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Abstract

We investigate a new query reverse-engineering problem of unmasking SQL queries hidden
within database applications. The diverse use-cases for this problem range from resurrecting legacy
code to query rewriting. As a first step in addressing the unmasking challenge, we present UN-
MASQUE, an active-learning extraction algorithm that can expose a basal class of hidden ware-
house queries. A special feature of our design is that the extraction is non-invasive wrt the appli-
cation, examining only the results obtained from repeated executions on databases derived with a
combination of data mutation and data generation techniques. Further, potent optimizations, such as
table minimization and sampling, are incorporated to reduce extraction overheads. A detailed eval-
uation over applications hosting hidden SQL queries, or their imperative versions, demonstrates
that UNMASQUE correctly and efficiently extracts these queries.

1 Introduction
Over the past decade, query reverse-engineering (QRE) has evinced considerable interest from both
the database and programming language communities (e.g. [29, 25, 23, 22, 11, 4, 1, 16, 5, 27]). The
generic problem tackled in this stream of work is the following: Given a database instance DI and
a populated result RI , identify a candidate SQL query Qc such that Qc(DI)= RI . The motivation
for QRE stems from a variety of use-cases, including: (i) reconstruction of lost queries; (ii) query
formulation assistance for naive SQL users; (iii) enhancement of database usability through a slate
of instance-equivalent candidate queries; and (iv) explanation for unexpectedly missing tuples in the
result.

(a) Hidden Query (QH ) (b) UNMASQUE Output Query (QE)

Figure 1: Hidden Query Extraction Example (TPC-H Q3)

(a) Sample REGAL Input Query (b) Sample REGAL Output Query

Figure 2: REGAL QRE Example

1



Impressive progress has been made on addressing the QRE problem, with the development of elegant
tools such as TALOS [25], REGAL [23] and SCYTHE [27]. Notwithstanding, there are intrinsic
challenges underlying the problem framework: First, the output query Qc is organically dependent
on the specific (DI ,RI) instance provided by the user, and can vary significantly based on this initial
sample. Second, given the inherently exponential search space of alternatives, identifying and selecting
among the candidates is not easily amenable to efficient processing.

HQE Problem
In this paper, we consider a new variant of the QRE problem, wherein a ground-truth query is addition-
ally available, but in a hidden form that is not easily accessible. For example, the original query may
be explicitly hidden in a black-box application executable. Moreover, encryption or obfuscation may
have been additionally incorporated to further protect the application logic. Such “hidden-executable”
situations could also arise in the context of legacy code, where the original source has been lost or
misplaced over time, or when third-party proprietary tools are part of the workflow.

An alternative and more subtle scenario is that the application is visible but effectively opaque be-
cause it is comprised of either (a) hard-to-comprehend SQL – such as those arising from machine-
generated object-relational mappings, or (b) poorly documented imperative code that is not easily de-
cipherable – which could occur when software is inherited from external developers.

Formally, we introduce the hidden-query extraction (HQE) variant of QRE as follows: Given a black-
box application A containing a hidden query QH (in either SQL format or its imperative equivalent),
and a database instance DI on which A produces a populated result RI , unmask QH to reveal the
original query (in SQL format). That is, in contrast to the speculative nature of standard QRE, we
intend to find the precise QH such that QH(Di) = Ri ∀i.

The presence of the hidden ground-truth can be leveraged to deliver a variety of benefits: (i) The
output query now becomes independent of the initial (DI ,RI) instance; (ii) Since the application can
be invoked repeatedly on different databases, efficient and focused mechanisms can be designed to
precisely identify QH ; (iii) Even advanced SQL constructs – for instance, pattern-based (e.g. LIKE),
group-based (e.g. HAVING), or result-based (e.g. LIMIT) – which fall outside the ambit of the traditional
QRE framework, become amenable to capture; (iv) As a collateral utility, the revealed query can serve
as a definitive starting input to database usability tools (e.g. TALOS [25]); (v) New use-cases related to
database security and query rewriting become feasible, as highlighted in Section 2.

At first glance, it may appear that the existing QRE techniques could be used to provide a seed query
for HQE, followed by refinements to precisely identify the hidden query. However, as explained in
Section 9, this is not practical for both conceptual and performance reasons.

Therefore, we have approached the HQE problem from first principles. Our experience is that it
proves to be challenging due to factors such as: (a) acute dependencies between the various clauses
of the hidden query, (b) possibility of schematic renaming, (c) result consolidation due to aggregration
functions, and (d) presence of computed column functions.

UNMASQUE Extractor
We take a first step towards addressing the HQE problem here by presenting UNMASQUE1, an algo-
rithm that exposes the hidden query QH through “active learning” – that is, by using the outputs of
application executions on carefully crafted database instances. Specifically, UNMASQUE employs a
judicious combination of database mutation and synthetic database generation to methodically expose

1Unified Non-invasive MAchine for Sql QUery Extraction
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the various query elements. The extraction is completely non-invasive wrt both the application software
and the underlying database engine, facilitating portability.

At this time, UNMASQUE is capable of extracting a basal set of warehouse queries that feature the
core SPJGHAOL2 clauses – specifically, single-block equi-join conjunctive queries expressible in the
form (as per the notation in Table 1):

Select ( PE , AE ) From TE Where JE ∧ FE
Group By GE Having HE Order By

−→
OE Limit lE

The specific query coverage and underlying assumptions are enumerated in Section 3.
As an exemplar of a non-trivial query that falls in the ambit of its extraction scope, consider QH

in Figure 1a – this hidden query encrypts query Q3 of the TPC-H benchmark in a stored procedure,
outputting the top-ten unshipped orders with respect to revenue. Our extracted equivalent, QE , is
shown in Figure 1b – we see that it clearly captures all semantic aspects of the original query, including
the revenue column function. Only syntactic differences, such as a different order of the grouping
columns, remain in the extraction.

A natural question here is what would a QRE tool such as REGAL output in this situation? Firstly,
it is unable to handle the revenue function, ORDER BY and LIMIT constructs. Secondly, consider
the much simpler query version shown in Figure 2a. Even in this case, REGAL produces the output
shown in Figure 2b – while the tables and joins are detected correctly, significant discrepancies exist
in the filters, grouping columns and aggregation functions. Moreover, as explained in Section 9, errors
could arise in the tables and the joins as well, depending on the specific (DI ,RI) instance supplied
to the tool. Finally, producing this limited outcome itself took considerable time and resources on a
well-provisioned platform.

Extraction Workflow
UNMASQUE operates according to the pipeline shown in Figure 3, where it gradually extracts the
hidden query elements in a structured and sequential manner. It starts with the FROM clause, continues
on to the JOIN and FILTER predicates, follows up with the PROJECTION, GROUP BY and AGGREGA-
TION columns, and concludes with the ORDER BY and LIMIT functions. (As explained in Section 7, a
different pipeline structure is required to extract the HAVING predicate). 3

The initial elements (SPJ) are extracted using database mutation strategies, whereas the subsequent
ones (GAOL) leverage database generation techniques. Most of the modules feature carefully crafted
methods for unambiguous identification. The final pipeline component is the ASSEMBLER which com-
bines the various elements of QE and performs canonification to obtain a standard output format.
Further, it implements various automated checks to verify correctness of extraction. A demo version of
UNMASQUE was presented in [13], and a video of UNMASQUE in operation is available at [54].

Extraction Efficiency
To cater to extraction efficiency concerns, UNMASQUE incorporates a variety of optimizations. In
particular, it addresses a conceptual problem of independent interest: Given a database instance DI on
which QH produces a populated result RI , identify the smallest subset Dmin of DI such that the result
continues to be populated.

At first glance, it may appear that Dmin can be easily obtained using well-established provenance
techniques (e.g. [12]). However, due to the hidden nature of QH , these approaches are no longer

2SELECT, PROJECT, JOIN, GROUPBY, HAVING, AGG, ORDER, LIMIT
3In Figure 3, the module pairs shown in common boxes can be processed independently.
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Figure 3: UNMASQUE Architecture

viable. Therefore, we design alternative strategies based on a combination of sampling and recursive
database partitioning to achieve the minimization objective.

The database minimization is applied immediately after the FROM clause is identified (Figure 3), en-
suring that the subsequent SPJ extraction is carried out on miniscule databases containing just a handful
of rows. Similarly, the synthetic databases created for GAOL extraction are also carefully designed to
be very thinly populated. The net outcome is that the post-minimization processing becomes essentially
independent of the original database size.

Performance Evaluation
We have evaluated UNMASQUE’s behavior on (a) complex queries arising in synthetic (TPC-H, TPC-
DS) and real (JOB on IMDB dataset, UCI) environments, and (b) imperative code sourced from popular
applications (Enki, Wilos, RUBiS). Our experiments, conducted on a vanilla PostgreSQL platform,
indicate that the hidden queries are precisely identified in a timely manner. As a case in point, Q3 was
extracted on a 100 GB TPC-H instance within 10 minutes, which is reasonable given that its native
execution takes around 5 minutes on the same platform.

Organization
The rest of the report is organized as follows: In Section 2, a variety of extraction use-cases are outlined.
Then, in Section 3, a precise description of the HQE problem framework is provided, along with the
associated notations. Sections 4 and 5 present the components of the UNMASQUE pipeline, which
progressively reveal different facets of the hidden query. The experimental framework and performance
results are reported in Section 6. Extraction of the HAVING clause is discussed in Section 7, while a
few other extensions are summarized in Section 8. Related work is reviewed in Section 9. Finally, our
conclusions and future research avenues are summarized in Section 10.

2 HQE Deployment Scenarios
We now discuss deployment scenarios where HQE techniques could be of utility. Our assumption is
that the extraction process is invoked by the owner, or a privileged user, of the underlying database,
possessing both read and write rights on the contents. The opaque application may also be owned by
the same person, or submitted by an external source.

As mentioned in the Introduction, there are two opacity scenarios – the first, where the application is
explicitly opaque due to encoding, and the other, where it is implicitly opaque due to representational
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complexity. We present below sample use-cases for both scenarios.

2.1 Explicit Opacity
Only the executable object code of the application is available here, and therefore, identifying the under-
lying interactions with the database system can help to determine the data processing logic embedded
in the application.

Recovering Lost SQL It often happens, especially with legacy industrial applications, that with the
passage of time, the original source code becomes lost [47]. However, to understand the output, we
may need to establish the logic connecting the database input to the observed result. Second, we may
wish to extend or modify the existing application query, and create a new version.

If the SQL query is present as-is in the executable, it can be trivially extracted using standard string
extraction tools (e.g. Strings [40]). However, if there has been post-processing, such as encryption or
obfuscation, which are commonly resorted to for protecting application logic, this option is not feasible.
For instance, the popular SQL Shield tool [48] offers encryption of stored SQL procedures on Microsoft
SQL Server platforms.

An annotated screenshot of this tool’s interface is shown in Figure 4, highlighting the opacity of the
SQL procedure post-encryption.

Figure 4: Encrypted Stored Procedure

Even with encrypted code, the query can be easily re-engineered from either the execution plan or
the query log constructed by the database engine. However, this knowledge may also be inaccessible
– as a case in point, the SQL Shield tool blocks out both plan and log visibility for the encrypted
query. Therefore, without direct access to the database internals, which is typically the situation with
commercial database platforms or remotely-resident infrastructure (e.g. Cloud), the hidden query may
not be easily extractable – it is precisely such impenetrable scenarios that motivate our study.

Enhancing Database Security. Database servers are often preferred targets of sophisticated hacking
attacks (e.g. [32, 31]), and therefore security checks for suspicious SQL statements are omnipresent
in database firewalls and activity monitoring tools. However, these checks are easily defeated through
obfuscation techniques. For instance, even a simple HEX encoding is often sufficient to get through
the defenses – as a case in point, “select * from passwords” would appear as an incomprehensible
“73656C656374202A2066726F6D2070617373776F726473” to the policing tools after this encod-
ing [34].

In this context, given a hidden query that has been prematurely stopped, say due to concerns about
its origins, the database owner can offline use a HQE tool to ascertain the real intent of the application
so that further steps can be taken, if required, to secure the system. UNMASQUE takes the first step
towards establishing a new approach to determining application objectives through query extraction,
rather than directly resorting to heavy-weight techniques based on system audits and code forensics.
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2.2 Implicit Opacity
We now move on to situations where the application source is available, but the complex internal
representation makes it hard to comprehend for the new developer or the database engine. This is
especially true for machine-generated mappings, as well as hand-me-down programs sourced from
third parties.

Learning-based Query Rewriting The use of automated ORM tools is common today, often re-
sulting in unintelligible SQL formulations [53]. There are two problems that arise from this artificial
SQL complexity: (a) From a software engineering perspective, the code becomes hard to understand
and maintain; (b) From a performance perspective, although query optimizers are supposed to convert
these ORM queries to efficient equivalents, in practice, the plans generated are usually significantly
slower. However, it may be hard to apply these rules on convoluted original representations. Modeling
the rewriting as a HQE problem, however, can help to achieve the objective since only databases and
results are involved, and not the query itself, eventually leading to a “lean” equivalent. In this sense,
HQE can also be viewed as a learning-based rewriting technique. Of course, the approach is viable
only for “canned queries” where an initial compile-time investment on extraction can be amortized over
subsequent executions.

As a concrete example of this use-case, consider the ORM-generated query shown in Figure 5a.
The Postgres optimizer finds it hard to parse this complex representation and throws up a plan that is
unable to effectively use the filters on ORDERS and LINEITEM. In contrast, UNMASQUE extracts
the “textbook query” shown in Figure 5b, and the Postgres plan for this clean formulation runs an
order-of-magnitude faster than the original plan.

(a) ORM generated query (b) Equivalent SQL extracted by UNMASQUE

Figure 5: Learning-based Query Rewriting

Lightweight Code Conversion Often, for programming convenience or due to lack of SQL expertise,
software developers may choose to write imperative code. This may lead to serious execution ineffi-
ciencies due to not leveraging the database system’s potent optimization abilities – for instance, the use
of indexes. The benefits of automated imperative-to-SQL conversion tools have been well recognized
in recent times, resulting in their incorporation in mainstream database products (e.g. Froid [18] in SQL
Server). However, these tools are host-language-specific (e.g. TSQL in the case of Froid), and require
support for special operators (e.g. APPLY or LATERAL) which are not present on all engines, espe-
cially legacy ones. In contrast, UNMASQUE offers, over a restricted space of queries, a comparatively
robust and generic approach to generating SQL from imperative code. This is because it is completely
result-driven, making its usage application and platform-independent.

3 Problem Framework
We assume that an application executable object file is provided, which contains either a single SQL
query or imperative logic that can be expressed in a single query. If there are multiple queries in the
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application, we assume that each of them is invoked with a separate function call, and not batched
together, reducing to the single query scenario. This assumption is consistent with open source projects
such as Wilos [52], which contain code segments wherein each function implements the logic of a
single relational query.

If the hidden SQL query is present as-is in the executable, it can be trivially extracted using stan-
dard string extraction tools (e.g. Strings [40]). However, if there has been post-processing, such as
encryption or obfuscation, for protecting the application logic, this option is not feasible. An alterna-
tive strategy is to re-engineer the query from the execution plan at the database engine. However, this
knowledge is also often not accessible – for instance, the SQL Shield tool[48] blocks out plan visibility
in addition to obfuscating the query. Finally, if the query has been expressed in imperative code, then
neither approach is feasible for extraction.

Moving on to the database contents, there is no inherent restriction on column data types, but we
assume for simplicity, the common numeric (int, bigint and float with fixed precision), character (char,
varchar, text), date and boolean types. The database is freely accessible through its API, supporting all
standard DML and DDL operations, including creation of a test silo for extraction purposes.

