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1 Introduction
Given an SQL query workload, the creation of appropriate column indexes has been a standard database
technique for materially reducing the workload’s execution time. In the early days, these indexes were
manually selected by DBAs. However, contemporary engines feature automated Index Advisors (IA)
that identify good configurations while adhering to storage budgets; for instance, IBM’s DB2 Index
Advisor [55] and Microsoft’s AutoAdmin [28].

Given their demonstrated performance impact, it is no surprise that IA design has been an active area
of research over the past three decades in both academia and industry (e.g. [15, 21, 22, 28, 25, 26, 30,
31, 52, 55, 61, 27, 39, 51]), with even machine learning-based techniques [42, 43, 17, 48] appearing
in recent times. However, searching for an optimal index configuration inherently entails exploring a
combinatorially large search space. Therefore, current advisors typically rely on heuristic strategies,
which can result in suboptimal index configurations. For instance, DB2 IA reduces the index selection
problem to an instance of a 0-1 Knapsack Problem [50], and then invokes a greedy heuristic-based
solver to recommend the index configuration. The heuristic is essentially “ROI” (return on investment)
– the time benefit provided by the index normalized to its storage footprint.

Figure 1: Suboptimality of Heuristic IA

Consider an SQL workload comprising TPC-H [9] queries Q6, Q14, Q22, and two instances of Q17
over a 1GB TPC-H database. Given this setup, the index selection problem instance generated by
a popular commercial database (CDB) engine is shown in Figure 1. The problem instance comprises
seven candidate indexes, their expected time benefit wrt query response time, and storage cost overhead.
Now, for a storage budget of 140, CDB recommends a sub-optimal index configuration {i2, i5, i6} with
a total benefit of 1302510, while the optimal configuration comprises indexes {i2, i3} with a benefit of
2427540. In this scenario, it is evident that around 50% of the available index benefit is lost due to a
sub-optimal choice.

As highlighted in [21], a variety of heuristics have been proposed for classical IA tools in an attempt
to bridge this gap to optimality – however, there is no guaranteed improvement. Therefore, we take
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a radically different approach here: specifically, we ask the question “Is it feasible to utilize the raw
computational power promised by quantum platforms to find better, perhaps even optimal, solutions?”.
And the good news, as explained in the remainder of this paper, is that it indeed appears viable, through
careful algorithmic design, to concurrently achieve excellent quality and practical efficiency. As a case
in point, the optimal configuration for the ∼ 50 candidate indexes constructable on a TPC-H database,
can be processed (as per our estimated projection in Section 6.7.4) in a few hours on a quantum com-
puter, whereas an exhaustive search would take a couple of months.

Our study is motivated by the growing interest in early-stage quantum computing with 100,000-qubit
machines projected within the coming decade [3]. Even within the database community, quantum com-
puting has begun to attract attention – similar, albeit unrelated, studies to ours have recently been carried
out for join-order optimization [53, 46, 58] and transaction scheduling [18, 19, 36], with promising
outcomes. Finally, a call for quantum implementation of Index Advisors was explicitly advocated in
recent database vision papers [38, 59].

Quantum Modeling Dimensions
A variety of design choices and challenges arise in porting IA to the quantum domain. First, there are
alternative computing models – quantum annealing, which is energy-minimization-based, and quantum
circuit, which is gate-based, similar to classical circuits. Over the past decade, the latter has gained
prominence as it provides a greater degree of design flexibility [53], and we therefore focus on this
choice in our work.

Second, we could ask whether the IA design should be purely quantum or a hybrid that synergistically
leverages classical and quantum computing. We have chosen the latter to (a) facilitate easy integration
with contemporary DBMS engines and (b) minimize the quantum circuit complexity to address only
the hard computational problems.

Third, quantum computers work in probabilistic space – this means that individual results may have
errors or even violate mandatory constraints. We therefore need to devise schemes to eliminate, with at
least high confidence, these inherent problems of quantum computation.

Fourth, whether IA should be modeled as a optimization problem or as a search formulation. Due to
the disparate trade-offs between their solution quality and computational effort, we design and evaluate
both options. For the former, index selection is modeled as a Quadratic Unconstrained Binary Opti-
mization problem, and solved using the Quantum Approximate Optimization Algorithm (QAOA) [33].
This approach requires O(log(L)) computations, where L is the total number of candidate configura-
tions, and the recommended configurations are significantly better compared to classical heuristics. On
the other hand, for the latter, index selection is modeled as a fully enumerative search over the expo-
nential configuration space, and solved using the seminal Grover Search algorithm [37]. This approach
identifies, with high confidence, the optimal index configuration incurring O(

√
L) computations.

Finally, modeling database applications on quantum platforms poses tricky implementation issues.
For instance, with Grover Search, we have to devise an efficient data loading scheme that can scale
with the size of the problem and also facilitate subsequent computations. Our approach diverges from
the conventional method of loading data via basis states – instead, we load the data in the phase of
the qubits. This unconventional strategy allows for more efficient computation and paves the way for
further innovations (detailed in Section 5.1). We also design an efficient quantum oracle that is able
to identify qualifying configurations. The creation of such an oracle is a complex task, as it requires
performing computations while the data is phase-resident in a quantum superposition state.

