
Data Generation using Projection Constraints

Anupam Sanghi Shadab Ahmed Jayant R. Haritsa

Technical Report
TR-2021-03
(May 2021)

Database Systems Lab
Dept. of Computational and Data Sciences

Indian Institute of Science
Bangalore 560012, India

https://dsl.cds.iisc.ac.in

Abstract

A core requirement of database engine testing is the ability to generate synthetic databases that
exhibit a desired set of characteristics. Expressing these characteristics through declarative for-
malisms has been advocated in contemporary testing frameworks. In particular, specifying operator
output volumes through row-cardinality constraints has received considerable attention. However,
thus far, adherence to these volumetric constraints has been limited to only the Filter and Join oper-
ators. A critical deficiency is the lack of support for the Projection operator, which forms the core
of basic SQL constructs such as Distinct, Union and Group By. The technical challenge here is that
cardinality unions in multi-dimensional space, and not mere summations, need to be captured in
the generation process. Further, dependencies across different data subspaces need to be taken into
account.

In this paper, we address the above lacuna by presenting PiGen, a dynamic data generator
that incorporates Projection cardinality constraints in its ambit. The design is based on a projec-
tion subspace division strategy which supports the expression of constraints using optimized linear
programming formulations. Further, techniques of symmetric refinement and workload decompo-
sition are introduced to handle constraints across different projection subspaces. Finally, PiGen
supports dynamic generation, where data is generated on-demand during query processing, making
it amenable to Big Data environments. A detailed evaluation on TPC-DS-based query workloads
demonstrates that PiGen can accurately and efficiently model Projection outcomes, representing an
essential step forward in customized database generation.

1 Introduction
Database software vendors often need to generate synthetic databases for a variety of applica-
tions [19, 8], including: (a) Testing of database engines and applications, (b) Data masking, (c) Bench-
marking, (d) Creating “what-if” scenarios, and (e) Assessing performance impacts of planned engine
upgrades. The synthetic databases are targeted towards capturing the desired schematic properties
(e.g. keys, referential constraints, functional dependencies, domain constraints), as well as the statis-
tical data profiles (e.g. value distributions, column correlations, data skew, output volumes) hosted on
these schemas.

1.1 Cardinality Constraints
The use of declarative formalisms to express data characteristics has been persuasively advocated in
contemporary testing frameworks [8, 18, 22]. In particular, a cardinality constraint dictates that the
output of a given relational expression over the generated database should feature the specified number
of rows. For SPJ (SELECT-PROJECT-JOIN) formulations, the canonical representation in the constraint
format is:

|πA(σf (T1 ./ T2 .// TN))|= k (1)

where f represents the filter predicates applied on the inner join of a group of tables T1, ...TN in
the database; A represents the projection-attribute-set, i.e. the set of attributes on which the projection
is applied; and k is a count representing the output row-cardinality of the relational expression. The
provenance of these constraints could be either from construction of what-if scenarios by the database
vendor, or based on information sourced from a client installation – for instance, Annotated Query
Plans (AQPs) [11]. Further, the constraints could be parameterized wrt predicate constants [19, 18], or
more commonly in industrial practice, strict, where even these constants are prespecified [8, 22].

1

1.2 Data Generation using Cardinality Constraints
Generating synthetic data that adheres to a collection of strict cardinality constraints was first proposed
in the pioneering work of DataSynth [8, 9]. This initial effort was later extended in Hydra [22, 23]
to incorporate dynamism and scale in the generation process. The key idea in these frameworks is to
express the input constraints using a linear feasibility program (LP), and then use the LP solution to
construct the synthetic database. While these prior frameworks accurately and efficiently handle an
important class of cardinality constraints, a critical lacuna is support for the projection operator. In this
paper, we investigate the explicit incorporation of Projection into the data generation framework.

1.3 Incorporating Projection
Our motivation for modeling Projection stems from its core appearance in the DISTINCT, GROUP BY,
and UNION SQL constructs – as a case in point, among the 22 queries in the TPC-H benchmark [5], as
many as 16 feature the projection operation. Further, projection-compliant databases can be beneficial
to database vendors in a variety of use-cases 1 in Software Testing and Tuning, and in Informed Decision
Making. We outline below sample use-cases wherein projection-compliant databases can materially
enhance the outcomes.

Regression Testing: In the context of engine upgrades, a critical requirement is to synthesize data
that can mimic client environments for regression testing. This facility enables: (a) Catching
optimizer bugs such as a change in query plan leading to performance degradation, or incorrect
query rewriting leading to erroneous query results; (b) Performance evaluation of operators in
the query execution pipeline. For instance, a thorough assessment of a new memory manager’s
ability to handle native projection-based operators (e.g. hash aggregate, sort) is predicated on
accurate modeling of projection cardinalities; and (c) Given an operator of interest, evaluating its
impact on the performance of downstream operations. For instance, in the 16 projection-featuring
queries of TPC-H, 12 require a sort operation immediately following projection. Further, in 4
queries, the projection output serves as an intermediate staging for subsequent filter/join opera-
tions. In all these cases, the projection output cardinality affects the behavior of the downstream
operations.

Execution Tuning: Due to the dynamic nature of production environments, it is often required to carry
out on-the-fly platform tuning, especially with regard to system configurations or query execu-
tion plans. As a non-invasive and arm’s length precursor, the DBA can evaluate the expected
tuning impacts on a synthetic equivalent – here projection-compliance can be of particular utility
since cardinality estimation techniques are known to have difficulty in accurately modeling pro-
jection outputs. For instance, the choice of projection implementation (e.g. index vs hash) can
be customized based on the projection output on the synthetic database.

Application Testing: Organizations often outsource the testing of their database applications to other
organizations. However, sharing the internal databases on which these applications operate may
be infeasible due to privacy concerns. In these cases, testing the applications using the cardinality
constraints derived from the database is a viable option. The queries embedded in these appli-
cations often feature projection-based SQL constructs. For instance, in the context of banking
applications, a routine analytical query could be asking for the number of (distinct) bank accounts
performing online transactions in remote areas. Therefore, by supporting PICs, PiGen can take
the level of testing a step further.

1verified with industry experts in Dagstuhl Seminar [1].

2

System Benchmarking: When evaluating competing database platforms for hosting an application,
carrying out the evaluation on an application-specific database is of much richer relevance as
compared to a generic benchmark such as TPC-H or TPC-DS. Creating a synthetic database that
models the application’s environment allows for a detailed assessment of both current and future
scenarios. In this context, greater realism of the synthetic data would help to make informed
choices. Since PiGen supports the incorporation of projection constraints, which are fundamental
to many applications, we can expect greater fidelity to the application’s framework.

Our focus here is on the duplicate-eliminating version of projection where only the distinct rows
are retained in the projected output (the alternative duplicate-preserving option does not alter the filter
output’s row-cardinality, and is therefore trivially handled by the existing frameworks). Additionally,
since projection is a unary operator, we present the ideas using a single-table environment. To handle
multi-relation environments, we can take recourse to the methodology of [8, 22], where denormalized
relations are constructed as an intermediate step in the solution process.

1.4 Projection-inclusive Constraints
To represent a projection-inclusive cardinality constraint c on a table T , we use the quadruple
c : 〈f ,A, l,k〉, as a shorthand notation. Here, f represents the filter predicate applied on T , A rep-
resents the projection attribute-set (PAS), l signifies the row-cardinality of the filtered table, and k
represents the row-cardinality after projection on this filtered table.

As as sample instance, consider the following set of PICs on a generated table PURCHASES (PID,
Qty, Amt, Y ear):

c1 : 〈f1, Amt, 500,555〉 | f1 = (Qty < 20) ∧ (1100 ≤ Amt < 2500)

c2 : 〈f2, Amt, 1000,333〉 | f2 = (Qty ≥ 20) ∧ (500 ≤ Amt < 3000)

c3 : 〈f3, Qty, 3000,999〉 | f3 = (Qty ≥ 10)

Here, PIC c1 denotes that applying the f1 predicate on PURCHASES should produce 500 rows in the
output, which is further reduced to 5 rows after projecting on the Amt column; the other PICs can be
interpreted analogously.

1.5 Technical Challenges
There are two primary challenges to modeling PICs within the table generation process, related to
handling dependencies within and across the data subspaces identified by these constraints, as described
below.

Intra-Projection Subspace Dependencies. Consider the projection subspace spanned by a set of at-
tributes A. Dealing with projection requires computing union of groups of tuples. For example,
for two tuples/group of tuples b1 and b2, the direct expression for computing projection along A
is:

|πA(b1 ∪ b2)|
However, even if b1 and b2 are disjoint in the original table, their projections onto A may overlap.
Therefore, to handle PICs, explicitly computing the cardinality of the union of a group of tuples
post-projection is required. Using the fact that projection distributes over union [25], we can
rewrite the above expression as:

|πA(b1) ∪ πA(b2)|

3

but even here the union does not translate to a simple summation. For instance, consider the
following two sample rows from the PURCHASES table:

u : (PID = 10001, Amt = 1500, Qty = 3, Y ear = 2020), and
v : (PID = 10002, Amt = 1500, Qty = 16, Y ear = 2021).

Both rows satisfy the filter f1, but the union of their projections along Amt yields a single out-
come – namely, Amt = 1500.

Inter-Projection Subspace Dependencies. When a set of tuples b is subjected to multiple projections,
the data generation for projection subspaces may be interdependent. Given a pair of PASs A1 and
A2, sourced from two PICs, we have the inclusion property:

πA1∪A2(b) ⊆ πA1(b)× πA2(b)

For instance, consider a group of tuples b, from the table Purchases, satisfying the following
disjunctive filter condition:

b = {t ∈ Purchases | (t.Qty ≥ 20 ∧ t.Amt ≥ 3000) ∨
(10 ≤ t.Qty < 20 ∧ t.Amt ≥ 2500)}

Here, a tuple with Amt = 2700 and Qty = 25 can belong to both πAmt(b) and πQty(b), but lies
outside b’s boundary.

Moreover, A1 and A2 may themselves intersect. Therefore, in general, expressing a set of PICs
with an LP, while ensuring a physically constructible solution, is often infeasible – this is be-
cause the set of constructible solutions does not form a convex polytope [16]. Hence, alternative
methods are needed to address this issue.

1.6 Our Contributions
We present here PiGen, a data generator that addresses the above challenges and extends the current
scope of data generation to include projection in its ambit. The key design principles are: (a) Projection
Subspace Division, which divides each projection subspace into regions that allow modeling the unions,
thereby ensuring that the intra-subspace dependencies are resolved; and (b) Isolating Projections, for
independent processing of each projection subspace, thereby tackling the inter-projection subspace
challenge.

Additionally, PiGen leverages the concept of dynamic regeneration [22], and constructs an Enriched
Table Summary, that ensures data can be generated on-demand during query processing while satisfying
the input PICs. Therefore, no materialized table is required in the entire testing pipeline. Further, the
time and space overheads incurred in constructing the summary is independent of the size of the table
to be constructed and, in our evaluations, requires only a few 100 KBs of storage.