3.1 Extractable Query Class
The QRE literature has primarily focused on constructing generic SPJGA queries featuring only key-
based equi-joins and not supporting nesting, disjunctions or set operators. We share these basic struc-
tural restrictions, but our extraction scope is significantly enlarged, including HOL constructs, LIKE

comparators, and multi-linear scalar functions on the columns. To achieve this extended coverage, we
require some additional mild assumptions. The specific restrictions on the supported queries are the
following:

1. Each table in the database schema appears at most once in the FROM clause. Further, the join
graph is a subgraph of the schema graph (comprised of all valid PK-FK and FK-FK edges). The
join predicates are inner equi-joins between keys.

2. The query is a single monolithic block without any nesting. We support multi-linear scalar col-
umn functions, but arbitary computational expressions should not be present.

3. The WHERE clause is composed of a pure conjunction of filter and join predicates.

4. All filter predicates feature only non-key columns. For numeric columns, arithmetic selections
of the type column op value where op is from =,≤,≥, <,>, between are supported, whereas for
textual columns, the like operator is extractable. In addition, boolean and nullity predicates are
also managed.

5. All aggregate functions are from the standard SQL constructs: min(), max(), count(), sum(),
avg().

6. The columns in the ORDER BY clause are all from the set of projected columns, which is typically
the case in practice.

7. The limit value is at least 3.

We hereafter refer to the above class of supported queries as Extractable Query Class (EQC).
Due to the difference in extraction frameworks, we initially present UNMASQUE only for SPJGAOL

queries, deferring the HAVING clause to Section 7. Accordingly, we qualify EQC as EQC−H (EQC
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Symbol Meaning Symbol Meaning (wrt queryQE )

A Application TE Set of tables in the query
E Application Executable CE Set of columns in TE
DI Initial Database Instance JGE Join graph
RI Result of E on DI JE Set of Join predicates
T Set of all Tables in DI FE Set of Filter predicates
SG Schema Graph of DI GE Set of Group By columns
QH Hidden Query HE Set of Having predicates
QE Extracted Query lE Limit value
Dmin Reduced Database PE Set of native Projections with mapped result columns
Dt Database with at most t rows in tables ofQE AE Set of Aggregations with mapped result columns
Dmut Mutated database −→

OE Sequence of Ordered result columns
Dgen Generated database tD Average running time of the query on database D

SE Total number of attributes in the tables in TE

Table 1: Notations

without HAVING) in Sections 4 through 6. Further, we assume a slightly simplified framework in the
subsequent description – for instance, that all keys are positive integer values – the extensions to the
generic cases are provided at the end.

The notations used in our description of the extraction pipeline are summarized in Table 1. To
highlight its black-box nature, the application executable is denoted by E , while

−→
OE has a vector symbol

to indicate that the ordering columns form a sequence.

3.2 Overview of the Extraction Approach
To set up the extraction process, we begin by creating a silo in the database that has the same table
schema as the original user database. Subsequently, all referential integrity constraints are dropped
from the silo tables, since the extraction process requires the ability to construct alternative database
scenarios that may not be compatible with the existing schema. We then create the following template
representation for the to-be extracted query QE:

Select ( PE , AE ) From TE Where JE ∧ FE
Group By GE Order By

−→
OE Limit lE;

and sequentially identify each of the constituent elements, as per the pipeline shown in Figure 3.
The initial segment of the pipeline is based on mutations of the original/reduced database and is

responsible for handling the SPJ features of the query which deliver the raw query results. The modules
in this segment require targeted changes to a specific table or column while keeping the rest of the
database intact.

In contrast, the second pipeline segment is based on the generation of carefully-crafted synthetic
databases. It caters to the GAOL query clauses, which are based on manipulation of the raw results. The
modules in this segment require generation of new data for all the query-related tables under various
row-cardinality and column-value constraints. We deliberately depart from the mutation approach here
since these constraints may not be satisfied by the original database instance.

At an intuitive level, the common theme across the SPJ extraction algorithms is that atomic changes
are made to individual database columns and the effect on the result is observed – with regard to change
in cardinality change (Select, Join) or change in column value (Projection) – to establish presence in the
respective clauses. For GAOL extraction, the common theme is that databases are created so as to assure
pre-determined (albeit invisible) intermediate outcomes of the SPJ core of the query. This calibrated
construction process supports precise establishment of associations between the input database columns
and the output result columns.
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We hereafter refer to these two segments as the Mutation Pipeline and the Generation Pipeline,
respectively, and present them in detail in the following sections.

Further, for the efficiency analysis, we assume a simple cost model, defined as follows: Let |T |
denote the size of table T , measured in terms of the row-cardinality. Then, the time to run a query
which includes m tables (say T1, T2, ..., Tm) is directly proportional to the product of the table sizes,

i.e. |T1| ∗ |T2| ∗ ... ∗ |Tm|, or
m∏
i=1

|Ti|.

We will use τ to indicate the time taken by the application to operate on the original databaseDI and

produce theRI result – with the above model, τ = c ∗
|TE |∏
i=1

|Ti|, where c is the proportionality constant.

4 Mutation Pipeline
The SPJ core of the query, corresponding to the FROM (TE), WHERE (FE , JE) and SELECT (PE) clauses,
is extracted in the Mutation Pipeline segment of UNMASQUE. Aggregation columns in the SELECT

clause are only identified as projections here, and subsequently refined to aggregations in Generation
Pipeline.

4.1 From Clause
To identify whether a base table t is present in QH , the following elementary procedure is applied:
First, t is temporarily renamed to temp. Next, E is executed on this mutated schema and if an error is
immediately thrown by the database engine, then t is part of the query; otherwise, we conclude that t
is not in the query and the ongoing execution is terminated after a short timeout period. Finally, temp
is reverted to its original name t. By doing this check iteratively over all the tables in the schema, TE is
identified. For Q3, the procedure results in TE = {customer, lineitem, orders}.

The above “execution-with-error” approach is very quick. However, it may not always be feasible
since either (i) the database engine may not be designed to issue such alerts, or (ii) the application
may handle the error internally and not propagate the message to the user. We have therefore designed
an alternative platform-agnostic “execution-with-zero-result” approach that is based on the following
observation: Given our EQC, where only inner equi-joins are permitted, if any table in the FROM clause
is empty, the query result will also be empty. So, we take each candidate table t in turn, rename it to
temp, then create a new empty table t with the same schema as temp. Let this modified database
be called Dmut. Subsequently, E is run on Dmut and the result is observed – if empty, t belongs to
TE . After that, table t is dropped and temp is renamed to t – this transforms Dmut back to the initial
database instance.

We hereafter use DI to refer not to the entire original database, but specifically to the part relevant to
QE – i.e. the contents of TE .

4.1.1 Time Complexity

In the above “execution-with-error” approach, the executable invocation takes constant time as there is
a predefined time limit on the execution time after which the query execution is interrupted. Hence, the
time complexity of FROM clause extraction using “execution-with-error” approach is O(|T |) since all
the T tables in the schema have to be iteratively checked for their presence in the query.
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However, in the “execution-with-zero-result” approach, each execution invocation might take τ in the
worst case. Hence, the time complexity of FROM clause extraction using “execution-with-zero-result”
approach is O(|T | ∗ τ).

4.2 Database Minimization
For enterprise database applications, it is likely that DI is huge, and therefore repeatedly executing E
on this large database during the extraction process may take an impractically long time. To tackle this
issue, before embarking on the SPJ extraction, we attempt to minimize the database as far as possible
while maintaining a populated result. Specifically, we address the following row-minimality problem:

Given a database instance DI and an executable E producing a populated resultRI on DI , derive a
reduced database instance Dmin from DI such that removing any row from any table leads to an empty
or null result.

Here, the notion of empty result covers both the case where there are zero result rows, as well as
when there is a single row with all null values (a corner case that can occur, for instance, with an
aggregate query on an empty database) – i.e. both syntactic and semantic emptiness.

With the above definition of Dmin, we can state the following strong observation for EQC−H (EQC
without HAVING):

Lemma 1: For the EQC−H , there always exists a Dmin wherein each table in TE contains only a
single row.

Proof. Firstly, since the final result is known to be populated, the intermediate result obtained after
the evaluation of the SPJ core of the query is also guaranteed to be non-empty. This is because the
subsequent GAOL elements only perform computations on the intermediate result but do not add to it.
Now, if we consider the provenance for each row ri in the intermediate result, there will be exactly one
row as input from each table in TE because: (i) if there is no row from table t, ri cannot be derived
because the inner equi-join (as assumed for the query class EQC) with table t will result in an empty
result; (ii) if there are k : (k > 1) rows from t, (k− 1) rows either do not satisfy one or more join/filter
predicates and can therefore be removed from the input, or they will produce a result of more than one
row since there is only a single instance of t in the query. In essence, a single-row R can be traced back
to a single-row per table in Dmin.

We hereafter refer to this single-row Dmin as D1– the reduction process to identify this database is
explained next.

4.2.1 Reducing DI to D1

At first glance, it might appear trivial to identify a D1– simply pick any row from the R obtained
on DI and compute its provenance using the well-established techniques in the literature (e.g. [12])
– the identified source rows from TE constitute the single-row D1. However, these tuple provenance
techniques in the literature are predicated on prior knowledge of the query. This makes them unviable
for identifying D1 in our case where the query is hidden. Therefore, we implement the following
iterative-reduction process instead: Pick a table t from TE that contains more than one row, and divide
it roughly into two halves. Run E on the first half, and if the result is populated, retain only this first half.
Otherwise, retain only the second half, which must, by definition, have at least one result-generating
row (due to Lemma 3.1). When eventually all the tables in TE have been reduced to a single row by
this process, we have achieved D1.
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In principle, the tables in TE can be progressively halved in any order. However, after each halving,
E is executed once to determine which half to retain, and we would like to minimize the time taken
by these executions. Accordingly, we empirically evaluated various policies for which table to halve
next (smallest table, largest table, random, etc.), and found that a policy of halving the currently largest
table was usually the fastest way to reach the D1 target.

To make the above concrete, a sample D1 for Q3 (created from an initial 100 GB instance) is shown
in Figure 6.

Figure 6: D1 for Q3

4.2.2 Time Complexity

In each iteration, the Minimizer reduces the maximum sized table to half its size and after that the
application is executed. Thus, in each iteration, the query cost (as per the model in Section 3.2) is
reduced by half. Therefore, the time taken by the Minimizer to reduce the database to one row can be
computed as ( τ

2
+ τ

4
+ ....+ 1) which is upper bounded by O(τ).

4.2.3 Sampling-based Preprocessing

The efficiency of the reduction strategy could be improved by leveraging the sampling methods that are
natively available in most database systems. Specifically, instead of executing the MINIMIZER directly
onDI , we could first quickly reduce the initial database size by iteratively sampling from the large-sized
tables, one-by-one in decreasing size order, until a populated result is obtained.

An important point to note here is that after the above-mentioned database size reduction, the re-
maining modules of Mutation Pipeline run E on Dmin which is just a one row database. Also, the
synthetic databases used in Generation Pipeline are of very small sizes (usually a handful number of
rows in each table). Thus, for subsequent modules, the time for a single invocation of the executable is
taken as constant.
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4.3 Equi-Join Predicates
To extract the key-based equi-join predicates JE of QH , we start with SG, the original schema graph
of the database. However, unlike the usual representation where the tables are the vertices, we use a
finer granularity wherein the vertices are the columns in the tables. So, each edge (u, v) denotes a join
linkage between a pair of attributes in the schema. (In the case of composite keys, an edge is drawn
from each element of the key to the corresponding destination column.)

From SG, we create an (undirected) induced subgraph whose vertices are the key columns in TE ,
and edges are the potential join linkages between these columns. Then, using the transitive property
of inner equi-joins, this subgraph is converted through transitive closure into a collection of cliques.
Finally, each clique is converted to a cycle graph, hereafter referred to as a cycle, by retaining any one
of elementary n-length cycles (n = number of nodes in the clique). Note that in our context, even the
trivial elementary graph with n = 2 (a pair of nodes and an edge between them) is also considered to
be a cycle. The complete collection of cycles is referred to as the candidate join-graph, or CJGE .

Our motivation for the graph conversion step is that: (a) Checking presence of a connected compo-
nent in the query is equivalent to verifying presence of the corresponding cycle, and (b) If a connected
component is only partially present in the query, the simple cutting procedure outlined below can down-
size it to smaller components.

We now individually check for the presence of each CJGE cycle in the query, using the iterative
procedure shown in Algorithm 1, retaining in JGE only those which pass the test. The check is done
in the following three steps:

1. Using the CUT subroutine, a pair of edges, e1 and e2, is removed from a random cycle CY C; this
removal partitions CY C into two connected components, and the new components are converted
back into smaller cycles (CY C1 and CY C2) by reintroducing the relevant missing edge;

2. Using the NEGATE procedure, negate (i.e. change the sign) all column values in D1 correspond-
ing to the vertices in CY C1,

3. Run E on this mutated database – if the result is empty, we conclude that at least one of the edges
e1 and e2 is present in JGE and both e1 and e2 are returned to the parent cycle CY C; otherwise,
CY C1 and CY C2 are included as fresh candidates in CJGE .

As a limiting case, if a cycle becomes reduced to a single edge, then the check is carried out by dropping
the CUT step and using only NEGATE with one vertex of the edge.

In the above procedure, the motivation for removing a pair of edges is the following: For JGE to not
contain a candidate cycle CY C, at least two edges of CY C should be absent from the query – if only
a single edge were to be removed, the cycle would still effectively remain by the transitivity property
of equi-joins. Note that the algorithm is guaranteed to terminate because, in each iteration, a cycle is
either fully removed or partitioned into smaller cycles.

With regard to Q3, CJGE contains only two connected components – (l_orderkey, o_orderkey)
and (o_custkey, c_custkey). Each component has a single edge that returns true when checked for
presence by Algorithm 1. So, in this case, JGE ≡ CJGE . In the final step, each edge in JGE is
converted into a predicate in JE . Therefore, the equi-join predicates turn out to be:
JE = {l_orderkey=o_orderkey, o_custkey=c_custkey}.

4.3.1 Proof of Correctness

Lemma 2: For a hidden query QH ∈ EQC, UNMASQUE correctly extracts JGE , or equivalently, JE .
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Proof. It is trivial to see that when there is only one edge in the cycle, it will be correctly extracted as
the output after removing this edge will be empty iff this edge is present in the join graph. For the edges
that belong to bigger cycles, we prove the claim by contradiction. Consider an edge (u, v) that belongs
to JGE but is not extracted (i.e. a false negative). This implies that when the edge (u, v) is removed by
value negation (with any other edge) the result continues to be populated. This is not possible if (u, v)
∈ JGE as one of the nodes from u and v is negated.

On the other hand, consider an edge (u, v) ∈ C that is not part of JGE but is extracted (i.e. a
false positive). This implies that when the edge (u, v) is explicitly removed along with any other edge
(x, y) by value negation, the result becomes empty. As there is no other filter on key attributes and
(u, v) /∈ JGE , every other edge in C must belong to the join graph. Now due to inner equi-join
assumption, (u, v) also belongs to the join graph as it can be inferred from the other edges of cycle C,
a contradiction.

Algorithm 1: Extracting Equi-Join Graph JGE

CJGE ← Candidate Cycles, JGE ← φ
while There is at least one cycle in CJGE do

CY C ← Any candidate cycle from CJGE
if CY C contains a single edge (v1, v2) then

D1
mut← Negate(D1, {v1})

If E (D1
mut) = φ then JGE ← JGE ∪ CY C

CJGE ← CJGE / CY C
else

foreach pair of edges (e1, e2) ∈ CY C do
CY C1, CY C2 = Cut(CY C, e1, e2)
D1
mut← Negate(D1, CY C1)

if E (D1
mut) = φ then

Add e1 and e2 back to CY C
else

CJGE ← (CJGE − CY C) ∪ CY C1 ∪ CY C2

break //Go to the start of while loop
end

end
JGE ← JGE ∪ CY C; CJGE ← CJGE / CY C

end
end

4.3.2 Time Complexity

Let E denote the set of edges in SG and Ckey denote the set of key attributes taken from the tables in
TE . Then, finding connected components of the graph can be performed inO(Ckey+E) and converting
each component into the respective cycle can be done in O(Ckey) in the worst case as it is equivalent to
creating a cycle from the nodes in the component. After that, checking presence of each edge requires
at most

(
Ckey

2

)
iterations. Thus overall time complexity for join predicate extraction comes out to be

O(E ∗ |Ckey|2).
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Case R1 = φ R2 = φ Predicate Type Action Required

1 No No imin ≤ A ≤ imax No Predicate
2 Yes No l ≤ A ≤ imax Find l
3 No Yes imin ≤ A ≤ r Find r
4 Yes Yes l ≤ A ≤ r Find l and r

Table 2: Filter Predicate Cases

4.4 Filter Predicates (non-key)
We start by assuming that all columns in CE are potential candidates for the filter predicates FE inQH
(as per EQC−H , each such attribute can appear in at most one filter predicate). Each of them is then
checked in turn with the following procedure: First, we evaluate whether there is a nullity predicate
on the column. If an IS NULL predicate is not present, we investigate whether there is an arithmetic
predicate, and if yes, the filter value(s) for the predicate are identified.