2



The QIA System
The overall architecture of our hybrid Quantum-Classical Index Advisor (QIA) framework is shown
in Figure 2. Given a database environment, the system takes the SQL workload and storage budget as
input and outputs a recommended index configuration.

Figure 2: Quantum Index Advisor (QIA) Architecture

The first three steps – candidate configuration generation, followed by computing the storage costs
and time benefits of these configurations – are carried out in the classical world, whereas the final
computationally intensive index selection step is hosted on the quantum platform. That is, the existing
index selection heuristic algorithm is replaced by a quantum substitute, while maintaining the same
classical interface, in a pluggable manner. Now, based on the user choice, either OQIA (Optimization-
based QIA) or SQIA (Search-based QIA) is invoked to recommend the index configuration. With
SQIA, the user provides an additional parameter, δ, which is the desired probability of obtaining the
optimal solution. While the OQIA porting is an amalgamation of known techniques, SQIA represents,
to our knowledge, the first application of quantum search to the index selection problem implementable
through standard quantum gates.

Evaluation
We have designed quantum circuits for the OQIA and SQIA algorithms and implemented them using
the Qiskit SDK [16]. They have been evaluated on a 32-qubit noiseless quantum simulator, and on a
127-qubit IBM Eagle circuit processor. Given the current limited capacity of quantum platforms, we
are perforce only able to model modest instances of the IA problem, which we have evaluated on the
TPC-H environment.

However, interestingly, we show that even for these modest instances, using QIA, substantive quality
improvements, approaching optimality, are obtained compared to the heuristic approach implemented
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in a commercial DBMS engine. As a case in point, for the problem instance depicted in Figure 1,
the quality of the CDB recommendation is 0.54 of the optimal (determined by exhaustive search). In
contrast, OQIA delivers a 0.76 solution, while SQIA recommends the optimal with probability 0.9.

Moreover, these good results are obtained while incurring substantially less computational effort
than the exhaustive search. Specifically, with OQIA, the computational overheads are 0.23 relative to
exhaustive search, while SQIA is 0.77. Finally, we make the case that for large problem instances, our
techniques effectively scale the qubit requirements linearly with problem size, an essential feature from
a long-term feasibility perspective.

Index Advisor Framework
To put the Index Advisor framework into perspective, Figure 3 shows a high-level characterization of
the QIA techniques, contrasted to the greedy and exhaustive approaches. The dimensions are the (nor-
malized) index configuration quality, the computational efficiency in identifying these configurations,
and the probabilistic distribution of the quality. On the efficiency axis, L = 2I , where I is the number
of indexes.

Figure 3: Quality-Efficiency Characterization

We see here that OQIA consistently delivers high-quality index configurations while performing
fewer computations than Greedy. Further, by making a modest additional computational investment,
SQIA could be instead used to obtain optimal configurations with a high probability. But we hasten to
add that the computations performed by Greedy are simpler, and hence it may be empirically faster for
contemporary index sizes. Therefore, a variety of quality-efficiency trade-offs are available, and in a
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complete deployment, a sentinel module would be required to make the appropriate choice. We plan to
explore this aspect in our future work.

Contributions
To summarize, our contributions are the following:

1. Proposed the first hybrid IA architecture that harnesses classical computing and gate-based quan-
tum technology in a pluggable manner for database engines.

2. Logical design and circuit representations for the OQIA and SQIA approaches. The SQIA design,
in particular, represents an original application of quantum search to the index selection problem,
leveraging a phase-resident approach to data storage while only employing standard quantum
gates. Further, OQIA and SQIA provide different tradeoffs between configuration quality and
computational efficiency.

3. A pilot implementation and evaluation of the proposed IA approaches on both (noiseless) quan-
tum simulators and (noisy) quantum circuit processors. The evaluations show that substantively
improved index configurations, by a multiplicative factor of 1.5 to 2 and approaching optimality,
are achievable through quantum technology. We also observe that OQIA is more robust to noise
than SQIA.

To our knowledge, this study represents the first investigation of quantum computing to the IA prob-
lem. For this initial analysis, we restrict our attention to the computationally expensive index selection
step in the IA pipeline. We intend to explore quantum implementation of other pipeline components in
our future work.

The rest of the paper is organized as follows: A brief background of quantum data processing is
given in Section 2. The formal problem framework is detailed in Section 3. Then, in Sections 4 and 5,
we present the OQIA and SQIA algorithms, respectively, and their performance evaluation is profiled in
Section 6. Related work is reviewed in Section 7. Finally, our conclusions and future research avenues
are highlighted in Section 8.

2 Quantum Background
Quantum computation brings to bear on information processing, the fundamental phenomena of quan-
tum mechanics, such as superposition, interference, entanglement, reversible computation, and irre-
versible measurements. A comprehensive review of quantum computation is provided in [47]. Here,
we briefly review the basic building blocks used in QIA.

