High Fidelity Database Generators

Anupam Sanghi Rajkumar Santhanam Jayant R. Haritsa

Technical Report
TR-2021-01
(January 2021)

Database Systems Lab
Dept. of Computational and Data Sciences
Indian Institute of Science
Bangalore 560012, India

https://dsl.cds.iisc.ac.in

Abstract

Generating synthetic databases that capture essential data characteristics of client databases is a
common requirement for database vendors. Over the last decade, several database generators have
been proposed that aim for statistical fidelity on metrics such as volumetric similarity. While these
techniques have broken new ground, their applicability is restricted to the predefined query work-
loads, i.e. they have a poor accuracy on unseen queries. This is because of (a) treating all candidate
databases equally, (b) inserting an artificial skew in the database, (c) the generated data does not
comply with the metadata statistics. In this report, we present HF-Hydra, a new database generator
that explicitly aims to address these issues while retaining the ability to scale to big data volumes.
Specifically, improved fidelity is achieved through careful choices among the set of candidate syn-
thetic databases and incorporation of metadata constraints. With a detailed experimental study, we
validate the quality and efficiency of the proposed approach.

1 Introduction

Database vendors often need to generate synthetic databases for a variety of use-cases, including: (a)
testing engine components, (b) data masking, (c) testing of database applications with embedded SQL,
(d) performance benchmarking, (e) analyzing what-if scenarios, and (f) proactively assessing the perfor-
mance impacts of planned engine upgrades. Accordingly, several synthetic data generation techniques
([7], [4], [13], [3], [9]) have been proposed in the literature over the past few decades, the most recent
being Hydra ([11], [12]), which has been leveraged in the software and telecom industries.

Hydra is based on a workload-aware declarative approach to database regeneration, and aims to cre-
ate synthetic databases that achieve volumetric similarity on pre-defined query workloads. Specifically,
it takes as input from the client, the metadata and query execution plans corresponding to a query work-
load. With this input, it generates a synthetic database at the vendor site such that a similar volume of
data is processed at each stage of the query execution pipeline for the workload queries. A special
feature of Hydra that makes it amenable to Big Data environments is that the data generation can be
done “on-demand”, obviating the need for materialization. This functionality is achieved through the
construction of a concise database summary.

While Hydra has the above-mentioned desirable characteristics, its applicability is restricted to han-
dling volumetric similarity on seen queries. Generalization to new queries can be necessary requirement
at the vendor site as part of the ongoing evaluation exercise. However, Hydra’s poor robustness is an
artifact of its following design choices:

No Preference among Feasible Solutions: There can be several feasible solutions to the SMT prob-
lem. However, Hydra does not prefer any particular solution over the others. Moreover, due to
the usage of Simplex algorithm internally, the SMT solver returns a sparse solution, i.e., it assigns
non-zero cardinality to very few regions. This leads to very different inter-region distribution of
tuples in the original and synthetic databases.

Artificial Skewed Data: Within a region that gets a non-zero cardinality assignment, Hydra generates
a single unique tuple. As a result, a highly skewed data distribution is generated, which leads
to an inconsistent intra-region distribution of tuples. Furthermore, the artificial skew can cause
hindrance in efficient testing of queries, and gives an unrealistic look to the data.

Non-compliance with the Metadata: The metadata statistics present at the client site are transferred
to the vendor and used to ensure matching plans at both sites. However, these statistics are not
used in the data generation process, leading to data that is out of sync with the client meta-data.

(a) Schema (b) SQL Query (c) Annotated Query Plan (d) Cardinality Constraints

|30 IR| = 80K
R (R_pk, S_fk, T_fk) SELECT * FROMR, S, T QOO/RN cox |S| = 700
S (S_pk, A, B) WHERE R.S_fk =S.S_pk S |T| =1500
T (T_pk, C) ANDRT_fk = TT_Pk 2263 a0 27 gor |65 acrz0,60)(S) | = 400
AND S.A >= 20 AND S.A < 60 1500 | lo ()| =900

020<4<60 R T.CE[2,3)
ANDT.C>=2 ANDT.C< 3 T |7O0 | 05 aci20,60(RP<IS) | = 50K

s | 05 aci20,60) A T.cer2,3)(RPISDT) | = 30K

Figure 1: Example Annotated Query Plan and Cardinality Constraints

In this report, we present HF-Hydra, a new data generation algorithm, which attempts to address the
above robustness-related limitations of Hydra while retaining its desirable features of similarity, scala-
bility and efficiency. Specifically, the SMT problem is replaced with a linear program (LP) that works
towards finding a solution that is close to the metadata stats as well. Further, instead of generating just
a few unique tuples, HF-Hydra generates tuples that achieve a more realistic spread over the domain,
while supporting dynamic data generation.

The efficacy of HF-Hydra is evaluated by comparing its volumetric similarity over unseen queries
with Hydra. Our results indicate a substantive improvement — for instance, the volumetric similarity on
filter constraints of unseen queries improves by more than 30 percent, as measured by the UMBRAE
model-comparison metric [6]. Further, we also show that along with better generalization, HF-Hydra
also ensures metadata compliance and the generated data has no artificial skew. These experiments are
conducted over a vanilla computing platform using the TPC-DS benchmark hosted on the PostgreSQL
engine.

Organisation. The remainder of this report is organized as follows: The problem framework is out-
lined in Section 2, along with a summary description of Hydra. Then, we present an overview of
HF-Hydra in Section 3, followed by its primary constituents — LP Formulation and Data Generation, in
Sections 4 and 5, respectively. A detailed experimental evaluation of HF-Hydra is highlighted in Sec-
tion 6. The related literature is reviewed in Section 7, and our conclusions are summarized in Section 8.

2 Background

In this section, we present the volumetric similarity concept and a summary description of the Hydra
approach.