A detailed evaluation on multiple workloads of PICs, covering both real-world datasets (IMDB,
Census), and synthetic benchmarks (TPC-DS) has been conducted. The results demonstrates that PiGen
accurately and efficiently models Projection outcomes. As a case in point, for a workload of PICs,
comprising over a hundred PICs in total, PiGen generated data that satisfied all the PICs, with perfect
accuracy. Moreover, the entire summary production pipeline completed within viable time and space
overheads.

4

Organization The remainder of the report is organized as follows: The prior literature is reviewed
in Section 2. The problem framework is discussed in Section 3. Further, the key design principles of
PiGen are introduced in Section 4, and then described in detail in Sections 5 through 8. The end-to-
end implementation pipeline is presented in Section 9, while the experimental evaluation is reported in
Section 10. Finally, our conclusions and future research avenues are summarized in Section 11.

2 Related Work
Over the past three decades, a variety of novel approaches have been proposed for synthetic database
generation. The initial efforts (e.g. [15, 13]) focused on generating databases using standard mathemat-
ical distributions. Subsequently, data generation techniques that incorporated the notion of constraints
were proposed – for instance, adherence to a given set of metadata statistics was addressed in [24, 20, 7].
In more recent times, generation techniques driven by constraints on query outputs have been analyzed.
A particularly potent effort in this class was RQP [10], which receives a query and a result as input,
and returns a minimal database instance that produces the same result for the query. An alternative fine-
grained constraint formulation is to specify the row-cardinalities of the individual operator outputs, and
the techniques advocated in [11, 19, 8, 22, 21, 18, 14] fall in this category. They can be classified into
two groups based on the nature of constraints. In the first group, parameterized constraints form the
input in QAGen [11], MyBenchmark [19] and TouchStone [18]. That is, the predicate constants are
variables. From these constraints, these techniques generate a synthetic database and predicate instanti-
ations, such that applying the instantiated constraints on the synthetic data produces the desired number
of rows.

On the other hand, a stricter notion of fixed constraints was considered in [8, 22, 21, 14], where the
predicate constants are prespecified in the input. This strict model helps to generate data that is (a)
more directly representative of the source environment, and as a consequence (b) more robust to future
queries outside of the original workload. However, while constraints with filter and join operators
have been handled satisfactorily, support for the projection operator has been minimal, restricted to
a few extreme cases. For instance, DataSynth [8] proposed a projection generator that catered to
single-column tables. Here, due to the single-column restriction, there are by definition no intra/inter
projection subspace dependencies. In contrast, in PiGen, we consider a general class of strict PICs,
requiring us to explicitly address these challenges.

Complementary to the studies by the database community, the mathematical literature includes work
such as [12, 26, 16], where they study the set of sanity constraints that need to be satisfied by a given
set of projection results to ensure table constructibility. In this regard, a class of constraints called BT
(Bollobás and Thomason) inequalities were proposed in [12], which capture the necessary conditions
to be satisfied by projection output cardinalities. However, they are not sufficient, making it possible
that no actual database can satisfy these values. Another class of constraints, called NC (non-uniform
cover) inequalities, was proposed in [26]. These form sufficient conditions such that if the constraints
are satisfiable, then a database construction is always possible. However, the limitation is that the
satisfiability is not guaranteed. Further, the feasibility space does not exhibit a convex behaviour, and
therefore, it cannot be expressed as a set of linear constraints [16]. To address these theoretical hurdles,
PiGen incorporates the techniques of workload decomposition and symmetric refinement. Further, the
set of sanity constraints added in the LP formulation ensure that the solution is always constructible
within the assumptions.

5

3 Problem Framework
In this section, we summarize the basic problem statement, and the underlying assumptions of our
PiGen solution.

Statement Given an input table schema S and a workload W of strict PICs on S, the objective of
data generation is to construct a table T , such that it conforms to S and satisfies W.

Assumptions We assume that each PIC in W is of the form described in the Introduction, and that
it is strict (i.e., with prespecified predicate constants). Further, for ease of presentation, we assume
that W is collectively feasible, that is, there exists at least one legal database instance satisfying all the
constraints – the infeasibility scenario is deferred to Section 9. Finally, for brevity, we present the ideas
using tables with continuous numeric columns; the extension to other data types is straightforward.

Output Given S and W, PiGen outputs a collection of table summaries. Each summary s(T) can be
used to deterministically produce the associated table T . The tables produced are such that: (a) all of
them conform to S, and (b) each input PIC in W is satisfied by at least one of them.

Notations The main acronyms and key notations used in the rest of the paper are summarized in
Tables 1 and 2, respectively.

Table 1: Acronyms

Acronym Meaning
PAS Projection Attribute Set
PIC Projection-inclusive Cardinality Constraint
FB Filter Block
RB Refined Block

PRB Projected Refined Block
CPB Constituent Projection Block
PSD Projection Subspace Division

4 Design Principles
In this section we overview the core PiGen design principles, with the PURCHASES table of the Intro-
duction used as the running example to explain their impact. Subsequently, in Sections 5 through 8,
each principle is described in detail. To set the stage, here are some basic definitions underlying our
work.

Definition 1. A block is a bag of points (i.e. tuples) in the data space D of the synthetic table T .

Definition 2. A projection block is a subset of points from DA, where DA represents the data subspace
of the synthetic table T spanned by a given PAS A.

6

Table 2: Notations

(a) Input Related (b) Output Table Related
Symbol Meaning Symbol Meaning

S Table Schema T Output Table
f Filter predicate s(T) Summary of T
A A PAS U attribute-set in T
l Output row cardinality D Data space of T

of a filtered table DA Data subspace
k Output row cardinality spanned by A

after projecting on a
PAS (c) Block Related

c A PIC 〈f,A, l, k〉 Symbol Meaning
W Input PICs workload b An FB
C A compatible R Set of all RBs

PICs workload r An RB
r PRB wrt r

(d) Relation Related and some PAS
Symbol Meaning RA

Set of PRBs for A
M A relation btw C , R p A CPB

(Definition 4) PA Set of CPBs for A
LA A relation btw PA , RA

xr variable for |r|
(Definition 6) yp variable for |p|

4.1 Region Partitioning
To model the filter predicates associated with W, the data space D is logically partitioned into a set of
blocks. Each block satisfies the condition that every data point in it satisfies the same subset of filter
predicates.

The row cardinality of each block is represented using a variable in the LP. The resultant system is
usually highly under-determined and therefore, to reduce the complexity of solving it, we leverage the
region partitioning technique from [22], which partitions the data space into the minimum number of
blocks.

Here, for a tuple t ∈ D, and a PIC c ∈W, let c(t) denote the indicator, set to 1 if t satisfies the filter
predicate associated with c, 0 otherwise. Now, a pair of tuples t1 and t2 are said to be related by RW,
if c(t1) = c(t2), for all c ∈ W. RW is an equivalence relation, and the region partitioning algorithm
returns the quotient set of D by RW. That is, the data points from the same equivalence class (wrt
RW) form a block. Each resultant block is referred to as a filter-block (FB). The algorithm outputs the
domain of each FB, which forms its logical condition. The domain of an FB b is denoted as D(b).

To make the above concrete, consider the three filter predicates, f1, f2, f3 on PURCHASES. For
simplicity, Figure 1 shows only the 2D data space comprising the Qty and Amt attributes since no
conditions exist on the other attributes. In this figure, the filter predicates are represented using regions
delineated with colored solid-line boundaries. When region partitioning is applied on this scenario, it
produces the four disjoint FBs: b1, b2, b3, b4, whose domains are depicted with dashed-line boundaries.

7

Figure 1: Region Partitioning

4.2 Isolating Projections
To circumvent inter-projection subspace dependencies, we first “isolate” the projections. Specifically,
the following set of steps are taken in this process.

A symmetric refinement strategy is adopted that refines an FB into a set of disjoint refined-blocks
(RBs) such that each resultant RB exhibits translation symmetry along each applicable projection sub-
space. That is, for each domain point of an RB r along a particular PAS, the projection of r along the
remaining attributes is identical.

For instance, consider FB b4 in Figure 1. Clearly, it is asymmetric along the PAS Qty – specifically,
compare the spatial layout in the range 10 ≤ Qty < 20 with that in Qty ≥ 20. After refinement, this
block breaks into r4a and r4b as shown in Figure 2(a) – it is easy to see that r4a and r4b are symmetric.
(The other FBs (b1, b2, b3) happen to be already symmetric, and are shown as r1, r2 and r3, respec-
tively, in Figure 2(a)). This refinement allows for the values along different projection subspaces to be
generated independently. That is, D(r) = D(πAmt(r))×D(πQty(r)), for each RB r.

The above refinement, however, does not scale when the projections applied on an FB are along
partially overlapping PASs, i.e. when different PASs share some attribute(s). Therefore, to eliminate
such situations, we resort to decomposing the workload into non-overlapping sub-workloads using a
vertex coloring-based strategy. As a consequence, for each such sub-workload, a separate summary is
produced at the conclusion of the LP solution process. From a practical perspective, the multiplicity
of summaries does not impose a substantive overhead since each summary is very small. However, to
maximize the number of constraints that can share a common database, the number of sub-workloads
required to eliminate all conflicts is minimized.

4.3 Projection Subspace Division
To deal with intra-projection subspace dependencies, the domain of each PAS is logically divided into
a set of projection blocks, called constituent-projection-blocks (CPBs). This construction ensures that
each projection cardinality is expressible as a summation over the cardinalities of these CPBs. Further,
we ensure that the minimum number of CPBs is produced, aiding in efficient LP formulations.

For our example scenario, PiGen divides the data subspace associated with the Amt dimension into
4 CPBs: pAmt1 , pAmt2 , pAmt3 , pAmt4 , and the Qty dimension subspace into 6 CPBs: pQty1 , pQty2 , ..., pQty6 ,
as shown in Figure 2(a). Each CPB has a semantic meaning associated with it. For example, pAmt1

8

Figure 2: Symmetric Refinement and PSD

semantically represents the Amt values present in both r1 and r2. Further, the CPBs need not be
mutually disjoint, as in the case of pAmt3 and pAmt4 . Finally, Figure 2(a) also shows the unique tuples
enumerated by the sample output table shown in Figure 2(b), and the CPB (s) to which each of these
tuples belongs.

4.4 Constraints Formulation
The LP solving procedure is constructed using variables representing the row cardinalities of RBs and
CPBs. For instance, if xi represents the cardinality of RB ri, and yAmtj and yQtyk represent the cardinal-
ities of CPBs pAmtj and pQtyk , respectively, then PICs are expressed by linear equations as follows:

9

c1 : x1 + x2 = 500, yAmt1 + yAmt2 + yAmt3 = 5

c2 : x3 = 1000, yAmt4 = 3

c3 : x2 + x3 + x4a + x4b = 3000,

yQty1 + yQty2 + yQty3 + yQty4 + yQty5 + yQty6 = 9

Finally, additional sanity constraints are added to the LP to ensure data constructibility. For example,
the distinct row-cardinality of the projection of an RB is upper-bounded by the RB’s native cardinality.