Quantum computation is built upon the quantum bit or qubit. The possible states for a qubit are
|0⟩ and |1⟩ (in Dirac notation), which correspond to the states 0 and 1 of a classical bit. But unlike a
classical bit, a qubit can be in a state |ψ⟩ which is a linear combination, or superposition, of the |0⟩ and
|1⟩ states:

|ψ⟩ = α|0⟩+ eiγβ|1⟩ (1)

where α and β are complex numbers such that |α|2 + |β|2 = 1 and γ ∈ [0, 2π) is the quantum phase
(angle of rotation around the Z-axis). When a qubit is measured, we get either 0 with probability
|α|2, or 1 with probability |β|2. Note that the phase γ gets lost in the measurement and, furthermore,
the measurement operation is irreversible, since it destroys the quantum superposition state and outputs
classical bits.
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2.1 Quantum Gates
A quantum algorithm generates a quantum circuit comprising elementary quantum gates wired together
to accomplish a task. The quantum gates used in QIA are summarized below:

NOT Gate (X): Operates on a single qubit and is quantum equivalent of the classical NOT gate. It takes
a state α|0⟩+ β|1⟩ as input and flips the amplitudes of |0⟩ and |1⟩, producing the state β|0⟩+ α|1⟩.

Hadamard Gate (H): Operates on a single qubit and produces an equal superposition of the |0⟩ and
|1⟩ states. That is, it turns |0⟩ into |+⟩ = (|0⟩+ |1⟩)/

√
2, and |1⟩ into |−⟩ = (|0⟩ − |1⟩)/

√
2.

Phase Gate (P): Takes an angle ϕ as input and rotates a qubit about the Z-axis, mapping: |0⟩ → |0⟩
and |1⟩ → eiϕ|1⟩.

Controlled-Phase Gate (CP): Takes an angle ϕ as input and operates on a pair of qubits: a control
qubit and a target qubit. The P gate is applied to the target qubit conditional on the state of the control
qubit.

Multi-Controlled Toffoli Gate (MCT): Operates on a set of n qubits, with n − 1 control qubits, and
the remaining qubit being the target. If all control qubits are set to |1⟩, then the target qubit is flipped;
otherwise, it is left undisturbed. For n = 2, MCT reduces to the fundamental Controlled-NOT Gate
(CX).

We next present a brief overview of the basic quantum algorithms leveraged in QIA.

2.2 Quantum Approximate Optimization Algorithm (QAOA)
QAOA is a hybrid algorithm that combines classical and quantum components and is tailored to find
approximate solutions to optimization problems [33]. QAOA operates through a sequence of quantum
and classical steps. The quantum part involves initializing qubits in the uniform superposition state |+⟩,
and then applying a specialized quantum circuit (configured with 2p parameters) on the initial state p
times. A quantum computer is used to evaluate the objective function, while a classical optimizer
is used to update the 2p parameters. This iterative process is repeated until the classical optimizer
converges. The protocol, as outlined in [16], is shown in Figure 4.

As might be expected, the approximation quality of QAOA improves with p, but the circuit depth
also grows linearly with p. Therefore, p is usually set to a small value to balance solution quality and
quantum feasibility. In fact, even at the lowest circuit depth (p = 1), QAOA has non-trivial provable
performance guarantees [34], and hence p = 1 has been used as a common assignment in the literature
[53]. However, the literature also suggests that a logarithmic depth is anticipated to surpass classical
optimizers [56]. Therefore, in our evaluation, we vary p in the range 1 to ⌈log(|I|)⌉, where I is the list
of candidate indexes.

2.3 Grover Search (GS)
GS is a quantum algorithm designed to solve the unstructured search problem with high probability
(WHP) [37]. Specifically, given an unordered list of N items, GS identifies a desired item WHP, using
O(
√
N) iterations, as compared to the O(N) probes incurred by the classical algorithms. During each

iteration, GS leverages quantum properties to simultaneously check allN items, resulting in a quadratic
speed-up compared to classical methods.
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Figure 4: The QAOA Protocol [16]

The GS algorithm involves three key operators: state preparation, quantum oracle, and diffusion.
The state preparation operator creates a quantum superposition state encompassing an exponential solu-
tion space. The quantum oracle enhances each candidate solution with problem-specific data, evaluates
the cost function, and identifies qualifying candidates. The diffusion operator amplifies the measure-
ment probability of the qualified candidates. Notably, the state preparation is a one-time activity. The
combined application of the quantum oracle followed by the diffusion operator is termed a Grover
Iteration. It is invoked multiple times to identify a qualifying candidate with a probability exceeding
0.5.

The key challenges in designing an index selection scheme based on GS include: (1) Creating an effi-
cient problem-specific quantum oracle; (2) Identifying the precise number of Grover Iterations required
for the GS algorithm to work appropriately; and (3) Boosting the success probability from 0.5 to the
user-desired δ. In Section 5, we present a novel approach to constructing the quantum oracle utilizing
various quantum concepts implementable through standard quantum gates. Additionally, we address
the remaining challenges by adapting the Generalized Grover Search (GGS) [20, 23] algorithm and the
Powering Lemma [40], which enable us to optimize the algorithm’s performance. These modules are
discussed in detail in Section 5.2.

2.4 Shots
An operational parameter that influences the solution quality of quantum algorithms is “shots”(S).
Shots indicate the number of times a quantum algorithm is executed, with increased shots providing
more accurate and reliable results at the expense of consuming more quantum resources. In our exper-
iments, we empirically identify the ideal number of shots for the proposed QIA schemes.