2.1 Volumetric Similarity

Consider the toy database example shown in Figure 1. It shows a database with three relations (R, S,
T) (Figure 1(a)) and a sample SQL query (Figure 1(b)) on this database. In the query execution plan
(Figure 1(c)), each edge is annotated with the associated cardinality of tuples flowing from one operator
to the other. This is called an annotated query plan (AQP) [4]. From an AQP, a set of cardinality con-
straints (CCs)[3] (Figure 1(d)) are derived. To ensure volumetric similarity on a given query workload,
when these queries are executed on the synthetic database, the result should produce similar AQPs. In
other words, the synthetic database should satisfy all the CCs.

2.2 Hydra Overview

Hydra’s data generation pipeline begins by deriving CCs from the input AQPs. Subsequently, for
each relation, a corresponding view is constructed. The view comprises of the relation’s own non-
key attributes, augmented with the non-key attributes of the relations on which it depends through
referential constraints. This transformation (predicated on the assumption that all joins are between
primary key-foreign key (PK-FK) attributes) results in replacing the join-expression present in a CC
with a minimal view that covers the relations participating in the join-expression. After this rewriting,
we get, a set of CCs, where each CC is a filter constraint on a view along with its associated output
cardinality.

Each view is decomposed into a set of sub-views (need not be disjoint) to reduce the complexity of the
subsequent modules. After obtaining these sub-views, the following two main modules are executed:

2.2.1 SMT Problem Formulation:

For a view, the set of CCs is taken as input and an SMT Problem (Hydra uses the term LP, however
technically it is a satisfiability problem because of the absence of an objective function) is constructed
for this set. Each sub-view’s domain space is partitioned into a set of regions using the CCs applicable
on that sub-view. A variable is created for each region, representing the number of tuples chosen from
the region. Each CC is encoded as a linear constraint on these variables.

For the view S from Figure 1, an example constraint is shown by the red box (A in [20, 40) and
B in [15000, 50000)) in Figure 2a has an associated cardinality 150 (say). Likewise, another green
constraint is also shown - say with cardinality 250. Let the total number of tuples in the S be 700.
These constraints can be expressed as the following linear constraints:

r1 + 9 = 250,

Ty + X3 = 150,
T+ 2o + 23 + 24 = 700,

X1, T2, 23,4 = 0

where the four variables represent the tuple cardinality assigned to the respective regions. Lastly, ad-
ditional constraints are added to ensure that the marginal distributions along common attributes among
sub-views are identical.

2.2.2 Database Generation:

The solution to the SMT problem for a view, gives the cardinalities for various regions. These regions,
being at a sub-view level, are merged to obtain the equivalents in the original view space. Since each
view is solved separately, the view solutions are altered such that they obey referential integrity. In this
process, some additional (spurious) tuples may be added in the views corresponding to the dimension
tables. Finally, once the consistent view-solutions are obtained, a database summary is constructed.

An example database summary is shown in Figure 2b. Here, entries of the type a - b in the PK
columns (e.g. 101-250 for S_pk in table S), mean that the relation has b — a + 1 tuples with values
(a, a + 1,...,b) for that column, keeping the other columns unchanged. Using the summary, Tuple
Generation module (implemented inside DBMS query executor module) dynamically generates tuples
on demand during query execution.

To ensure that the client’s plans are chosen to execute queries at the vendor site, Hydra uses the
CoDD tool [1] to copy the metadata catalogs.

50K

1$292922992999999294299999%3
1$292922992999999294299999%3
1$292922992999999294299999%3
eeereeiaie s

15K 20K

(a) Region Partitioning

R S T

R_pk S fk | T_fk S _pk A B T _pk C

1-30000 1 1 1-250 15 | 15000 1-902 2

30001-50000 | 251 | 903 251-400 | 35 |25000| [903-1505 | o
50000-80000 | 401 | 903 401-703 | 10 | 30000

(b) Example Database Summary

Figure 2: Region Partitioning and Database Summary in Hydra

3 HF-Hydra

In this report, we present HF-Hydra (High-Fidelity Hydra), which materially extends Hydra to ad-
dress the above robustness-related limitations while retaining its desirable data-scale-free and dynamic
generation properties.

The end-to-end pipeline of HF-Hydra’s data generation is shown in Fig. 3. The client AQPs and
metadata stats are given as input to LP Formulator. Using the inputs, the module constructs a refined
partition, i.e. it gives finer regions. Further, a linear program (LP) is constructed by adding an objective
function to pick a desirable feasible solution. From the LP solution, which is computed using the
popular Z3 solver [15], the Summary Generator produces a richer database summary.

In this section, we provide an overview of how our new data generator, HF-Hydra, addresses the
robustness limitation of Hydra. The details of the constituent components are described in the following
sections.

Inter-Region Distribution: Note that the original database also satisfies the SMT problem that Hydra
constructs, but there can be several assignments of cardinalities to the regions such that all of them
satisfy the constraints. For example, if we consider the constraints corresponding to the example shown
in Figure 2a, both the following solutions satisfy the constraints:

Solution 1: X1 = 250, X9 = O,ZE3 = 150,$4 = 300

Input AQPs Metadata

LP
[] Database Engine

‘L [Ge-lr-lue‘:LEtﬂr] E

[Summary DatabEISEJ Tuples

Generator Summary

Figure 3: HF-Hydra Pipeline

Solution 2: 2, = 100, x5 = 150, 23 = 0, x4 = 450

Hydra does not prefer any particular solution over the other. Therefore, the volume of data that is
present in various regions of the original database may be very different from the cardinalities assigned
by the solvers to these regions. The SMT solver assigns non-zero cardinality to very few regions. This
is because of the use of the Simplex algorithm internally, which seeks a basic feasible solution, leading
to a sparse solution. Further, not only is the solution sparse but also the assigned cardinalities may be
very different from the original since no explicit efforts are made to bridge the gap. For example, the
two solutions illustrated above are both similar from the sparsity point of view but the values themselves
are very different. It is very easily possible that one of the two is picked by the solver and the other
is actually the desired solution. Therefore, the distribution of tuples among the various regions in the
original and synthetic databases can be very different. Hence, volumetric similarity for unseen queries
can incur enormous errors. In HF-Hydra, we construct finer regions by additionally using metadata
stats. Subsequently, an LP is formulated, by adding an optimization function that picks up a feasible
solution that is close to the estimated solution derived from the stats. This also helps us ensure metadata
compliance.

