from a 2D PSS, the MSO increases to at
most 4 ∗ αd.

Now all that remains is to check whether MSO-safety is retained in spite of the above inflation
– specifically, whether

4 ∗ αd ≤ 10

If the check is true, dimension d can be safely removed from the PSS after assigning it the
maximum selectivity. (The value 10 comes from the MSO bound for 2D in Equation 1.)

Testing Overheads

We now turn our attention to the computational effort incurred in the dimension removal testing
procedure. Note that calculating αd only requires knowledge of the boundaries Sel(d) = 0
and Sel(d) = 1, and therefore only 4r optimization calls are required in total for testing both
dimensions in a 2D space. This is in sharp contrast to the r2 calls that would have been required
for a POSP overlay of the complete PSS.

4.2 Extension to Higher Dimensions

We now move on to calculating the maximum inflation in sub-optimality for the generic case of
removing k dimensions, s1, . . . , sk from a D-dimensional PSS, while maintaining MSO-safety. For
this, the key idea, analogous to the 2D case, is given a qa in the PSS, find the cost ratios between
when the selectivities of the s1, . . . , sk dimensions of qa are all set to 1, and when they are all
set to 0. Since qa can be located anywhere in the PSS, these cost ratios have to be computed for
all possible selectivity combinations of the retained dimensions. Finally, the maximum of these
values gives us αs1,...,sk . That is,

αs1,...,sk = max
∀(q.jk+1,...,q.jD)∈[0,1]D−k

Cost(qmax)

Cost(qmin)
(2)

with qmax and qmin corresponding to the locations with q.i = 1 and q.i = 0, respectively, ∀i ∈
{1, .., k}.

To illustrate the above, consider the example 3D PSS with dimensions X, Y and Z shown
in Figure 6a. Here, if we wish to consider dimension Y for removal, we need to first compute
the sub-optimality inflations across all matching pairs of points in the (red-colored) 2D surfaces
corresponding to Y = 0 and Y = 1. Then, αY is given by the maximum of these inflation values.

Finally, to determine whether the removal of the s1, . . . , sk dimensions is MSO-safe, the check
is simply the following:

αs1,...,sk ∗MSOSB(D − k) < MSOSB(D) (3)

12

(a) αY from Surface (b) αY from Perimeter

Figure 6: 3D PSS - Calculation of αY

Testing Overheads:

The computational efforts incurred, in terms of optimizer calls, for calculating αs1,...,sk is θ(2D ∗
rD−1). This is because the suboptimality inflations need to be calculated for every selectivity
combination of the retained dimensions, making the testing overheads to grow exponentially
with the PSS dimensionality. It may therefore appear, at first glance, that we have merely
shifted the computational overheads from the exhaustive POSP overlay to the modules of the
DimRed pipeline. However, as is shown next, it is feasible, with mild assumptions, to design an
efficient mechanism to compute αM .

4.3 Efficient Computation of MaxSelRemoval

To provide efficiency in the MaxSelRemoval algorithm, we bring in two techniques, Greedy Re-
moval and Perimeter Inflation. With Greedy Removal, we do not exhaustively consider all
possible groups of dimensions for removal. Instead, we first compute for each dimension d, its
individual αd assuming that just d is removed from the PSS and all other dimensions are retained.
Based on these inflation values, a sequence of dimensions is created in increasing αd order. Then,
we iteratively consider prefixes of increasing length from this sequence with the stopping criterion
based on the objective – overheads minimization or MSO minimization.

As an example, we show in Figure 7 the resultant MSOs for the greedy removal of dimensions
for TPC-DS Q7, which has an 8-dimensional PSS. As can be seen in the figure, the MSO initially
declines from its starting value of 88 as we keep removing the low αd dimensions. However,
after a certain point, it begins to rise again. When overheads minimization is the objective, the
algorithm will remove the dimension group {d4, d5, d6, d7, d0, d1, d2}, and then stop due to
violation of MSO-safety. By this time, the ESS dimensionality is reduced to just 1, and the MSO
guarantee is 70. On the other hand, when MSO minimization is the objective, the minimum
MSO of 33 is obtained by removing dimensions {d4, d5, d6, d7} with a combined inflation factor
of just 1.17!

13

Figure 7: MSO Profile for Greedy Dimension Removal

Although the greedy removal strategy does significantly lower the overheads, it still requires
O(D ∗ rD−1) optimizer calls since the αd has to be calculated for every dimension d. This is
where we bring in our second strategy of Perimeter Inflation. Specifically, we assume that the
αd (for every dimension d) is always located on the perimeter of the PSS and not in the interior
– if this is true, then the number of optimizer calls required to calculate for all αds is reduced to
θ(2D−1 ∗D ∗ r), which is linear in the resolution. We have empirically verified, as highlighted in
Section 6, that this assumption is is generally valid. Moreover, in the remainder of this section,
we formally prove that, under some mild assumptions, the perimeter location of the αd is only
to be expected.

4.4 Proof of Perimeter Inflation

For ease of exposition, we first analyze a 3D PSS, and later generalize the proof to higher dimen-
sions. (The proof technique used here is similar in spirit to that used in [9] for ensuring bounded
suboptimalities of plan replacements in a selectivity space.)

Consider the 3D PSS shown in Figure 6b, with dimensions X, Y and Z, and dimension Y being
the candidate for removal. Our objective is to show that optimization calls are required only
along the red perimeter lines in the figure, and not along the surface walls (unlike Figure 6a). To
start with, we introduce an inflation function, f , that captures the sub-optimality inflation as a
function of the selectivity combinations of the retained dimensions X and Z, along the extreme
values of the removed dimension Y . Formally, the inflation function, f(x, z), is defined as follows:

f(x, z) =
Cost(q.x, q.y = 1, q.z)

Cost(q.x, q.y = 0, q.z)

Behavior of function f

To analyze f ’s behavior, we leverage the notion of optimal cost surface (OCS), which captures
the cost of the optimal plan at every location in the PSS. For now, assume that the OCS exhibits
axis-parallel piecewise linearity (APL) in X, Y and Z. That is, the OCS is of the form:

OCS(x, y, z) = u1x+ u2y + u3z + u4xy + u5yz

+ u6xz + u7xyz + u8 (4)

14

where the ui are arbitrary scalar coefficients.
When dimension Y = 1, the projected OCS with this y value is represented as

OCS|y=1 = a1x+ a2z + a3xz + a4, (5)

where the ai are the new scalar coefficients. Analogously, when Y = 0, the projected OCS
becomes

OCS|y=0 = b1x+ b2z + b3xz + b4 (6)

Thus f can now be rewritten as a point-wise division of a pair of 2D APL functions:

f(x, z) =
OCS|y=1

OCS|y=0

=
a1x+ a2z + a3xz + a4
b1x+ b2z + b3xz + b4

(7)

Now consider the function fz(x), which keeps dimension Z constant at some value and varies
only along dimension X. When Z = z0, the various possible behaviors of fzo(x) are shown in
Figure 8 as Curves (a) through (d). This behavior can be attributed to the division of the 2D
APL functions in Equation 7.

Figure 8: Behavior of the fz(x) function

Induced Slope Behaviour

Consider the (X,Z) slice that corresponds to a fixed value of Y . We now show that for any
axis-parallel line segment within this slice, the maximum sub-optimality along the line occurs at
one of its end-points. The lemma for line segments that are parallel to the X axis is given below
(a similar statement applies to the Z axis).