A sample solution to the above LP is shown below:

x1 = 500, x2 = 0, x3 = 1000, x4a = 0, x4b = 2000

yAmt1 = 0, yAmt2 = 5, yAmt3 = 0, yAmt4 = 3, yQty1 = 0

yQty2 = 5, yQty3 = 0, yQty4 = 0, yQty5 = 0, yQty6 = 4

4.5 Enriched Database Summary
To construct the final summary, the domain of each PAS is divided into a set of intervals and then the
CPBs are assigned these intervals. A sample summary for the PURCHASES table with respect to the
aforementioned LP solution is shown in Figure 3, after incorporating an additional attribute Y ear to
illustrate a multi-dimensional projection.

Each segment of the summary corresponds to a populated RB. Specifically, the figure shows the
tabulation for the r1, r3 and r4b RBs. Each tabulation comprises of a column for each PAS acting
on the RB, and an additional last column indicating the total number of tuples present in the RB. In
each PAS column, the information for generating data of the associated projection subspace is present.
Specifically, we maintain the intervals in the projection subspace along with their distinct counts. As
a case in point, the first tabulation, corresponding to r1, is interpreted as “generate 500 tuples, such
that there are 5 distinct values of Amt in the interval [1100,2500), and 20 distinct value pairs of
{Qty, Y ear} of which 12 are from the 2D interval [1,10), [1990,2000), and the remaining 8
from the 2D interval [1,10), [2010,2020).”

Figure 3: PiGen Table Summary

For attributes that do not feature in any projection subspace, no associated distinct cardinality is
maintained – an example is Y ear in r3. Lastly, the primary-key column (PID in the example) is

10

omitted from the summary and is assumed to be a sequence of distinct natural numbers during on-
demand tuple generation. Further, note that the intervals present in a summary may not be continuous.
For instance, the {Amt, Y ear} points in r4b are sourced from two separate intervals: [1,1500) and
[3000,3600) for Amt column. From a generation perspective, however, data can be constructed
from either or both the sub-intervals.Finally, we observe that this summary is significantly different
from that produced by Hydra [22]. The key difference lies in that Hydra neither maintains intervals
nor distinct value counts. Also, since it only maintains FBs, which being inherently disjoint have no
dependency among them. In Pigen, we need to handle the dependencies enforced due to common CPBs
being shared between RBs.

This summary is used for deterministic tuple instantiation method, which ensures that despite the
tuples being generated independently for various CPBs across all RBs, the row-cardinalities match the
requirement.
In the following sections, we present the internal details of each of the aforementioned concepts.

5 Isolating Projections
To facilitate independent processing of projection sub-spaces, we refine the FBs so that the resultant
blocks become symmetric. The symmetry is formally defined as follows:

Definition 3. A block r in the data space of a U-dimensional table T is symmetric along a PAS A iff

D(r) = D(πA(r))×D(πU\A(r))

where D(.) returns the domain of the input block.
Likewise r is symmetric along PASs A1,A2, ...,Aα iff

D(r) = D(πA1(r))×D(πA2(r))× ...×D(πAα(r))×D(πU\(A1∪A2∪...∪Aα)(r))

The Cartesian product implies that for a symmetric block, the data can be independently generated
for each PAS considered. Therefore, Symmetric Refinement module refines each FB into a set of
symmetric blocks along the PASs acting on it. Hence, post-refinement, the different projection spaces
can be processed independently. The refinement algorithm is discussed in Section 5.1.

Impact of Overlapping Projection Subspaces. When partially overlapping PASs, say A1 and A2,
are applied on an FB b, symmetric refinement becomes computationally challenging. This is because
A1,A2 have to be made conditionally independent for b, requiring refinement such that each resulting
block is symmetric along A1 and A2 for each domain point in D(A1 ∩ A2). This is easily done by
enumeration for small cardinality domains, but does not scale in general. Hence, in PiGen we bypass
such overlapping projection operations by ensuring, as described in Section 5.2, that the input workload
is initially itself decomposed such that there are no projection subspace overlaps in the resulting sub-
workloads.

5.1 Symmetric Refinement
The refinement for each FB is done independently. Given an FB b and its associated PASs, this module
refines b into a group of RBs, such that each RB is symmetric along the input PASs.

Let us first understand the refinement procedure for an FB along a single PAS. Here, given a block
b, and a PAS A, the refinement of b along A is carried out as follows:

11

1. Let I be the subset of all interval-combinations in D(A) that are present in b. The interval bound-
aries along an attribute are computed using the constants that appear in the filter predicates of the
input PICs. For some interval-combination I ∈ I, let bI denote the part of b whose projection
along A is I.

2. For each interval combination I ∈ I, the projection of bI along U \ A is computed, and denoted
as π(bI).

3. A hashmap H is created with keys as π(bI) and value as I. Hence, the parts of b where the
projection of b along U \ A do not alter with changing values of A are clubbed together into a
single hash entry. This construction provides independence between A and the U \ A subspaces.

4. Each entry e in H corresponds to an RB, constructed by taking the region stored as key in e for
the U \ A attribute-set, and a union of regions stored as value in e for the A attribute-set.

Interestingly, the above refinement strategy also ensures that the number of resultant blocks is kept to
a minimum. Let the domain of b along A be denoted as DA(b). Further, let SA

b be a relation associated
with the points in DA(b). For a pair of points t1, t2 ∈ DA(b), we say t1SA

b t2 iff the projection t1 and t2
along the rest of the attributes i.e. U \ A is identical. It is easy to verify that SA

b forms an equivalence
relation. For an equivalence relation, the quotient set of the relation gives the minimum partition.

Lemma 1. The Symmetric Refinement algorithm returns the quotient set of DA(b) by SA
b .

The proof follows from the fact that Symmetric Refinement algorithm uses a hashmap, which enables
grouping of points inDA(b) together such that their projection on U\A are identical. Hence, for a PAS,
the symmetric refinement algorithm produces the quotient set of SA

b , and hence returns the refinement
with minimum number of blocks.

Extension to Multiple PAS

We now move on to the multiple PAS scenario. Let there be α PASs (A1,A2, ...,Aα) applicable on b
across all PICs. This implies that there are α+ 1 projection subspaces – πA1(b), πA2(b), ..., πAα(b), and
πU\(A1∪A2∪...∪Aα)(b). It is easy to see that the block becomes symmetric when refined along any α of
these α + 1 subspaces.

The refinement is done iteratively, where the output of refinement along one subspace is fed into the
next in the sequence. Since any sequence among the chosen α subspaces results in a symmetric block,
there are a total of

(
α+1
α

)
α! ways to do the refinement. The specific choice that we make from this large

set of options is important because it has an impact on the number of variables in the LP, and hence the
computational complexity and scalability of the solution procedure. In particular, the number of CPBs
created depends on the geometry of the RBs, and usually more overlaps of RBs along a PAS results in
more CPBs. More precisely, if we refine a block along a subspace, the overlaps in that space remain
unaffected, but the overlaps along the remaining subspaces may increase. Therefore, to minimize this
collateral impact, we adopt the following greedy heuristic in PiGen: The subspace having the maximum
FB overlaps with b is chosen as the next subspace to be refined in the iterative sequence.

Mapping RBs to PICs

The set of RBs, denoted by R, are connected with the set of PICs using the following relation:

12

Definition 4. An RB r ∈ R is related by relation M to a PIC c containing filter predicate f , iff D(r)
satisfies f . That is,

rMc⇔ t satisfies f, ∀t ∈ D(r)

For a PIC c, the associated filter predicate’s output cardinality l can be expressed as the union of a
group of RBs related to c by M , as follows:

|
⋃
r:rMc

r| =
∑
r:rMc

|r|= l

Since all the RBs are mutually disjoint, the union could be replaced with summation in the above
equation.

5.2 Workload Decomposition
As discussed previously, symmetric refinement is performed when distinct PASs applicable on an FB
are non-overlapping. This holds true when, for each domain point t, the distinct PASs across various
PICs that are applicable on t, are mutually disjoint. For any given collection of sets (PASs) to be
mutually disjoint, it is equivalent to say that they are pairwise disjoint. This leads us to defining the
concept of an intersecting pair of PICs.

Definition 5. A pair of PICs (c1 : 〈f1,A1, l1, k1〉, c2 : 〈f2,A2, l2, k2〉) intersect iff:

• their PASs partially intersect, i.e.,

A1 ∩ A2 6= ∅,A1 6= A2, and

• f1 and f2 overlap, i.e., there exists a point t in the domain space of T such that t satisfies f1 and
f2.

For example, consider the following pair of constraints, c4 and c5, on the PURCHASES table:

c4 :〈Amt ≤ 2500 ∧ Y ear ≥ 1990, (Qty, Y ear), 500, 20〉
c5 :〈Qty ≥ 20 ∧ Y ear ≤ 2020, (Amt, Y ear), 2000, 6〉

We see that the filters in the two constraints overlap, and the corresponding PASs also partially intersect.
In the Workload Decomposition module, the input workload is split such that there are no intersecting

pairs of PICs in the resulting sub-workloads. We refer to a workload with no intersecting pairs as a
compatible workload, and denote it using C.

Given an original workload W, the set of intersecting pairs IP is computed first. Subsequently,
we construct compatible sub-workloads C1,C2, ..,Cn that cover the entire workload. Additionally,
we aim towards minimizing n, i.e. the number of sub-workloads. This minimization is desirable
to facilitate common platform for workload performance evaluation. Since the minimization is NP-
complete (reduction from vertex coloring), we adopt a heuristic based on greedy vertex coloring. The
algorithm iterates over the PICs, and in each iteration, the PIC c with minimum intersections in IP is
picked and assigned to a compatible sub-workload Ci. If multiple compatible options are available, an
assignment that minimizes the skew in the sub-workload sizes is made. On the other hand, if no such
assignment is possible, a new sub-workload is constructed, and initialized with c.

In the worst case, the above algorithm can create one sub-workload per query. However, it is our
experience that in practice, a small number of sub-workloads is usually sufficient. Further, we hasten to
add that even if the worst case materializes, the overheads incurred would be marginal as only a single
small summarized table is stored per sub-workload.

13

6 Projection Subspace Division
We now turn our attention to handling intra-projection subspace dependencies. The projection output
cardinality with respect to a PIC c can be expressed using the relation M as follows:

|
⋃
r:rMc

πA(r)| = k

We use the shorthand r to represent the projection of an RB r on A, i.e. r = πA(r), and this projection
block is referred to as a projected-refined-block (PRB). The set of all PRBs for a PAS A is shown as
RA

. Further, for brevity, we overload the same relation M to establish an association between PRB r
and a constraint c. That is, rMc⇔ rMc. Hence we can rewrite the above equation as:

|
⋃
r:rMc

r| = k

The union here cannot be replaced with summation because unlike RBs, the PRBs need not be disjoint.
Therefore, to be able to express the constraint as a linear equation, the projection subspace DA needs to
be divided into a set of CPBs. The set of CPBs corresponding to a PAS A is denoted using PA. Each
element p ∈ PA logically represents a subset of DA. Further, a relation LA is provided that connects the
elements of PA with elements of RA

. We first define the notion of what constitutes a valid division, and
then go on to presenting an algorithm that provides the (unique) optimal division.