3 Problem Framework
The Index Advisor problem that we consider here is the following: Given an SQL query workload
Q on a relational database instance D, recommend a configuration of indexes that maximizes the per-
formance benefit for the workload while adhering to the following constraints: (1) Space Constraint:
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The configuration must fit in a user-specified storage budget; and (2) Validity Constraint: The con-
figuration must satisfy validity requirements, which could be (a) intrinsic – for instance, at most one
clustered index per relation, or (b) extrinsic – for instance, mandatorily add all indexes listed in a
pre-specified base configuration.

In the above problem definition, the performance benefit of a configuration is measured as the re-
duction in the estimated execution time of the workload compared to the base configuration. Further,
since contemporary database systems (e.g. DB2) typically build, by default, a clustering index on the
primary key column of each relation, we assume that the base configuration comprises these indexes.
Therefore, our objective is restricted to selecting the additional unclustered indexes.

Index Advisor Pipeline

The index advisor pipeline encompasses a sequence of tasks to find a beneficial configuration of
constraint-compliant indexes. The tasks, shown pictorially in the top pipeline of Figure 2 as Steps
1 through 4, are the following:

1. Candidate Generation: This task entails identifying candidate indexes to improve the SQL
workload performance. Techniques such as analyzing query predicates and recognizing common
query patterns, are employed to create a comprehensive pool of potentially beneficial indexes.

2. Cost Evaluation: This step computes the individual storage and maintenance (due to updates)
overheads of the candidate indexes. Storage overheads serve to model the index cost, whereas
maintenance overheads are factored into the benefit calculations of the next stage.

3. Benefit Computation: The overall improvement of the query workload execution time due to
the presence of each index is computed, typically via the query optimizer module. Specifically,
the cumulative improvement in query response times is weighed against the increase in index
maintenance overheads.

4. Index Selection: This final step aims to find the configuration among the candidate indexes that
maximizes the benefit while respecting the storage and validity constraints.

Our study employs classical strategies for the first three tasks in the pipeline and uses the quantum
platform only for the final computationally-intensive index selection task. Specifically, we use DB2
Index Advisor [55] as the exemplar classical technique.

In this formulation, given a set of indexes I = {i0, i1, · · · , in−1}, each with its storage overheadW =
{w0, w1, · · · , wn−1} and time benefit V = {v0, v1, · · · , vn−1}, index selection in Step 4 is modeled as
the following constrained optimization problem:

max
n−1∑
i=0

xivi s.t.
n−1∑
i=0

xiwi ≤ Wmax (2)

where the solution to the problem is represented by an array, denoted as X , consisting of elements
{x0, x1, · · · , xn−1}, each taking binary values of 0 (exclusion) or 1 (inclusion). The objective is to select
and recommend a configuration of indexes that maximizes the performance benefit for the workload
while adhering to the storage/validity constraints.
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Table 1: Parameters

Type Symbol Description Domain
Input I List of Indexes [i0, · · · , in−1]
Input W List of Storage Costs [w0, · · · , wn−1]
Input V List of Time Benefits [v0, · · · , vn−1]

Input Wmax Storage Budget (0,
∑n−1

i=0 wi]

Input Vmax Maximum Benefit [0,
∑n−1

i=0 vi]

Input L # of Possible Configurations 2|I|

Input S # of Shots Z+ [Pos. Integer]
OQIA p Repetition Depth of QAOA {1, · · · , log(|I|)}
SQIA δ Desired Optimality Probability [0.5, 1)
SQIA ϵ Failure Probability 1− δ
SQIA λ Step size for GGS [1, 1.33]
SQIA α Timeout Control of GGS Q+ [Pos. Rational]
SQIA Maxiter Upper bound on Grover Iteration ⌊α ·

√
L⌋

SQIA R # of Repetitions of GGS ⌈log(1/ϵ)⌉
SQIA Cx Candidate Configuration wrt. x x = {0, 1}n
SQIA W (Cx) Aggregate cost of Cx Z+ [Pos. Integer]

3.1 Notation
The various input and algorithmic parameters used in the sequel, together with their notation, are sum-
marized in Table 1.

In the subsequent sections, we describe the proposed Optimization-based (OQIA) and Search-based
(SQIA) quantum schemes to implement Stage 4 of the Index Advisor pipeline.

4 Optimization-based QIA (OQIA)
In the first step of OQIA, the index selection optimization problem, as defined in Equation 2, is trans-
formed into a Quadratic Unconstrained Binary Optimization (QUBO) instance. We then map the
QUBO instance to an Ising Hamiltonian using the transformations outlined in [44]. This two-step
process helps convert the index selection problem instance into a suitable format for consumption by
Quantum Approximate Optimization Algorithm (QAOA).

QUBO for Index Selection

QUBO problems feature binary decision variables, quadratic objective functions, and no constraints –
the objective is to identify the assignment of binary variables that minimizes the quadratic objective
function. For the index selection problem, we essentially use the QUBO reformulation technique pre-
sented in [32] with some minor modifications. The process operates as follows: First, Equation 2 is
converted from a maximization task into a minimization task – this is trivially achieved by changing
the sign of the objective function:

n−1∑
i=0

xivi → −
n−1∑
i=0

xivi (3)

Next, the storage space constraint is internalized to make the optimization objective constraint-free.
This process requires additional machinery, specifically the introduction of an auxiliary term, denoted
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B in the optimization objective. This B term undergoes dynamic adjustments in each iteration by the
optimizer in response to the solution’s characteristics.