Intra-Region Distribution: Within a region that gets a non zero cardinality assignment, Hydra gen-
erates a single unique tuple. As a result, it leads to inconsistent intra-region distribution. That is, even if
the inter-region distribution was matched between the original and synthetic databases, the distribution
of tuples within a region can vary enormously. This is again not surprising since no efforts have been
put to match the intra-region distribution. This not only affects the accuracy for unseen queries but sin-
gle point instantiation per region also creates an artificial skew in the synthetic database. In HF-Hydra,
we instead try to obey the distribution based on the information extracted from metadata stats. At the
finer granularity where volumes cannot be estimated any further, we resort to uniform distribution.

4 Inter-Region Distribution: LP Formulation

Here we discuss our LP formulation module to get a better inter-region tuple cardinality distribution.
We propose two strategies for LP formulation — MDC and OE, which augment the basic HF-Hydra
with metadata and query optimizer estimates, respectively.

4.1 MDC: Optimization Function using Metadata Constraints

In this strategy we directly model constraints from the metadata stats. To set the stage, we first discuss
some of the stats maintained by the Postgres engine.

MCVs and MCFs: Postgres maintains two lists for most attributes in a relation namely, Most Com-
mon Values(MCVs) and Most Common Frequencies(MCFs). Specifically, for an attribute A of a
relation R, the frequency of an element stored at position ¢ in the MCVs list will be stored at the
matching position ¢ in the MCFs array.

Equi-depth histogram: Postgres additionally maintains equi-depth histograms for most of the at-
tributes in a relation. It stores the bucket boundaries in an array. All the buckets for an attribute
are assumed to have the same frequency. The bucket frequency is computed by dividing the
total tuple count obtained after subtracting all frequencies present in the MCFs array from the
relation’s cardinality, with the number of buckets.

We can express this information in the form of CCs as follows:

* For a value «a stored in MCVs with frequency c,, the corresponding CC is:

loa=a(R)| = ¢4

* Say for an attribute A, a bucket with a boundary [/, h) and frequency B exists. Further, within
this bucket, say two MCVs exist, namely p and ¢ with frequencies ¢, and ¢, respectively, then the
following CC can be formulated:

[oaciny(R)| =B +c,+¢

Most database engines maintain similar kinds of metadata statistics which can be easily modeled as
CCs in the above manner. To distinguish these CCs from AQP CCs, we hereafter refer to them as
metadata CCs. One issue with metadata CCs is that they may not be completely accurate as they may
have been computed from a sample of the database. Therefore, to ensure LP feasibility, we do not add
metadata CCs explicitly in the LP and instead include them as an optimization function that tries to
satisfy the metadata CCs with minimal error.

While this method provides additional constraints that help to obtain a better LP solution, it can still
suffer from inconsistent inter-region distribution from the solver — in fact, we may even obtain a sparse
solution. This is because there is no explicit constraint that works on the individual regions. However,
in general, we expect that this optimization is likely to improve the result quality in comparison to
Hydra. The complete algorithm is as follows:

1. Run region partitioning (as discussed in Section 2) using all the CCs, i.e. CCs from AQPs and
metadata.

2. The CCs from AQPs are added as explicit LP constraints as before.

6

m

minimize E €; subject to:

j=1

I. —¢ < (Z xz> —kj <€, VjeE[m]
i:;5=1

2. (1,0, ..., C,

3.2, >0 Vien], ¢>0 Vje[m]

(a) MDC LP Formulation

n
minimize Z €; subject to:

i=1
l. —¢ <z;—%; <¢ Vié€]n]
2.C1,0y, ..., Cy
3. 2,6, >0 Vi€ [n]

(b) OE LP Formulation

Figure 4: HF-Hydra LP Formulation

3. The CCs from metadata are modeled in the optimization function that minimizes the .1 norm of
the distance between the output cardinality from metadata CCs and the cardinality from the sum
of variables that represent the CCs. If there are n regions (variables) together obtained from m
metadata CCs and ¢ AQP CCs, then the LP is as shown in Figure 4a. Here, [;; is an indicator
variable, which takes value 1 if region ¢ satisfies the filter predicate in the jth metadata CC, and
takes value 0 otherwise. Further, ', ..., C, are the ¢ LP constraints corresponding to the ¢ AQP
CCs.