6.1 Valid Division
A valid division is defined as follows:

Definition 6. Given C,RA
and M , a division (PA, LA), with respect to a projection data subspace DA,

is called a valid division if it satisfies the following two requirements:

Condition 1. Each PRB r ∈ RA
is expressible as a union of a group of elements from PA, determined

by relation LA, as shown below:

r =
⋃

p:pLAr

p, ∀ r ∈ RA
(2)

Condition 2. All elements in PA that are related to a constraint c ∈ C through the composite relation

M ◦ LA = {(p, c)|∃r ∈ RA
: rMc ∧ pLAr}

that is, all elements of the set {p : (p, c) ∈M ◦ LA}, should be mutually disjoint for all c ∈ C.

Condition 1 is needed to associate an PRB with its constituent CPBs. This is required during data
generation in order to populate appropriate RBs based on the cardinalities of CPBs obtained from
the LP solution. Condition 2 enforces that each constraint is comprised of disjoint constituent CPBs,
thereby enabling expression of constraints as linear equations.

For ease of presentation, we drop A, which can be assumed implicitly, from the superscript in the
rest of this section.

We now give a bound on the number of CPBs required. Each element p of P maps to a collection of
sets from R using relation L. If there are m elements in R, then p has one of the total 2m − 1 possible
mappings.

14

Lemma 2. If a pair of CPBs in P, p1 and p2, map to identical sets in R, they can be combined into a
single element p1 ∪ p2, without violating either condition.

Proof. We are given that p1 and p2 ∈ P are such that p1Lr ⇔ p2Lr for s ∈ S. We need to prove that
replacing p1 and p2 with p1,2 = p1 ∪ p2 in P does not violate any of the two conditions.

• Condition 1: It is required that each r ∈ R is expressible as union of related elements of P
through L.

If (p1, r) /∈ L, then (p2, r) /∈ L (and vice versa). Hence, the expression for r remains unaltered.

If (p1, r) ∈ L, then (p2, r) ∈ L (and vice versa). Let ρ = {p ∈ P \ {p1, p2} : pLr}. Then, r =
p1∪p2

⋃
p∈ρ p. After replacing p1 and p2 with p1,2, the expression would become r = p1,2

⋃
p∈ρ p.

• Condition 2: Let c be any c ∈ C such that (p1, c) ∈ M ◦ LA (and (p2, c) ∈ M ◦ LA). It is easy
to see that (from Condition 2) p1 will be disjoint with all the other elements of P that are related
to c through M ◦ LA. That is,

p1 ∩ p′ = ∅,∀p′ ∈ P \ {p1} : (p, c) ∈M ◦ LA

Likewise, p2 will also be disjoint with all the other elements of P that are related to c. Therefore,
on replacing p1 and p2 with their union p1,2, p1,2 will continue to remain disjoint with all the other
elements of P that are related to c.

From Lemma 2, we know that at most one CPB is needed for each mapping. Therefore, 2m − 1 is
the upper bound on the number of CPBs required for an R of length m.

From this observation, let us first look at an extreme construction of (P, L) with |P|= 2m− 1, where
there is a single element p ∈ P for each possible mapping.

Powerset Division

Consider a set P having 2m− 1 elements with a mapping relation L such that each element p in P maps
to one of the non-empty subsets of R. Further, p’s content is defined as follows:

p =
⋂

r:(p,r)∈L

r \
⋃

r′:(p,r′)/∈L

r′ (3)

That is, p includes the data points that are present in all the PRBs that are related to p and absent from
each of the remaining PRBs.

P satisfies the two conditions for valid division. This is because:

1. Each element r ∈ R can be expressed as a union of a subset of elements in P, as shown below:

r =
⋃
p:pLr

p

2. All the elements in P are mutually disjoint.

15

Consider the projection subspace of Amt in our running example. RAmt
= {r1, r2, r3}. Since there

are three PRBs, seven possible mappings exist. Figure 4 illustrates these seven mappings. Powerset
Division (Pow-PSD) creates seven CPBs, one CPB corresponding to each mapping. Hence, the seven
resulting CPBs in PAmt are as follows:

r1 \ (r2 ∪ r3), (r1 ∩ r2) \ r3, (r1 ∩ r3) \ r2, r1 ∩ r2 ∩ r3,
r2 \ (r1 ∪ r3), r2 ∩ r3 \ r1, r3 \ (r1 ∪ r2)

Figure 4: Partitioning in Projected Space

6.2 Optimal Division
The number of CPBs in P determine the number of variables in the LP. Therefore, reducing the size
of P helps in reducing the complexity of LP, thereby providing workload scalability and computational
efficiency. Hence, we define an optimal division as a valid division that has the minimum number of
CPBs.

Definition 7. A valid division (P, L) is called an optimal division iff there does not exist any other valid
division (P′, L′) such that |P′|< |P|. We represent the optimal division by (P∗, L∗).

We now shift our focus towards identifying the optimal division. As a first step, let us define some
general characteristics of the set P and the corresponding relation L.

If a CPB p is related to a PRB r, then p is a subset of r. That is,

pLr =⇒ p ⊆ r (4)

Alternatively, a second possibility is of disjointedness. Let p1, p2 be such that (p1, c), (p2, c) ∈M ◦L
for some c ∈ C. Further, let R(p1),R(p2) represent the set of PRBs that are related to p1 and p2,
respectively, through L. Using Condition 2 and Equation 4, we can say that

p1 ∩ r = ∅, where r ∈ R(p2) \ R(p1)
p2 ∩ r = ∅, where r ∈ R(p1) \ R(p2) (5)

Therefore, CPBs may have a disjoint relation with a PRB.

16

Finally, a third possibility is when a CPB does not have a relation with a PRB, which allows room
for constructing CPBs that overlap.

Our division algorithm distinguishes these three possibilities using a vector vp corresponding to each
CPB p in P. The vector is of length m, where each element is associated with an element of R. Further,
the element associated with r ∈ R is denoted by vp(r). Specifically, element vp(r) is set to 1 iff
pLr. Using Equation 5, the elements in vp corresponding to the sets R(p′) \ R(p) for all p′ such that
(p, c), (p′, c) ∈ M ◦ L for some c ∈ C, are represented as 0, denoting the absence of values from these
sets. The remaining elements of vp are set as ‘×’ denoting a don’t care state, i.e. p and r may or may
not have an intersection. Finally, using the vector vp, p can be expressed as:

p =
⋂

r:vp(r)=1

r \
⋃

r′:vp(r′)=0

r′ (6)

Let V represent the set of all possible vectors. Further, let Q denote the collection of CPBs, where
there is a projection-block q associated with each vector v ∈ V. Therefore, P∗ ⊆ Q. Let the subset
of V corresponding to the elements in P∗ be denoted as V∗. Each position in vector v can have one of
the three possibilities among 0, 1,×, and at least one position needs to mandatorily be 1. Therefore, Q
comprises 3m− 2m elements. Note that Q forms a partial-order with respect to the subset relation, and
can therefore be represented by a Hasse Diagram. As an exemplar, the Hasse Diagram for an m = 3
case is shown in Figure 5 (for simplicity, the elements of V are shown instead of Q).

Figure 5: Hasse Diagram

We hasten to add that to compute P∗, it is not necessary to iterate on all the elements of Q. Instead, the
division begins with the top nodes of the Hasse diagram and recursively splits a block only if required
to satisfy the two conditions.

The detailed mechanics of the division algorithm, called Opt-PSD, with pseudocode as shown in
Algorithm 1, are described next.

6.3 Opt-PSD Algorithm
We begin our computation of the projection subspace division by creating a Division Graph (DG). In
this graph, a vertex is created corresponding to each element of R. Then, an edge is added between
vertices corresponding to r1 and r2 if there exists a constraint c such that r1Mc and r2Mc, (i.e. both
the PRBs are related to a common constraint c), and the domains of r1 and r2 intersect. The resultant
graph G is given as input to Algorithm 1, which returns the set of vectors V∗ in the output. Leveraging

17

the vectors, the contents of the CPBs are computed using Equation 6. Then, the L∗ relation is populated
with the expression: (p, r) ∈ L∗, if vp(r) = 1, vp ∈ V∗
The rest of the algorithm proceeds as follows:

• We iterate over the vertices of G. In the iteration for a PRB r, a vector is initialized with ‘×’ for
all the positions except that corresponding to r, which is set to 1 (Line 3 of Algorithm 1). These
initial vectors represent the top nodes of the Hasse Diagram. They are recursively further split in
the while loop (Line 5), using a running list of vectors called toBeSplit.

• In each iteration of the while loop, an element v from toBeSplit is popped and split using a
pivot vertex; the resultant elements are re-inserted in the list. A pivot PRB is distinguished
as one which is included in v and co-occurs in a constraint c with another PRB (target) whose
current assignment in the vector is ×. To compute the pivot vertex in G, the getP ivot function
is used, which selects the pivot based on the following conditions: (a) v(pivot) = 1, and (b)
There exists a PRB r such that there is an edge between the vertices corresponding to pivot and
r. Further, the value for r in the vector v is ×.

• The collection of all PRBs that satisfy condition (b) is denoted as the targets set corresponding
to pivot, and is returned by the getP ivot function. Now, v is split using the Split function, which
computes a powerset enumeration of the vector positions corresponding to PRBs in targets. This
function also ensures that no redundant elements are added in the result set.

Algorithm 1: Optimal Projection Subspace Division
Input: Division Graph G
Output: Optimal Vectors-set V∗
toBeSplit← ∅;
visited← ∅;
for r in R do

visited← visited ∪ r vinit ← {×}m, vinit(r)← 1;
toBeSplit← {vinit};
while toBeSplit 6= ∅ do

v ← toBeSplit.pop();
pivot, targets← getP ivot(G, v);
if pivot exists then

toBeSplit← toBeSplit ∪ Split(v, pivot, targets, visited);
else

V∗ ← V∗ ∪ {v};
end

end
end
return V∗;

The correctness of Opt-PSD algorithm follows from the following:

• it starts from the top nodes of the Hasse diagram and recursively refines them. Therefore, it
continues to cover all the elements of R.

18

Function Split(v, pivot, targets, visited):
splitSet← ∅;
for r ∈ targets do

if r ∈ visited then
vr ← 0;
remove r from targets;

end
end
if targets = ∅ then

return v;
end
powerset← generate powerset enumeration of targets;
for s ∈ powerset do

new v ← v;
new vr ← 1, ∀r ∈ s;
new vr ← 0, ∀r ∈ targets \ s;
splitSet← splitSet ∪ new vr;

end
return splitSet;

• the PRBs that are related to a common constraint are split by restricted powerset enumeration
ensuring that they are mutually disjoint.