For starters, the original solution arrayX of length n bits is expanded to include an additionalm bits,
resulting in an expanded array denoted XB = [x0, · · · , xn−1, bn, · · · , bn+m−1]. The additional bits bj
are formed from the binary representation of B, that is, B =

∑n+m−1
j=n 2jbj .

Next, the objective function is updated to enable the optimizer to simultaneously optimize the values
of X and B. To do so, the B is subtracted from the storage constraint, the resultant is squared, and then
multiplied with a large positive number A. The full expression is:

A ·

(
Wmax −

n−1∑
i=0

xiwi − B

)2

(4)

The updated cost function is obtained by adding Equations 3 and 4:

C(XB) = A ·

(
Wmax −

n−1∑
i=0

xiwi − B

)2

−
n−1∑
i=0

xivi

= A ·

(
Wmax −

n−1∑
i=0

xiwi −
n+m−1∑
j=n

2jbj

)2

−
n−1∑
i=0

xivi

(5)

resulting in the following QUBO objective function:

min
XB

A ·(Wmax −
n−1∑
i=0

xiwi −
n+m−1∑
j=n

2jbj

)2

−
n−1∑
i=0

xivi

 (6)

The minimization of the above function requires the first term to go to 0, implying that
∑

i xiwi ≤
Wmax, which is the storage constraint. Given a zero-valued first term, the function minimization is
determined by the second term, which is the aggregate benefit. Therefore, benefit maximization is
achieved subject to meeting the storage budget. Next, we map the generated QUBO instance (Equation
6) to an Ising Hamiltonian using the scheme outlined in [44].

4.1 QUBO to Ising Hamiltonian
Quantum computers require problems to be formulated as Hamiltonians, which describe a physical
system’s energy in terms of operators or matrices. Therefore, we need to design a Hamiltonian that
encapsulates the adjusted cost function (Equation 5). Post this step, we can identify the system’s lowest
energy state, commonly referred to as the ground state, using the QAOA optimization algorithm – this
state captures the best index configuration.

We map the generated QUBO instance (Equation 6) to an Ising Hamiltonian using the scheme out-
lined in [44]. Particularly, we first convert the binary variables xi ∈ {0, 1} and bj ∈ {0, 1} to spin
variables zi ∈ {−1,+1}, and then promote the spin variable zi to Pauli Zi operators. This is achieved
with the following mapping [44]:

xi →
I − Zi

2
(7)

where (a) I is the identity matrix of order n +m, and (b) Zi is the matrix that results from the tensor
product of n +m matrices with the following structure: At position i they feature the Pauli Z matrix,
and at all remaining positions, contain the identity matrix I .
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An essential feature of the above mapping is that it is “eigen-preserving” in that the eigenstates corre-
sponding to the minimum and maximum eigenvalues stay at the same “places”. Therefore, finding the
ground state of the Ising Hamiltonian corresponds to minimizing the corresponding QUBO problem.
In the last step, the resulting Hamiltonian is fed to the standard QAOA algorithm implementation [8]
for optimization.

4.2 OQIA Resource Scaling
The number of qubits required to implement the OQIA pipeline is determined by the number of binary
variables in the QUBO objective function. As shown in Equation 6, it comprises of two sets of binary
variables – (a) The n binary variables {x0 · · ·xn−1} representing indexes, and (b) The m binary vari-
ables {bn, · · · , bn+m−1} composing B which is inherently upper-bounded by Wmax. Assuming that the
storage budget Wmax can fit within a 32-bit integer, the qubit count scales linearly with the number of
indexes.

5 Search-based QIA (SQIA)
We now turn our attention to solving the index selection problem as an enumerative search over the ex-
ponential configuration space using the Grover Search (GS) algorithm. We first leverage the quantum
superposition property to generate the exponential space of candidate index configurations, incurring
only logarithmic qubit overhead. Next, we present a novel algorithm for constructing a quantum or-
acle for the index selection problem. Our oracle harnesses the power of quantum entanglement and
efficiently loads the problem instance into the qubit phases – this is a shift from the normal practice
of loading into qubit basis states. Then, we provide procedures for configuring the GS algorithm to
overcome various practical challenges. Finally, we analyze the computational complexity of our ap-
proach and demonstrate that SQIA potentially exhibits a linear qubit scalability with index set size
while preserving the quadratic speed-up offered by the GS algorithm.

5.0.1 Generate Candidate Configurations

Given the set of candidate indexes I , the total number of possible candidate configurations is L = 2|I|.
In classical computing, we need exponential time or exponential resources to access all the configu-
rations. However, in quantum computing, we could use the superposition property to simultaneously
load these L candidate configurations in I qubits using just I quantum Hadamard (H) gates.