4.2 OE: Optimization Function using Optimizer’s Estimates

We now consider an alternative technique, OE, where instead of directly adding constraints from the
metadata information, an indirect approach is used where the estimate for each region’s cardinality is
obtained from the engine itself. Hence, not only is the metadata information obtained, but also the
optimizer’s selectivity estimation logic. Once the estimates are obtained for all the regions, we find a
solution that is close to these estimates while satisfying all the explicit CCs coming from the AQPs.
The complete algorithm is as follows:

1. Same as Step 1 in MDC.

2. For each region obtained from (1), we construct an SQL query equivalent. Any query that can
capture the region precisely is acceptable. The query generation process is described in section
4.3

As an example, the queries for the four regions from Figure 2a is as follows:

Select * from S where ((S.A < 20 and S.B < 20,000) or ((S.A > 20 and
S.A < 30 and S.B < 15,000));

Select * from S where ((S.A > 20 and S.A < 30 and S.B > 15,000 and
S.B < 20,000);

Select * from S where ((S.A > 20 and S.A < 30 and S.B > 20,000) or (S.A
> 30 and S.A < 40 and S.B > 15,000));

Select * from S where ((S.A < 20 and S.B > 20,000) or (S.A > 20
and S.B > 50,000) or (S.A > 40) or (S.A > 30 and S.B < 15,000));

3. Once the region-based SQL queries are obtained, their estimated cardinalities are obtained from
the optimizer. This is done by dumping the metadata on a dataless database using the CoDD
metadata processing tool [1], and then obtaining the compile-time plan (for example using EX-
PLAIN (query) command in Postgres).

4. We construct an LP that tries to give a feasible solution, i.e. that satisfies all AQP constraints,
while minimizing the L1 distance of each region from its estimated cardinality as obtained from
the previous step. Let the estimated cardinality for the n regions be 71, Zo, ..., Z,,. Then the new
LP that is formulated is shown in Figure 4b.

Our choice of minimizing L1 norm in these strategies is reasonable because from query execution
point of view, the performance is linearly proportional to the row cardinality. This is especially true
for our kind of workloads where the joins are restricted to PK-FK joins. Further, note that Hydra’s
preprocessing optimization of decomposing the view into sub-views can be easily applied with HF-
Hydra as well.

Given the MDC and OE alternative strategies, the following aspects need to be considered for choos-
ing between them:

1. MDC is comparatively simpler as it adds fewer constraints and hence is computationally more
efficient. However, since generating data is typically a one-time effort, any practical summary
generation time may be reasonable.

2. The solution quality depends entirely on the quality of the metadata and the optimizer estimates.
Since OE works at a finer granularity, it is expected to provide higher fidelity assuming a reason-
ably accurate cardinality estimator. On the other hand, the accuracy of the constraints in MDC is
usually more reliable as they are derived as it is from the metadata.

4.3 SQL Query Generation for Regions

An SQL query is made up of two components - (a) From clause - where the participating relation
name(s) are mentioned and (b) Where clause - where Join predicates and Filter predicates are
mentioned. Join predicates contain information about the attributes used in joining the relations are
mentioned (in the cases where there are more than one relation participating in the query), and Filter
predicates contain the filter constraint(s) applied on the participating relation(s).

A query in the client workload may or may not feature joins. If there are any joins, Hydra distinctly
captures the join path (all the PK-FK attributes that were used in the join clause) for each view that is

8

formed. So, just by extracting the join sequence information that is associated with all the attributes
from all the CCs that are part of this region, we can form the Join predicates for our SQL query. From
these join predicates, we can then extract all participating relation names, and construct the From clause
of our SQL query.

A region in its most general form can be represented as a collection of multidimensional arrays,
where each multi-d array has an array of intervals for its constituent dimensions (relation attributes).
We term each dimension as a Bucket, and each collection of such Buckets as a BucketStructure.
One or more such BucketStructures constitutes the region. After partitioning, all the intervals for each
attribute, corresponding to a region are captured in the corresponding buckets and bucketstructures of
that region. Within each bucket, the split points may or may not be continuous. The convention in
Hydra is that every continuous interval is in the form of [a,b) i.e. the included values are from a to
b—1.

The filter predicates are generated as follows :

1. Within a bucket, a continuous interval is picked. The interval is then converted to a bounded
filter predicate with the end points of the interval as its bound. Incase of intervals in the buckets
where there is only one known end point, and the other end point is either the start or the end of
the corresponding domain, then the corresponding filter predicate generated will have only one
bound with the known endpoint, and will remain unbounded on the other direction.

2. Step 1 is repeated for each continuous interval in the bucket. All the predicates generated therein
are conjuncted together, and a filter predicate representing the entire bucket is generated. Each
filter predicate generated for a bucket is applied against the particular attribute representing the
bucket.

3. Similarly, individual filter predicates representing each bucket is created for each bucket partici-
pating in the bucketstructure. These are again conjuncted to form a filter predicate representing
the entire bucketstructure. Each filter predicate for a bucketstructure is a conjunction of filter
predicates on all the individual attributes participating in the bucketstructure.

4. All filter predicates representing each bucketstructure obtained from Step 3 are then disjuncted
together, to form the filter predicate representing the whole region.

The final SQL query is generated as :

SELECT * FROM <From clause>
WHERE <Join predicates> (AND) <Filter predicates>;

Let us consider an example Region R to better understand the whole process. Say there are three
relations X, Y and Z joined with (X.PK and Y.FK) and (Y.PK and Z.FK) with attributes columns X.A,
Y.B, Z.C. Say post the LP formulation phase of Hydra, we have a region with two bucketstructures as
follows :

BucketStructure 1 BucketStructure 2
Column X. A [al, ag, a3, 4, CL5) Column X.A [CL(;, ar, as, CLg) [CLH, aig, CL13)
Column Y.B | [—o0, by)[bs, by, b5) | Column Y.B [bg, b7)
Column Z.C [c1, 2, C3) Column Z.C [c5, ¢, €7, C8)[C10, 00)

Here, From Clause = X,Y,Z and Join Predicates = (X.PK = Y.FK) AND (Y.PK = Z.FK)

The filter predicates representing each bucket are:

BucketStructure 1
Column X.A (X.A > a; AND X A < as)
Column Y.B | ((Y.B < b;) AND (Y.B > b3 AND Y.B < b5))
Column Z.C (Z.C>c ANDZ.C < cy)