Hence, the algorithm does restricted enumeration depending on vertex’s neighbours, or in other
words it takes into account which PRBs co-appear in a constraint.

Example Division

Consider the projection subspace of Amt in Example 1. RAmt
= {r1, r2, r3}. Let us see how the CPBs

for projection subspace of Amt are created by Opt-PSD. The input DG for the example is shown in
Figure 6.

Figure 6: Example Division Graph

Initialization: toBeSplit = ∅,V∗ = ∅

Iteration 1: r1 is picked, vinit = 〈1××〉 is added to toBeSplit, toBeSplit = {〈1××〉}. After pop-
ping, v = 〈1××〉, getP ivot returns pivot = 1, targets = {2} as vertex 1 is connected to vertex
2. The split function splits v by a restricted powerset enumeration on targets. {〈11×〉, 〈10×〉} is
added to toBeSplit, toBeSplit = {〈11×〉, 〈10×〉}. Both the elements in toBeSplit are popped
one by one and are added to V∗ as they have no pivot. toBeSplit = ∅,V∗ = {〈11×〉, 〈10×〉}.

Iteration 2: r2 is picked and the corresponding v = 〈×1×〉 is added to toBeSplit, toBeSplit =
{〈×1×〉}. After popping, v = 〈×1×〉 which return pivot = 2, targets = {1} as vertex 2 is only

19

connected to vertex 1. On splitting, {〈01×〉, 〈11×〉} are added to toBeSplit. Both the elements
are popped and 〈01×〉 is added to V∗ as it does not have a pivot. 〈11×〉, being already present in
V∗, is not inserted again. toBeSplit = ∅,V∗ = {〈11×〉, 〈10×〉, 〈01×〉}.

Iteration 3: r3 is picked with 〈× × 1〉 and added to toBeSplit. After popping, v = 〈× × 1〉, no pivot
is found by getP ivot as vertex 3 is not connected to any other vertex. v is added to V∗.

Finally, V∗ = {〈11×〉, 〈10×〉, 〈01×〉, 〈× × 1〉} (highlighted in Figure 5). Using Equation 6,
it yielded in 4 CPBs for Amt, P∗ = {p1, p2, p3, p4} (as discussed in Section 4) and L∗ =
{(p1, r1), (p1, r2), (p2, r1), (p3, r2), (p4, r3)}.

The degree of the DG has a proportional impact on the number of CPBs constructed. To see this
behaviour, the number of CPBs for Opt-PSD for a few general DGs are shown in Table 3.

Table 3: No. of CPBs in Opt-PSD

Division Graph No. of CPBs
Empty Graph (Km) m

Path Graph (Pm) 1
2
m(m+ 1)

Cycle Graph (Cm) m2 −m+ 1
Star (K1,m−1) 2m−1 +m− 1

Complete Graph (Km) 2m − 1

6.4 Proof of Optimality
We now prove that Opt-PSD produces the optimal division. For a CPB p ∈ P, consider the subset s
of points:

s =
⋂

r:vp(r)=1

r \
⋃

r′:vp(r′)=0,×

r′

Note that with this definition, s ⊆ p and cannot overlap with any p′ ∈ P \ {p}. This restriction leads to
the following lemma:

Lemma 3. Given (P, L) returned by Opt-PSD, ∀p ∈ P, there exists a point u ∈ p such that u /∈
p′, ∀p′ ∈ P \ {p}.

We use this observation to prove that Opt-PSD returns an optimal division, and further, that this
optimal division is unique.

Lemma 4. Opt-PSD returns the unique optimal division.

Proof. We give a brief sketch of the proof here.
Let (P, L) be the division provided by Opt-PSD, and let there be another division (P′, L′) such that
|P′|≤ P.

=⇒ ∃u ∈ p1, v ∈ p2(6= p1) for some p1, p2 ∈ P, where p1Lr1, p2Lr2,

r1, r2 ∈ R, such that u, v ∈ p′, p′L′r1, p′L′r2 for some p′ ∈ P′.

20

Case (1) r1 = r2 = r: Since p1Lr and p2Lr,

=⇒ ∃c ∈ C such that rMc, r′Mc, for some r′ ∈ R and
(p1, r

′) ∈ L, (p2, r′) /∈ L (wlog) (using Lemma 2)
=⇒ v /∈ r′, otherwise there would exist p3 ∈ P such that v ∈ p3;

p2 ∩ p3 6= ∅ and p3Lr′ would imply Condition 2 violation.
=⇒ ∃p′′ ∈ P′ such that p′′L′r′, u ∈ p′′ and v /∈ p′′.

Since, p′ ∩ p′′ 6= ∅ and (p′, c), (p′′, c) ∈M ◦ L′

Hence, contradiction (Condition 2 violation).

Case (2) r1 6= r2:
(2a): u ∈ p1 \ p2 (or v ∈ p2 \ p1, wlog)

Since, u ∈ p1, p1Lr2, therefore u ∈ r2
=⇒ ∃p3 ∈ P such that u ∈ p3 and p3Lr2
p2, p3, p

′ are such that u ∈ p3, v ∈ p2, u, v ∈ p′, p2Lr2, p3Lr2, p′L′r2.
This is not possible using result of Case (1). Contradiction.

(2b): u, v ∈ p1 ∩ p2
p1, p2 has at least one point each that is absent in all the other CPBs (using Lemma 3). Therefore, if
u, v, which are present in p1 ∩ p2 are merged in P′, then |P′|> |P|. Contradiction.
Hence, Opt-PSD gives the optimal division.

7 Constraints Formulation
As just discussed, Projection subspace division outputs a set of CPBs and a mapping function L. These
form the input to the Constraints Formulation module, whose objective is to construct an LP that
captures the projection constraints while ensuring that the solution corresponds to a physically con-
structible database.

Condition 1 of valid division ensures that each PRB r ∈ RA
is completely covered by a set of CPBs.

While Condition 2 ensures that all CPBs related to some c ∈ C are mutually disjoint. As a consequence,
a constraint c 〈f,A, l, k〉 can now be expressed as a summation of cardinalities of CPBs related to c
through M ◦ LA.

|πA(σf (T))|=
∑

p:(p,c)∈M◦LA

|p| (7)

Further, since each r ∈ RA
is related to at least one c ∈ C through M ◦ LA, the CPBs associated

with r ∈ RA
through LA are also disjoint. Hence, the cardinality of r ∈ RA

can be represented as a
summation of the cardinalities of related CPBs.

|r|=
∑
p:pLAr

|p| (8)

The LP construction uses the above facts while constructing constraints. Specifically, the LP vari-
ables that are constructed, and their interpretations, are as follows:

xr: total tuple cardinality in r ∈ R, i.e. |r|
yp: (distinct) tuple cardinality in p ∈ PA, i.e. |p| for PAS A.

Given this framework, there are two classes of constraints, Explicit Constraints and Sanity Con-
straints, that constitute the input to the LP and are discussed in the remainder of this section.

21

7.1 Explicit Constraints
These are the LP constraints that are directly derived from the projection constraints. For each projec-
tion constraint, c : 〈f,A, l, k〉, the following pair of constraints are added:

(a) Total Row Cardinality Constraint ∑
r:rMc

xr = l (9)

(b) Distinct Row Cardinality Constraint (using Equation 7)∑
p:(p,c)∈M◦LA

yp = k (10)

7.2 Sanity Constraints
These are the additional constraints necessary to ensure that the LP solution can be used for constructing
a physical database instance. Here, there are three types of constraints:

Type 1: These constraints ensure that the row cardinality for each RB and CPB are non-negative in the
LP solution. That is,

xr ≥ 0,∀r ∈ R, and yp ≥ 0,∀p ∈ PA, for all PAS A (11)

Type 2: These constraints ensure that the total number of tuples for each RB is greater than or equal to
the number of distinct tuples along each applicable PAS for that block. Using Equation 8, these
constraints, for each RB r and each of its associated PAS A, are expressed as follows:∑

p:pLAr

yp ≤ xr (12)

where r = πA(r).

Type 3: Even after satisfying the above sanity constraints, we can still have a situation where the total
number of tuples for an RB may be positive while the number of distinct tuples along some
projection subspace remains zero. To avoid this scenario, we add the following constraint for
each RB r and each of its associated PAS A:

xr ≤ |T |
∑
p:pLAr

yp (13)

In the above, r = πA(r) and |T | is the cardinality of T , which is an upperbound on xr. We
assume that |T | is given as an input PIC with no filter predicate.

We had already seen, in Section 4, the explicit constraints for our running example. The associated
sanity constraints are shown in the box below:

22

Type 1 x1, x2, x3, x4a, x4b ≥ 0

yAmt1 , yAmt2 , yAmt3 , yAmt4 ≥ 0

yQty1 , yQty2 , yQty3 , yQty4 , yQty5 , yQty6 ≥ 0

Type 2,3 yAmt1 + yAmt2 ≤ x1 ≤ |T |(yAmt1 + yAmt2)

yAmt1 + yAmt3 ≤ x2 ≤ |T |(yAmt1 + yAmt3)

yAmt4 ≤ x3 ≤ |T |yAmt4

yQty1 + yQty3 ≤ x2 ≤ |T |(yQty1 + yQty3)

yQty2 + yQty6 ≤ x3 ≤ |T |(yQty2 + yQty6)

yQty3 + yQty4 ≤ x4a ≤ |T |(yQty3 + yQty4)

yQty2 + yQty5 ≤ x4b ≤ |T |(yQty2 + yQty5)

7.3 Sufficiency for Data Generation
For an RB and an associated PAS, the above sanity constraints ensure that any LP solution can always be
used to generate data that conforms to it. Now, since RB is symmetric in nature, data across different
PASs can be generated independently and concatenated together. Therefore, the constructed LP is
sufficient for data generation.

7.4 Workload Scalability and Robustness
Inspired by graphical model-based table decomposition techniques that were proposed in [8], PiGen
adopts an optimization of decomposing the denormalized table T into a collection of sub-tables based
on which attributes co-appear in a constraint. Subsequently, these sub-tables undergo the various par-
titioning algorithms that were discussed in this paper. This decomposition helps to further reduce the
number of variables in the LP. After the LP is solved, the solutions for the sub-tables are merged to get
the corresponding synthetic denormalized table.

Other than the above optimization, to handle larger workloads, several heuristics can be adopted.
One such heuristic is to not create all the CPBs in one go. Instead, first assume that all the PRBs are
mutually exclusive and therefore, create only one CPB per PRB. If with this assumption, the obtained
solution has minor errors in satisfying the constraints, prune the creation of other CPBs. If the errors
are high, then progressively add more CPBs by now assuming that at most two PRBs intersect, and
so on. Being an underdetermined system, there always exist a sparse solution to the LP – therefore,
this algorithm is expected to converge quickly. However, from the solution quality perspective, using
a sparse solution may not always be desirable, as was also shown in [21]. This is so because, sparse
solutions create large holes in the data space, where there are no data points. This can lead to poor
accuracy on unseen constraints. Constructing an approximation scheme that achieves better workload
scalability while producing qualitatively robust solutions is an area of future research.