To achieve this objective, we initialize a quantum circuit with n = |I| qubits, where each qubit maps
to an element of the index set I . Initially, all the qubits are in the |0⟩ quantum state. Now, in order
to implicitly generate the powerset of I , we apply the quantum H gate on all qubits. As mentioned in
Section 2, the H gate takes a qubit in the |0⟩ state to an equal superposition state i.e., |0⟩+|1⟩

2
. Now, when

the H gate is applied individually to n qubits, we get:

H|0⟩0 ⊗ · · · ⊗H|0⟩|I|−1 =
|0⟩+ |1⟩

2
⊗ · · · ⊗ |0⟩+ |1⟩

2

=
1

L

L−1∑
x=0

|x⟩
(8)

In the above equation, |x⟩ corresponds to the binary representation of the corresponding integer, and
therefore Equation 8 represents an equal superposition of all L candidate index configurations. To
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visualize, consider the binary representation of any integer x ∈ {0, L − 1}. For every bit j ∈ {1, |I|},
if xj = 1, then include the index ij in the corresponding candidate configuration, otherwise not.

5.1 Quantum Oracle for Index Selection
Having created all candidate configurations, we now move on to showing how the quantum entangle-
ment property can be leveraged for assigning storage costs and time benefits to the candidate configu-
rations, and maintaining compliance with the storage constraint. This is done in conjunction with qubit
phase manipulation. We present novel building blocks that construct a quantum oracle for the index
selection problem, and this oracle is subsequently used in the GS algorithm to identify the qualifying
configurations.

5.1.1 Encoding Storage Costs (Index Weights)

Given a candidate configuration Cx, W (Cx) represents the aggregate cost of its constituent indexes.
For instance, if Cx = {i0, i2}, then its cost W (Cx) = w0 + w2. Further, the maximum possible
cost is the cost of the configuration that includes all the candidate indexes. Therefore, we need m =
⌈log2(

∑|I|−1
i=0 wi)⌉ qubits to cover all the costs that could appear during the execution.

Direct Approach

The simplest way to associate costs to candidate configurations is to first pre-compute the costs of all
candidate configurations. Then, to single out each configuration (present in the uniform superposition)
using the quantum NOT (X) gate, and insert the corresponding cost in the dedicated cost qubits. But
this requires: 1) Pre-computing costs for an exponential number of configurations; and 2) Applying an
exponential number of quantum X gates to identify each candidate configuration uniquely.

Angle Encoding

Angle encoding itself doesn’t differentiate between states – any data point maps to a valid angle on
the Bloch sphere. It offers no inherent mechanism to "mark" the target state within the superposition,
which is crucial for the Grover diffusion operator to amplify its probability.

Amplitude Encoding

Amplitude encoding involves using the amplitudes of quantum states to represent data, where the am-
plitudes are assigned to basis states according to the data values. However, it’s unclear how to create
a quantum oracle to identify and mark target states using this encoding. Even if such an oracle were
somehow created, after applying Grover’s diffusion operator once, all state amplitudes would change,
effectively altering the data. Further, this mutation would vary depending on the number of qualifying
states. Consequently, since the original data is mutated with an unknown amount, it is not clear how
the GS algorithm will proceed to identify the qualifying states.

Qsample Encoding

Qsample encoding represents a classical probability distribution using a real-valued amplitude vector.
Each element in the vector corresponds to a classical data point, and its amplitude signifies the square
root of the associated probability. While this vector could be used to initialize a quantum state, it lacks
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the capability to "mark" the target state during the Grover iteration, which is essential for amplifying
its probability.

Phase-based Approach

Given the above problems with the popular data encoding approaches, we design an alternate strategy
based on qubit phase manipulation. The state of a qubit, as depicted by Equation 1, has three com-
ponents: the basis states (|0⟩ and |1⟩), the amplitudes (α and β) associated with the basis states , and
the relative phase (γ) of the |1⟩ state. We convert the classical costs into suitable angles γ (in Fourier
basis), and then load them as the relative phase of the qubits using the quantum Controlled-Phase (CP)
gate. This strategy helps us to intrinsically compute and associate the costs of an exponential number
of candidate configurations using just m · |I| two-qubit CP gates.

Algorithm 1 load_cost_SQIA
Require: W = [w0, w1, · · · , wn−1] ▷ Input costs
1: n← |W | ▷ # of Indexes
2: m = ⌈log2(

∑n−1
i=0 wi)⌉+ 1

3: qc← QuantumCircuit(n+m)
4: qc.h(m) ▷ Generate Equal Superposition
5: for i ∈ range(n) do
6: θi =

wi

2m · 2π
7: for j ∈ range(m) do
8: γj = 2(m−j−1) · θi
9: qc.cp(γj , i, j)

10: return qc

The above process is summarized in Algorithm 1, which takes a list of costs W as input. As men-
tioned earlier, we need m qubits to encode the costs of all candidate configurations. However, an
additional qubit is allocated (Line 2) for storing the sign of the costs. Specifically, a state |0⟩ in the sign
qubit represents a positive cost. The significance and necessity of this supplementary sign qubit will
become evident in Section 5.1.3. Subsequently, we instantiate a quantum circuit qc with the capacity
to accommodate both index (n) and cost (m + 1) qubits – all these qubits are initialized to the equal
superposition state |+⟩ using the H gate.