BucketStructure 2
Column X.A | (X.A > ag AND X.A < ag) AND (X.A > a1; AND X.A < a;3))
Column Y.B (Y.B > bs AND Y.B < by)
Column Z.C ((Z.C > ¢5 AND Z.C < ¢g) AND (Z.C > ¢qp))

The filter predicates representing each bucketstructure are:

BucketStructure 1
((X.A > a; AND X.A < as) AND ((Y.B < b;) AND (Y.B > b3 AND Y.B < b5))
AND (Z.C > ¢; AND Z.C < ¢5))

BucketStructure 2
(X.A > ag AND X.A < ag) AND (X.A > a;; AND X.A < a;3)) AND (Y.B > b AND Y.B < by)
AND ((Z.C > ¢5 AND Z.C < ¢g) AND (Z.C > ¢y9))

The filter predicate representing the whole region is :

Region R
((X.A > a; AND X.A < as) AND ((Y.B < b;) AND (Y.B > b3 AND Y.B < b5))
AND (Z.C > ¢; AND Z.C < ¢3))
OR
((X.A > ag AND X.A < ag) AND (X.A > a;; AND X.A < a;3)) AND (Y.B > bg AND Y.B < b;)
AND ((Z.C > ¢5 AND Z.C < cg) AND (Z.C > ¢419))

The final SQL query equivalent generated for region R is :

SELECT * FROM X,Y,Z
WHERE (X.PK = Y.FK) AND (Y.PK = Z.FK) AND
((X.A > a; AND X.A < a5) AND ((Y.B < b;) AND (Y.B > b; AND Y.B < b5))
AND (Z.C > ¢; AND Z.C < ¢5)) OR
((X.A > a5 AND X.A < ag) AND (X.A > a1; AND X.A < ay3)) AND
(Y.B > b5 AND Y.B < b;) AND ((Z.C > ¢5 AND Z.C < ¢5) AND (Z.C > 19));

A point to note here is, the SQL query we get for a region by this process is not the only way
to represent the region. There could be many other queries which can be equivalently generated to
represent the region, and any of these is acceptable for our use case to get the optimizer’s estimate in
OE.

10

S5 Intra-Region Distribution: Data Generation

We saw in the previous section how HF-Hydra handles the representation of inter-region cardinality
distributions. In this section, we go on to discuss the strategy to represent the intra-region distributions.
The LP solution returns the cardinalities for various regions within each sub-view. As discussed
earlier, the regions across sub-views need to be merged to obtain the solution at the view level. After
merging, the views are made consistent to ensure referential integrity (RI) and finally a database sum-
mary is constructed from these views. This summary is used for either on-demand tuple generation or,
alternatively, for generating the entire materialized database. We briefly discuss these stages now.

5.1 Merging Sub-Views

Say two sub-views R and S are to be merged and they have a common set of attributes A. If A is empty
then we can directly take the cross of the regions in R and S to obtain the regions in the view space.
But when A is non-empty, the merging of regions happen among compatible pair. A region from R is
compatible with a region form S if the two have an identical projection along A. Several regions in R
and S can have identical projection along A. Therefore, we define compatibility at a set level. That is
a compatible pair is a set of regions from R and S such that all these regions have identical projections
along A. For such a compatible pair, let r1,ry, ..., 7, be the regions from R and si, Ss, ..., s, be the
regions from S. In HF-Hydra we merge each region r; with each region s; from a compatible pair and

assign it a cardinality % Note that },c(,, [7i] = >;c(, [55], which is ensured by consistency
constraints in the LP. Hence in each pair, m X n regions are constructed. Merging of two regions can be
thought of as taking a join of the two regions along A. A sample sub-view merging is shown in Figure 5
where two sub-views (A, B) and (A, C) have four and three regions respectively. Further, there are two

compatible pairs that finally lead to six regions after merging.

A B Card A C | Card A B C Card
[0, 20) |[15, 20)| 200 [0,20) ([0, 2)| 700 _ [0, 20) | [15,20) | [0,2) | 200
[30, 60)| [0, 15) | 400 X [30,60)([2, 3)| 200 - [0, 20) | [20,50) | [0, 2) | 500
[0, 20) |[20,50)| 500 [30,60)|[0, 2)| 600 [30,60) [0,15) | [2,3) | 100
[30, 60)|[15, 20)| 400 [30, 60)| [0,15) | [0,2) | 300

[30, 60)| [15,20) | [2,3) | 100
[30, 60)| [15, 20) | [0, 2) | 300

Figure 5: Sub-view Merging

5.2 Ensuring Referential Integrity

Since each view is solved separately, it can lead to RI errors. Specifically, when F', the fact table view
(having FK column), has a tuple where the value combination for the attributes that it borrows from D),
the dimension table view (having PK column), does not have a matching tuple in D, then it causes an
RI violation. Our algorithm for ensuring referential integrity is as follows:

1. For each region f of F, project the region on the attributes that are borrowed from D. Let the
projected region be f,,.

11

2. Iterate on the regions in D that have non zero cardinality and find all the regions that have an
intersection with f,,.

3. For each region d of D obtained from (2), split d in two disjoint sub-regions d; and ds such that
d; is the portion of d that intersects with f,, and d; is the remaining portion. Cardinality of d is
split between d; and ds using the ratio of their domain volumes. A corner case to this allocation
is when the cardinality of d is equal to 1 — in such a case, we replace d with d;.

4. If no region is obtained from (2), then we add f,, in D and assign it a cardinality 1. This handles
RI violation but leads to an additive error of 1 in the relation cardinality for dimension table.
Collectively, these errors can be considered negligible. Also, they are independent of the scale
of the database we are dealing with, and therefore, as the database size grows, the relative error
keeps shrinking.