8 Data Generation
The LP solution gives the following information:

1. A list of RBs with their corresponding row cardinalities, and

23

2. For each RB and its associated PASs, a list of CPBs with their associated (distinct) row cardinal-
ities.

Thus far, we have only associated statistical significance to each CPBs, specifying the presence or
absence of their tuples in RBs. Now, we drill down to assign intervals for each CPB, thereby producing
the summary tabulation for all RBs. The CPBs along each PAS are assigned intervals independently
since each RB is symmetric along its associated PASs. The final summary that is produced can be used
for either on-demand tuple generation, or for generating a complete materialized database instance. We
discuss the summary construction and tuple generation procedures here.

8.1 Summary Construction
The summary construction module compactly stores information needed for efficient tuple generation.
Each projection subspace is dealt with independently thanks to the projection isolation techniques.
Consider the projection subspace corresponding to PAS A – here, the first step is to assign an interval
to each CPB p ∈ PA. A challenge in this assignment is that the domains of different CPBs may
intersect. For instance, the domains of CPBs pQty2 and pQty6 intersect in PURCHASES. However, since
CPBs related to a common projection constraint should not intersect, we assign disjoint intervals to
these CPBs to ensure Condition 2. Hence, pQty2 and pQty6 are allocated disjoint intervals for PAS Qty as
(pQty2 , c3), (p

Qty
6 , c3) ∈ M ◦ LQty. On the other hand, in the case of PAS Amt, pAmt2 and pAmt4 are not

related to any c in C, and therefore their data generation intervals can overlap.
As per above, a feasible interval assignment for PURCHASES is:

pAmt2 ← [1100, 2500) pQty2 ← [20, 25)

pAmt4 ← [500, 3000) pQty6 ← [25, 40)

The summary is maintained RB-wise, with the template structure shown in Figure 7. We see here
that all the CPBs associated with the block, along with their distinct tuple cardinalities, are represented
in the summary. Using α to denote the total number of associated PASs, an RB can be represented
in α + 1 components, with each component associated with a PAS having a distinct row-cardinality.
For the attribute-set on which no projection is applied for the RB, shown as Aleft, the domain of the
projection block is kept as is and no distinct tuple count is maintained. Lastly, each RB has an associated
total cardinality. A populated instance of the template, and its interpretation, was discussed earlier in
Section 4.5.

A1 A2 ... Aα Aleft

RB
Card.

CPB1: card., CPB1: card., ... CPB1: card.,
PBCPB2: card., CPB2: card., ... CPB2: card.,

...

Figure 7: Sample RB in Summary

8.2 Tuple Generation
Using the information in the summary, the tuples of the table are instantiated. Specifically, the algorithm
iterates over each RB and generates the number of rows specified in the associated total cardinality

24

value. For an RB and an associated PAS A, each CPB is picked and the corresponding partial tuples are
generated. This gives a collection of partial tuples for A which may be less than the total cardinality.
To make up the shortfall without altering the number of distinct values, we repeat the generated partial
tuples until the total cardinality is reached. For the Aleft component, which only has a single interval,
any partial-tuple within its boundaries can be picked for repetition. Finally, partial-tuples across all
projection spaces of the RB are concatenated to construct its output tuples.

Inter-Block Dependencies. We have to ensure that the partial-tuples associated with a CPB are iden-
tical for each of the associated RBs. To do so, we employ a deterministic algorithm that takes an
interval and a cardinality as input, and produces a series of distinct points, equal to the cardinality, from
the interval – this series is used in all the associated RBs. As a case in point, for the sample summary
in Figure 3, the partial tuples generated for the CPB with interval [20, 25) and distinct row cardinality
5 are identical in both r3 and r4b.

9 PiGen Pipeline
The end-to-end PiGen pipeline, which extends the Hydra framework to incorporate Projection, is shown
in Figure 8. The modules that differ from Hydra are shown in green color.

Figure 8: PiGen Algorithm Pipeline

PiGen takes a workload W of projection-inclusive constraints over a single denormalized table T as
input. Let β be the total number of PASs across all the constraints, as indicated in Figure 8. From the
constraints, PiGen produces data for T . This is carried out by a sequence of core components, namely
Workload Decomposition, LP Formulation, and Data Generation modules. Workload Decomposition
splits W into a set of compatible sub-workloads. Subsequently, the rest of the pipeline, comprising
of LP Formulation and Data Generation, is executed independently for each of these sub-workloads.
The LP Formulation for a sub-workload C begins with Region Partitioning followed by Symmetric
Refinement algorithm. This gives the set of RBs. For each PAS across all PICs, the PRBs are com-
puted using the RBs. These PRBs and C are then used by the Projection Subspace Division module
to construct the set of CPBs. Next, at the Constraints Formulation stage, an LP is constructed using
variables representing the cardinalities of RBs and CPBs. This construction is then given as the input
to the LP Solver. From the solution produced by the LP solver, a comprehensive table summary is
constructed using the Summary Construction module. This summary is used by the Tuple Genera-
tion module to synthesize the data. It can generate tuples on-demand during query processing, thereby

25

eschewing the need for data materialization. Alternatively, if the user desires a materialized database
instance, it can be generated from the summary and stored persistently.

Finally, PiGen leverages the graphical model-based table decomposition techniques proposed in [8]
to construct the table in a piece-meal fashion and then stitch these constituent pieces together. Each sub-
table consists of a subset of attributes determined by the attributes that co-appear in the PICs, thereby
further reducing the LP complexity.

Having presented the mechanics of PiGen, we now take a step back and critique the approach on
relevant aspects.

9.1 Workload Feasibility
Feasibility of a set of PICs implies that the PICs can be accurately satisfied by a single database instance.
This notion can be classified into the following two scenarios:

Intra-PIC Feasibility This form of feasibility deals with PICs at an individual level. Specifically, a
PIC c : 〈f,A, l, k〉 is feasible iff:

0 < k ≤ l ≤ |T | or l = k = 0 (14)

9.1.1 Proof

We give a data construction to prove feasibility: Generate values for A such that there are k unique
value combinations (satisfying f) repeated over to make the total number rows to be l. Choose any
values for the rest of the attributes such that complete tuple satisfies f . This will ensure the data always
satisfies the constraint.

Inter-PIC Feasibility This is a stronger form of feasibility, where in addition to PICs being individ-
ually feasible, they are also required to be mutually compatible. For instance, consider the additional
constraint, c6, on the PURCHASES table:

c6 : 〈Amt ≤ 2000 ∧ Y ear ≥ 2000, Qty, 400, 25〉

We observe here that c4 and c6 cannot be satisfied together. Specifically, c6 requires 25 distinct Qty
values for the range Amt ≤ 2000 ∧ Y ear ≥ 2000, while c4 requires that the number of distinct
(Qty, Y ear) pairs is 20 for a larger covering range, constituting an impossible situation.

Defining a set of necessary and sufficient conditions that ensure solution feasibility for various types
of input constraints has been looked at in the database literature. For instance, [17] deals with schematic
constraints on the participation cardinalities for the relationships between entities in the ER model, and
provides necessary and sufficient conditions to determine whether database instances exist such that
all entities and relationships are populated. However, giving a similar holistic solution in the statisti-
cal query-based constraints space, is still an open problem, although restricted versions have been at-
tempted. Specifically, feasibility of projection cardinality constraints has been discussed in [12, 26, 16].
A class of constraints, called BT inequalities, were proposed in [12], which capture the necessary con-
ditions to be satisfied by the projection output cardinalities. However, this constraint set is not sufficient,
making it still possible that no actual database can satisfy these values. Subsequently, another class of
constraints, called NC (non-uniform cover) inequalities, was proposed in [26]. While this constraint
set creates sufficient conditions for database construction, the limitation is that satisfiability of these
conditions is not guaranteed. Further, the feasibility space does not exhibit a convex behaviour, making
it inexpressible as a set of linear constraints [16].

26

9.2 Solution Guarantees
We discuss the solution guarantees for feasible and infeasible workloads separately below.

Feasible Workload The input workload feasibility is true by definition when the PICs have been
derived from an existing setup. In such scenarios, PiGen ensures, thanks to the explicit LP constraints,
that the generated data satisfies the PICs with 100% accuracy. Further, the sanity constraints ensure the
LP solution is always constructible. This leads us to the following lemma:

Lemma 5. For a feasible and compatible set of PICs, PiGen always produces an instance of the table
that satisfies all the constraints.

Given an initially feasible workload, workload-decomposition can always produce sub-workloads
that are both feasible and compatible. Therefore, for any initially feasible workload, the data produced
by PiGen can cover all the input constraints. We formally prove Lemma 5 next.

Proof of Lemma 5

We briefly discuss the proof for Lemma 5, which is split into two parts: (a) The LP constructed for a
feasible compatible workload C is always satisfiable; (b) Given any LP solution, data can be always be
constructed from it, and this data will satisfy C.

Part (a): Given workload feasibility, there exists at least one instance T of the table that satisfies C.
Further, due to compatibility, C is modeled in a single LP. Say T does not satisfy this LP. This implies
T does not satisfy at least one of the Explicit or Sanity constraints. If T violates an Explicit constraint,
then it does not satisfy at least one input PIC. This is because each input PIC is modeled using two
Explicit constraints that ensure the data satisfies the PIC. Further, there cannot be a physical table that
violates any Sanity constraint due to its inherent nature. Hence, T satisfies all the Sanity constraints
as well. Therefore, by contradiction, we can conclude that T satisfies the LP – in fact, the LP gives
the necessary conditions for data generation adhering to the workload. This implies that for feasible
workloads, the LP is satisfiable.

Part (b): For a particular PAS A, the Sanity constraints ensure that for each populated RB, the total
tuple count in the RB is at least the number of distinct rows along A, and the distinct row count is
positive. Hence, the data along each projection subspace is generated easily. Further, since RB is
symmetric in nature, data across its different projection subspaces can be generated independently and
concatenated. Therefore, any LP solution is sufficient for data generation. Since, each PIC is modelled
in the LP using the Explicit constraints, the generated data is compliant with C.

Infeasible Workload Intra-PIC feasibility check can be trivially verified at the pre-processing stage
by checking the adherence of constraints to Condition 14. However, if the input has inter-PIC infeasi-
bility, the following two possibilities may arise: (a) It may so happen that Workload Decomposition,
while resolving intersection PICs, may as a collateral benefit, also produce feasible sub-workloads. For
example, by partitioning the workload {c4, c5, c6} into {c4} and {c5, c6}, the resulting sub-workloads
become non-intersecting as well as feasible. In this scenario, PiGen produces one table for each sub-
workload (using Lemma 5). (b) Alternatively, in case this beneficial effect of decomposition does not
happen, then the LP constraints (discussed in Section 7) themselves become infeasible. Hence, the LP
solver eventually flags this infeasibility. We have explicitly verified this to be the case for the Z3 solver
with a few deliberately created infeasible constraint sets.