It is relatively easy to check for nullity predicates and, more generally, predicates on any data types
with small finite domains (e.g. Boolean), by simply mutating the attribute with each possible value
in its domain and observing the result – empty or populated – of running E on these mutations. The
procedure for general numeric and textual attributes is, however, more involved, as explained below.

4.4.1 Numeric Predicates

For ease of presentation, we start by explaining the process for integer columns. Let [imin, imax] be the
value range of columnA’s integer domain, and assume a range predicate l ≤ A ≤ r, where l and r need
to be identified. Note that all the comparison operators (=, <,>,≤,≥, between) can be represented in
this generic format – for example, A < 25 can be written as imin ≤ A ≤ 24.

To check for presence of a filter predicate on column A, we first create a D1
mut instance by replacing

the value of A with imin in D1, then run E and get the result – call it R1. We get another result – call
it R2 – by applying the same process with imax. Now, the existence of a filter predicate is determined
based on one of the four disjoint cases shown in Table 2.

If the match is with Case 2 (resp. 3), we use a binary-search-based approach over (imin, a] (resp.
[a, imax)), to identify the specific value of l (resp. r), where a is the value of column A that is present
in D1. After this search completes, the associated predicate is added to FE . Finally, Case 4 is a
combination of Cases 2 and 3, and can therefore be handled in a similar manner.

We apply the above procedure for each of the non-key columns that feature in TE . Since the value of
only one column (say t.A) is changed at a time, it ensures that any change in the result is solely due to
the change in t.A. This enumerative method ensures that we correctly identify filter predicates of the
type column op value with op ∈ {=, <,>,≤,≥, between} for each numeric database column.

We can easily extend the integer approach to float data types with fixed precision, by first identifying
the integral bounds with the above procedure and then executing a second binary search to identify the
fractional bounds. For example, with li and ri as the integral bounds identified in the first step, and
assuming a precision of 2, we search l in ((li − 1).00, li.00] and r in [ri.00, ri.99) in the second step.

Time Complexity Let u denote the range of the attribute’s data type. Now, we require two table
updates and two calls to the executable to determine one of the four cases in Table 2 which is an O(1)
operation. After that, if the attribute has a filter, we require log u table updates and corresponding exe-
cutable calls. Thus, the total time complexity of filter predicate extraction for an attribute is O(log u).
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4.4.2 Date Columns

Extracting predicates on date columns is identical to that of integers, with the minimum and maximum
expressible dates in the database engine serving as the initial range, and days as the difference unit.
For example, after identifying filter of type A ≤ r on o_orderdate, we apply binary search strategy
in range [‘1994-12-31’, r] (assuming ‘1994-12-31’ is the value of o_orderdate in D1) and r is the
greatest allowed date value in the database engine (for PostgreSQL, r = 5874897AD). Note that the
same strategy can be applied to other datetime type columns with the corresponding change in the
resolution of values.

4.4.3 Boolean Columns

With a single row, a boolean column can have only one of True or False values. Therefore, to identify
a filter on boolean column t.A, we create a D1

mut by replacing its value in D1 with True (resp. False) if
the current value in D1 is False (resp. True) and get the result. If the result is empty, add “A = False"
(resp. “A = True") to FE .

4.4.4 Textual Predicates

The extraction procedure for character columns is significantly more complex because (a) strings can
be of variable length, and (b) the filters may contain wildcard characters (‘_’ and ‘%’). To first check
for the existence of a filter predicate, we create two different D1

mut instances by replacing the value of
A initially with an empty string and then with a single character string – say “a". E is invoked on both
these instances, and we conclude that a filter predicate is in operation iff the result is empty in one or
both cases. To prove the if part, it is easy to see that if the result is empty in either of the cases, there
must be some filter criteria on A. For the only if part, the result will be populated for both cases in only
one extreme scenario – A like ‘%’, which is equivalent to no filter on A.

Upon confirming the existence of a filter predicate on A, we extract the specific predicate in two
steps. Before getting into the details, we define a term called Minimal Qualifying String (MQS). Given
a character/string expression val, its MQS is the string obtained by removing all occurrences of ‘%’
from val. For example, “UP_” is the MQS for "%UP_%". Note that each character of MQS, with
the exception of wildcard ’_’, must be present in the data string to satisfy the filter predicate. With this
notation, the first step is to identify MQS using the actual value ofA inD1, denoted as the representative
string, or rep_str. The formal procedure to identify MQS is detailed in Algorithm 2. The basic idea
here is to loop through all the characters of rep_str and determine whether it is present as an intrinsic
character of the MQS or invoked through the wildcards (‘_’ or ‘%’). This distinction is achieved by
replacing, in turn, each character of rep_str in D1 with some other character, executing E on this
mutated database, and checking whether the result is empty – if yes, the replaced character is part
of MQS; if no, this character was invoked through wildcards. In this case, further action is taken to
identify the correct wildcard character. Note that in case the character in rep_str occurs more than once
without any intrinsic character in between, and only one of them is part of MQS, our procedure puts
the rightmost character in MQS.

Lemma 3: For a query in EQC, Algorithm 2 correctly identifies MQS for a filter predicate on
character attribute.
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Algorithm 2: Identifying MQS
Input: Column A, rep_str, D1

itr = 0; MQS = “”
while itr < len(rep_str) do

temp = rep_str
temp[itr] = c where c 6= rep_str[itr]
D1
mut← D1 with value temp in column A

if E (D1
mut) = φ then

MQS.append(rep_str[itr++])
else

temp.remove_char_at(itr)
D1
mut← D1 with value temp in column A

if E (D1
mut) = φ then

MQS.append(’_’); itr++

else
rep_str.remove_char_at(itr)

end
end

end

Proof. The correctness of the algorithm 2 can be established using contradiction for each of the possible
failed cases. For example, let us say a character ‘a’ belonged to MQS but the procedure fails to identify
it. This means that after removing ‘a’ from rep_str, the result is still non-empty (the filter condition was
satisfied). This is possible when ‘a’ occurs more than once in rep_str and there is at least one occurrence
which is part of the replacement for wildcard ‘%’. However, the procedure will keep removing ‘a’ until
there is no occurrence left which is part of replacement for wildcard ‘%’. After that, removing ‘a’ will
lead the corresponding filter predicate to fail. If this is not the case, ‘a’ is not present in the MQS, a
contradiction. Similarly, the correctness for other cases can be proved.

After obtaining the MQS, we need to find the locations (if any) in the string where ‘%’ is to be placed
to get the actual filter value. This is achieved with the following simple linear procedure: For each pair
of consecutive characters in MQS, we insert a random character that is different from both these char-
acters and replace the current value in column A with this new string. A populated result for E on
this mutated database instance indicates the existence of ‘%’ between the two characters. The inserted
character is removed after each iteration and we start with the initial MQS for each successive pair of
consecutive characters. This makes sure that we correctly identify the locations of ‘%’ without exceed-
ing the character length limit for A. In the specific case of Q3, the predicate value for c_mktsegment
turns out to be the MQS itself, namely ‘BUILDING’.

Overall, for query Q3, the following numeric and textual filter predicates are identified by the above
procedures:

FE = { o_orderdate ≤ date ‘1995-03-14’ ,
l_shipdate ≥ date ‘1995-03-16’ ,
c_mktsegment = ‘BUILDING’ }

Time Complexity Let len be the character limit of the textual attribute’s data-type. For example,
varchar(50) implies len = 50. Then, the time complexity for Algorithm 2 is O(len) as a single
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pass through rep_str is performed using the while loop in the algorithm and each iteration performs
constant time operations. After that, finding places for ‘%’ requires a single pass through MQS. Thus,
time complexity for textual predicate extraction is linear in the maximum number of characters allowed
by the corresponding data-type.

From hereon, we will refer to attribute values that satisfy the corresponding filter and join predicates
in the query as s-values. For attributes without filters, including key attributes on which filters are
not permitted in EQC−H , the s-values can be sourced from their entire domains. Our subsequent
extractions are carried out only on databases populated with s-values.

4.5 Projection Columns
The identification of projections is rendered tricky since they may appear in a variety of different forms
– native columns, renamed columns, aggregation functions on the columns, or UDFs with column vari-
ables. To have a unified extraction procedure, we begin by treating each result column as an (unknown)
constrained scalar function of one or more database columns. We explain here the procedure for iden-
tifying this function, assuming linear dependence on the column variables and at most two columns
featuring in the function – the extension to more columns is discussed at last.

LetO denote the output column, andA,B the (unknown) database columns that may affectO. Given
our assumption of linearity, the function connecting A and B to O can be expressed with the following
equation structure:

aA+ bB + cAB + d = 0 (1)

where a, b, c, d are constant coefficients. With this framework, the extraction process proceeds, as
explained below, in two steps: (i) Dependency List Identification, which identifies the identities of
A,B, and (ii) Function Identification, which identifies the values of a, b, c, d.

4.5.1 Dependency List Identification

In this step, for each output column O, the set of database columns which affect its value is discovered
via iterative column exploration and database mutation. Specifically, the s-value of each database
column in D1 is mutated in turn to evaluate its impact on the value of O – if there is a change, then O
is dependent on this column.

However, a subtle point here is that even in the simplified two-variable scenario, a single pass through
all the database columns may not always be sufficient to obtain the complete dependency list of O. For
instance, if the value of column A in D1 coincidentally happens to be −b

c
, the entry in column B has no

impact on O, irrespective of its value. We say that A is a blocking column and B is the blocked column
for that database instance. Similarly, if the B value happens to be −a

c
, column A is rendered ineffectual.

To address such boundary conditions, we perform a second iteration if the dependency list has less than
two columns after the first. Prior to the second iteration, the values in all the database columns are
changed to new s-values, thereby ensuring that both attribute dependencies, if present, become visible.

Finally, as a special case, note that if the output column represents count(*), its dependency list will
be empty.

Using the above procedure on Q3, the following dependency lists are obtained for the various output
columns: l_orderkey: [l_orderkey], o_orderdate: [l_orderkey], o_shippriority: [o_shippriority], and
revenue: [l_extendedprice, l_discount].
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4.5.2 Function Identification

With reference to Equation 1, at this stage we are aware of the identities of A and/or B for each of the
output columns, and what remains is to obtain the coefficient values a, b, c, d. Since we have a non-
homogeneous equation in 4 unknowns, it can be easily solved by creating 4 different D1

mut instances
such that the resultant equations are linearly independent. This is achieved by randomly mutating the
values of A and B, checking whether the new vector [A,B,AB, 1] is linearly independent from the
vectors generated so far, and stopping when four such vectors have been found. With regard to Q3,
the revenue output column depends on A = l_extendedprice and B = l_discount. The sample four
equations, corresponding to output column revenue, generated in our experiments are as below:

1.a+ 2.b+ 2.c+ d = −1 (2)
2.a+ 1.b+ 2.c+ d = 0 (3)
2.a+ 3.b+ 6.c+ d = −4 (4)
1.a+ 4.b+ 4.c+ d = −3 (5)

Solving the above system results in coefficient values: a = 1, b = 0, c = −1, d = 0, producing
the function seen in Q3. For the remaining output columns, which are all dependent on only a single
database column, we get the function of the form aA+ d with a = 1, d = 0 – i.e. a native column.

Thus for query Q3, we obtain the following projection columns:
P̃E = {l_orderkey: l_orderkey, o_orderdate: o_orderdate,

o_shippriority: _shippriority,
revenue: l_extendedprice * (1 - l_discount) }.

The reason we show the above set as P̃E , and not PE , is that some of these projections are sub-
sequently refined as aggregations (AE) in the Generation Pipeline – for instance, revenue becomes a
sum. We did not have to concern ourselves with these aggregation functions in the current stage because
our extraction techniques operated on single-row databases, in which case all aggregation functions are
identical with regard to their values.

4.5.3 Proof of Correctness

Lemma 4: The above procedure correctly identifies scalar functions of up to two variables in PE .

Proof. Firstly, we correctly identify the dependency list for an output column because the second iter-
ation with different values in database columns ensures that no column is left out due to the blocking
condition mentioned above. Also, it can be seen that any column which is not part of the function, will
not be added in the dependency list because we perform change only one column at a time ensuring
that the change in the output column is due to the change in that particular database column only. After
identifying the dependency list, if the function satisfies the linearity condition mentioned in equation
1, it will be correctly identified as we ensure to generate a system of equation with a unique solu-
tion (by checking that vectors [A,B,AB, 1] generated from different values of A and B are linearly
independent).

4.5.4 Time Complexity

To get the dependence of a database column in an output function, we change its value and observe the
effect in all the output columns of the result. As mentioned above, for a two variable (database columns)
output function, two passes through CE (the columns belonging to the tables in TE) are enough. After
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that, we generate four equations and solve them using standard techniques (e.g. Gauss Elimination
Method) which, when the number of variables is small, represent constant time operations. Thus time
complexity for projection identification (assuming dependency list size up to 2 for each function) is
O(CE ).

Generalization Note that the above process can be generalized tom column variables in the function
if we are able to generate 2m different D1

mut instances. In such a case, the time complexity becomes
heavily dependent on the function identification process. In general, for an m variable function, we
need to solve a system of 2m equations which is a O((2m)3) operation.

4.5.5 CASE Statements

We can handle the CASE switch statements of the type (CASE WHEN column op value THEN
const1 ELSE const2 END) on categorical domains, such as those seen in TPC-H Q12. If no nu-
meric function is found and the column is of categorical domain, its values are altered to created D1

mut

instances and the output is mapped to the corresponding column values. These mapping are then con-
verted to the corresponding case statements. For example, let us say the output column takes value 0
when a particular attribute named “gender" takes value ‘M’ and its 1 otherwise. It is transformed to the
following case statement: (CASE WHEN gender = ‘M’ THEN 0 ELSE 1 END).

4.5.6 Ancillary Functions

Finally, ancillary functions such as substring, casting, etc. can also be extracted by mapping the input-
output values and then checking for these specific functions.

5 Generation Pipeline
The GAOL part of the query, corresponding to the GROUP BY (GE), AGGREGATION (AE), ORDER

BY (
−→
OE) and LIMIT (lE) clauses, is extracted in the Generation Pipeline segment of UNMASQUE.

Here, synthetically generated miniscule databases are used for all the extractions, as described in the
remainder of this section.

5.1 Group By Columns
Our generic approach is that for each attribute t.A in CE (the set of columns in TE), we create a tiny
synthetic database instance Dgen and analyze E (Dgen) for the existence of t.A in GE , the columns in
the GROUP BY clause. However, this check is skipped for columns with equality filter predicates (as
determined previously in the Mutation Pipeline) since their presence or absence in GE does not impact
the query result.