As we saw that the algorithm takes projections of regions along borrowed set of dimensions. Since,
the regions neither have to be hyper rectangles nor have to be continuous, they may not be symmetric
along the borrowed attribute(s), further adding to the complexity of ensuring consistency. If the set of
the attributes in a view V' is A and the set of attributes that it borrows are B, then a region 7 in V' is
symmetric along B iff:

r=o(V)=o(mp(V)) x o(mas(V))

In order to ensure regions are symmetric, before starting the referential integrity step, regions are split
into sub-regions to make them symmetric along the borrowed set of attributes.

5.3 Generating Relation Summary

Once we get the consistent summary for each view, where for each view we have the set of (symmetric)
regions and their corresponding cardinalities, we need to replace the borrowed attributes in a view with
appropriate FK attributes. Here the challenge is to remain in the summary world and still achieve a
good span among all the FK values within a region. To handle this, instead of picking a single value in
the FK column attribute for a region, we indicate a range of FK values.

Before discussing how the FK column value ranges are computed, let us discuss how the PK columns
are assigned values. Each region in any view has an associated region cardinality. PK column values
are assumed to be auto-number so, given two regions with cardinality a and b, the PK column value
ranges for the two regions are 1 to @ and a + 1 to a + b, respectively. Now, to compute the FK column
values, for each region in the fact table view F', the corresponding matching regions from the dimension
table view D are fetched. Once these regions are identified, their PK column ranges are fetched and the
union of these ranges is assigned to the FK column for the given F’s region.

Recall that a region in its most general form can be represented as a collection of multidimensional
arrays, where each multi-d array has an array of intervals for its constituent dimensions (relation at-
tributes). For example, Figure 6 shows the structure of a region that is symmetric along dimension A.
It can be expressed in words as the domain points where

((A € [al,a2) or [a3,a4)) and (B € [b1,b2) or [b3,b4)) and C' € [c1, 2)) or
(A € [al,a2) or [a3,a4)) and B € [b5,b06) and C' € [¢3, c4))

Now, we split the region into sub-regions, where each sub-region is a single multi-d array. Further,
we divide the parent region’s cardinality among the sub-regions in the ratio of their volumes. In this
way summary for each relation collectively gives the database summary. A sample database summary
produced by HF-Hydra is shown in Figure 7 ((analogous to Figure 2b). As a sample, the second row

12

in summary for table T means that the last 603 rows in the table have PK column value 903 to 1505,
while the value for column C is the range [0, 2) or [3, 10).

5.4 Tuple Generation

The summary generation module gives us the database summary featuring various (sub) regions and
their associated cardinalities. We want to spread the region’s cardinality among several points. Now de-
pending on our requirement of either dynamic generation or materialized database output, the strategy
would slightly differ as follows:

Materialized Database If a materialized database output is desired, randomness can be introduced.
For each (non-PK) attribute, the values are generated by first picking up an interval using a probability
distribution where each interval’s selection probability is proportional to the length of the interval. Once
the interval is picked, a random value in that interval is generated.

Dynamic Generation With dynamic generation, we cannot generate values randomly because the
resultant tables will not be consistent across multiple query executions. Therefore, we generate values

[al, a2)| [a3, a4)\

[b1, b2)| [b3, b4)
[c1, c2)

[al, a2)| [a3, a4)
[b5, bb)

[c3, c4)
s/

Figure 6: Region Structure

(oFF BERE])

R S
R_pk S fk T fk S_pk A B
1-10000 1-200 1-902 1-200 [0,20) [0-20000)
10001-30000 201-250 1-902 201-250 [20,30) [0-15000)
30001-45000 251-300 903-1505 251-300 [20,30) [20000-50000)
45001-50000 301-400 903-1505 301-400 [30-40) [15000-50000)
50001-60000 401-450 903-1505 401-450 [0-30) [50000-80000)
60001-65000 451-550 903-1505 451-550 [30-40) [0-15000) U [50000-80000)
65001-75000 551-600 903-1505 551-600 [40-60) [0-20000) U [50000-80000)
75001-80000 601-703 903-1505 601-703 [0-20) U [40,60) [20000-50000)
T
T pk C
1-902 (2,3)
903-1505 [0,2) U [3,10)

Figure 7: HF-Hydra Example Database Summary

13

in a deterministic way. Based on the lengths of the intervals that are contained for an attribute in the
region, the ratio of tuples to be generated from each interval is computed. Now, if n values have to be
generated within an interval, the interval is split into n equal sub-intervals and the center point within
each interval is picked. If the range does not allow splitting into n sub-intervals, then it is split into the
maximum possible sub-intervals, followed by a round-robin instantiation.

5.5 Comparison with Hydra

Hydra’s strategy for merging two sub-views is different. For a compatible pair where we construct
m X n regions (as described above), Hydra may generate as few as maxz(m,n) regions. Therefore, it
leads to several “holes” (zero-cardinality regions) in the view, further leading to poor generalisations to
unseen queries.

For regions that are constructed after merging the sub-views, a single tuple is instantiated. This is
again a bad choice as it creates holes.

RI violations lead to addition of spurious tuples as we discussed. In HF-Hydra these violations are
sourced primarily from undesirable solution, where the solver assigns a non-zero cardinality to a region
in fact table for which the corresponding region(s) in dimension table has a zero cardinality. In such
a case, then no matter how we distribute tuples within the regions, it will always lead to a violation.
However, Hydra does not even do any careful choice of the single tuple that it instantiates within a
region. Therefore, it has additional sources of RI violations.

Finally, the single point instantiation per region in Hydra generates an artifical skew and gives an
unrealistic appeal to the data.

6 Experimental Evaluation

In this section, we empirically evaluate the performance of HF-Hydra as compared to Hydra. We im-
plemented HF-Hydra on top of the Hydra codebase, which was sourced from [2]. In these experiments,
the popular Z3 solver was used to compute solutions for the linear programs. The performance is eval-
uated using a 1 GB version of the TPC-DS decision-support benchmark. The database is hosted on a
PostgreSQL v9.6 engine, with the hardware platform being a vanilla standard HP Z440 workstation.
Our setup is similar to the one used in [11]).