Lemma 4.3 Given a line segment Z = zo that is parallel to the X axis, the maximum subopti-
mality occurs at one of the end points ((0, zo) and (1, zo)) if the slope f ′zo(x) is either

1. monotonically non-decreasing, OR

2. monotonically decreasing with f ′zo(0) ≤ 0 or f ′zo(1) ≥ 0

15

Proof When the slope of f ′zo(x) is monotonically non-decreasing (i.e. Condition (1) is satisfied),
the inflation function curve that connects the two points is guaranteed to lie below the straight
line joining the two points – Curve (a) in Figure 8 shows an example of this situation. This
ensures that the α along the given line segment is always less than or equal to the α at one of
the end-points of the segment.

If, on the other hand, f ′zo(x) is monotonically decreasing, then the possible behaviors of the
inflation function fzo(x) are shown in curves (b) through (d) in Figure 8. Curves (b) and (c)
denote the behavior of the inflation function when Condition (2) is satisfied, and clearly the value
of the inflation function is below at least one end-point in the given range. Curve (d) however
represents scenario where the local αlocal does not occur at one of the end-points and hence does
not satisfy either conditions of the lemma.

We now show that if the above behavior holds for two different values of Z, it gets induced for
all intermediate Z values (a similar statement applies for line segments that are parallel to the
Z axis).

Lemma 4.4 If the slope of f ′z(X) is non-decreasing (resp. decreasing) along the line-segments
Z = z1 and Z = z2, then it is non-decreasing (resp.decreasing) for all line segments in the interval
(z1, z2).

Proof For fixed z, function f in Equation 7 reduces to

fz(x) =
c1x+ c2
d1x+ d2

where

c1 = (a1 + a3z), c2 = (a2z + a4)d1 = (b1 + b3z), d2 = (b2z + b4)

(8)

and its slope is given by

f ′z(x) =
c1d2 − c2d1
(d1x+ d2)2

(9)

For x ∈ [0, 1], this slope is monotonic and its behavior depends on the sign of the numerator
N := c1d2 − c2d1. From Equations 5, 6 and 8 we know that N can be written as the following
function of z:

N(z) = (a1 + a3z)(b2z + b4)− (a2z + a4)(b1 + b3z)

= (a3b2 − a2b3)z2 + (a1b2 + a3b4 − b1a2 − a4b3)z + a1b4 − b1a4
= l1z

2 + l2z + l3 (10)

where l1, l2 and l3 are constants. Now, since N(z) is a quadratic function of z, if N(z1) ≥
0 and N(z2) ≥ 0 then N(z) ≥ 0 ,∀z ∈ (z1, z2) which implies that slope f ′z(X) is decreasing
∀z ∈ (z1, z2). Hence the Lemma.

Leveraging the above lemma, it immediately follows that if the slope behavior holds at the
extreme Z selectivity values of 0 and 1, then the behavior is true throughout the entire range of
Z. Further, similar lemmas apply to the X range as well. Putting together all this machinery
leads to our main theorem:

16

Theorem 4.5 (Perimeter Inflation) If any of the conditions C1 through C6 in Table 4 is satis-
fied, computing αY along the perimeters of its boundary walls is sufficient to establish αY within
the entire PSS.

Table 4: Sufficient Conditions for Perimeter Inflation

Left
Boundary

Right
Boundary

Top
Boundary

Bottom
Boundary

C1 - - f ′′1 (x) ≥ 0 f ′′0 (x) ≥ 0
C2 f ′z(0) ≤ 0 - f ′′1 (x) < 0 f ′′0 (x) < 0
C3 - f ′z(1) ≥ 0 f ′′1 (x) < 0 f ′′0 (x) < 0
C4 f ′′0 (z) ≥ 0 f ′′1 (z) ≥ 0 - -
C5 f ′′0 (z) < 0 f ′′1 (z) < 0 f ′x(1) ≥ 0 -
C6 f ′′0 (z) < 0 f ′′1 (z) < 0 - f ′x(0) ≤ 0

Proof Consider the C1 condition in Table 4: Since f ′′z (x) ≥ 0 (i.e slope f ′z(x) is non-decreasing)
at the T-B boundaries, then from Lemma 4.4, we know that the slope f ′z(x) is non-decreasing
throughout the range (z1, z2).

Moving on to the C2 and C3 conditions: Since f ′′z (x) < 0 (i.e slope f ′z(x) is decreasing) at the
T-B boundaries, then from Lemma 4.4, we know that the slope f ′z(x) is decreasing throughout
the range (z1, z2). Further, we know that for a given z = zo ∈ (z1, z2), either f ′zo(x1) ≤ 0 (C2) or
f ′zo(x2) ≥ 0 (C3).

Thus, when C1, C2 or C3 is satisfied, then for all lines between points (x1, z) and (x2, z),
z ∈ (z1, z2), the local αY occurs at one of the end-points of these lines as a result of the slope
conditions given in Lemma 4.3 are satisfied. Since the union of all such line-segments is the given
region, αY occurs at the perimeter. Similar arguments can be used to show that the perimeter
is sufficient for finding the αY when conditions C4, C5 or C6 are satisfied.

Relaxing the APL assumption

In the above analysis, we assumed that the OCS follows the APL property (Equation 4), but this
may not always hold in practice. However, OCS typically exhibit piece-wise APL [11]. Moreover,
our results require the piece-wise APL behavior to hold only for the 2D slices of the PSS, and
not necessarily for the entire domain of the OCS as a whole.

The idea now is to divide the domain of the OCS into its constitutent APL-compliant pieces,
and then apply the above-mentioned perimeter test independently to each of these pieces. Now
if the perimeter of each of these regions satisfy any of the conditions from C1 to C6 of Table 4
then by Theorem 4.5 the αY occurs on the perimeter. But we first have to identify the pieces
– for this purpose, we explicitly fit the OCS on the perimeter with piecewise linear functions.
The breakpoints of these linear pieces on the perimeter are then used to divide the domain of
the OCS into non-overlapping regions. The perimeter test can then be used on these regions in
isolation.

Moreover, an important point to note here is that we do not require an accurate quantitative fit,
but only an accurate qualitative fit – that is, the slope behavior should be adequately captured.

Let us consider an example PIC of the TPC-DS query 26, generated using repeated invocations
of the PostgreSQL optimizer. This is shown in Figure 9a. The 2D input domain of the OCS,
which is the 2D selectivity region spanned by dimensions 1 and 2 is divided into 9 regions. Each
region is then fitted with the 2D APL function of the form,

f(x, y) = ax+ by + cxy + d (11)

17

(a) Original OCS
(b) Partitioned OCS Do-
main

(c) OCS fitted with piecewise
functions

Figure 9: Original OCS and OCS fitted with an APL function per region of the partitioned input
domain

We use non-linear least squares regression to fit the function and we are able to do so with
normalized RMSE = 9 %. The projection of the boundaries of these regions on the input
domain is shown in Figure 9b. The computational complexity of the MaxSelRemoval perimeter
algorithm for k regions is O(2D−1 ∗D ∗ res ∗ k).

The problem now is identification of these regions where the Function 11 fits nicely. This is
done using the K-subspace clustering methods for 2D and higher dimensional planes as described
in [22] shown in Figure 9c. But using k-subspace clustering methods for identifying and fitting
the planes we need to provide the OCS values as an input to the algorithm. This implies explicitly
discovering the ESS which is a very expensive approach.