Assume for the moment that we have constructed a Dgen such that the (invisible) intermediate result
produced by the SPJ core of QH contains 3 rows satisfying the following condition: Column t.A has a
common value in exactly two rows, while all other columns have the same value in all three rows. We
call this as desired “target intermediate result" for column t.A. Now, if the final query result contains
2 rows, it means that this grouping is only due to the two different values in t.A, making it part of GE .
This approach to intermediate result generation is similar to the techniques presented in [19, 26] for
identifying query mutants.
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Figure 7: Dgen for Grouping on o_orderdate (Q3)

5.1.1 Creating Dgen

We now explain how to create the desiredDgen for checkingGE membership. The procedure is specific
to the presence or absence of t.A in JGE , the query join graph identified in the Mutation Pipeline,
leading to the two cases described below. In the following description, assigning (p, q, r, ...) to t.A
means assigning s-value p in the first row, q in the second, r in the third and so on.

Case 1: t.A /∈ JGE Here, we generate 3 rows for table t and only 1 row in each of the other tables
in TE . For column t.A, any two distinct s-values p and q are first chosen, and then (p, p, q) is assigned
to t.A. Next, for all columns t.B ∈ JGE , a fixed s-value of r = 1 (consistent with the EQC−H

assumption that keys do not feature in filter predicates) is assigned in all 3 rows. Finally, in all remaining
columns of t, a random s-value r is selected and assigned to all 3 rows.

For the remaining 1-row tables t′ in TE , a fixed s-value of r = 1 is assigned to all columns t.B ∈
JGE , and random s-values in the remaining columns.

An example Dgen for checking the presence of o_orderdate in the GE of Q3 is shown in Figure 7.
Here, the ORDERS table features 3 rows with p = ‘1995-03-13’ and q = ‘1995-03-14’, while the remain-
ing tables, LINEITEM and CUSTOMER, have a single row apiece.

Case 2: t.A ∈ JGE Here, we generate 3 rows for table t, 2 rows for all tables t′ having a column
t′.B such that there is a path between t.A and t′.B in JGE , and only 1 row for the remaining tables in
TE . The assignment of values in the tables is similar to Case 1 with the following modifications: (i) In
t.A, p and q are assigned fixed s-values of 1 and 2, respectively, in the 3 rows; (ii) Each column t′.B
is assigned fixed s-values (1, 2) in its two rows, and the remaining columns in its table are assigned
duplicated random s-values.

An example Dgen for checking the presence of l_orderkey in GE is shown in Figure 8. Here, there
are 3 rows for LINEITEM, 2 rows for ORDERS and 1 row for CUSTOMER.

It is straightforward to see by inspection that, with a restriction to key-based equi-joins, the above
data generation procedure ensures the desired structure for the intermediate SPJ result. Namely, it
contains exactly 3 rows with all columns having the same value in all of them, except for the attribute
under test which has two values across these rows.

It is possible that after all attributes have been processed in the above manner, GE remains empty.
In this case, we create another Dgen with each table having two rows, assigning fixed s-values (1, 2) to
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Figure 8: Dgen for Grouping on l_orderkey (Q3)

each column in JGE , a matching s-value to each column with an equality filter predicate, and any two
different s-values to all other columns. Then, E is run on this Dgen, and if the result contains just 1 row,
we conclude the query features an ungrouped aggregation.

Overall, for Q3, the above procedure results in:
GE = {l_orderkey, o_shippriority, o_orderdate}.

5.1.2 Proof of Correctness

Lemma 5: The above procedure identifies the columns in GE correctly.

Proof. If we prove that for each attribute, the above data generation technique ensures that we get the
“target intermediate result" for the queries in EQC−H , then the presence of that attribute can be iden-
tified correctly. This statement can be proved by contradiction. Let us suppose an attribute t.A /∈ JGE

belongs to GE , but our procedure failed to identify it. It implies that the desired “target intermediate re-
sult" was not generated. However, following the construction mechanism for Case 1 above, we should
have gotten the “target intermediate result" for a query in EQC−H . It implies that QH /∈ EQC−H .
Similarly by taking contradictory cases and following the construction above, the correctness for other
procedures can be proved.

5.1.3 Time Complexity

As discussed previously in Section 4.2, the synthetic databases are of very small sizes. So the time
for a single executable invocation is taken as constant. Thus the time complexity of GE identification
can be calculated by the number of total executable invocations and the effort involved in generating
the database for that invocation. For each column in CE (set of columns in the TE tables), we make
a pass to assign values as per the data generation technique defined above, and make one executable
invocation on the resultant database. Thus, the overall time complexity of GE extraction is O(CE 2).

5.2 Aggregation Functions
We now explain the procedure for identifying the basic SQL aggregations – min(), max(), count(),
sum(), avg(). Due to space limitations, only numeric attributes are discussed here, but similar methods
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can be used for textual and other attributes as well. Further, for ease of presentation, we assume that
there is no DISTINCT aggregation, deferring this case to the end of the section.

As described in Section 4.5, the Projection Extractor models each output column O as a function of
the database columns within its dependency list. With this framework, the aggregation identification
proceeds as follows: Let O = agg(fo(A1, ..., An)), where agg corresponds to the aggregation, and
fo(A1, ..., An) to the projection function identified in Section 4.5 on database columns A1, ..., An. Our
goal is to create a database Dgen such that the final result row-cardinality is 1, and each of the five
possible aggregation functions on fo results in a unique value, thereby facilitating correct identification
of the specific aggregation. We call this the desired “target result”.

To distinguish between min() and max(), at least two different values are required in the input
database columns. Further, to ensure unique values for the various output aggregations, we do as
follows: Consider a pair of input s-value vector arguments (s1, .., si, .., sn) and (s1, .., s

′
i, .., sn) such

that fo(s1, .., si, .., sn) = o1 and fo(s1, .., s′i, .., sn) = o2, with o1 6= 0, o1 6= o2. Note that the two argu-
ments differ only in si and s′i. Now assume we have generated a database Dgen such that there are k+1
rows in the (invisible) intermediate result produced by the SPJ core of the query, with value fo = o1
in k rows and fo = o2 in the remaining row. Further, that k satisfies the following forbidden-value
constraint:

k /∈

{
0, o1 − 1, o2 − 1,

o1 − o2
o1

,
1− o2
o1 − 1

,
(o2 − 2)±

√
(o1 − 2)2 − 4(1− o2)

2

}
(6)

Figure 9: Constraints on k

These constraints on k have been derived by computing pairwise equivalences of the five aggregation
functions, and forbidding all the k values that result in any equality across functions. The table shown
in Figure 9 gives individual constraint on the value of k which results from pairwise equivalences. For
example, the constraint k 6= (o1 − 1) is required for count and min aggregates to result in different
values. Now, additionally if we ensure that the GE attributes are assigned common values in all the
rows, the result of E will be the target result.

5.2.1 Generating Dgen

First, we choose the ith argument Ai to be a column that is not in GE . If such an Ai is not available,
then as mentioned above, si = s′i and any argument column can be chosen as Ai. Next, we pick any
two of the arguments that were used to identify dependency lists for fo (Section 4.5) if they satisfy the
above-mentioned output condition, or generate a new set of compliant arguments. Subsequently, k is
chosen as the least positive integer satisfying Equation 6. Finally, the data generation process to obtain
the desired intermediate result is similar to the Dgen generation of GROUP BY (Section 5.1), with the
following changes:
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• k + 1 rows are generated for table t where Ai ∈ t, with t.Ai being assigned value si in k rows
and value s′i in the remaining row.

• The other argument database columns, Aj s.t. j 6= i, are assigned corresponding sj values in all
the rows.

• With respect to Case 2 (t.Ai ∈ JGE), all assignments of fixed values 1, 2 are replaced with values
si, s

′
i.

A sample Dgen to check for aggregation on l_extendedprice * (1 - l_discount) is shown in Figure 10.
Here, k = 1 and (l_extendedprice, l_discount) is set to < (3, 0), (4, 0) >. We run E on this Dgen and
the aggregation is identified by matching O’s value with the corresponding unique values for the five
aggregations – in this case, it turns out to be sum().

Figure 10: Dgen for Aggregation on revenue UDF (Q3)

In the last step, the entries corresponding to the aggregated columns are removed from P̃E and
inserted in AE , along with their associated functions. Further, if an unmapped output column is present
in P̃E , it is removed and count(∗) is added to AE . Whatever remains in P̃E constitutes the native
(i.e. unaggregated) PE .

With the above procedure, we finally obtain for Q3:
AE = {revenue: sum(l_extendedprice * (1 − l_discount))}
PE = {l_orderkey:l_orderkey, o_orderdate:o_orderdate,

o_shippriority:o_shippriority}

5.2.2 Proof of Correctness

Lemma 6: The above procedure identifies the columns in AE correctly.

Proof. Let us say that for each column, we are able to generate the database such that the result of QH
is the “target result". Then it is clear that the correct aggregation will be identified. Now, the reason that
the target result is produced is (i) the result cardinality is 1 since there is a common set of values for
the GE attributes, and (ii) the constraints on k ensure unique aggregated output of all the aggregations
for O. (As a special case, if fo is a constant function or a function of only the columns in GE , we are
forced to have ai = a′i and hence, o1 = o2 = c. Here, the k constraint reduces to k /∈ {0, c − 1} and
since multiple aggregations on fo are equivalent (e.g. min(), max(), avg()), any of them can be taken as
the final choice.)
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5.2.3 Time Complexity

The time complexity of AE extraction is similar to that for GE extraction with the only change being
that in each executable invocation, one of the database tables will contain k rows. However, as k is
taken as the smallest value satisfying equation 6 which restricts k to be not equal to 6 different values
at maximum. Thus, there always exists a k such that k satisfies equation 6 and k < 7, which is a very
small number of rows. Hence, here also, the time for one single executable invocation can be taken as
constant. Thus, the time complexity for AE extraction is the same as for GE extraction, i.e. O(CE 2).

5.2.4 Extension to DISTINCT keyword

We now consider the case where the aggregation may be present with the DISTINCT keyword. Here,
we first invoke the above method which will result in one of the following three cases:

Case1: No aggregation is identified: The outcomes of min() and max() aggregations do not de-
pend on DISTINCT. Therefore, in this particular case, the aggregation on fo can be one of
sum(DISTINCT fo), avg(DISTINCT fo) or count(DISTINCT fo). To identify the correct aggrega-
tion, we add (o1 + o2) /∈ {2, 4} as an extra condition on o1 and o2 while generating the s-value
arguments. This ensures that the three candidate aggregations result in distinct computed values.

Case2: min() or max() aggregation is identified: No action is required as min() or max() produce
exactly the same result with or without DISTINCT.

Case3: Aggregation other than min() or max() is identified: Here, the possible aggregations on fo
are sum(DISTINCT fo), avg(DISTINCT fo), count(DISTINCT fo), or the one identified without
distinct. In such a case, we generate databases to prune this list one by one. For example, let sum
(fo) be the identified projection. To prune one of sum(fo) and sum(DISTINCT fo), we generate
a Dgen instance with k = 2 and o1 6= 0. Similarly, other candidates can be pruned as well. As a
final note, in the case of equivalent aggregations, any among them can be chosen.

5.2.5 Extension to Non-numeric Columns

For a non-numeric column A, the sum() or avg() aggregations do not apply. The existence of count()
aggregation can be identified in a manner analogous to count() aggregations for numeric columns.
Finally, we need to check the existence of min() or max() aggregations. In such a case, we take k = 1
and identify two different values a and b from the domain of A such that the corresponding output
column function returns two different values. Based on the outcome, min() or max() aggregation can
be identified.

5.3 Order By

We now move on to identifying the sequence of columns present in
−→
OE . A basic difficulty here is that

the result of a query can be in a particular order either due to: (i) explicit ORDER BY clause in the
query or (ii) a particular plan choice (e.g. Index-based access or Sort-Merge join). Given our black-box
environment, it is fundamentally infeasible to differentiate the two cases. However, even if there are
extraneous orderings arising from the plan, the query semantics will not be altered, and so we allow
them to remain.

Here, we expect that each database column occurs in the dependency list of at most one output
column. Further, for simplicity, we assume that count() /∈ AE and that no aggregated output column is
a constant function – the procedure to handle these special cases is described at last.
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5.3.1 Order Extraction

We start with a candidate list comprised of the output columns in PE ∪ AE . From this list, the columns
in
−→
OE are extracted sequentially, starting from the leftmost index. The process stops when either (i) all

candidates or functionally-independent attributes of GE have been included in
−→
OE , or (ii) no sort order

can be identified for the current index position.
To check for the existence of an output columnO in

−→
OE , we create a pair of 2-row database instances

– D2
same and D2

rev. In the former, the sort-order of O is the same as that of all the other output columns,
whereas in the latter, the sort-order of O alone is reversed with respect to the other output columns. An
example instance of this database pair is shown for the revenue function in Figure 11.

Figure 11: D2
same and D2

rev for Ordering on revenue (Q3)

Creating D2
same

We use the following procedure to createD2
same: First, the output columns are partitioned into three sets,

namely (i) S1, the set of output columns already present in
−→
OE (initially, S1 = φ); (ii) S2, a singleton

set containing the output column currently under analysis; and (iii) S3, the set of all remaining output
columns. Let fo denote the function identified in Section 4.5 for output column O. For each O ∈ S1,
we select a common s-value vector

−→
V0 = s1, s2, ..., sn to populate the argument columns present in fo.

On the other hand, for each O ∈ S2 ∪ S3, we select a pair of s-value vectors
−→
V1 and

−→
V2 such that each

vector returns a different value in the output column.
The data generation for the tables is as follows:
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• The argument columns for output column O ∈ S1 are assigned
−→
V0 in both the rows.

• The argument columns for output column O ∈ S2 ∪ S3 are assigned
−→
V1 and

−→
V2 in the two rows

such that the output columns in S2 ∪ S3 are all sorted in the same order.

• For the remaining columns with equality filter predicates, the single qualifying s-value is assigned
in both the rows.

• For all other columns, a pair of random s-values p and q is assigned to the two rows with p < q.
As always, consistency across connected key attributes is maintained by assigning the same p, q
pair to the matching attributes.

The procedure for creating D2
rev is the same as that for D2

same except that the argument attributes
corresponding to the output column in S2 are assigned values in the reverse order (i.e.

−→
V2,
−→
V1).

This database construction mechanism ensures that the two input rows eventually form individual
output groups. Therefore, all aggregated columns can be effectively treated as projections (except
count(), which requires a different mechanism, explained separately in extensions part). After generat-
ing D2

same and D2
rev, we run E on both instances and analyze the results, Rsame and Rrev. If the values

in O are sorted in the same order in both Rsame and Rrev, O along with its associated direction (asc or
desc) is added to

−→
OE at position i. The sets S1, S2 and S3 are then recalculated for the next iteration.

With the above procedure, we finally obtain for Q3:−→
OE = {revenue desc, o_orderdate asc}

5.3.2 Proof of Correctness

Lemma 7: With the above procedure, if O is not the rightful column at position i in
−→
OE , and another

column O′ is actually the correct choice, then the values in O will not be sorted in the same order in the
two results.

Proof. Firstly, as each column in the existing identified
−→
OE is assigned the same value in both the rows,

they have no effect on the ordering induced by other attributes. Now, let us say that the next attribute in−→
OE isO′ (asc) but UNMASQUE extractsO. In that case, the result corresponding toD2

same will contain
the values in O sorted in the ascending order. But in the result corresponding to D2

rev, the values in O
will be sorted in descending order (due to ascending order on O′), a contradiction.

5.3.3 Time Complexity

For each column in CE (set of columns in the TE tables), we once make a pass to assign values for
D2
same and then D2

rev as per the data generation technique defined above, and make two executable
invocation on the resultant databases (one for D2

same and one for D2
rev). Creating the sets S1, S2 and S3

requires one pass through all the columns and classifying each column in one of the above sets which
is an O(CE ) operation. Thus, the overall time complexity of

−→
OE extraction is O(CE 2).