We constructed a workload of 110 representative queries based on the TPC-DS benchmark query
suite. This workload was split into training and testing sets of 90 and 20 queries, respectively. The
corresponding AQPs for the training query set resulted in 225 cardinality constraints, while there were
51 such CCs for the testing query set. The distribution of the cardinalities in these AQPs covered a
wide range, from a few tuples to several millions. The distribution of tuples for the CCs from test
queries are shown in Table 1, with a separation into two groups — CCs that are pure selection filters on

Base Filters Joins
Row Count | # CCs | Row Count | # CCs
1-5 3 0-10K 8
30-300 13 15-200K 13
1000-80K 8 250K-2.5M 6
Total 24 27

Table 1: Row Cardinality Distribution in Test CCs

14

base relations, and CCs that involve such filters along with 1 to 3 joins. 2622 CCs were derived from
metadata statistics, such as MCVs, MCFs and histogram bounds.

6.1 Volumetric Similarity on Unseen Queries

For evaluating the volumetric accuracy on the constraints derived from the unseen queries, we use
the UMBRAE (Unscaled Mean Bounded Relative Absolute Error) model-comparison metric [6], with
Hydra serving as the reference model. Apart from its core statistical soundness, UMBRAE’s basis in the
absolute error is compatible with the L1 norm used in the HF-Hydra optimization functions. UMBRAE
values range over the positive numbers, and a value U has the following physical interpretation:

U = 1 denotes no improvement wrt baseline model
U < 1denotes (1 — U) % 100% better performance wrt baseline model
U > 1 denotes (U — 1) * 100% worse performance wrt baseline model

The value U is computed using the formula:

MBRAE 1~ e
= m ,Where MBRAE = EZ

= leil + et

where |¢]| and |e/| denote the absolute error for HF-Hydra and Hydra respectively with respect to
constraint ¢; n denotes the total number of constraints.

The UMBRAE values obtained by the HF-Hydra variants over the 20 test queries in our workload
are shown in Figure 8, with Hydra serving as the reference baseline (U = 1). For clearer understanding,
the results for base filters, join nodes, and metadata statistics are shown separately. We see that HF-
Hydra delivers more than 30% better performance on filters, while also achieving an improvement of

1 Hydra
0.8 BMDC [CIOE
1T
< 0.6
14
m 04
=
= 02 \
0 L -
Join Nodes Base Filter Metadata Base Dim. Table
(Unseen) Nodes Constraints Filter Nodes
(Unseen) (Seen)

(a) (b) (c) (d)

Figure 8: Volumetric Similarity on Unseen Queries and Constraints

15

over 20% with regard to joins. The reason for the greater improvement on filters is that metadata is
typically maintained on a per-column basis, making it harder to capture joins that combine information
across columns. On drilling down we found that as the number of joins increase, the improvement
keeps reducing, as should be expected due to the progressively reduced quality of the input statistics.
Also, we found that among the two proposed techniques, OE did better than MDC for constraint with
multiple join predicates. Specifically, we found that OE did 33% better than MDC for 2 join cases
and 13% better for 3 join cases. This is again expected since MDC is not sensitive to join constraints
beyond first level joins while OE, due to its operations on the regions directly, uses the optimizer’s
estimates for all the join constraints.

6.2 Metadata Compliance

We now turn our attention to evaluating the compatibility of the generated data wrt the metadata con-
straints. This is quantitatively profiled in Figure 8(c), and again we observe a very substantial im-
provement over Hydra— 98% and 70% for MDC and OE, respectively. Further, MDC outperforming
OE is as expected because the former explicitly minimizes the errors in satisfying metadata CCs in its
optimization function.

6.3 Database Summary Overheads

A key difference between HF-Hydra and Hydra is with regard to the structure of the database summary.
Firstly, there are many more regions in the HF-Hydra summary. Secondly, instead of picking a single
point per region, the HF-Hydra summary retains the entire region and generates a wider spread of tuples
intra-region. Due to these changes, a legitimate concern could be the impact on the size of the database
summary and the time taken to generate the database from the summary. To quantitatively evaluate this
concern, the space and time overheads are enumerated in Table 2. We see here that there is certainly a
large increase in summary size, going from kilobytes to megabytes — however, in absolute terms, the
summary size is still small enough to be easily viable on contemporary computing platforms. When we
consider the time aspect, again there is an expected increase in the generation time from a few seconds
to several tens of seconds, but here too the absolute values are small enough (sub-minute) to make
HF-Hydra usable in practice.

Hydra MDC OE
Database Summary Size 40 KB 6 MB 985 MB
Tuples Materialization Time | 6 seconds | 37 seconds | 51 seconds

Table 2: Space and Time Analysis

6.4 Data Scale Independence

The summary sizes and the time taken to generate the summary are independent of the client database
size. We evaluate this by taking two instances of TPC-DS benchmark as the client database, namely 1
GB and 10 GB, and generating summary from both strategies MDC and OE. The results are enumerated
in Table 3. While going from 1x to 10x with the database size, the summary sizes and the generation
time do not vary much. Also note that although the summary generation time looks large for OE, most
of the time is incurred in getting a feasible solution from the LP Solver.