Hence we try to identify these regions using only PIC at perimeter. The perimeter constitutes
of 1D simplexes, the PIC at each of the 1D simplexes is a piecewise linear 1D function. For each
of these 1D OCSs we do the following, we first fit the 1D OCS with a piecewise linear function.
This operation is done by using the K-subspace clustering [22] method for line shaped clusters
shown in Figures 10a and 10b. The basic idea is as follows,

1. They represent a line by a point in space and unit direction. If the point is ck and the
direction is ak then a data point x can be decomposed into a parallel component x‖ =
ak[aTk (x− ck)] and a perpendicular component x⊥ = (x− ck)− x‖.

2. The distance between the point x and cluster Ck is defined as the perpendicular distance
between the point and the line :

Dist(x,Ck) =‖ x− ck − αak ‖2

where α = (x− ck)Tak.

3. The objective function is to minimize the total distance (dispersion) of the cluster, which
is min

ck,ak

∑
i∈Ck

Dist(xi, Ck).

4. They then give a Theorem that using the model parameters c = x̄(k) where x̄(k) =
1
|Ck|
∑

i∈Ck
xi is the centroid of the cluster and a = u1 where u1 is the first principal direc-

tion obtained by the principal component analysis(PCA) of the cluster points, we obtain
the optimal solution of the objective function stated previously.

18

We then identify the breakpoints of these linear pieces. We then use the combination of the
breakpoints from the different 1D simplexes to form 2D regions in the input domain. This is
shown in Figure 10c which is almost identical to the domain decomposition in Figure 9b which
was obtained using the PIC values for the entire region.

We then experimentally verify if the Function 11 fits well to the PIC restricted to the regions
obtained from the combinations of the breakpoints of the piecewise linear functions at perimeter.

If the inflation function f satisfies anyone the conditions in Table 4 then the α occurs at the
perimeter of one of these regions, since they together constitute the entire input domain.

(a) 1D OCS at perimeter Side
1

(b) 1D OCS at perimeter Side
2

(c) Dividing Input Domain us-
ing OCSs at perimeter

Figure 10: K-Subspace Clustering of 1D OCSs with linear clusters

Extension to Higher Dimensions

Our above analysis of the Perimeter Inflation procedure was carried out for a 3D PSS. For
handling a higher dimension PSS, we simply need to consider all its 2D-faces. Specifically, if the
perimeters of all the 2D-faces of the PSS satisfy any of the C1 to C6 conditions (Table 4), then
we know that αd occurs at the PSS perimeter, courtesy Theorem 4.5.

5 WeakDimRemoval techniques

The dimensions retained post SchematicRemoval and MaxSelRemoval techniques are the di-
mensions for which the ESS is constructed, that we assume to be D in number for the ease of
notations. After the ESS construction the iso-cost contours are identified for SB’s execution.
Here, an iso-cost contour, corresponding to cost C, represents the connected selectivity curve
along which the cost of the optimal plan is C. A sample contour can be seen in Figure 11a
shown as colored 1D curve. Series of contours starting from the lowest to highest cost in ESS,
with geometric progression of two, are constructed. The key idea in SB is to perform D plan
executions per contour from the lowest cost contour, until the actual selectivities of all the epps
are explicitly learnt. Finally, the optimal plan is identified and executed for query completion.
In this section we show how can we reduce the number of plan executions per-contour from D,
to attain a tighter MSO. Again for ease of exposition, we consider the base case of D = 2, with
epp X and Y . Then, move on to the 3D scenario to present the subtleties of the algorithm, from
where it can easily be generalized to arbitrary dimensions.

19

5.1 WeakDimRemoval 2D scenario

We use the sample the 2D ESS, shown in Figure 11a, for ease of exposition of the algorithm. The
figure depicts the iso-cost contour ICi, associated with cost CCi, and annotated with the optimal
plans P1, P2, P3 and P4. Note that the cost of these four plan on the contour locations costs CCi.
In SB each of these contour plans tries to individually and incrementally learn selectivities of the
two epps. SB carefully assign an epp for a contour plan to learn its selectivity, in order to achieve
MSO guarantees. This mode of execution of plans trying to learn individual epp selectivities is
referred to as spill-mode execution of the plan while spilling on the epp. For instance, in Figure
11a, the plan P1 is annotated as P y

1 to indicate that it spills on the epp Y during execution.

(a) Contour on a 2D ESS (b) WeakDimRemoval for D = 2

Contour Plan’s Learning epp in SB

For each plan on the contour ICi, SB chooses an epp on which that plan needs to be spilled, so
that the cost-budget for the plan is utilized to maximally learn the selectivity of that predicate
only. This choice is based on the plan structure and the ordering of its constituent pipelines. We
use this critical component of SB for our WeakDimRemoval technique, which is described next.

The 2D Algorithm

As mentioned before, SB requires at most two executions per contour until all the actual selectivity
for both the epps are learnt. Let us say that dimension X is removed (we discuss this choice
later) using the 2D WeakDimRemoval algorithm. The idea in the algorithm, is to piggyback X’s
plan execution (and, hence its selectivity learning) along with Y -spilling plans. This is achieved
by considering all plans that are X-spilling to be Y -spilling, in short, by ignoring the error-prone
X-predicate in the pipeline order. Thus, we end up in all plans in a contour to be Y spilling.
Finally, in order to make WeakDimRemoval MSO-efficient, we choose a plan on the contour which
is relatively the cheapest on all locations of the contour, which is captured by an inflation factor.
The maximum of these inflation factor’s across all the contours is captured by βX .

Now, if βX is low such that MSOSB(1) ∗ (1 + βX) < MSOSB(2), then WeakDimRemoval is
successful for reduction in the MSO. In essence, we say that the weak dimension, X’s execution
is piggybacked by its strong dimension counterpart Y .

Algorithm Trace Let us now trace the above algorithm for our example ESS and contour ICi.
First, we choose all the contour plans, which is P1 to P4. All these plans are assigned to spill on
epp Y . Then, each of these four plans, are costed at all the contour locations, in order to find

20

the best one-plan replacement with the least inflation factor. In this scenario, P1 happens to be
our best replacement plan, as shown in Figure 11b.

Proof of Correctness

The algorithm’s correctness, in order to achieve the desired MSO, is primarily dependent on the
lower bound of selectivity learning of a plan while piggybacking the executions.

Lemma 5.1 (Piggybacked Execution) Consider the contour plan Pr which replaces all the
plans on contour ICi with an cost inflation factor of βX . Further, let Pr is assigned to spill on
Y and executed with budget CCi(1 + βX). Then, then we either learn: (a) the exact selectivity of
Y , or (b) infer that qa lies beyond the contour.

Proof ICi represents the set of points in the ESS having their optimal cost equal to CCi. The
cost of all points q ∈ ICi is at most CCi(1 + βi

X) when costed using Pr. Now when the plan Pr

is executed in the spill-mode with cost budget CCi(1 + βi
X) it may or may not complete.

For an internal node N of a plan tree, we use N.cost to refer to the execution cost of the node.
Let NY denote the internal node corresponding to Y in plan Pr. Partition the internal nodes of
Pr into the following: Upstream(NY), {NY }, and Residual(NY), where Upstream(NY) denotes
the set of internal nodes of Pr that appear before node NY in the execution order, while Residual
(NY) contains all the nodes in the plan tree excluding Upstream(NY) and {NY }.Therefore,

Cost(Pr, q) =
∑

N∈Upstream(NY)

N.cost+NY .cost+
∑

N∈Residual(NY)

N.cost

Case-1 : The value of the first term in the summation Upstream(NY) is known with certainty
if it does not containNX . Further, the quantityNY .cost is computed assuming that the selectivity
of NY is q.y for any point q ∈ ICi with maximum sub-optimality of βi

X . Since the output of NY

is discarded and not passed to downstream nodes, the nodes in Residual(NY) incur zero cost.
Thus, when Pr is executed in spill-mode, the budget CCi(1 + βi

X) is sufficiently large to either
learn the exact selectivity of Y (if the spill-mode execution goes to completion) or to conclude
that qa.y is greater than q.y, ∀q ∈ ICi, since Pr is costed for all q ∈ ICi. Hence, qa lies beyond
the contour ICi.