5.3.4 Extension 1: count(*) ∈ AE

In the case when count(*) ∈AE , having two rows in each of the tables is not enough as the count() value
for both the groups will be one. Therefore, we need an intermediate result (on which grouping will be
applied) with three rows such that two rows form one group and the third row forms another group.
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Figure 12: D2
same and D2

rev for Ordering on count(*) (Hypothetical scenario:Q3)

Also, the values in the rows should be according to the order desired after grouping of the intermediate
result. So the data generation process is as follows:

To generate data for D2
rev, we first choose a table t with at least one attribute in GE that can take two

different values and is not present as an argument to any column in S1. For each output column function
fo ∈ S1, we take argument value (a1, .., an) and assign same values in both the rows to corresponding
columns in the table. For each output column function fo /∈ S1, we take two different argument values
(a1, .., an) and (b1, ..bn) and assign values to corresponding columns in the table. In case the column is
a key column, we take fixed values 1 and 2. For all the other columns of other tables t′, we generate two
rows with each attribute having two different values (p and q) such that p < q. In case of key attributes,
take p = 1 and q = 2. In other cases, take p and q as s-values. Note that in the above procedure, if we
encounter an attribute with an equality filter predicate, we take p = q = val where val is an s-value.

Data generation for D2
same is similar to that of D2

rev with the only change being that the values of p
and q are now swapped. The further procedure of running E and analyzing the results is the same as
that explained in Section 5.3.1. A sample D2

same and D2
rev database instance for a hypothetical scenario

where revenue is replaced by count(*) is shown in Figure 12.
Lastly, for the case count(DISTINCT t.A) ∈ AE , the data generation process is identical except that

A is assigned values (p, q, p) in both the cases.

5.3.5 Extension 2: t.A : (“t.A = val” ∈ FE ∧ (agg_func(t.A) ∈ AE)

In case there is a min(), max() or avg() aggregation on A, the attribute can be treated as a natively
projected attribute because each group in the output will have exactly the same value for A. Now, if
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sum(t.A) ∈ AE , the data generation process is the same as in Extension 1.
A closing note on the potential for spurious columns appearing in GE due to plan-induced ordering:

Since D2
same and D2

rev are extremely small in size, it is unlikely that the database engine will choose a
plan with sort-based operators – for instance, it would be reasonable to expect a sequential scan rather
than index access, and nested-loops join rather than sort-merge.

5.4 Limit
If the query is an SPJA query, there is no need to extract lE since there can be only one row in any
populated result. But in the general SPJGAOL case, the only way to extract lE is to generate a database
instance such that E produces more than lE rows in the result R, subject to a maximum limit imposed
by the GROUP BY clause.

The number of different values a column can legitimately take is a function of multiple parameters
– data type, filter predicates, database engine, hardware platform, etc. Let n1, n2, n3, .. be the num-
ber of different values, after applying domain and filter restrictions, that the functionally-independent
attributes A1, A2, A3, .. in GE can respectively take. This means that there can be a maximum of
n1 ∗ n2 ∗ n3 ∗ ... = lmaxE groups in the result. Thus, lE values up to lmaxE can be extracted with this
approach.

To extract lE , UNMASQUE iteratively generates database instances such that the result-cardinality
follows a geometric progression starting with a rows and having common ratio r(> 1). We set a =
max (4, cardinality of R) to be consistent with our extraction requirement for GE which required a
permissible result cardinality of upto 3 rows. And r can be set to a convenient value that provides a
good tradeoff between the number of iterations (which will be high with small r) and the setup cost of
each iteration (which will be high with large r). In our experiments, r = 10 was used. This appears
reasonable given that the lE value is typically a small number in most applications – for instance, in
TPC-H, the maximum is 100, and in general, we do not expect the value to be more than a few hundreds
at most.

5.4.1 Generating Dgen for desired R cardinality

To get n rows in the result prior to the limit kicking in, we generate a database instance with each table
having n rows such that the functionally-independent attributes in GE have a unique permutation of
values in each row. Specifically, all the attributes appearing in JGE are assigned values (1, 2, 3, ..., n)
and the other attributes are assigned any value satisfying their filter predicates (if any). If the result
of applying E on this database contains m rows with m < n, then we can conclude that LIMIT is in
operation and equal to m. With the above procedure, we finally obtain lE = 10 for Q3.

5.4.2 Time Complexity

To minimize the number of processed rows, we generate databases such the product of rows in the tables
in TE is minimal. For example, to get a rows in output, we generate a rows in one table (such that there
is a group by attribute in that table which, after applying filter predicates, allows a different values)
and a single row in each of the other table. Thus, to identify the limit value, we iteratively generate
databases whose sizes (in terms of row-cardinality product of TE) follow a geometric progression with
initial value a and common ratio r (> 1) until we exceed lE or reach the upper bound of lmaxE .

Using the cost model defined in Section 3.2, the time complexity to identify limit can be computed
as (a+ ar+ ar2 + ....+ arm) where m is a value such that lE ≤ arm < r ∗ lE . This sum can be upper
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bounded by O(r
log lE
log r ), which is O(lE).

5.5 Query Extraction Checker
In the final module, we conduct a suite of automated tests to verify the extraction correctness. First,
several randomized large databases are created on which both the application and the extracted query
are run. The results are compared through set difference, and a non-zero outcome indicates an error.
Further, physical ordering equivalence is verified by computing position-dependent checksums on the
results.

Second, we leverage the XData grading tool [19], which verifies equivalence of student queries wrt
to a model solution by constructing a suite of small test databases that are capable of detecting even
subtle semantic differences in the respective query constructions. In our context, the extracted query is
mapped to the model solution, and the hidden application to the student version.

6 Experiments
Having described the functioning of the UNMASQUE tool, we now move on to empirically evaluating
its efficacy and its efficiency. All the experiments were hosted on a vanilla PostgreSQL 11 database
platform (Intel Xeon 2.3 GHz CPU, 32GB RAM, 3TB Disk, Ubuntu Linux) with default primary key
indices.

6.1 Comparison with QRE techniques
Comparison with REGAL To begin with, we compare UNMASQUE against QRE techniques –
specifically, the state-of-the-art REGAL tool [23]. Firstly, as already mentioned in the Introduction,
there are considerable semantic differences between the query outputs of these two techniques. Sec-
ondly, we found that on large databases, REGAL either took several hours to complete or in some cases
prematurely stopped due to running out of memory. Moreover, even on a small 5 GB database size,
our extraction was significantly faster, often by an order of magnitude. This is quantified in Figure 13,
which shows the performance of UNMASQUE and REGAL on 11 queries – RQ1 through RQ11 –
that are compliant with the query templates used in [23]. As a case in point, REGAL took close to
800 seconds for RQ1, whereas UNMASQUE completed the extraction in only 25 seconds. Moreover,
despite the reduced database, REGAL did not complete a few queries, denoted by DNC in the figure.

Due to these large qualitative and quantitative differences wrt QRE, we present only the UN-
MASQUE results in the remaining experiments of this section.

Comparison with TALOS (Experiments on UCI datasets) We also conducted experiments on two
small UCI [51] datasets – specifically Adult and Baseball. Adult is a single-relation data set that has
been used in many classification works, while Baseball is a more complex, multi-relation database
containing player performance statistics over 135 years.

We ran UNMASQUE on those queries where TALOS outputs the exact query as used in the respec-
tive input. The queries are listed in [25]. For all the queries, UNMASQUE extraction was significantly
faster as highlighted in Figure 14. The numbers for TALOS were taken from [25].
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Figure 13: Comparison with QRE (5 GB)

Figure 14: Comparison with TALOS

6.2 Hidden SQL Queries
Our primary extraction experiments were conducted on a basal suite ofEQC−H-compliant but complex
SPJGAOL queries, derived from the following popular benchmarks: (a) TPC-H (12 queries), (b) TPC-
DS (7 queries), and (c) JOB [37] (11 queries), constructed on the real-world IMDB movie dataset.
Each query was passed through a Cpp program that embedded the query in a separate executable,
which formed the input to UNMASQUE. We first present experiment results on TPC-H benchmark
with detailed explanation and then summarize results for TPC-DS and JOB benchmarks.

6.2.1 Hidden SQL Queries - TPC-H (Without Sampling)

For these experiments, we used a basal suite of SPJGAOL warehouse queries, which are derived from
the TPC-H benchmark and compliant with EQC−H . They are similar in complexity to the Q3 running
example, and are listed in the Appendix. For convenience, we hereafter refer to them as Qx, where x is
their associated TPC-H query identifier. Each query was passed through a Cpp program that embedded
the query in a separate executable. These executables formed the input to UNMASQUE, which has
been implemented in Python, and were invoked on the TPC-H database, assuring a populated result.
UNMASQUE’s ability to non-invasively extract these queries was assessed on a 100 GB version of the
TPC-H benchmark, and to profile its scaling capacity, also on a 1 TB environment.

Correctness We compared the QE output by UNMASQUE on the above QH suite with the original
queries. Specifically, we verified, both manually and empirically with the automated Checker compo-
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Figure 15: Hidden Query Extraction Time (100 GB) – no sampling

nent of the pipeline, that the extracted queries were semantically identical to their hidden sources.
The Checker implements two kinds of checks: First, a number of randomized large databases are

created on which both the executable and the extracted query are run. The results are compared through
set difference, and a non-zero outcome indicates an error. Physical ordering is checked by computing a
position-dependent checksum function on the entire result.

Second, we leverage the popular XData tool [12] which is intended for checking the correctness
of student queries wrt to the instructor’s solution by constructing databases that are able to detect
even subtle differences. In our context, the application is mapped to the instructor’s solution, and the
extracted query to the student’s attempt, and it is then verified that they are identical.

Efficiency The total end-to-end time taken to extract each of the twelve queries on the 100 GB TPC-
H database instance is shown in the bar-chart of Figure 15. In addition, the breakup of the primary
pipeline contributors to the total time is also shown in the figure.

We first observe that the extraction times are practical for offline analysis environments, with all
extractions being completed within 40 minutes. Secondly, there is a wide variation in the extraction
times, ranging from 4 minutes (e.g. Q2) to almost 40 minutes (e.g. Q5). The reason is the presence
or absence of the lineitem table in the query – this table is enormous in size (around 0.6 billion rows),
occupying about 80% of the database footprint, and therefore inherently incurring heavy processing
costs.

Drilling down into the performance profile, we find that the MINIMIZER module of the pipeline (blue
color), take up the lion’s share of the extraction time, the remaining modules (red color) collectively
completing within a few seconds. For instance, for Q5 which consumed around 37.2 minutes overall,
the MINIMIZER expended around 37 minutes, and only a paltry 12 seconds was taken by all other
modules combined.

The extreme skew is because the MINIMIZER module operates on the original large database,
whereas, as described in Sections 4 and 5, the remaining modules work on miniscule mutations or
synthetic constructions that contain just a handful of rows. Interestingly, although the executable E
was invoked a few hundred times during the operation of these modules, the execution times in these
invocations was negligible due to the tiny database sizes.

6.2.2 Hidden SQL Queries - TPC-H (With Sampling)

We now show how even the minimization step’s efficiency could be substantially improved. Specif-
ically, instead of executing MINIMIZER on the entire original database, sampling methods that are
natively available in most database systems could be leveraged as a pre-processor to quickly reduce
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Figure 16: Optimized Hidden Query Extraction Time (TPC-H 100GB)

the initial size. In our implementation, we iteratively sample the large-sized tables, one-by-one in
decreasing size order, until a populated result is obtained.

The sampling is done using the following SQL construct:
select * from table where random() < 0.SZ ;

which creates a random sample that is SZ percent relative to the original table size. An interesting op-
timization problem arises here – if SZ is set too low, the sampling may require several failed iterations
before producing a populated result. On the other hand, if SZ is set too large, unnecessary overheads
are incurred even if the sampling is successful on the first attempt. Currently, we have found a heuristic
setting of SZ = 2% in terms of number of rows to consistently achieve both fast convergence (within
two iterations) and low overheads. In our future work, we intend to theoretically investigate the tuning
of the sample size parameter.

The revised total execution times after incorporating this optimization, are shown in Figure 16, along
with the module-wise breakups. We see here that all the queries are now successfully identified in less
than 10 minutes, substantially lower as compared to Figure 15. Further, the FROM clause takes virtually
no time, as expected, and is therefore included in the Other Modules category (green color). And in the
MINIMIZER, the preprocessing effort spent on sampling (maroon color) takes the majority of the time,
but greatly speeds up the subsequent recursive partitioning (pink color).

An alternative testimonial to UNMASQUE’s efficiency is obtained when we compare the total ex-
traction times with their corresponding query response times. For all the queries in our workload, this
ratio was less than 1.5. As a case in point, a single execution of Q5 on the 100GB database took around
6.5 minutes, shown by the red dashed line in Figure 16, while the extraction time was just under 10
minutes.

Finally, as an aside, it may be surmised that popular database subsetting tools, such as Jailer [35]
or Condenser [49], could be invoked instead of the above sampling-based approach to constructively
achieve a populated result. However, this is not really the case due to the following reasons: Firstly,
these tools do not scale well to large databases – for instance, Jailer did not even complete on our 100
GB TPC-H database! Secondly, although they guarantee referential integrity, they cannot guarantee
that the subset will adhere to the filter predicates – due to the hidden nature of the query. So, even with
these tools, a trial-and-error approach would have to be implemented to obtain a populated result.

Scaling Profile To explicitly assess the ability of UNMASQUE to scale to larger databases, we also
conducted the same set of extraction experiments on a 1 TB instance of the TPC-H database. The
results of these experiments, which included all optimizations, are shown in Figure 17. We see here
that all extractions were completed in less than 25 minutes each.

We also conducted the same set of extraction experiments on a suite of different-sized instances of
the TPC-H database, starting from 200 GB and going up to 1 TB in increments of 200 GB. A sample
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Figure 17: Optimized Hidden Query Extraction Time (TPC-H 1 TB)

result corresponding to Q5, the most difficult extraction, is shown in Figure 18. We observe here that
UNMASQUE delivers a quasi-linear behavior with a gentle slope, completing 1 TB in less than 25
minutes. In contrast, the native execution of Q5 has a much sharper slope, taking around 72 minutes on
1 TB, almost 3 times the query extraction time.

Figure 18: Extraction Scaling Profile Q5 (TPC-H)

6.2.3 TPC-DS Results

We have also run UNMASQUE on queries based on the TPC-DS benchmark, with a 100 GB version
of the database hosted on PostgreSQL. The queries are listed in the Appendix.

The bar-chart in Figure 20 shows the time taken to extract 7 such queries (along with their TPC-DS
identifier numbers). We can see that all the queries were extracted within 4 minutes. It may appear
surprising at first that the time taken in this case is lesser than the time for TPC-H queries and also, that
the variation among queries is small. The reason is that the table sizes in TPC-DS are not as skewed as
in TPC-H– in particular, no table in TPC-DS is as huge as the lineitem table of TPC-H.

6.2.4 Join Order Benchmark (JOB) Results

We have also run UNMASQUE on queries based on Join Order Benchmark [37], constructed on the
real-world IMDB movie dataset [36]. The 11 queries evaluated here, picked from the hundred-plus
queries in the benchmark, are characterized by extremely rich join-graphs, with≥ 7 joins in each query
– in fact, query Q24b has as many as 12 joins! Despite the complexity, they were all correctly extracted
in less than 3 minutes apiece, as shown in Figure 19. Again the reduction of the initial database
size via sampling and partitioning takes the lion’s share of the extraction, with the remaining modules
collectively completing in less than a minute.
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Figure 19: Hidden Query Extraction Time (JOB)

Figure 20: Hidden Query Extraction Time (TPC-DS 100 GB)

6.3 Hidden Imperative Code
Our second set of experiments evaluated applications hosting imperative code. Here we considered
a) The popular Enki [38] and Blog [45] blogging applications, both built with Ruby on Rails, each
of which has a variety of commands that enable bloggers to navigate pages, posts and comments, (b)
Wilos [52], a process orchestration software based on the Hibernate ORM and (c) RUBiS (auction site
benchmark) [39], a popular data framework used in recent literature (e.g. Aggify [9]).

Enki and Blog The Enki and Blog servers receive HTTP requests, interact with the database accord-
ingly, and respond the client with an HTML page that contains the data retrieved. Enki uses a total of
eight database tables and Blog uses two database tables. We created a synthetic database of 10 MB
size which gives non-empty result for each of these commands. Along with UNMASQUE, we used
Selenium [41] to send an HTTP request and receive the results in HTML page from which the database
results are automatically extracted.