27

9.3 Solution Complexity
Computationally, the bottleneck of the pipeline lies in the LP solver. The LP complexity is primarily
governed by the number of CPBs created, which is determined by the overlaps between the blocks intra-
projection subspaces. The extent of overlaps is reflected by the outdegree of vertices in the Division
Graph G(V,E) introduced in Section 6. For adversarial cases, the number of CPBs can be as high as
the number of connected induced subgraphs of G, which can go up to 2|V |.

Connection to Connected Induced Subgraph Problem

Assuming the domain of all the blocks are identical, then the number of CPBs is identical to the number
of connected induced subgraphs inG. This can be proved by a straightforward bijection argument. That
is, each induced connected subgraph (A) has a corresponding CPBs (B) in the solution and vice versa.

Further, |V | itself is O(2|W|). However, these worst-case exponential scenarios are relatively rare in
practice, and our experience is that the count is usually well within the solver’s computational limits.
We quantitatively assess this aspect in our experimental evaluation (Section 10).

Further, for infeasible workloads, the only additional overheads incurred are the checks for intra-PIC
feasibility. This verification takes constant time for an input PIC.

Lastly, the decision version of the general data generation problem is NEXP-complete, as shown
in [8].

9.4 Limitations and Extensibility
While PiGen takes a substantive step towards addressing the primary challenges of projection modeling,
there are some practical limitations wrt its current coverage and scope, as described next.

Multiple Summaries We would ideally like to produce a single summary instance that satisfies all
the PICs. However, PiGen may have to produce multiple summaries, and hence multiple databases, to
cater to constraint workloads that feature overlapping projection spaces. From a practical perspective,
this multiplicity does not impose a substantive overhead due to the minuscule size of each summary.
Further, PiGen attempts to reduce the number of sub-workloads to the minimum required to ensure
compatibility.

Workload Scale Despite the proposed techniques provably gives minimal number of variables
needed for expressing PICs, they can still be exponential if the input PICs have high overlaps intra
projection subspaces. PiGen currently handles workloads of reasonable complexity as showcased in
our experiments. However, for more complex scenarios, a promising recourse is to introduce approx-
imation, where volumetric accuracy is marginally compromised to achieve solution tractability. For
example, a plausible heuristic could be to not create all the CPBs in one go, but to create them greedily
until the error limit is reached. Being a highly underdetermined system, there always exist a sparse
solution to the LP – therefore, this iterative process is expected to converge quickly. However, from the
solution quality perspective, using a sparse solution may not always be desirable, as was also shown in
[21]. This is so because, sparse solutions create large holes in the data space, where there are no data
points. This can have robustness limitations in assessing performance of unseen queries. Constructing
an approximation scheme that achieves better workload scalability while producing qualitatively robust
solutions is an area of future research.

28

Incremental Workloads Currently the entire constraint workload is assumed to be given as the input.
An alternative scenario is where the constraints are incrementally provided. This may appear problem-
atic since PiGen does not allow modifying the solution to satisfy additional constraints. However, its
data-scale-free summary creation permits rebuilding the solution from scratch cheaply.

10 Experiments
In this section, we evaluate the empirical performance of a Java-based implementation of PiGen. The
popular Z3 solver [6] is invoked by the tool to compute the solutions for the LP formulations. Our
experiments cover the accuracy, time and space overheads and scalability aspects of PiGen, and are
conducted using the PostgreSQL v9.6 engine [3] on a vanilla HP Z440 workstation.

Workload Construction In presenting the experimental results, we initially focus on fully compati-
ble workloads. Subsequently, in Section 10.5, we discuss the corresponding performance for workloads
featuring intersection. A variety of real world and synthetic benchmarks were used in designing the
workloads. For representative large fact tables from each of the benchmarks, a workload of compat-
ible PICs was derived by executing a set of queries. The denormalized versions of these tables were
considered for constructing PICs. The details of the compatible workloads are as follows:

TPC-DS Suite: This suite comprises of four workloads, corresponding to the four TPC-DS tables
[4] subject to the maximum number of projection operations in the benchmark – namely,
STORE SALES (SS), CATALOG SALES (CS), WEB SALES (WS), and INVENTORY (INV).

Census Workload: Here, the Census dataset framework used in [14] is extended to additionally fea-
ture projections apart from the extant filter cardinality constraints. In particular, a single workload
was constructed on the PERSONS (P) table.

IMDB Suite: This suite is designed from the JOB [2] benchmark based on the IMDB dataset. It
comprises of three workloads, corresponding to the three tables subject to the maximum projec-
tion operations – namely, MOVIE KEYWORD (MK), CAST INFO (CI), and MOVIE COMPANIES

(MC).

The complexity of these various workloads is quantitatively characterized in Table 4. Note that they
feature a substantial degree of both inter-projection complexity (up to 10 projection subspaces and 6
dimension subspaces) and intra-projection complexity (maximum degree of the Division Graph vertices
goes as high as 72).

Baselines We compare PiGen against the DataSynth and Hydra frameworks which both support
strict cardinality constraints. For DataSynth, projection constraints need to be restricted to single at-
tribute tables, whereas in Hydra, only the filter constraints are considered in the generation process.
We deliberately omit the evaluation of systems dealing with parameterized cardinality constraints such
as Touchstone [18] and MyBenchmark [19]). This is due to the organic differences, highlighted in
Section 2 between their problem framework and ours, which render quantitative comparisons to be
infructuous.

29

Table 4: Workload Complexity

Dataset Table # # PAS Length Vertex Degree
PICs PASs Avg. Max. Avg. Max.

TPC-DS

SS 16 8 1.4 5 3.95 10
CS 15 10 2.2 5 4.74 15
WS 16 8 2 6 5.7 16
INV 6 3 1.5 4 0.92 4

Census P 220 3 1.67 2 1.33 72

IMDB

MK 16 4 1.25 2 5.68 14
CI 14 3 2.67 3 3.7 17

MC 19 4 1.5 2 3.75 15

10.1 Constraint Accuracy
When PiGen was run on the aforementioned workloads, the generated data satisfied all the constraints
with 100% accuracy. To appreciate the complexity present in these successfully modeled constraints,
we present a representative sample constraint applied on the denormalized relation of STORE SALES

from TPC-DS below:

c : 〈f ,A,31921358,15061〉

f : d year = 2002 ∧
(i category ∈ (‘Jewelry’,‘Women’) ∧ i class ∈ (‘mens watch’,‘dresses’)) ∨
(i category ∈ (‘Men’,‘Sports’) ∧ i class ∈ (‘sports-apparel’,‘sailing’)) and

A : {i category, i brand, s store name, s company name, d moy}.
Note that there are several attributes in the projection set, and both conjunctive and disjunctive predi-
cates in the filter condition.

When the same experiments were carried out with Hydra, we found that typically over 90% of the
constraints had a relative error of greater than 90%.A sample accuracy graph that bears testimony to
this behavior is shown in Figure 9, covering all four tables of the TPC-DS workload suite. These
observations highlight that it is non-trivial to satisfy projection cardinalities in the synthetic database
without explicit modeling and catering to these constraints, as done by PiGen.

Figure 9: Constraint Accuracy

Turning our attention to DataSynth, we also generated a customized workload from the TPC-DS
benchmark, comprising of only single attribute projection and filter constraints to suit DataSynth’s

30

restricted environment. For a single attribute case, there is only one projection subspace possible.
Further, two distinct tuples cannot overlap in projection subspace either. Therefore, the inter projection
subspace and intra projection subspace challenges do not surface. Even for this simplified scenario, we
found several cases, where the LP solution obtained from DataSynth was inconstructible. An example
illustration showcasing this fundamental problem is shown below:

Consider a toy example with the following pair of projection-inclusive constraints (PICs) on the
ITEM table from TPC-DS:

PIC 1 : 〈4 ≤ i class id < 12, i class id, 6876, 8〉
PIC 2 : 〈8 ≤ i class id < 16, i class id, 4490, 8〉

DataSynth’s algorithm divided the domain of i class id attribute into five intervals and further as-
signs total row cardinality and distinct row cardinality to each of these intervals. The obtained bound-
aries and the two cardinalities for each interval is tabulated in the table below. We can see from the
table that for intervals I1 and I2, the total row cardinality is positive, while the distinct row cardinality
is 0. Since to populate an interval, at least one (distinct) tuple is necessary, therefore, this solution can
not produce a valid instantiated table.

For this scenario, DataSynth produced the following interval-based solution:

Table 5: LP Solution from DataSynth

Interval Range Total, Distinct Row Card.
I1 i class id < 4 11124,0
I2 4 ≤ i class id < 8 2386,0
I3 8 ≤ i class id < 12 4490,8
I4 12 ≤ i class id < 16 0, 0
I5 i class id > 16 0,0

Due to this clear inability of both DataSynth and Hydra to produce data that satisfies projection-
compliant constraints, we restrict our attention to PiGen in the rest of this section.

10.2 Generated Data
We now show a concrete example of how the data generated by PiGen satisfies the input PICs. Consider
the following PIC from the CENSUS workload on the PERSONS table:

〈18 ≤ Age ≤ 85 ∧Relationship = ‘Spouse’ ∧ PUMA = 822, (Age, Sex), 205, 4〉

A snippet of the generated table is shown in Table 6. Here, the first four rows in the (Age, Sex) columns
are repeated in round-robin fashion, while the remaining attributes have a fixed constant value, for
producing the first 205 rows. Then, the subsequent rows (206th row onwards) in the table are assigned
values that do not satisfy the above constraint.

10.3 Time and Space Overheads
Having established the accuracy credentials of PiGen, we now turn our attention to the associated
computational and resource overheads. To begin with, the summary construction times and sizes for
various summary tables are reported in Table 7. We see here that the time to produce the summary is

31

Table 6: Sample Rows produced for PERSONS Table

Age Sex Relationship PUMA Tenure
18 M Spouse 822 Rented
25 F Spouse 822 Rented
36 M
68 M

Repeated in Round Robin Spouse 822 Rented
(Row # 206) 76 F Parent 100 Owned

...

Table 7: Overheads

Table Summary
Time Size

SS 21 min 58 kB
CS 32 min 117 kB
WS 15 min 64 kB
INV 2 s 13 kB
MK 2 min 15.5 kB
CI 41 s 13.6 kB
MC 3.6 min 27.7 kB
P 30 min 416 kB

Table 8: Block Profiles

Table Cardinality of
FBs RBs CPBs

SS 74 88 132662
CS 139 141 165936
WS 119 132 73929
INV 11 16 41
MK 30 32 30083
CI 278 301 14386
MC 187 203 42835
P 1193 1529 7170

in a few tens of minutes. From a deployment perspective, these times appear acceptable since database
testing is usually an offline activity. Moreover, the summary sizes are miniscule, just a few 100s of
kilobytes at most.