Case-2 : Now if NX is contained in Upstream(NY) then its cost is not known with certainty,
however since Pr is costed for all q ∈ CCi, all the selectivity combinations of (q.x, q.y), ∀q ∈ ICi
get considered. Hence, for all these combinations the sum of the quantity

∑
N∈Upstream(NY)

N.cost+

NY .cost ≤ CCi(1 + βi
X). Similar to Case-1, the output of NY is discarded and not passed to

downstream nodes, hence the nodes in Residual(NY) incur zero cost. Thus, when Pr is executed
in spill-mode, the budget is sufficiently large to either learn the exact selectivity of Y and X (if
the spill-mode execution goes to completion) or to conclude that qa � q (strictly dominates) for
some q ∈ ICi which implies that Cost(Pqa , qa) > CCi i.e it lies beyond the contour by PCM.

Let there be m = log2

(
Cmax

Cmin

)
number of contours, let Pi be the best 1-plan replacement with

sub-optimality βi
X for each contour ICi from i = 1→ m. Let βX = max

i=1→m
βi
X .

Lemma 5.2 The MSO for the 2D scenario when contour plan replacement is done along a single
dimension X is 4(1 + βX).

21

Proof The query processing algorithm executes the best 1-plan replacement, Pi, for each contour
ICi, starting from the least cost contour. Each execution of Pi is performed with an inflated
budget of CCi(1 + βX). Since each contour now has only 1 plan with fixed inflated budget, using
the 1D SB algorithm with inflated contour budgets it is easy to show that the MSOfor the 2D
scenario post WeakDimRemoval is equal to MSOSB(1) ∗ (1 + βX) = 4 ∗ (1 + βX).

It is important to note that βX - which denotes the worst case sub-optimality incurred for
making plan replacements along the dimension X is a function of the dimension X itself.

Hence, By doing piggybacked executions of ‘weak’ dimensions (dimensions with low α) along
the ‘strong’ dimensions (dimensions with high α), WeakDimRemoval makes the MSO a function
of impactful dimensions only.

5.2 WeakDimRemoval 3D Scenario

In this sub-section we see how the WeakDimRemoval technique can be extended to the 3D scenario,
consisting of dimensions X, Y and Z, where we wish to do WeakDimRemoval along dimension
X. As in the 2D scenario, all the plans on the contour become either Y -spilling or Z-spilling by
ignoring the epp X in the pipeline order. Let the set of plans which were originally X-spilling
plans, but now considered as either Y -spilling or Z-spilling, be denoted by P T .

The main idea of the algorithm as stated earlier is to execute two plans (one for each strong
dimension) and piggyback the execution of the weak dimension along with these strong ones.
In our case, the execution of X is piggy backed with Y and Z. Let qxsup, q

x
inf denote the points

having maximum and minimum X-selectivity on the contour respectively. Also, let Supx = qxsup.x
and Infx = qxinf .x. Let us first characterize the geometry of the contours based on the minimum
and maximum selectivities of the replaced dimension X, captured by X = Supx and X = Supx
respectively. There are three possibilities:

1. a 2D contour line on the X = Infx slice and a point on X = Supx slice

2. a 2D contour line on the X = Supx slice and a point on X = Infx slice

3. a 2D contour line on both X = Infx and X = Supx slices

The rest of the section and figures correspond to the Case 1, but all the Lemmas and Theorems
are easily generalizable for all the cases mentioned above.

To piggyback X’s execution with Y , consider a point q′ on the X = Infx slice, let its coordinates
be such that q′ = (Infx, y

′, z′). This is shown in Figure 12a. Let us define the set Sy′ := {q|q ∈
ICi and q.y ≤ y′}, that contains all the (x, y) selectivity combinations pertaining to the contour
such that y ≤ y′.

We now construct the minimal (x, y)-dominating set, that spatially dominates all points in Sy′

denoted by Ŝy′ . Formally,

Ŝy′ := ∀q ∈ Sy′ , ∃q̂ ∈ Ŝy′ such that (q̂.x, q̂.y) � (q.x, q.y) (12)

We do the best 1-plan replacement (where Y -spilling plans are chosen from P T) for the set
Ŝy′ , and say we get the plan P y (shown in Figure 12c) . Now by PCM all the (x, y) selectivity
combinations of the set Sy′ get covered by plan P y since it is costed on the spatially dominating
set of Sy′ . Similarly, we can obtain a P z plan for q′ (shown in Figure 12b). The plan with
minimum sub-optimality among the two, is chosen as the plan replacement for q′ (shown in
Figure 12a).

22

(a) Choice of a Plan for a point
q′

(b) Choice of P z Plan for a
point q′

(c) Choice of P y Plan for a
point q′

Figure 12: WeakDimRemoval 3D Scenario Phase 1

For all such q′ on the X = Infx slice (the 2D contour line on the slice), we either assign
it a P y or P z plan i.e. a Y -spilling plan or a Z-spilling plan respectively. The point with
maximum Y -coordinate which has a Y - spilling plan assigned to it is called as qymax and the plan
corresponding to it as P y

max. Similarly we obtain qzmax, with the corresponding Z-spilling plan
P z
max. This procedure is depicted in Figure 13a where the green lines correspond to the points

covered by Y -spilling plans and the red corresponding to the points covered by Z-spilling plans.
Let Y = qymax.y and Z = qzmax.z ,

Lemma 5.3 Let the following sets be defined as SY := {q|q ∈ ICi and q.y ≤ Y} and SZ :=
{q|q ∈ ICi and q.z ≤ Z}. Then every point q ∈ ICi belongs to either SY or SZ .

Proof Let us prove by contradiction. We know that qymax is the point on X = Infx slice which is
covered by P y

max, let its coordinates be qymax := (Infx,Y , z). Analogously let qzmax := (Infx, y,Z).
It is evident that qymax.z ≤ Z, also qzmax.y ≤ Y . Hence the point q̄ := (Infx,Y ,Z) is such
that q̄ � qymax and q̄ � qzmax which implies that cost(q̄) ≥ CCi. Now if there exists a point
q̃ such that q̃ ∈ ICi but q̃ /∈ SY and q̃ /∈ SZ . This implies that q̃ � q̄ which further implies
cost(q̃) > cost(q̂) ≥ CCi. Hence q̃ /∈ ICi. Hence the proof.

Hence (SY ∪SZ) covers all the points of the contour ICi. This is depicted in Figure 13b, where
the set SY covers the green area and the thick green curve is the set ŜY .

(a) Choosing the P y
max and P z

max plans (b) Sets SY , SZ , ŜY and ŜZ

Figure 13: WeakDimRemoval 3D Scenario Phase 2

Lemma 5.4 If P y
max plan is costed on the set ŜY with βy

X as maximum sub-optimality and if P y

is executed in spill-mode with budget (1 + βy
X)CCi and does not complete then qa /∈ SY .

23

Proof Since P y
max plan is costed on the set ŜY with βy as maximum sub-optimality, and by

definition of the set ŜY , the plan P y
max essentially covers all the combinations of X and Y selectivity

pairs for all the points q belonging to contour ICi such that q.y ≤ Y . This is precisely the set
SY . Hence if the point qa ∈ SY then the spill-mode execution with plan P y

max completes (from
Lemma 5.1) and thereby the lemma follows.