Since native data is not publicly available, we created a synthetic 10MB database that provided
populated results for all these commands. We found that for Enki, 14 out of 17 and for Blog 2 out
of 2 commands were extracted (except insert, update, etc.). Table 3 shows the SQL queries extracted
w.r.t. the commands (five commands have been omitted as those were simple table scans). The queries
corresponding to remaining three commands did not belong to EQC and only SPJ part was extracted
correctly for them. We manually verified that all the commands in Table 3 were extracted correctly. As
a sample instance, consider the “get latest posts by tag” command, a sample few line snippet of which
is outlined in Figure 21a. UNMASQUE output corresponding to the function “find_recent” is shown
in Figure 21b, and was produced in just 2.5 seconds.

34



(a) Imperative Function Code (snippet) (b) Extracted Query (cur_timestamp is a constant)

Figure 21: Imperative to SQL Translation

Command Application Extracted SQL Complexity Time
get admin comments Enki Project, Join, OrderBy, Limit 1.2 sec
get admin pages Enki Project, OrderBy, Limit 1 sec
get admin pages id Enki Filter, Project, Limit 1 sec
get admin posts Enki Project, Join, GroupBy, OrderBy, Limit 2.5 sec
get admin posts id Enki Filter, Project, Limit 1 sec
get admin comments id Enki Filter, Project, Limit 1 sec
get admin undo items Enki Filter, Order by, Limit .5 sec
get latest posts Enki Filter, Project, Join, Filter, GroupBy, Order By, Limit 1.5 sec
get user posts Enki Filter, Project, Join, Filter, Group By, Order By, Limit 2.5 sec
get latest posts by tag Enki Filter, Project, Join, Filter, GroupBy, OrderBy, Limit 2.5 sec
get article for id Blog Select, Project, join 1 sec

Table 3: Imperative to SQL Translation - Enki & Blog (10 MB)

File (Function Line No.) Extracted SQL Complexity Time (sec)
ActivityService (401) Project, Join 1.2
ActivityService (328) Project, Join, Group By 1.5
Guidance Service (140) Project, Join, Group By 1.3
Guidance Service (154) Project, Join, Group By 2.0
ProjectService (266) Project, Join, Order By 1.8
ProjectService (297) Filter, Project, Join, Group By 2.4
ProjectService (394) Filter, Project, Join, Group By 2.5
ProjectService (410) Filter, Project, Join, Group By 2.3
ProjectService* (248) Filter, Project .5
AffectedtoDao* (13) Filter, Project .4
ConcreteActivityService (133) Project, Join , Group By 2.3
ConcreteRoleAffectationService (55) Project, Join 2.5
ConcreteRoleDescriptorService (181) Project, Join, Group By 2.1
ConcreteWorkProductDescriptorService(236) Project, Join, Group By 1.9
IterationService (103) Project, Join, Group By 2.0
LoginService* (103) Filter, Project, toUpper() function 1.2
LoginService* (83) Filter, Project, ignoreCase() function 1.2
ParticipantService (119) Project, Join, Group By 1.6
ParticipantService (266) Project, Filter, Join, Group By 1.6
PhaseService (98) Project, Join, Group By 1.3
RoleDao (15) Project, Filter, Aggregation 1.3
WorkProductsExpTableBean* (974) Project, Join, Aggregation, Having 6.4

Table 4: Imperative to SQL Translation - Wilos (10 MB)
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Function Extracted SQL Complexity Time(sec) Function Extracted SQL Complexity Time(sec)
CommentsToUser Filter, Project 0.4 CommentsByUser Filter, Project 0.4
SoldItems Filter, Project 0.45 OnSaleItems Filter, Project 0.45
BoughtItems Filter, Project 0.45 WonItems Filter, Project, Join, Group By .9
UserBids Filter, Project, Join, Group By 1.4 BidByItem Filter, Project, Order By 0.55
NumBidByItem Filter, Project, Aggregation 0.5 MaxItemBid Filter, Project, Aggregation 0.5
ItemById Filter, Project 0.4 UserById Filter, Project 0.35
UserByNickname Filter, Project 0.35 NicknameExists Filter, Project, Aggregation 0.5
RegionIdForName Filter, Project 0.35 ItemsByRegion Filter, Project, Join 1.1
ItemsByCatagory Filter, Project, Join 1.1

Table 5: Imperative to SQL Translation - RUBiS (10 MB)

Wilos This Java-based application has been previously used to showcase the potential of imperative-
to-SQL conversion tools such as DBridge [3] and QBS [4]. There are 33 code snippets listed in [4],
with each snippet consisting of a function call internalizing a single query – of these, 22 were found
to be compatible with our extraction scope. A synthetic database of size 10 MB was created, and the
results of the in-scope functions on this database were serialized into database tables. Further, the table
and the row corresponding to the function’s input object were taken as constant4since Wilos uses only
this specific row as input from the source table.

We verified that UNMASQUE was able to correctly extract the equivalent queries for all 22 func-
tions, accomplishing these tasks within a few seconds. Table 4 shows detailed results for the func-
tions with extracted query complexities. There were some functions returning TRUE/FALSE and UN-
MASQUE was modified to treat TRUE as non-empty output and FALSE as empty output. The last entry
in Table 4 is an interesting case where the query extracted by basic pipeline was rejected by the checker
module and then the function was passed to having clause pipeline (explained later in Section 7).

RUBiS Built on top of Java, PHP7 and Mysql database server, RUBiS is a bidding system modeled
after ebay.com. Similar to Wilos, a synthetic database of size 10 MB was created, and the results of
the in-scope functions on this database were serialized into database tables. Further, the table and the
row corresponding to the function’s input object were taken as constant4. There are 17 code snippets
(functions) which interact with database and UNMASQUE was able to extract the equivalent SQL for
all the 17 functions. Table 5 shows detailed results for the functions with extracted query complexities.

Performance Comparisons The efficiency benefits of imperative-to-SQL transformations are well
established in the literature [3, 4] and have led to their incorporation in mainstream database products
(e.g. Froid in SQL Server). We have observed the same with the Enki commands – this is quantified
in Table 6, where for each of the commands, we show its extraction complexity and the speedup of
the extracted SQL query relative to the original imperative code on a 100 GB instance (with indices on
key columns). We see here that the performance gains are often significant – in fact, for the sample
Enki command “get latest posts by tag” shown in Figure 21, the speedup is by more than an order-of-
magnitude.

7 Having Clause Extraction
Thus far, we had deliberately set aside discussion of the HAVING clause. The reason is that this clause
is especially difficult to extract, stemming from its close similarity to filter predicates in the WHERE

clause – this difficulty has led to it not being considered in the prior QRE literature as well. The good

4The value for key columns were taken as 1 in the input row to make it consistent with Generation Pipeline algorithms.
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Command Extracted SQL Complexity Speedup Command Extracted SQL Complexity Speedup
(SQL/Imperative) (SQL/Imperative)

get admin com-
ments Project, Join, OrderBy, Limit 5.0 get admin posts id Filter, Project, Limit 1.4

get admin pages Project, OrderBy, Limit 1.5 get admin undo
items Project, Order by, Limit 1.5

get admin pages id Filter, Project, Limit 1.8 get latest posts Filter, Project, Join, GroupBy,
Aggregation, Order By, Limit 6.7

get admin posts Project, Join, GroupBy, Ag-
gregation, OrderBy, Limit 7.7 get user posts Filter, Project, Join, Group By,

Aggregation, Order By, Limit 10.0

get admin com-
ments id Filter, Project, Limit 1.25 get latest posts by

tag
Filter, Project, Join, GroupBy,
Aggregation, OrderBy, Limit 12.5

Table 6: Imperative to SQL Performance gain - Enki (100 GB)

news is that we have been able to devise an extraction technique under a few assumptions, the primary
one being that the attribute sets in FE andHE are disjoint5 However, incorporating this approach entails
a significant reworking of the UNMASQUE pipeline, as well as modified algorithms for some of the
modules. Specifically, the extraction of filter predicates is now delayed to after the GROUPBY module,
and the implementations of the FILTERPREDICATE and GROUPBY modules are altered.

In addition to the assumptions in Section 3, the SPJGA queries with having clause should satisfy the
following conditions.

1. As mentioned above, the attributes involved in filter predicate in the Having clause and in the
Where clause are disjoint.

2. Each attribute has at most one aggregation in the Having clause predicates.

3. The values in the Having clause predicates do not exceed the bounds of their corresponding data
types.

Our discussion here is limited to the HAVING clause on integer attributes. However, the queries
with textual attributes (and LIKE operator) can also be handled, in a manner similar to those described
in the previous sections.

7.1 Initial Modules
The From Clause detection, Database Sampling and Join Graph Detection are performed in the same
manner as described in Sections 4.1, 4.2.3 and 4.3, respectively.

7.2 Database Minimization
The database minimization step has to be modified to cater to the HE clause. Specifically, we leverage
the following lemma:
Lemma 8: For EQC, there always exists a Dmin such that the output of the SPJ core of the query
constitutes a single group (as per grouping attributes of the query), and the final output contains only
a single row.

Proof. We prove the above claim by contradiction. Let us say that there exists a query Q in EQC such
that the final result for a database instance D contains m : m > 1 rows and removing any row from any
table in the query gives an empty result (i.e. D is a minimal database for Q). According to the query

5This assumption holds for all the queries of the TPC-DS benchmark.
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structure of EQC, if HE 6= φ, it implies that GE 6= φ. Now as the final result contains m rows, the
intermediate SPJ result must have ≥ m rows with two different combinations of values in the columns
of GE . Let us divide the rows in intermediate result based on the combination of values in the columns
of GE . If we keep only those database rows which correspond to just one set of these rows, given the
structure of the query in EQC, we should get a populated output having a single row. As we are not
able to remove even a single row from any table of database D which appears in the From clause of
query Q, it implies that Q does not follow the structure defined for the query in EQC and hence Q /∈
EQC. A contradiction.

7.2.1 Reducing DI to Dmin

The minimization is done in the following manner: Let t be a table in TE . Initially, for each attribute
in t, the frequency of each value is calculated. Let fA,j denotes the maximum value of frequency with
value j in attribute t.A. After that, the rows corresponding to fA,j are preserved, removing all other
rows. If a non-empty output is produced, the preserved rows form the new table-content on which
frequency values are recalculated and the same procedure is repeated. If an empty output is produced,
the same procedure is applied with the value having the next maximum frequency. This procedure is
repeated until no further reductions are possible in t. Once t is reduced, all the tables connected to it in
the join graph are reduced to contain only those rows which satisfy the join condition.

The above procedure is repeatedly applied to each table in TE until the database cannot be reduced
any further. The idea behind the step of preserving a particular value of the attribute is as following: if
t.A is a grouping attribute, it will contain a single value in the reduced database instance. Further, our
heuristic of first selecting the value with the maximum frequency is because it ensures that a relatively
large number of rows are preserved in each iteration, thereby increasing the possibility of a populated
output.

An important point to note here is that the number of rows in the minimized database for a query in
EQC is a function of both the original database contents and the specific Having clause predicate. For
example, with a Having clause predicate count(*) ≥ m, the maximum number of rows in each table of
the minimized database is m.

Also note that if the query belongs to EQC−H , the final database will definitely be a one-row
database. However, we may get a one-row database even if the query belongs to EQC. For now,
we assume that the reduced database is a multi-row database, and defer the special case of one-row
database to Section 7.8.

7.3 Group By Attributes
It is clear by Dmin construction that any column with two or more unique s-values cannot be a
grouping attribute as it would have created two different groups in the output. So, in order to identify
the attributes in GE , we first identify the columns in Dmin that have a single value in all the rows. For
each such column t.A with value v1, we insert a duplicate row in table t with only difference being that
t.A = v2, where v2 6= v1. To ensure that v2 is an s-value, we do this twice, first with v2 = v1 + 1 and
then with v2 = v1 − 1 and run E each time. An output with two rows in either of these cases indicates
t.A to be an element of GE .
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7.4 Filter and Having Predicate Extraction
First we identify possible filter on each GE column using a similar technique to that of Section 4.4, the
only change being that mutation is applied to all rows of the table.

Next, the filters on non-grouping attributes are identified. For this purpose, we utilize the observa-
tion that a filter constraint a ≤ A ≤ b can be equivalently re-written as HAVING clause predicates:
a ≤ min(A) and max(A) ≤ b. This means that both FE and HE predicates can be extracted in a
unified manner, followed by a separation into the two categories, as explained below. Further, each
HE predicate can be generically represented as a ≤ agg(A) ≤ b, separable into two components –
agg(A) ≥ a (Lower Bound) and agg(A) ≤ b (Upper Bound) – that can be identified individually.
Before extracting Lower and Upper Bounds, we do some preprocessing as mentioned below.

7.4.1 Preprocessing

To detect the having clause condition on a database column t.A, we change its values in the table t,
such that only one row of the output group is affected. However, if a foreign key column of t maps to
a primary key column of another table t′ in the join graph and values in the foreign key column are not
unique, one change in the table will affect multiple places in the output group. So we transform the
tables in a way such that all key values in all the tables are unique and there is one-to-one relationship
between the key columns across tables. This can be done by traversing the join graph and duplicating
rows in the table having primary key column (here t′) with new key values and updating these key
values in the corresponding rows of table t. For example, let T1[(1, ‘a’, 2), (2, ‘b’, 2)] be a table with
two rows and T2[(2, ‘c’)] be a table with a single row where the last attribute of T1 refers to the first
attribute of T2. Here, T1 can be seen as table t and T2 can be seen as table t′ as per the above description.
Then, these tables are transformed as T1[(1, ‘a’, 1), (2, ‘b’, 2)] and T2[(1, ‘c’), (2, ‘c’)]. Note that both
the joins (before and after transformation) produce same output except the key column contents.

7.4.2 Identifying the Bounds

Let [i1, i2] be the integer range, and let (a1, a2, ..., an) be the values in attribute A in non-decreasing
order. Wlog, let us assume ai is the value in attribute A in the ith row.

Lower Bound We first define the term rl and vl. Starting from 1 to n, if we keep decreasing the value
of ai to i1, rl denotes the first row, in which the values in A can not be decreased to i1 without losing
the output. Also, rl = none if values in all the rows can be decreased to i1. Further, if rl 6= none, vl
denotes the minimum value in row rl which can be present without losing the output. The following
algorithm is used to get rl and vl.

Now, the following two cases arise:

Case 1: rl = none. In this case, there is no lower bound condition on A. The reason is that, we
were able to reduce value in every row to minimum possible value without loosing the output.

Case 2: rl 6= none. If rl 6= 1 and rl 6= n, there is a having clause predicate on A with either
sum() ≥ val1 or avg() ≥ val1. The reason is that, if there were a condition min(A) ≥ v′l, the value
of rl should have been 1. Similarly, if here were a condition max(A) ≥ v′l, the value of rl should have
been n. Now, if rl = 1, the aggregations in the filter predicate may be sum(), avg() or min(). To
differentiate amongst these, we decrease the value in the first row by 1 and increase the value in any
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Algorithm 3: Getting rl and vl for lower bound
rl = none, vl = none
for i in range 1 to n do

vl← the minimum value in [i1, ai] which gives non-empty result.
if vl = i1 then

Replace ai with i1 in the database
vl = none continue

end
Replace ai with vl in the database
rl = i
break

end

other row by 1. This makes sure that the sum(A) and avg(A) does not change while changingmin(A).
If we get an output, the filter is either sum() ≥ v′l or avg() ≥ v′l otherwise it is min(A) ≥ v′l. A similar
method can be used to differentiate amongst sum(), avg() or max() when rl = n. In case of min()
or max() aggregation, the corresponding filter value v′l will be the vl obtained from the algorithm.
However, in case of sum() or avg() aggregation, v′l can be calculated from the table content at the end
of algorithm 3.