Drilling down into the summary production time, we find that virtually all of it is consumed in the
LP solving stage. In fact, the collective time spent by the other stages was less than ten seconds in all
the cases. These results highlight the need for minimizing the number of LP variables, since the solving
time is largely predicated on this number. To obtain a quantitative understanding, we report the sizes of
the intermediate results at various pipeline stages in Table 8 – specifically, the table shows the number
of FBs, RBs, and CPBs created by PiGen. We see here that there is huge jump in the number of regions
from the initial FB to the final CPBs, testifying that C has considerable overlap among its constraints,
and therefore represents a “tough-nut” scenario wrt projection. An exception to this observation is
the PERSONS table from Census dataset, where even though the maximum degree for a vertex in the
Division graph was 72 (Table 4), the overlaps between PICs are limited as also indicated by the average
degree which is less than 2.

We also show the improvement of Opt-PSD over Pow-PSD by additionally reporting the number
of CPBs in case of Pow-PSD. Lastly, the speedup achieved by Opt-PSD over Pow-PSD is shown in
the last column of the table. Typically, for larger inputs, the speedup achieved is also high. As a case
in point, for store sales table, Opt-PSD completed 70 times faster than Pow-PSD. In absolute terms
also, while Pow-PSD took days to produce the summary, Opt-PSD completed the process in a few
minutes.

We also evaluated the time taken to flag infeasibility by PiGen for the cases where the input workload
itself has infeasible PICs. In our experience, this situation was usually caught within a few minutes. As
a case in point, on adding an infeasible constraint to the 220 PICs set for CENSUS data, the error was

32

Table 9: No. of Blocks and Comparison against Pow-PSD

Table # FBs #RBs #PRBs
Opt-PSD

#PRBs
Pow-PSD

Multiplicative
Speed-up

ss 74 88 132662 524404 70
cs 139 141 165936 524336 16

flagged in 3 minutes.
The summarized table can be used to generate tuples either in-memory during query processing, or

to produce materialized instances. The time to generate the tuples from the summary in-memory is
reported in Table 10, and we see that even a huge table such as SS, having close to 3 billion records, is
generated within a few minutes.

Table 10: Tuple Generation Time

Table # Rows Tuple Gen.
Time Table # Rows Tuple Gen.

Time
SS 2.9 bn 4 min WS 0.72 bn 8 seconds
CS 1.4 bn 1.5 min INV 0.78 bn 9 seconds

10.4 Scalability Profile
The scalability aspect of PiGen was discussed at length in Section 9, and we now provide quantitative
observations with regard to data and workload scale.

Data Scale The time and space overheads incurred to produce table summaries are intrinsically data-
scale-free, i.e., they do not depend on the generated size. We explicitly verified this property by running
PiGen over 10 GB, 100 GB and 1 TB versions of TPC-DS.

Workload Scale The time and space requirements with increasing number of PICs is shown in Fig-
ures 10(a) and 10(b), respectively, for the Census workload. The figures highlight that the memory
consumption is relatively stable and manageable (few GB) across the spectrum, but that time scala-
bility can be a limitation for workloads beyond a certain complexity (Figure 10(a) is on a log scale).

10.5 Workload Decomposition
We now turn our attention to intersecting workloads, which require the pre-processing step of work-
load decomposition. To model this scenario, we added intersecting PICs to the TPC-DS workload suite,
with the final workloads having the following PIC distributions: SS (52 PICs), CS (28 PICs), WS (29
PICs), and INV (8 PICs). In particular, we have evaluated the PiGen results on W for two decomposi-
tion strategies: (a) Instance-based Decomposition, and (b) Template-based Decomposition, which are
discussed below.

33

Figure 10: (a) Execution Time (b) Memory Usage

10.5.1 Instance-based Decomposition (ID)

Here the decomposition algorithm uses Definition 5 of a conflicting pair, and for this framework, the
number of workloads obtained for the four tables are shown in Table 11. We observe that despite
using an approximate vertex coloring algorithm (Section 5.2), a partitioning of W into at most 6 sub-
workloads sufficed for ensuring internal compatibility. Interestingly, the aggregate summary generation
times are extremely small, completing in just a few seconds, and much lower than the corresponding
numbers for C in Table 7. At first glance, this might appear surprising given that W is more complex
in nature – the reason is that due to workload decomposition, an array of databases is produced for W
with low individual production complexity, whereas a single unified database is produced for C. From
a testing perspective, it is preferable to generate the minimum number of databases, and therefore we
would always strive to have as little decomposition as possible.

Table 11: Workload Decomposition - ID

Table Sub-Workload
Sizes

Aggregate
Summary Time

Aggregate
Summary Size

SS 13,11,8,7,7,6 14 s 135 kB
CS 14,5,5,4 12 s 69 kB
WS 12,10,7 7 s 58 kB
INV 6,2 3 s 16 kB

10.5.2 Template-based Decomposition (TD)

Here, the decomposition algorithm assumes conflicting pairs are defined at a template level. That is,
two constraints conflict if their PASs partially intersect. The reason we consider TD is to remove any
coincidental performance benefit that may have been obtained thanks to the specific filter predicate
constants present in the original workload. Table 12 shows the number of workloads obtained for the
four tables with this artificially expanded definition of conflict. We observe that even here, just 8 sub-
workloads are sufficient for producing compatibility. Finally, again thanks to decomposition, both the
summary generation times and the summary sizes are extremely small.

Finally, we also verified the quality of the approximation algorithm for decomposition. That is,
how far is the obtained number of sub-workloads from the actual minimum count. To assess this,
we implemented the exponential algorithm that computes the true minimum number of sub-workloads

34

Table 12: Workload Decomposition - TD

Table Sub-Workload
Sizes

Aggregate
Summary Time

Aggregate
Summary Size

SS 10,10,8,8,5,5,4,3 70 s 109 kB
CS 9,7,4,4,4 14 s 117 kB
WS 9,9,6,5 7 s 41 kB
INV 6,2 2 s 16 kB

and in the cases where this exhaustive algorithm could be evaluated, we found that the approximation
algorithm returned the same count as the optimal.

11 Conclusions
Synthetic data generation from a set of cardinality constraints has been strongly advocated in the con-
temporary database testing literature. PiGen expands the scope of the supported constraints to include,
for the first time, the general Projection operator. The primary challenges in this effort were tackling
dependencies within a projection subspace and across different projection subspaces. By using a com-
bination of workload decomposition and symmetric refinement, dependencies across various projection
subspaces were handled. Within a projection subspace, union was converted to summation via division
of the space. Further, an optimal division strategy was presented to construct efficient LP formulations
of the constraints. The experimental evaluation on real-world and synthetic benchmarks indicated that
PiGen successfully produces generation summaries with viable time and space overheads.

Currently, PiGen deems any exact solution to the LP as satisfactory for database generation. This
choice could be materially improved in two ways: 1) By using approximation algorithms that sacrifice
constraint accuracy to a limited extent to achieve better workload scalability; and 2) By preferentially
directing the LP solver towards solutions with reduced sparsity so as to improve the robustness of the
generated database to future unseen queries.

35

References
[1] Dagstuhl Seminar 21442. Ensuring the Reliability and Robustness of Database Management

Systems. dagstuhl.de/en/program/calendar/semhp/?semnr=21442

[2] JOB Benchmark. github.com/gregrahn/join-order-benchmark

[3] PostgreSQL. postgresql.org/docs/9.6

[4] TPC-DS. tpc.org/tpcds/

[5] TPC-H. tpc.org/tpch/

[6] Z3. github.com/Z3Prover/z3

[7] A. Alexandrov, K. Tzoumas, and V. Markl. Myriad: Scalable and Expressive Data Generation.
PVLDB, 5(12):1890-1893, 2012.

[8] A. Arasu, R. Kaushik, and J. Li. Data Generation using Declarative Constraints. Proc. of ACM
SIGMOD Conf., 2011, pgs. 685-696.

[9] A. Arasu, R. Kaushik, and J. Li. DataSynth: Generating Synthetic Data using Declarative Con-
straints. PVLDB, 4(12):1418-1421, 2011.

[10] C. Binnig, D. Kossmann, and E. Lo. Reverse Query Processing. Proc. of 23rd ICDE Conf., 2007,
pgs. 506-515.

[11] C. Binnig, D. Kossmann, E. Lo, and M. T. Özsu. QAGen: Generating Query-Aware Test
Databases. Proc. of ACM SIGMOD Conf., 2007, pgs. 341-352.

[12] B. Bollobás and A. Thomason. Projections of Bodies and Hereditary Properties of Hypergraphs.
Bulletin of the London Mathematical Society, 27(5):417-424, 1995.

[13] N. Bruno and S. Chaudhuri. Flexible Database Generators. Proc. of 31st VLDB Conf., 2005, pgs.
1097-1107.

[14] A. Gilad, S. Patwa, and A. Machanavajjhala. Synthesizing Linked Data Under Cardinality and
Integrity Constraints. Proc. of ACM SIGMOD Conf., 2021, pgs. 619-631.

[15] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger. Quickly Generating
Billion-Record Synthetic Databases. Proc. of ACM SIGMOD Conf., 1994, pgs. 243-252.

[16] I. Leader, Z. Randelovic, and E. Raty. Inequalities on Projected Volumes. arXiv:1909.12858

[17] M. Lenzerini, and P. Nobili. On The Satisfiability of Dependency Constraints in Entity-
Relationship Schemata. Proc. of 13th VLDB Conf., 1987, pgs. 147–154.

[18] Y. Li, R. Zhang, X. Yang, Z. Zhang, and A. Zhou. Touchstone: Generating Enormous Query-
Aware Test Databases. USENIX ATC, 2018, pgs. 575-586.

[19] E. Lo, N. Cheng, W. W. Lin, W.-K. Hon, and B. Choi. MyBenchmark: generating databases for
query workloads. The VLDB Journal, 23(6):895-913, 2014.

36

[20] T. Rabl, M. Danisch, M. Frank, S. Schindler, and H. Jacobsen. Just can’t get enough - Synthesizing
Big Data. Proc. of ACM SIGMOD Conf., 2015, pgs. 1457-1462.

[21] A. Sanghi, Rajkumar S., and J. R. Haritsa. Towards Generating HiFi Databases. Proc. of 26th
DASFAA Conf., 2021, pgs. 105-112.

[22] A. Sanghi, R. Sood, J. R. Haritsa, and S. Tirthapura. Scalable and Dynamic Regeneration of Big
Data Volumes. Proc. of 21st EDBT Conf., 2018, pgs. 301-312.

[23] A. Sanghi, R. Sood, D. Singh, J. R. Haritsa, and S. Tirthapura. HYDRA: A Dynamic Big Data
Regenerator. PVLDB, 11(12):1974-1977, 2018.

[24] E. Shen, and L. Antova. Reversing statistics for scalable test databases generation. Proc. of
DBTest Workshop, 2013, pgs. 1-6.

[25] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database System Concepts, McGraw-Hill, New
York, Seventh Edition, 2020.

[26] Z. Tan, and L. Zeng. On the Inequalities of Projected Volumes and the Constructible Region.
SIAM Journal on Discrete Mathematics, 33(2):694-711, 2019.

37