Similarly we can prove the following Lemma,

Lemma 5.5 If P z
max plan is costed on the set ŜZ with βz

X as maximum sub-optimality and if P z

is executed in spill-mode with budget (1 + βz
X)CCi and does not complete then qa /∈ SZ .

Corollary 5.6 If the spill-mode executions of both the plans, P y
max with budget (1 + βy

X)CCi and
P z
max with budget (1 + βz

X)CCi, do not complete then qa lies beyond the contour ICi.

Proof From Lemmas 5.4 and 5.5 we can infer that qa /∈ SY and qa /∈ SZ . This implies qa /∈
(SY ∪ SZ) and from Lemma 5.3 we can conclude that qa lies beyond the contour ICi.

Consider the situation where qa is located in the region between ICk and ICk+1, or is directly on
ICk+1. Then, the SpillBound algorithm explores the contours from 1 to k + 1 before discovering
qa. In this process,

Lemma 5.7 In 3D-scenario the WeakDimRemoval Strategy ensures that at most two plans are
executed from each of the contours IC1, ..., ICk+1, except for one contour in which at most three
plans are executed.

Proof Let the exact selectivity of one of the epps(Y or Z) be learnt in contour ICh, where
1 ≤ h ≤ k + 1. We know that at most two plans are required to be executed in each of the
contours IC1, . . . , ICh (from Lemma 5.6). Subsequently, once the selectivity of one of the epps is
learnt it boils down to 2-D scenario of Contour Plan Replacement which begins operating from
contour ICh, resulting in three plans being executed in ICh, and one plan each in contours ICh+1

through ICk+1.

Let βi
X = max(βy

X , β
z
X) for each of the contours from i = 1→ m. Also let βX = max

{i=1→m}
βi
X .

We now analyze the worst-case cost incurred by SB after the Contour Plan Replacement
strategy. For this, we assume that the contour with three plan executions is the costliest contour
ICk+1. Since the ratio of costs between two consecutive contours is 2, the total cost incurred by
SB is bounded as follows:

TotalCost ≤ 2 ∗ CC1(1 + βX) + ...+ 2 ∗ CCk(1 + βX) + 3 ∗ CCk+1(1 + βX)

= (1 + βX)(2 ∗ CC1 + ..+ 2 ∗ 2k−1CC1 + 3 ∗ 2kCC1)

= (1 + βX)(2 ∗ CC1(1 + 2 + ...2k) + 2k ∗ CC1)
= (1 + βX)(2 ∗ CC1(2k+1 − 1) + 2k ∗ CC1)
≤ (1 + βX)(2k+2 ∗ CC1 + 2k ∗ CC1) = (1 + βX) ∗ 5 ∗ 2k ∗ CC1

From the PCM assumption, we know that the cost for an oracle algorithm (that apriori knows
the location of qa) is lower bounded by CCk. By definition, CCk = 2k−1 ∗ CC1. Hence,

MSO ≤ (1 + βX) ∗ 5 ∗ 2k ∗ CC1
2k−1 ∗ CC1

= 10(1 + βX)

leading to the theorem:

24

Theorem 5.8 With the Contour Plan Replacement done along dimension X, the MSO for the
3-D Scenario is 10(1 + βX) = MSOSB(2) ∗ (1 + βX).

If MSOSB(2) ∗ (1 + βX) < MSOSB(3) then the dimension X is successfully replaced by
WeakDimRemoval technique.

5.3 WeakDimRemoval Overheads

Let the maximum number of plans on any contour be denoted by ρ, the maximum number of
contours be m. The ESS dimensionality post SchematicRemoval and MaxSelRemoval is D− kr,
which makes the size of the contour rD−kr−1. Then the effort required to do WeakDimRemoval is
of the order O(ρ ∗m ∗ rD−kr−1) Abstract Plan Costing (APC) calls. The APC calls are typically
at least 100 times faster than usual optimizer calls, since the optimizer does not need to come up
with a plan for the given location, instead it just needs to cost the specified plan using its cost
model which makes it extremely economical. By doing an intra-contour anorexic plan reduction
[8], we have ρanorexic: the maximum number of reduced plans on any contour, which is typically
less than 10.

Overheads((PR))

Overheads(SB)
=

(ρanorexic ∗m ∗ rD−kr−1) ∗APC calls

rD−kr ∗OPT calls

=
(ρanorexic ∗m ∗ rD−kr−1) ∗ 10−2

m ∗ rD−kr−1

=
ρanorexic ∗m
r ∗ 100

≤ 1

r
(For typical values of ρanorexic and m)

This makes the overheads of WeakDimRemoval just 1% of the overall required compile time
effort for the resolution r = 100.

6 Experimental Evaluation

Having described the DimRed technique, we now turn our attention to its empirical evaluation.
The experimental framework is described first, followed by an analysis of the results.

6.1 Database and System Framework

All our experiments were carried out on a generic HP Z440 multi-core workstation provisioned
with 32 GB RAM, 512 GB SSD and 2TB HDD. The database engine was a modified version
of the PostgreSQL 9.4 engine [20], with the primary additions being: (a) Selectivity Injection,
required to generate the POSP overlay of the PSS; (b) Abstract Plan Costing, required to cost
a specific plan at a particular PSS location; (c) Abstract Plan Execution, required to force the
execution engine to execute a particular plan; (d) Plan Recosting, required to cost an abstract
plan for a query; and (e) Time-limited Execution, required to implement the calibrated sequence
of executions with associated time budgets.

Our test workload is comprised of a representative suite of complex OLAP queries, which
are all based on queries appearing in the synthetic TPC-DS benchmark and the real-data JOB

25

benchmark [17].4 Specifically, for TPC-DS, we have evaluated 31 SPJ queries operating on a
database size of 100 GB. The number of relations in these queries range from 4 to 10, and
a spectrum of join-graph geometries are modeled, including chain, star, branch, etc. On the
other hand, for JOB, we have evaluated acyclic versions of 21 queries, operating on a database
size of 5 GB, and also featuring a wide spectrum of join-graph geometries. More importantly,
JOB features complex filter predicates involving string comparisons with the LIKE operator, and
multiple predicates on a single base relation.

We also deliberately created challenging environments for DimRed by maximizing the range of
cost values in the PSS, making it more likely for dimensions to be retained. This was achieved
through an index-rich physical schema that created indexes on all the attribute columns appear-
ing in the queries.

6.2 Goodness of OCS Fit (Surface and Perimeter)

For verifying the modelling of OCS described in Section 4, we consider the 2D faces of the PSS

post SchematicRemoval, and divide the input domain first using the entire OCS surface and
then using just the perimeter using the methods described in Section 4.4. Next, to measure the
goodness of the fit we compute the Normalized RMSE and Normalized Max Error. The results
in the Tables 5 and 6 show that we are able to achieve modest fitting with perimeter as well
and hence validate our claims.