16

Strategy MDC OE

Data Scale (TPC-DS) 1 GB 10 GB 1 GB 10 GB
Database Summary Size 6MB | 63MB | 985MB | 1.3GB
Summary Generation Time 12m 55s | 13m 8s | 22h 57m | 16h 48m
Summary Generation Time (excluding LP Solver Time) | 54.3s 543s | 20m 54s | 24m 41s

Table 3: Data Scale Experiment Analysis

6.5 Data Skew and Realism

Finally, to showcase the difference of skew, we drill down into the “look™ of the data produced by
HF-Hydra. For this purpose, a sample fragment of the TPC-DS Item relation produced by Hydra is
shown in Figure 9a, and the corresponding fragment generated by HF-Hydra is shown in Figure 9b.
It is evident from these pictures that unlike Hydra which has heavily-repeated attribute values — for
instance, all the REC_START_DATE values are the same, HF-Hydra delivers more realistic databases
with significant variations in the attribute values.

item_sk | color | price | rec_start_date item_sk | color | price | rec_start_date
0 Coral | 10.01 | 1991-02-01 7125 | Beige | 991 | 1990-05-08
1 Coral | 10.01 | 1991-02-01 3847 | Coral | 4.13 | 1990-03-26
1618 | Dark | 4.56 | 1990-04-06
21 Coral | 10.01 | 1991-02-01 8450 | Floral | 2.46 | 1990-06-17
17908 | Beige | 7.00 | 1991-02-01 2836 | Navy | 27.33 | 1990-03-06
17909 | Beige | 7.00 | 1991-02-01 3086 Pink | 63.66 | 1990-04-14
1827 Red | 1.61 1990-03-08
17999 | Beige | 7.00 | 1991-02-01 3651 | Violet | 7.43 | 1990-03-24
(a) Hydra Database (Item) (b) HF-Hydra Database (Item)

Figure 9: Data Skew

7 Related Work

The early database generators (e.g. [5, 7]) produced synthetic databases that were largely agnostic to the
client environments. Subsequently, to provide more realism with regard to statistical properties, a potent
declarative approach to data generation was introduced. While QAGen [4] initiated this trend through
the use of AQPs, the concept was generalised to CCs in DataSynth [3]. The data generation algorithm
of DataSynth was extended to handling large sets of constraints and scaling to big data volumes in
Hydra [11]. And, in this paper, we have attempted to take this prior stream of work materially forward
through the introduction of robustness considerations in the design of HF-Hydra.

In parallel to the above workload-aware work, there are techniques such as DBSynth [10] and RS-
Gen [13] that construct a model solely on the basis of the metadata, and then generate the database as
per this model. However, it has been found that their accuracy turns out to be impractically poor for
queries involving predicates on correlated attributes, a common situation in practice. While HF-Hydra
also uses metadata statistics, it does so in conjunction with workload-awareness, and therefore does not
fall prey to such errors.

17

8 Conclusions

Testing database engines efficiently is a critical issue in the industry, and the ability to accurately
mimic client databases forms a key challenge in this effort. In contrast to the prior literature which
focused solely on capturing database fidelity with respect to a known query workload, in this report
we have looked into the problem of generating databases that are robust to unseen queries. In particu-
lar, we presented HF-Hydra, which materially extends the state-of-the-art Hydra generator by bringing
the potent power of metadata statistics and optimizer estimates to bear on the generation exercise.
In particular, this information was captured in the form of additional cardinality constraints and op-
timization functions. The resulting fidelity improvement was quantified through experimentation on
benchmark databases, and the UMBRAE outcomes indicate that HF-Hydra successfully delivers high-
fidelity databases. In future, we would like to incorporate the recently proposed selectivity estimation
algorithms based on machine-learning techniques (e.g. NARU [14], MSCN [8]) into the HF-Hydra
framework.

18

References

[1] CODD Metadata Processor. dsl.cds.iisc.ac.in/projects/CODD
[2] Hydra Database Regenerator. dsl.cds.iisc.ac.in/projects/HYDRA

[3] A. Arasu, R. Kaushik, and J. Li. Data Generation using Declarative Constraints. In Proc. of ACM
SIGMOD Conf., 2011, pgs. 685-696.

[4] C.Binnig, D. Kossmann, E. Lo, and M. T. Ozsu. QAGen: Generating Query-Aware Test Databases.
In ACM SIGMOD Conf., 2007, pgs. 341-352.

[5] N. Bruno, S. Chaudhuri. Flexible Database Generators. In 31st VLDB Conf., 2005.

[6] C. Chen, J. Twycross, J. M. Garibaldi. A new accuracy measure based on bounded relative error
for time series forecasting. PLoS ONE, 12(3): e0174202, 2017.

[7] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger. Quickly Generating Billion-
Record Synthetic Databases. In ACM SIGMOD Conf., 1994.

[8] A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz and A. Kemper. Learned Cardinalities: Estimating
Correlated Joins with Deep Learning. In CIDR Conf., 2019.

[9] Y.Li, R. Zhang, X. Yang, Z. Zhang, and A. Zhou. Touchstone: Generating Enormous Query-Aware
Test Databases. In USENIX ATC, 2018, pgs. 575-586.

[10] T.Rabl, M. Danisch, M. Frank, S. Schindler and H. Jacobsen. Just can’t get enough - Synthesizing
Big Data. In ACM SIGMOD Conf., 2015.

[11] A. Sanghi, R. Sood, J. R. Haritsa, and S. Tirthapura. Scalable and Dynamic Regeneration of Big
Data Volumes. In 2/st EDBT Conf., 2018, pgs. 301-312.

[12] A. Sanghi, R. Sood, D. Singh, J. R. Haritsa, and S. Tirthapura. HYDRA: A Dynamic Big Data
Regenerator PVLDB, 11(12):1974-1977, 2018.

[13] E. Shen and L. Antova. Reversing statistics for scalable test databases generation. In DBTest
Workshop, 2013.

[14] Z. Yang et al. Deep Unsupervised Selectivity Estimation. In PVLDB, 13(3):279-292, 2019.

[15] Z3. https://github.com/Z3Prover/z3

19