Upper Bound To find the upper bound on A, a similar approach can be used. Here, we define terms
ru and vu as follows. Starting from n to 1, if we keep increasing the value of ai to i2, ru denotes the
first row, in which the values in A can not be increased to i2 without losing the output. Also, ru = none
if values in all the rows can be increased to i2. Further, if ru 6= none, vu denotes the maximum value
in row ru which can be present without losing the output. The following algorithm is applied to get the
ru and vu.

Algorithm 4: Getting ru and vu for right filter
ru = none, vu = none
for i in range n to 1 do

vu← the maximum value in [ai, i2] which gives non-empty result.
if vu = i2 then

Replace ai with i2 in the database
vu = none
continue

end
Replace ai with vu in the database
ru = i
break

end

After getting ru and vu, upper bound can be found in a similar way using the following two cases:

Case 1: ru = none. In this case, there is no upper bound condition on A.

Case 2: ru 6= none. If ru 6= 1 and ru 6= n, there is a having clause predicate on A with either
sum() ≤ v′u or avg() ≤ v′u. Now, if ru = n, the aggregations in the filter predicate may be sum(),
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avg() or max(). To differentiate amongst these, we increase the value in the nth row by 1 and decrease
the value in any other row by 1. This makes sure that the sum(A) and avg(A) doesn’t change while
changing max(A). If we get an output, the filter is either sum() ≤ v′u or avg() ≤ v′u otherwise it is
max(A) ≤ v′u. A similar method can be used to differentiate amongst sum(), avg() or min() when
ru = 1. In case ofmin() ormax() aggregation, the corresponding filter value v′u will be the vu obtained
from the algorithm. However, in case of sum() or avg() aggregation, v′u can be calculated from the
table content at the end of algorithm 3.

Note that we have not yet differentiated between the filters on sum() and filters on avg(). Let the
current average of the values in column A be a. To differentiate between the two for an attribute A, we
insert a row in the table such that the column A is assigned value 0 (if operator is ≥) or it is assigned
value a (if operator is≤). All the group by attributes are assigned a single value in all the rows, the other
attributes with sum() or avg() filter are assigned null in the new row and all other attributes get any
value satisfying the filter predicate. This construction ensures that the output state is directly dependent
on the changes made in attribute A. Based on the output on this new database, we can differentiate
between sum(A) and avg(A). Further if the average is a floating point number, we can refine it using
binary search assuming fixed precision.

7.4.3 Predicate Separation

Finally, all the HE predicates of the form min(A) ≥ a and max(A) ≤ a are converted into corre-
sponding filter predicates. This is from the perspective of efficient query execution, since it is usually
recommended that filters should be applied as early as possible.

Finally, after identifying all other filters, a Having predicate with count() can be processed in a
manner analogous to finding LIMIT in Section 5.4.

7.5 Projection Clause
In the absence of a Having clause filter of type val1 ≤ sum() ≤ val2, the techniques defined in
Section 4.5 can be used to detect scalar functions in the Having clause by placing a single unique value
in every row of each column and normalizing the final coefficients by the number of rows produced
after the joins and filters. However, in the presence of such filters, we may not be able to do so as we
may not have much choice for arbitrary unique values in the column. In such a case, we may get an
under-determined system of equations and any solution can be treated as the function.

7.6 Generation Pipeline (Except GE)
If there is no filter of the type count(∗) ≥ m in the Having clause, we can create a one-row database
satisfying all the filters. Hence, procedures similar to those for EQC−H can be used here as well.
In such a case, the sizes of the synthetic databases will be same as in the Generation Pipeline of
Section 5.

In case a filter of the above type is present, an additional constraint of number of rows is added while
generating databases while the underlying principle remains the same. In this case, the sizes of the
synthetic databases will be a linear function of m.

7.7 Performance
Although the extraction process is materially different, our experiments show that queries featuring the
HAVING clause are also handled efficiently. For instance, when the predicate
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HAVING min (l_extendedprice) > 1000

was added to Q3, extraction on the 100 GB instance was completed in 10 min, only marginally more
than the 9.3 min taken for the original query. Also, the number of rows in the minimized database were
less than 100 for each table. A similar behavior was seen for all our other queries as well.

7.8 Special Case of One-row database for SPJGHA[OL] query
After database minimization, we may get a one-row database for a SPJGA query with Having clause.
However, to detect this clause, we need a database such that the intermediate output of SPJ part contains
at least two rows. In such a case, we first detect the group by clause as mentioned in Section 7.3. After
that, in each table, we insert the existing row again with a different key value. If we get a two-row
output, we conclude the query is an SPJ query. If we get a single row output, we now have a single
group database with more than one row in the intermediate SPJ output.

However, we may get an empty output as well. For instance, consider an attribute A containing a
value 6 in the database, and the query with a Having clause predicate defined as sum(A) < 10. In such
a case, replicating the value will make sum(A) = 12 and hence we will not get any output. As there
is no way of knowing beforehand which attribute caused the output to be non-empty, we iteratively
place null values in a progressively larger subset of attributes, starting from individual elements, until
a populated output is obtained.

8 Query Coverage Extensions
As promised in Section 3, we now discuss how the UNMASQUE extraction process can be extended to
databases having non-integral key columns. After that, we speculate on future prospects for extending
our current techniques to more complex query structures.

8.1 Non-integral Key Attributes
In Section 3, we assumed that all keys are positive integer values. We now discuss how to handle keys
from other domains since many applications (e.g. Wilos [52]) use non-integral keys as identifiers in
the database tables. In this design, we make the mild assumption that the domain of each key attribute
contains at least two different values.

To handle the above framework, the following changes are required:

1. In Mutation Pipeline, only the join predicate extraction module require changes. In this module,
instead of negating the values of the columns in C1 (refer Section 4.3), we choose two different
fixed values (say p and q) from the domain of the key attribute and assign p to the columns in C1

and q to the columns in C2.

2. For every module in Generation Pipeline, we again take two different fixed values (say p and q)
from the domain of the key attribute. Then, all the assignments that use fixed value 1 are replaced
with value p and all the the assignments that use fixed value 2 are replaced with value q.

8.2 Discussion
A natural question to ask at this point is whether it appears feasible to extend the scope of our extraction
process to a broader range of common SQL constructs – for instance, outer-joins, disjunctions and
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nested queries. As mentioned previously, none of these constructs are handled by the current set of QRE
tools. However, based on some preliminary investigation, it appears that outer-joins and disjunctions
could eventually be extracted under some restrictions – for instance, the IN operator can be handled if
it is known that the database includes all constants that appear in the clause. Nested queries, however,
pose a formidable challenge that perhaps requires novel technology. In this context, an interesting
possibility is the potential use of machine-learning techniques for complex extractions.

9 Related Work
As mentioned in the Introduction, HQE is a variant of QRE, a problem that has seen considerable
activity in recent years [29, 25, 23, 22, 11, 4, 1, 16]. A critical difference, however, is that the QRE
goal is to find, given an instance of a {D,R} pair, some satisfying query Q such that Q(D) = R.
In contrast, the HQE objective is to find the specific QH embedded in application A, which therefore
produces the correct result on all databases, not just on the instanceD. In other words, there is a ground
truth against which the extraction is to be evaluated.

Although using database generation as a core mechanism, UNMASQUE is different from approaches
like XData [19] which generate databases for distinguishing mutations of a known correct query. In
contrast, our goal is to create database mutations that help to construct the correct query. In short, the
former is intended for testing/grading purposes, whereas we wish to reconstruct applications in enter-
prise settings. However, we do use XData to verify extraction correctness in the concluding Checker
module of our pipeline, as explained in Section 6.

UNMASQUE is also related to but distinct from automated imperative-to-SQL conversion tools such
as DBridge [3, 7] and its commercial version, Froid [18]. These tools are host-language-specific (e.g. T-
SQL in the case of Froid), and require support for the special APPLY or LATERAL operators which are
not present on all engines, especially legacy ones. In contrast, UNMASQUE offers, over a restricted
space of queries, a comparatively robust and generic approach to generating SQL from imperative code.
This is because it is completely result-driven, making its usage application and platform-independent.

Our objectives are different to Query-by-Output [15] which aims to interactively help naive users
construct the desired SQL queries. Their setup assumes that users are able to observe results on can-
didate queries and determine whether or not they contain the desired answer, an approach that is not
easily scalable to large or aggregated result sets. Moreover, similar to QRE, there is no ground truth for
comparison.

Finally, related issues have also received considerable attention in the programming languages com-
munity (e.g. [4, 20, 30, 27]). The work done in [4] provides conversion from imperative logic to SQL
for limited scenarios using query synthesis rather than program analysis. The approaches in [30, 27]
are similar to QRE where a query is synthesized based on input-output examples. Lastly, [20] attempts
to find equivalent functions from program executables predicated on intimate knowledge of the appli-
cation semantics and its database interactions.

Detailed Comparison With QRE As mentioned in the Introduction, HQE is a conceptual variant of
the long-standing QRE problem. However, our UNMASQUE solution has been constructed from first
principles. The reasons for doing so are explained here, using REGAL as an exemplar for comparison,
from both pipeline and component perspectives.

The extraction pipeline sequence in REGAL identifies candidates for joins and projections prior to
the other clauses. Whereas, UNMASQUE has to first identify the filters in advance so that the syn-
thetic databases in the generation pipeline are populated with s-values– that is, values compatible with
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the where clause predicates. Secondly, these generated databases have to be carefully constructed to
produce known, albeit invisible, intermediate behavior. Thirdly, since UNMASQUE requires hundreds
of application invocations of QH to set up its input-output examples, it perforce needs to work on
tiny databases that will allow these numerous executions to complete in reasonable time. Finally, the
operator scope of REGAL is not only considerably limited in comparison to UNMASQUE, but these
limitations are fundamental due to the restricted availability of input-output example.

After that, a materialized view corresponding to the join-projection clauses is created for each sur-
viving candidate. On this view, a lattice of all possible grouping candidates is constructed, and a second
round of candidate generation is done by incorporating aggregations. However, presence of unique val-
ues in any of the grouping column will lead to selection of wrong GROUP BY-AGGREGATION candidate
as seen in Figure 2b.

Turning to the FILTER clause, REGAL takes a backward data-based approach to its identification.
Specifically, each aggregate value in the result is traced to its relevant view partition by constructing
the contained tuples into a matrix whose dimensions are view attributes. An iterative process is used to
select the matrix with the lowest dimensionality, and the minimum range limits on these dimensions,
such that it is sufficient to produce the result. However, this could lead to missing dimensions and
imprecise ranges, as highlighted in Figure 2b. In contrast, UNMASQUE takes a forward domain-
based constructive approach of using result cardinalities on extreme domain values to determine the
presence of filters, followed by a binary search to obtain the precise constants.

Finally, as quantified in Section 6, REGAL requires considerable memory due to its heavy-weight
internal data structures, and from a time perspective, only small input databases can be processed due
to the large exploration space.

10 Conclusions and Future Work
We introduced and investigated the problem of Hidden Query Extraction as a novel variant of QRE.
Diverse HQE use-cases were outlined, ranging from database security to query rewriting, and covering
both explicit and implicit application opacity. Addressing the HQE problem proved to be challenging
due to the inherent complexities and acute dependencies between the various query clauses. As a first-
cut solution, we presented the UNMASQUE algorithm, which non-invasively and efficiently extracts
a basal class of hidden SPJGHAOL queries through a pipeline that leverages database mutation and
generation techniques to identify the clauses in a systematic manner.

Potent optimizations related to database minimization and order detection were incorporated to re-
duce the overheads of the extraction process. Specifically, for the most part, the extraction pipeline
works on minuscule databases designed to contain only a handful of rows. The effects of these op-
timizations were visible in our experimental results which demonstrated that query extraction could
be completed in times comparable with normal query response times in spite of a large number of
executable invocations.

In our future work, we intend to conduct a mathematical analysis to help choose the appropriate
SZ setting for sampling. We also wish to investigate extending the scope of query coverage to more
constructs, especially disjunctions and outerjoins. Finally, and more fundamentally, characterizing the
extractive power of non-invasive techniques is an open theoretical problem.
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Appendix

TPC-H Based Queries
Q1

Select l_returnflag, l_linestatus, sum(l_quantity) as sum_qty, sum(l_extendedprice) as
sum_base_price, sum(l_extendedprice * (1 - l_discount)) as sum_disc_price, sum(l_extendedprice *
(1 - l_discount) * (1 + l_tax)) as sum_charge, avg(l_quantity) as avg_qty, avg(l_extendedprice) as
avg_price, avg(l_discount) as avg_disc, count(*) as count_order
From lineitem
Where l_shipdate <= date '1998-12-01' - interval '71 days'
Group By l_returnflag, l_linestatus
Order by l_returnflag, l_linestatus;

Q2

Select s_acctbal, s_name, n_name, p_partkey, p_mfgr, s_address, s_phone, s_comment
From part, supplier, partsupp, nation, region
Where p_partkey = ps_partkey and s_suppkey = ps_suppkey and p_size = 38 and p_type like
'%TIN' and s_nationkey = n_nationkey and n_regionkey = r_regionkey and r_name = 'MIDDLE EAST'
Order by s_acctbal desc, n_name, s_name, p_partkey
Limit 100;

Q3

Select l_orderkey, sum(l_extendedprice * (1 - l_discount)) as revenue, o_orderdate, o_shippriority
From customer, orders, lineitem
Where c_mktsegment = 'BUILDING' and c_custkey = o_custkey and l_orderkey = o_orderkey and
o_orderdate < date '1995-03-15' and l_shipdate > date '1995-03-15'
Group By l_orderkey, o_orderdate, o_shippriority
Order by revenue desc, o_orderdate
Limit 10;

Q4

Select o_orderdate, o_orderpriority, count(*) as order_count
From orders
Where o_orderdate >= date '1997-07-01' and o_orderdate < date '1997-07-01' + interval '3' month
Group By o_orderdate, o_orderpriority
Order by o_orderpriority
Limit 10;

Q5

Select n_name, sum(l_extendedprice * (1 - l_discount)) as revenue
From customer, orders, lineitem, supplier, nation, region
Where c_custkey = o_custkey and l_orderkey = o_orderkey and l_suppkey = s_suppkey and
c_nationkey = s_nationkey and s_nationkey = n_nationkey and n_regionkey = r_regionkey and
r_name = 'MIDDLE EAST' and o_orderdate >= date '1994-01-01' and o_orderdate < date

48



'1994-01-01' + interval '1' year
Group By n_name
Order by revenue desc
Limit 100;

Q6

Select l_shipmode, sum(l_extendedprice * l_discount) as revenue
From lineitem
Where l_shipdate >= date '1994-01-01' and l_shipdate < date '1994-01-01' + interval '1' year and
l_quantity < 24
Group By l_shipmode
Limit 100;

Q10

Select c_name, sum(l_extendedprice * (1 - l_discount)) as revenue, c_acctbal, n_name, c_address,
c_phone, c_comment
From customer, orders, lineitem, nation
Where c_custkey = o_custkey and l_orderkey = o_orderkey and o_orderdate ≥ date '1994-01-01'
and o_orderdate < date '1994-01-01' + interval '3' month and l_returnflag = 'R' and c_nationkey =
n_nationkey
Group By c_name, c_acctbal, c_phone, n_name, c_address, c_comment
Order by revenue desc
Limit 20;

Q11

Select ps_COMMENT, sum(ps_supplycost * ps_availqty) as value
From partsupp, supplier, nation
Where ps_suppkey = s_suppkey and s_nationkey = n_nationkey and n_name = 'ARGENTINA'
Group By ps_COMMENT
Order by value desc
Limit 100;

Q16

Select p_brand, p_type, p_size, count(ps_suppkey) as supplier_cnt
From partsupp, part
Where p_partkey = ps_partkey and p_brand = 'Brand#45' and p_type Like 'SMALL PLATED%' and
p_size >= 4
Group By p_brand, p_type, p_size
Order by supplier_cnt desc, p_brand, p_type, p_size;