Table 5: RMSE (TPC-DS)

Query
Number

Surface Fit Perimeter Fit
Normalized

RMSE
Normalized
Max Error

Normalized
RMSE

Normalized
Max Error

Q03 11.60 24.51 14.68 25.99
Q07 15.79 22.16 17.30 25.61
Q12 16.50 16.56 23.00 25.09
Q15 10.62 16.63 11.82 17.05
Q18 10.48 21.79 16.63 19.94
Q19 16.45 22.68 17.36 26.83
Q21 16.34 27.32 17.02 28.71
Q22 11.33 14.84 14.48 15.53
Q26 11.42 22.02 11.61 24.58
Q27 16.94 27.32 17.32 28.65
Q29 15.20 16.33 19.29 20.57
Q36 8.47 23.15 15.36 28.94
Q37 9.58 23.29 12.06 20.23
Q40 15.48 21.48 17.12 29.80
Q42 9.09 26.96 17.56 28.04
Q43 14.99 22.42 16.19 24.25
Q52 15.14 21.70 18.14 29.30
Q53 14.39 21.32 17.25 27.72
Q55 9.03 14.72 18.47 27.11
Q62 15.78 22.78 16.40 34.14
Q63 9.90 10.28 11.78 19.50
Q67 10.19 11.21 10.44 12.29
Q73 14.52 19.30 16.36 24.55
Q82 10.56 17.36 10.84 25.43
Q84 16.78 27.29 17.03 29.51
Q86 15.35 19.54 17.28 23.29
Q89 10.59 19.92 19.37 29.49
Q91 16.42 22.22 13.88 24.53
Q96 14.17 27.84 20.07 29.89
Q98 14.20 15.70 15.02 26.86
Q99 14.88 15.63 18.30 29.87

Table 6: RMSE (JOB)

Query
Number

Surface Fit Perimeter Fit
Normalized

RMSE
Normalized
Max Error

Normalized
RMSE

Normalized
Max Error

Q01 15.30 20.62 18.02 26.58
Q08 11.86 15.82 18.81 29.15
Q09 12.40 13.65 14.95 19.51
Q10 14.31 22.79 16.06 24.59
Q11 12.27 19.12 15.11 21.35
Q12 11.18 16.13 15.69 19.70
Q13 7.91 10.14 18.64 27.85
Q14 13.06 13.54 15.86 25.83
Q15 15.43 16.74 18.62 20.39
Q16 16.77 25.68 19.13 16.46
Q19 15.11 24.27 15.41 26.93
Q20 10.19 16.54 18.76 27.40
Q21 9.84 19.68 12.74 26.69
Q22 8.77 19.29 15.99 23.52
Q23 12.91 17.63 16.92 20.62
Q24 11.36 17.39 13.95 19.39
Q25 11.72 11.83 14.90 16.50
Q26 9.23 14.11 17.35 25.95
Q28 12.46 17.19 19.06 26.32
Q29 9.11 11.88 13.23 21.01
Q33 11.83 20.65 13.83 25.32

4While the DimRed approach is conceptually applicable to the native queries in these benchmarks, the modifi-
cations are an artifact of our limited implementation of robustness-related features (e.g. selectivity injection) in
the PostgreSQL engine.

26

6.3 Validation of Perimeter Inflation

As discussed in Section 4, an efficient implementation of MaxSelRemoval requires the αd cor-
responding to any dimension d to be located on the perimeter of either the PSS itself, or its
piece-wise approximation. We have conducted a detailed validation of this behavioral assump-
tion. Specifically, we carried out an offline exhaustive construction of the complete PSS and
calculated the αd for each dimension d. These values were then compared with the αs obtained
by restricting the calculation to only the perimeter(s) of the PSS. The results showed that for all
the queries in our workload, α did occur on the perimeter. In fact, for most of the dimensions
in these queries, the α occurred not just on the perimeter, but at the vertices of the PSS.

6.4 Overheads Minimization Objective

(a) TPC-DS Queries

(b) JOB Queries

Figure 14: Dimensionality Reduction for Overheads Minimization

We now turn our attention to the DimRed performance on the overheads minimization metric,
where the objective is to minimize the PSS dimensionality while retaining MSO-safety. The
performance results for this scenario are shown in Figures 14a and 14b for the TPC-DS and JOB
query suites, respectively. In these figures, the full height of each vertical bar shows the original

27

(a) TPC-DS Queries

(b) JOB Queries

Figure 15: MSO Profile for Overheads Minimization

PSS dimensionality, while the bottom segment (blue fill) within the bar indicates the final ESS
dimensionality, after reduction by the SchematicRemoval (yellow checks) and MaxSelRemoval

(green braid) modules.
The important observation here is that across all the queries, the ESS dimensionality is es-

sentially “anorexic”, being always brought down to five or less. In fact, for as many as 10
queries in TPC-DS and 11 queries in JOB the number of dimensions retained is just 1! We also
see that MaxSelRemoval usually plays the primary role, and SchematicRemoval the secondary
role, in realizing these anorexic dimensionalities. Inspection of the retained dimensions showed
that all the base filter predicates are removed from the PSS either by SchematicRemoval or by
MaxSelRemoval, leaving behind only the high-impact join dimensions. Another observation is
that SchematicRemoval removal is not as successful on the JOB benchmark as on TPC-DS – this
is due to the complex filter predicates on the base relations. But by using the bounds provided
by SchematicRemoval, MaxSelRemoval is successfully able to remove all of them with only a
small MSO inflation. These results also justify our creation of an automated pipeline to replace
the handpicking of dropped dimensions in the earlier literature.

After the above dimensionality reduction, the next step in the DimRed pipeline is to try and
improve the MSO through invocation of the WeakDimRemoval module. The resulting MSO val-

28

ues are shown in Figures 15a and 15b for the TPC-DS and JOB query suites, respectively.
In these figures, the full height of each vertical bar shows the MSO of the original PSS, while
the bottom segment (blue fill) within the bar indicates the final MSO, after initial improve-
ments by SchematicRemoval and MaxSelRemoval (yellow-green checks) and subsequently by
WeakDimRemoval (red lines). The important observation here is that for a majority of the queries,
the final MSO is substantially lower than the starting value. For instance, with TPC-DS Q91,
the MSO is tightened from 180 to 40, and with JOB Q19, the improvement is from 130 to 35.
Overall, we find an average decrease of 50% and 67% for TPC-DS and JOB, respectively.

6.5 MSO Minimization Objective

(a) TPC-DS Queries

(b) JOB Queries

Figure 16: Dimensionality Reduction for MSO Minimization

We now turn our attention to the goal of dimensionality reduction with the objective of min-
imizing MSO, subject to the safety requirement. The dimensionality results for this alternative
scenario are shown in Figures 16a and 16b for the TPC-DS and JOB query suites, respectively.
In these figures, the full height of each vertical bar shows the original PSS dimensionality, while

29

(a) TPC-DS Queries

(b) JOB Queries

Figure 17: MSO Profile for MSO Minimization

the bottom blue segment within the bar indicates the final ESS dimensionality, after reduction
by the SchematicRemoval (yellow checks) and MaxSelRemoval (green braids) modules.

As should be expected, the number of dimensions retained are slightly higher with MSO
minimization as compared to overheads minimization. However, all queries still have less than
or equal to five dimensions.

The corresponding MSO profile is shown in Figures 17a and 17b for the TPC-DS and JOB
query suites, respectively confirm this claim. Again, the full vertical height captures the original
MSO, and the bottom segment (blue fill) shows the final MSO, after improvements due to
SchematicRemoval (yellow checks), MaxSelRemoval (green braid) and WeakDimRemoval (red
lines).

In summary, for the TPC-DS queries, we obtain an average improvement of 62%, whereas for
the JOB queries it is 77%.

6.6 Time Efficiency of DimRed

A plausible concern about DimRed is whether the overheads saved due to dimensionality reduction
may be negated by the computational overheads of the pipeline itself. To address this issue, we

30

present in Table 7, a sample profile of DimRed’s efficiency, corresponding to TPC-DS Query 91,
which is the highest dimensionality query in our workload, featuring 6 filter and 6 join predicates.
In the table, the optimizer calls made by the pipeline, and the overall time expended in this
process, are enumerated. We find that the entire pipeline completes in less than 15 minutes,
inclusive of the POSP overlay on the ESS, whereas the compilation efforts on the original PSS
would have taken more than a year!