Now consider an index i ∈ I with cost wi. To load wi in the m cost qubits (excluding the sign qubit,
since by default it is in the positive state), we compute the phase angles γ1, · · · , γm for each qubit. For
ease of understanding, we decompose this angle computation into two parts:

Rotation Angle: The core angle of rotation θi is the rotation relative to the full rotation 2π. It depends
on wi and the number of qubits, namely m, on which this cost is encoded.

Rotation Frequency: The frequency of rotation depends on the qubit position – 1st qubit is rotated
by an angle 2m−1 · θi, and this angle is progressively halved for the following qubits, i.e., the jth

qubit is rotated by an angle γj = 2m−j−1 · θi

Next in Lines 7 – 9 of Algorithm 1, we apply a controlled Z-axis rotation by an angle γj using the
CP gate. Here, the index qubit i is the control qubit, and the jth cost qubit is the target. The application
of the CP gate entangles the index qubits with the cost qubits. And the angle of rotation γi loads the
costs in the phase of these qubits. We repeat this process for all indexes in I .
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Phase Loading Example. To make clear the above process of loading costs via phases, consider the
candidate configuration Cx = {i0, i2} for the problem instance shown in Figure 1. Here, the aggregate
cost W (Cx) = w0+w2, and the index qubit assumes the quantum state |0000101⟩ (in superposition). It
therefore triggers the conditional rotations corresponding to index qubits i0 and i2. Index qubit i0 adds
a relative phase γj to the jth cost qubit (mj), computed as:

γj = 2(m−j−1) · 2π · w0

2m
(9)

producing a quantum state |mj⟩ = |0⟩+ei·2
−(j+1)·2π·w0 |1⟩

2
. Similarly, index qubit i2 adds a phase angle

γj = 2−(j+1) · 2π · w2 to mj . Therefore, the final state of mj is:

|mj⟩ =
|0⟩+ ei·2

−(j+1)·2π·(w0+w2)|1⟩
2

(10)

With the above rotations, the desired aggregate cost is loaded in the phase of the cost qubits.

5.1.2 Encoding Benefits

The encoding of benefits mirrors the encoding of costs, and Algorithm 1 is reused with minor modifi-
cations: The list of benefits V is passed instead of the costs W , and the number of qubits needed are
v = ⌈log2(

∑n−1
i=0 vi)⌉+ 1. The rest of the algorithm is followed as-is.

5.1.3 Encoding Storage Constraint

To encode the storage space constraint, we subtract Wmax from the cost qubits for all L configura-
tions in superposition. For this, we encode the negative of the storage budget (−1 ·Wmax) as angles
(γ1, · · · , γm), and apply a single qubit rotation gate (quantum Phase (P) gate) on each cost qubit. The
P gate is used instead of CP to make the rotation independent of the index qubits, thereby applying
it uniformly across all the superposed index states. After this step, all configurations that satisfy the
storage space constraint will have a negative cost loaded as a relative phase in their cost qubits.

5.1.4 Extracting Signed Costs

As discussed in Section 2, relative phases are not directly measurable. To make them measurable, we
apply the inverse Quantum Fourier Transform (QFT) algorithm [47] to the cost qubits and transform
the costs from the phase to the basis state of the qubits. A key point to note here is that the costs are
encoded in the angles of a periodic function (eiγ) with a period 2π, and therefore, when the inverse
QFT operation is performed, the costs are obtained in two’s complement format. Accordingly, costs
associated with the configurations satisfying the storage constraint are all either 0 or negative, and
the negative configurations can be easily identified since their sign qubit will be in quantum state |1⟩.
Further, the 0 cost configurations are identified by ignoring the sign qubit and checking if the rest of the
cost qubits are in |0⟩ state. These checks are easily encoded in the quantum circuit using MCT gates to
detect and signal the qualifying configurations.

5.1.5 Encoding Benefit Constraint

Our objective is to identify the index configuration having the maximum benefit from among the can-
didate configurations satisfying the storage constraint. However, since we do not know the optimal
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benefit value, a candidate target benefit value (Vtarget) is chosen (as described later in Section 5.2).
We next encode Vtarget as we encoded the storage constraint – take the negative of the target benefit
(−1 ·Vtarget) as angles (γ1, · · · , γm), and apply a single qubit rotation gate (quantum Phase (P) gate) on
each benefit qubit. This process subtracts Vtarget from the accumulated benefit of all the configurations
in a quantum superposition state.

To extract signed benefit values associated with each configuration, we will apply the same proce-
dure as was done earlier for the storage constraint in Section 5.1.4. Here, all the qualifying candidate
configurations will have a positive benefit encoded in the benefit qubits (after substrating Vtarget) and
can be easily identified using quantum X gates – to check if the sign qubit is in the quantum |0⟩ state
and signal the qualifying configurations.

5.1.6 Identify Candidate Configurations

Till now, we have separately identified the configurations that satisfy the storage or target benefit con-
straints. But the configurations that qualify both these constraints simultaneously are the real candidate
configurations. To achieve this, we need 3 additional qubits in the quantum circuit – one qubit to record
the storage constraint satisfaction (Wsig) and another to record the target benefit constraint satisfaction
(Vsig). Then, we will conjugate the two constraint satisfaction qubits and signal the final candidate
qualification in the third qubit (out).