Q17

Select AVG(l_extendedprice) as avgTOTAL
From lineitem, part
Where p_partkey = l_partkey and p_brand = 'Brand#52' and p_container = 'LG CAN' ;

Q18
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Select c_name, o_orderdate, o_totalprice, sum(l_quantity)
From customer, orders, lineitem
Where c_phone Like '27-_%' and c_custkey = o_custkey and o_orderkey = l_orderkey
Group By c_name, o_orderdate, o_totalprice
Order by o_orderdate, o_totalprice desc
Limit 100;

Q21

Select s_name, count(*) as numwait
From supplier, lineitem l1, orders, nation
Where s_suppkey = l1.l_suppkey and o_orderkey = l1.l_orderkey and o_orderstatus = 'F' and
s_nationkey = n_nationkey and n_name = 'GERMANY'
Group By s_name
Order by numwait desc, s_name
Limit 100;
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TPC-DS Based Queries
Q3

Select dt.d_year,item.i_brand_id as brand_id,item.i_brand as brand,sum(ss_sales_price) as sum_agg
From date_dim dt,store_sales,item
Where dt.d_date_sk = store_sales.ss_sold_date_sk and store_sales.ss_item_sk = item.i_item_sk
and item.i_manufact_id = 816 and dt.d_moy=11
Group By dt.d_year,item.i_brand,item.i_brand_id
Order by dt.d_year,sum_agg desc,brand_id
Limit 100 ;

Q37

Select i_item_id,i_item_desc,i_current_price
From item, inventory, date_dim, catalog_sales
Where i_current_price between 45 and 45 + 30 and inv_item_sk = i_item_sk and
d_date_sk=inv_date_sk and d_date between date '1999-02-21' and date '1999-04-23' and
i_manufact_id between 707 and 1000 and inv_quantity_on_hand between 100 and 500 and
cs_item_sk = i_item_sk
Group By i_item_id,i_item_desc,i_current_price
Order by i_item_id
Limit 100 ;

Q42

Select dt.d_year,item.i_category_id,item.i_category, sum(ss_ext_sales_price)
From date_dim dt,store_sales,item
Where dt.d_date_sk = store_sales.ss_sold_date_sk and store_sales.ss_item_sk = item.i_item_sk
and item.i_manager_id = 1 and dt.d_moy=11 and dt.d_year=2002
Group By dt.d_year,item.i_category_id,item.i_category
Order by sum(ss_ext_sales_price) desc,dt.d_year, item.i_category_id,item.i_category
Limit 100 ;

Q52

Select dt.d_year,item.i_brand_id as brand_id,item.i_brand as brand,sum(ss_ext_sales_price) as
ext_price
From date_dim dt ,store_sales ,item
Where dt.d_date_sk = store_sales.ss_sold_date_sk and store_sales.ss_item_sk = item.i_item_sk
and item.i_manager_id = 1 and dt.d_moy=12 and dt.d_year=2002
Group By dt.d_year,item.i_brand,item.i_brand_id
Order by dt.d_year,ext_price desc,brand_id
Limit 100 ;

Q55

Select item.i_brand_id as brand_id,item.i_brand as brand,sum(ss_ext_sales_price) as ext_price
From date_dim dt ,store_sales ,item
Where dt.d_date_sk = store_sales.ss_sold_date_sk and store_sales.ss_item_sk = item.i_item_sk
and item.i_manager_id = 1 and dt.d_moy=12 and dt.d_year=2002
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Group By dt.d_year,item.i_brand,item.i_brand_id
Order by ext_price desc,brand_id
Limit 100 ;

Q82

Select i_item_id,i_item_desc,i_current_price
From item, inventory, date_dim, store_sales
Where i_current_price between 45 and 45 + 30 and inv_item_sk = i_item_sk and
d_date_sk=inv_date_sk and d_date between date '1999-07-09' and date '1999-09-09' and
i_manufact_id between 169 and 639 and inv_quantity_on_hand between 100 and 500 and
ss_item_sk = i_item_sk
Group By i_item_id,i_item_desc,i_current_price
Order by i_item_id
Limit 100 ;

Q96

Select count(*)
From store_sales,household_demographics,time_dim, store
Where ss_sold_time_sk = time_dim.t_time_sk and ss_hdemo_sk =
household_demographics.hd_demo_sk and ss_store_sk = s_store_sk and time_dim.t_hour = 8 and
time_dim.t_minute ≥ 30 and household_demographics.hd_dep_count = 3 and store.s_store_name =
'ese'
Order by count(*)
Limit 100;
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JOB Based Queries
Q7b

SELECT MIN(n.name) AS of_person, MIN(t.title) AS biography_movie
FROM aka_name AS an,
cast_info AS ci,
info_type AS it,
link_type AS lt,
movie_link AS ml,
name AS n,
person_info AS pi,
title AS t
WHERE an.name LIKE '%a% '
AND it.info = 'mini biography '
AND lt.link = 'features '
AND n.name_pcode_cf LIKE 'D% '
AND n.gender= 'm '
AND pi.note = 'Volker Boehm '
AND t.production_year BETWEEN 1980 AND 1984
AND n.id = an.person_id
AND n.id = pi.person_id
AND ci.person_id = n.id
AND t.id = ci.movie_id
AND ml.linked_movie_id = t.id
AND lt.id = ml.link_type_id
AND it.id = pi.info_type_id
AND pi.person_id = an.person_id
AND pi.person_id = ci.person_id
AND an.person_id = ci.person_id
AND ci.movie_id = ml.linked_movie_id;

Q8a

SELECT MIN(an1.name) AS actress_pseudonym, MIN(t.title) AS japanese_movie_dubbed
FROM aka_name AS an1,
cast_info AS ci,
company_name AS cn,
movie_companies AS mc,
name AS n1,
role_type AS rt,
title AS t
WHERE ci.note = '(voice: English version) '
AND cn.country_code = '[jp] '
AND mc.note LIKE '%(Japan)% '
AND n1.name LIKE '%Yo% '
AND rt.role = 'actress '
AND an1.person_id = n1.id
AND n1.id = ci.person_id
AND ci.movie_id = t.id
AND t.id = mc.movie_id
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AND mc.company_id = cn.id
AND ci.role_id = rt.id
AND an1.person_id = ci.person_id
AND ci.movie_id = mc.movie_id;

Q9b

SELECT MIN(an.name) AS alternative_name, MIN(chn.name) AS voiced_character, MIN(n.name) AS
voicing_actress, MIN(t.title) AS american_movie
FROM aka_name AS an,
char_name AS chn,
cast_info AS ci,
company_name AS cn,
movie_companies AS mc,
name AS n,
role_type AS rt,
title AS t
WHERE ci.note = '(voice) '
AND cn.country_code = '[us] '
AND mc.note LIKE '%(200%)% '
AND n.gender = 'f '
AND n.name LIKE '%Angel% '
AND rt.role = 'actress '
AND t.production_year BETWEEN 2007 AND 2010
AND ci.movie_id = t.id
AND t.id = mc.movie_id
AND ci.movie_id = mc.movie_id
AND mc.company_id = cn.id
AND ci.role_id = rt.id
AND n.id = ci.person_id
AND chn.id = ci.person_role_id
AND an.person_id = n.id
AND an.person_id = ci.person_id;

Q10a

SELECT MIN(chn.name) AS uncredited_voiced_character, MIN(t.title) AS russian_movie
FROM char_name AS chn,
cast_info AS ci,
company_name AS cn,
company_type AS ct,
movie_companies AS mc,
role_type AS rt,
title AS t
WHERE ci.note LIKE '%(uncredited)% '
AND cn.country_code = '[ru] '
AND rt.role = 'actor '
AND t.production_year > 2005
AND t.id = mc.movie_id
AND t.id = ci.movie_id
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AND ci.movie_id = mc.movie_id
AND chn.id = ci.person_role_id
AND rt.id = ci.role_id
AND cn.id = mc.company_id
AND ct.id = mc.company_type_id;

Q11a

SELECT MIN(cn.name) AS from_company, MIN(lt.link) AS movie_link_type, MIN(t.title) AS
non_polish_sequel_movie
FROM company_name AS cn,
company_type AS ct,
keyword AS k,
link_type AS lt,
movie_companies AS mc,
movie_keyword AS mk,
movie_link AS ml,
title AS t
WHERE cn.country_code = '[pl] '
AND cn.name LIKE '%Film% '
AND ct.kind = 'production companies '
AND k.keyword = 'sequel '
AND lt.link LIKE '%follow% '
AND mc.note IS NULL
AND t.production_year BETWEEN 1950 AND 2000
AND lt.id = ml.link_type_id
AND ml.movie_id = t.id
AND t.id = mk.movie_id
AND mk.keyword_id = k.id
AND t.id = mc.movie_id
AND mc.company_type_id = ct.id
AND mc.company_id = cn.id
AND ml.movie_id = mk.movie_id
AND ml.movie_id = mc.movie_id
AND mk.movie_id = mc.movie_id;

Q15a

SELECT MIN(mi.info) AS release_date, MIN(t.title) AS internet_movie
FROM aka_title AS at,
company_name AS cn,
company_type AS ct,
info_type AS it1,
keyword AS k,
movie_companies AS mc,
movie_info AS mi,
movie_keyword AS mk,
title AS t
WHERE cn.country_code = '[us] '
AND it1.info = 'release dates '

55



AND mc.note LIKE '%(worldwide)% '
AND mi.note LIKE '%internet% '
AND mi.info LIKE 'USA:% 200% '
AND t.production_year > 2000
AND t.id = at.movie_id
AND t.id = mi.movie_id
AND t.id = mk.movie_id
AND t.id = mc.movie_id
AND mk.movie_id = mi.movie_id
AND mk.movie_id = mc.movie_id
AND mk.movie_id = at.movie_id
AND mi.movie_id = mc.movie_id
AND mi.movie_id = at.movie_id
AND mc.movie_id = at.movie_id
AND k.id = mk.keyword_id
AND it1.id = mi.info_type_id
AND cn.id = mc.company_id
AND ct.id = mc.company_type_id;

Q17f

SELECT MIN(n.name) AS member_in_charnamed_movie
FROM cast_info AS ci,
company_name AS cn,
keyword AS k,
movie_companies AS mc,
movie_keyword AS mk,
name AS n,
title AS t
WHERE k.keyword = 'character-name-in-title '
AND n.name LIKE '%B% '
AND n.id = ci.person_id
AND ci.movie_id = t.id
AND t.id = mk.movie_id
AND mk.keyword_id = k.id
AND t.id = mc.movie_id
AND mc.company_id = cn.id
AND ci.movie_id = mc.movie_id
AND ci.movie_id = mk.movie_id
AND mc.movie_id = mk.movie_id;

Q19a

SELECT MIN(n.name) AS voicing_actress, MIN(t.title) AS voiced_movie
FROM aka_name AS an,
char_name AS chn,
cast_info AS ci,
company_name AS cn,
info_type AS it,
movie_companies AS mc,
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movie_info AS mi,
name AS n,
role_type AS rt,
title AS t
WHERE ci.note = '(voice: Japanese version) '
AND cn.country_code = '[us] '
AND it.info = 'release dates '
AND mc.note IS NOT NULL
AND mc.note LIKE '%(worldwide)% '
AND mi.info IS NOT NULL
AND mi.info LIKE 'Japan:%200% '
AND n.gender = 'f '
AND n.name LIKE '%Ang% '
AND rt.role = 'actress '
AND t.production_year BETWEEN 2005 AND 2009
AND t.id = mi.movie_id
AND t.id = mc.movie_id
AND t.id = ci.movie_id
AND mc.movie_id = ci.movie_id
AND mc.movie_id = mi.movie_id
AND mi.movie_id = ci.movie_id
AND cn.id = mc.company_id
AND it.id = mi.info_type_id
AND n.id = ci.person_id
AND rt.id = ci.role_id
AND n.id = an.person_id
AND ci.person_id = an.person_id
AND chn.id = ci.person_role_id;

Q21c

SELECT MIN(cn.name) AS company_name, MIN(lt.link) AS link_type, MIN(t.title) AS western_follow_up
FROM company_name AS cn,
company_type AS ct,
keyword AS k,
link_type AS lt,
movie_companies AS mc,
movie_info AS mi,
movie_keyword AS mk,
movie_link AS ml,
title AS t
WHERE cn.country_code != '[pl] '
AND cn.name LIKE '%Warner% '
AND ct.kind = 'production companies '
AND k.keyword = 'sequel '
AND lt.link LIKE '%follow% '
AND mc.note IS NULL
AND mi.info = 'Sweden '
AND t.production_year BETWEEN 1950 AND 2010
AND lt.id = ml.link_type_id
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AND ml.movie_id = t.id
AND t.id = mk.movie_id
AND mk.keyword_id = k.id
AND t.id = mc.movie_id
AND mc.company_type_id = ct.id
AND mc.company_id = cn.id
AND mi.movie_id = t.id
AND ml.movie_id = mk.movie_id
AND ml.movie_id = mc.movie_id
AND mk.movie_id = mc.movie_id
AND ml.movie_id = mi.movie_id
AND mk.movie_id = mi.movie_id
AND mc.movie_id = mi.movie_id;

Q23c

SELECT MIN(kt.kind) AS movie_kind, MIN(t.title) AS complete_us_internet_movie
FROM complete_cast AS cc,
comp_cast_type AS cct1,
company_name AS cn,
company_type AS ct,
info_type AS it1,
keyword AS k,
kind_type AS kt,
movie_companies AS mc,
movie_info AS mi,
movie_keyword AS mk,
title AS t
WHERE cct1.kind = 'complete+verified '
AND cn.country_code = '[us] '
AND it1.info = 'release dates '
AND kt.kind = 'movie '
AND mi.note LIKE '%internet% '
AND mi.info IS NOT NULL
AND mi.info LIKE 'USA:% 199% '
AND t.production_year > 1990
AND kt.id = t.kind_id
AND t.id = mi.movie_id
AND t.id = mk.movie_id
AND t.id = mc.movie_id
AND t.id = cc.movie_id
AND mk.movie_id = mi.movie_id
AND mk.movie_id = mc.movie_id
AND mk.movie_id = cc.movie_id
AND mi.movie_id = mc.movie_id
AND mi.movie_id = cc.movie_id
AND mc.movie_id = cc.movie_id
AND k.id = mk.keyword_id
AND it1.id = mi.info_type_id
AND cn.id = mc.company_id
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AND ct.id = mc.company_type_id
AND cct1.id = cc.status_id;

Q24b

SELECT MIN(chn.name) AS voiced_char_name, MIN(n.name) AS voicing_actress_name, MIN(t.title) AS
kung_fu_panda
FROM aka_name AS an,
char_name AS chn,
cast_info AS ci,
company_name AS cn,
info_type AS it,
keyword AS k,
movie_companies AS mc,
movie_info AS mi,
movie_keyword AS mk,
name AS n,
role_type AS rt,
title AS t
WHERE ci.note = '(voice: Japanese version) '
AND cn.country_code = '[us] '
AND cn.name = 'DreamWorks Animation '
AND it.info = 'release dates '
AND k.keyword = 'martial-arts '
AND mi.info IS NOT NULL
AND mi.info LIKE 'USA:%201% '
AND n.gender = 'f '
AND n.name LIKE '%An% '
AND rt.role = 'actress '
AND t.production_year > 2010
AND t.title LIKE 'Kung Fu Panda% '
AND t.id = mi.movie_id
AND t.id = mc.movie_id
AND t.id = ci.movie_id
AND t.id = mk.movie_id
AND mc.movie_id = ci.movie_id
AND mc.movie_id = mi.movie_id
AND mc.movie_id = mk.movie_id
AND mi.movie_id = ci.movie_id
AND mi.movie_id = mk.movie_id
AND ci.movie_id = mk.movie_id
AND cn.id = mc.company_id
AND it.id = mi.info_type_id
AND n.id = ci.person_id
AND rt.id = ci.role_id
AND n.id = an.person_id
AND ci.person_id = an.person_id
AND chn.id = ci.person_role_id
AND k.id = mk.keyword_id;
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