Table 7: DimRed Efficiency: TPC-DS Query 91

Dimensionality MSO
Overheads
(Opt Calls)

Time (Secs)

PSS 12 180 4 quadrillion(1015) ¿ 1 year
Schematic

Removal
9 108 5 ∗ 105(MaxSel)

+ 32 ∗ 105(ESS)
+ 1.6 ∗ 105(WeakDim)

= 38.6 ∗ 105

100 (MaxSel)
+ 640 (ESS)

+ 32 (WeakDim)
≈ 13 minutes

MaxSel

Removal
5 84

WeakDim

Removal
2 44

Table 8: DimRed Time Efficiency: TPC-DS (Overheads Minimization)

Query
Number

Overheads (Optimizer Calls) Overheads(Time in Secs)
MaxSel
Calls

ESS
Calls

WeakDim
Calls

Total MaxSel ESS WeakDim Total

Q03 640 400 20 1060 0.128 0.08 0.004 0.212
Q07 1600 20 1 1621 0.32 0.004 0.0002 0.3242
Q12 640 400 20 1060 0.128 0.08 0.004 0.212
Q15 1600 8000 400 10000 0.32 1.6 0.08 2
Q18 20480 3200000 160000 3380480 4.096 640 32 676.096
Q19 20480 3200000 160000 3380480 4.096 640 32 676.096
Q21 8960 20 1 8981 1.792 0.004 0.0002 1.7962
Q22 640 20 1 661 0.128 0.004 0.0002 0.1322
Q26 3840 400 20 4260 0.768 0.08 0.004 0.852
Q27 46080 20 1 46101 9.216 0.004 0.0002 9.2202
Q29 46080 3200000 160000 3406080 9.216 640 32 681.216
Q36 640 8000 400 9040 0.128 1.6 0.08 1.808
Q37 3840 8000 400 12240 0.768 1.6 0.08 2.448
Q40 3840 8000 400 12240 0.768 1.6 0.08 2.448
Q42 640 20 1 661 0.128 0.004 0.0002 0.1322
Q43 240 20 1 261 0.048 0.004 0.0002 0.0522
Q52 640 20 1 661 0.128 0.004 0.0002 0.1322
Q53 3840 400 20 4260 0.768 0.08 0.004 0.852
Q55 1600 20 1 1621 0.32 0.004 0.0002 0.3242
Q62 1600 160000 8000 169600 0.32 32 1.6 33.92
Q63 3840 400 20 4260 0.768 0.08 0.004 0.852
Q67 640 8000 400 9040 0.128 1.6 0.08 1.808
Q73 1600 8000 400 10000 0.32 1.6 0.08 2
Q82 46080 8000 400 54480 9.216 1.6 0.08 10.896
Q84 20480 3200000 160000 3380480 4.096 640 32 676.096
Q86 240 20 1 261 0.048 0.004 0.0002 0.0522
Q89 1600 8000 400 10000 0.32 1.6 0.08 2
Q91 491520 3200000 160000 3851520 98.304 640 32 770.304
Q96 1600 8000 400 10000 0.32 1.6 0.08 2
Q98 640 20 1 661 0.128 0.004 0.0002 0.1322
Q99 1600 160000 8000 169600 0.32 32 1.6 33.92

31

Table 9: DimRed Time Efficiency: JOB (Overheads Minimization)

Query
Number

Overheads (Optimizer Calls) Overheads(Time in Secs)
MaxSel
Calls

ESS
Calls

WeakDim
Calls

Total MaxSel ESS WeakDim Total

Q01 640 20 1 661 0.1280 0.0040 0.0002 0.1322
Q08 640 20 1 661 0.1280 0.0040 0.0002 0.1322
Q09 20480 400 20 20900 4.0960 0.0800 0.0040 4.1800
Q10 1600 400 20 2020 0.3200 0.0800 0.0040 0.4040
Q11 20480 20 1 20501 4.0960 0.0040 0.0002 4.1002
Q12 640 20 1 661 0.1280 0.0040 0.0002 0.1322
Q13 3840 160000 8000 171840 0.7680 32.0000 1.6000 34.3680
Q14 8960 400 20 9380 1.7920 0.0800 0.0040 1.8760
Q15 3840 20 1 3861 0.7680 0.0040 0.0002 0.7722
Q16 640 400 20 1060 0.1280 0.0800 0.0040 0.2120
Q19 20480 20 1 20501 4.0960 0.0040 0.0002 4.1002
Q20 1600 400 20 2020 0.3200 0.0800 0.0040 0.4040
Q21 8960 20 1 8981 1.7920 0.0040 0.0002 1.7962
Q22 8960 400 20 9380 1.7920 0.0800 0.0040 1.8760
Q23 1600 8000 400 10000 0.3200 1.6000 0.0800 2.0000
Q24 20480 20 1 20501 4.0960 0.0040 0.0002 4.1002
Q25 240 20 1 261 0.0480 0.0040 0.0002 0.0522
Q26 8960 20 1 8981 1.7920 0.0040 0.0002 1.7962
Q28 8960 400 20 9380 1.7920 0.0800 0.0040 1.8760
Q29 20480 400 20 20900 4.0960 0.0800 0.0040 4.1800
Q33 1600 20 1 1621 0.3200 0.0040 0.0002 0.3242

Table 10: DimRed Time Efficiency: TPC-DS (MSO Minimization)

Query
Number

Overheads (Optimizer Calls) Overheads(Time in Secs)
MaxSel
Calls

ESS
Calls

WeakDim
Calls

Total MaxSel ESS WeakDim Total

Q03 640 400 20 1060 0.128 0.08 0.004 0.212
Q07 1600 160000 8000 169600 0.32 32 1.6 33.92
Q12 640 400 20 1060 0.128 0.08 0.004 0.212
Q15 1600 8000 400 10000 0.32 1.6 0.08 2
Q18 20480 3200000 160000 3380480 4.096 640 32 676.096
Q19 20480 3200000 160000 3380480 4.096 640 32 676.096
Q21 8960 8000 400 17360 1.792 1.6 0.08 3.472
Q22 640 8000 400 9040 0.128 1.6 0.08 1.808
Q26 3840 160000 8000 171840 0.768 32 1.6 34.368
Q27 46080 160000 8000 214080 9.216 32 1.6 42.816
Q29 46080 3200000 160000 3406080 9.216 640 32 681.216
Q36 640 8000 400 9040 0.128 1.6 0.08 1.808
Q37 3840 8000 400 12240 0.768 1.6 0.08 2.448
Q40 3840 8000 400 12240 0.768 1.6 0.08 2.448
Q42 640 400 20 1060 0.128 0.08 0.004 0.212
Q43 240 400 20 660 0.048 0.08 0.004 0.132
Q52 640 400 20 1060 0.128 0.08 0.004 0.212
Q53 3840 8000 400 12240 0.768 1.6 0.08 2.448
Q55 1600 400 20 2020 0.32 0.08 0.004 0.404
Q62 1600 160000 8000 169600 0.32 32 1.6 33.92
Q63 3840 8000 400 12240 0.768 1.6 0.08 2.448
Q67 640 8000 400 9040 0.128 1.6 0.08 1.808
Q73 1600 8000 400 10000 0.32 1.6 0.08 2
Q82 46080 8000 400 54480 9.216 1.6 0.08 10.896
Q84 20480 3200000 160000 3380480 4.096 640 32 676.096
Q86 240 400 20 660 0.048 0.08 0.004 0.132
Q89 1600 8000 400 10000 0.32 1.6 0.08 2
Q91 491520 3200000 160000 3851520 98.304 640 32 770.304
Q96 1600 8000 400 10000 0.32 1.6 0.08 2
Q98 640 400 20 1060 0.128 0.08 0.004 0.212
Q99 1600 160000 8000 169600 0.32 32 1.6 33.92

Notwithstanding the above, it is still possible that there may be queries for which DimRed’s
overheads may prove to be impractically large. But this situation can also be addressed by lever-
aging the recently developed FrugalSpillBound algorithm [13], which provides a very attractive
tradeoff between POSP overlay overheads and the MSO guarantee – specifically, an exponential
decrease in overheads at the cost of a linear relaxation in MSO. Since our MSO improvements due
to the pipeline are typically quite substantial, as highlighted in the above experiments, it is quite
likely that even after the relaxation is applied, MSO-safety will continue to be retained. In fact,
the attractive results presented in [13] were achieved in conjunction with the SchematicRemoval

and MaxSelRemoval modules of DimRed.

32

Table 11: DimRed Time Efficiency: JOB (MSO Minimization)

Query
Number

Overheads (Optimizer Calls) Overheads(Time in Secs)
MaxSel
Calls

ESS
Calls

WeakDim
Calls

Total MaxSel ESS WeakDim Total

Q01 640 20 1 661 0.1280 0.0040 0.0002 0.1322
Q08 640 20 1 661 0.1280 0.0040 0.0002 0.1322
Q09 20480 160000 8000 188480 4.0960 32.0000 1.6000 37.6960
Q10 1600 400 20 2020 0.3200 0.0800 0.0040 0.4040
Q11 20480 8000 400 28880 4.0960 1.6000 0.0800 5.7760
Q12 640 20 1 661 0.1280 0.0040 0.0002 0.1322
Q13 3840 160000 8000 171840 0.7680 32.0000 1.6000 34.3680
Q14 8960 8000 400 17360 1.7920 1.6000 0.0800 3.4720
Q15 3840 8000 400 12240 0.7680 1.6000 0.0800 2.4480
Q16 640 400 20 1060 0.1280 0.0800 0.0040 0.2120
Q19 20480 160000 8000 188480 4.0960 32.0000 1.6000 37.6960
Q20 1600 8000 400 10000 0.3200 1.6000 0.0800 2.0000
Q21 8960 8000 400 17360 1.7920 1.6000 0.0800 3.4720
Q22 8960 160000 8000 176960 1.7920 32.0000 1.6000 35.3920
Q23 1600 160000 8000 169600 0.3200 32.0000 1.6000 33.9200
Q24 20480 8000 400 28880 4.0960 1.6000 0.0800 5.7760
Q25 240 400 20 660 0.0480 0.0800 0.0040 0.1320
Q26 8960 160000 8000 176960 1.7920 32.0000 1.6000 35.3920
Q28 8960 160000 8000 176960 1.7920 32.0000 1.6000 35.3920
Q29 20480 160000 8000 188480 4.0960 32.0000 1.6000 37.6960
Q33 1600 8000 400 10000 0.3200 1.6000 0.0800 2.0000

7 Conclusions

The PlanBouquet and SpillBound algorithms have brought welcome robustness guarantees to
database query processing. However, they are currently practical only for low-dimensional selec-
tivity spaces since their compilation overheads are exponential in the dimensionality, and their
performance bounds are quadratic in the dimensionality. In this paper, we have shown how
seemingly high-dimensional queries can be systematically reduced to low-dimension equivalents
without sacrificing the performance guarantees, thereby significantly increasing the coverage of
the robust techniques.

We presented the DimRed pipeline, which leverages schematic, geometric and piggybacking
techniques to reduce even queries with double digit dimensionalities to five or less dimensions.
In fact, for quite a number of queries, the dimensionality came down to the lowest possible value
of 1! Gratifyingly, not only could we dramatically decrease the overheads due to such reductions,
but could also significantly improve the quality of the performance guarantee. Therefore, in an
overall sense, DimRed offers a substantive step forward in making robust query processing feasible
on current environments. Our techniques have been tested thus far on acyclic SPJ queries. In
our future work, we would like to extend our implementation and analysis to both nested and
cyclic queries.

References

[1] Dagstuhl Seminar. Robust Query Processing. www.dagstuhl.de/en/program/calendar/

semhp/?semnr=10381, 2010.

[2] Dagstuhl Seminar. Robust Query Processing. www.dagstuhl.de/en/program/calendar/

semhp/?semnr=12321, 2012.

[3] Dagstuhl Seminar. Robust Query Processing. www.dagstuhl.de/en/program/calendar/

semhp/?semnr=17222, 2017.

[4] Surajit Chaudhuri, Venkatesh Ganti, and Luis Gravano. Selectivity estimation for string
predicates: Overcoming the underestimation problem. In IEEE ICDE Conf., 2004.

33

[5] A. Dutt and J. Haritsa. Plan bouquets: Query processing without selectivity estimation. In
ACM SIGMOD Conf., 2014.

[6] A. Dutt and J. Haritsa. Plan bouquets: A fragrant approach to robust query processing.
ACM TODS, 41(11), 2016.

[7] G. Graefe. The cascades framework for query optimization. IEEE Data Eng. Bull., 18(3):19–
29, 1995.

[8] D. Harish, P. Darera, and J. Haritsa. On the production of anorexic plan diagrams. In
VLDB Conf., 2007.

[9] D. Harish, P. Darera, and J. Haritsa. Identifying robust plans through plan diagram reduc-
tion. PVLDB, 1(1):1124–1140, 2008.

[10] H. Harmouch and F. Naumann. Cardinality estimation: An experimental survey. PVLDB,
11(4):499–512, 2017.

[11] A. Hulgeri and S. Sudarshan. Parametric query optimization for linear and piecewise linear
cost functions. In VLDB Conf., 2002.

[12] S. Karthik, J. Haritsa, S. Kenkre, and V. Pandit. Platform-independent robust query pro-
cessing. In IEEE ICDE Conf., 2016.

[13] S. Karthik, J. Haritsa, S. Kenkre, and V. Pandit. A concave path to low-overhead robust
query processing. PVLDB, 11(13):2183–2195, 2018.

[14] S. Karthik, J. Haritsa, S. Kenkre, V. Pandit, and L. Krishnan. Platform-independent robust
query processing. IEEE TKDE, 2017.

[15] Hongrae Lee, Raymond T. Ng, and Kyuseok Shim. Extending q-grams to estimate selectivity
of string matching with low edit distance. In VLDB Conf., 2007.

[16] Hongrae Lee, Raymond T. Ng, and Kyuseok Shim. Approximate substring selectivity esti-
mation. In EDBT Conf., 2009.

[17] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann. How good are
query optimizers, really? PVLDB, 9(3):204–215, 2015.

[18] Guy Lohman. Is query optimization a solved problem? http://wp.sigmod.org/?p=1075,
2014.

[19] V. Markl, V. Raman, D. Simmen, G. Lohman, H. Pirahesh, and M. Cilimdzic. Robust query
processing through progressive optimization. In ACM SIGMOD Conf., 2004.

[20] PostgreSQL. http://www.postgresql.org/docs/9.4/static/release.html.

[21] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. Access path selection in
a relational database management system. In ACM SIGMOD Conf., 1979.

[22] D. Wang, C. Ding, and T. Li. K-subspace clustering. In ECML-PKDD Conf., 2009.

34