The cost and benefit constraint satisfaction is signaled, as discussed in the previous sections 5.1.4 and
5.1.5, respectively. Now, the conjugation is easily achieved by using a three-qubit Control-Control-
Not (CCX) gate with Wsig and Vsig as the control qubits and Csig as the target qubit. The CCX gate
will flip the Csig qubit only when both the Wsig and Vsig qubits are in the quantum state |1⟩.

5.1.7 Composing the Quantum Oracle

For a given instance of the index selection problem, we compose the above modules (cost encoding,
benefit encoding, constraint encoding, cost extraction), combine their circuits, and construct the quan-
tum oracle. The oracle integrates with the GS algorithm and signals the qualifying configurations. The
construction details are summarized below in Algorithm 2.

Algorithm 2 config_sel_oracle
Require: List: (I,W, V ) and Int: (Wmax, Vtarget)

1: Encode Storage Costs (Section 5.1.1)
2: Encode Benefits (Section 5.1.2)
3: Encode Storage Constraint (Section 5.1.3)
4: Extract Signed Costs (Section 5.1.4)
5: Encode Benefit Constraint (Section 5.1.5)
6: Signal Qualifying Configurations (Section 5.1.6)
7: return qc

5.1.8 Oracle Construction Example

To include one more example for oracle construction, taking a new index selection problem instance,
having the same number of indexes as used in the main paper, but with different cost and benefit values.
Consider the following index selection problem instance (we will refer to this as TR_I2): I = [i0, i1],
W = [1, 4], V = [2, 4], and Wmax = 4. The quantum oracle for this problem is shown in Figure 5, and
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Figure 5: Quantum Circuit of SQIA Oracle for Problem Instance TR_I2

the construction process is summarized below:
Step 0: Count the number of qubits needed to store the indices n = |I| = 2, the cost m =
⌈log2(

∑n−1
i=0 wi)⌉ + 1 = 4 and the benefit v = ⌈log2(

∑n−1
i=0 vi)⌉ + 1 = 4. Additionally, one qubit

is required for each of the following: encoding the storage constraint, encoding the target benefit con-
straint, and flagging the qualifying configurations. Note, the target benefit constraint is an additional
constraint added in SQIA and is explained later in Section 5.2. Therefore, the total number of qubits
needed is 13.
Step 1: Initialize the index, cost, and benefit qubits in an equal superposition |+⟩ state using the quan-
tum H gate and the output qubit in the |−⟩ quantum state. Although the index, cost, and benefit qubits
are initialized using the same quantum gate, their interpretations vary depending on how these qubits
will be used in the rest of the quantum circuit. Specifically, the index qubits are viewed jointly; hence,
as shown earlier, they generate all the 4 possible index configurations after initialization. The remaining
qubits are viewed independently – the cost and benefit qubits are kept in state |+⟩ to load and process
the data in the relative phase of the qubit while the output qubit is in state |−⟩ to flag the qualifying
index configurations through phase kickback [47] to the index qubits.
Step 2: For each wi ∈ W , we calculate the phase angles and load them into the relative phase of the
cost qubits by applying the Controlled Phase CP gate. For example, for w1 = 1, the rotation angle
θ1 =

2∗π
2m
· w1 =

π
8

and therefore the phase angles are γ1 = π, γ2 =
π
2
, γ3 =

π
4
and γ4 =

π
8
.

Step 3: Similarly, for each benefit vi ∈ V , we calculate the phase angles and load them into the relative
phase of the benefit qubits.
Step 4: Next, we apply the storage and the target benefit constraints. For example, for Wmax = 4, we
compute the phase angle for −2 and apply it to all cost qubits using a quantum Phase (P) gate.
Step 5: Now, to retrieve the signed cost and benefit values, the inverse QFT operation is performed on
the cost and benefit qubits.
Step 6: Finally, the qualifying index configurations are signalled via the output qubit.

5.1.9 Correctness of SQIA Oracle

To demonstrate the correctness of the SQIA quantum Oracle, we conduct a step-by-step validation
of the individual logical operations performed throughout the construction process. Specifically, we
observe the quantum state of the Oracle after every logical operation is applied in the quantum circuit
and validate it. To achieve this, we execute the intermediate quantum circuit constructed after every
logical operation and project the observed state of the qubits as a histogram (obtained by measuring
the quantum circuit 5000 times). For ease of presentation, we will use the index selection problem
instance TR_I2 whose Oracle construction process is summarized in Section 5.1.8. Further, to enable

16



validation, we will make the following changes in the generated Oracle (shown in Figure 5):

1. Add quantum measurement gates to the index, cost, benefit and the output qubits to measure their
quantum states.

2. Change the initialization of the output qubit from |−⟩ quantum state to |0⟩. This will help us
capture the configuration qualification status in the output qubit instead of passing it to the index
qubits via phase kickback [6].

Quantum State After Data Load: After Steps 0, 1, 2 and 3 of oracle construction (discussed in
Section 5.1.8), the input index selection problem instance should be loaded into the quantum circuit.
Specifically, the quantum state of the qubits at this point should have all the exponential number of
index configurations along with their aggregate cost and benefit appearing simultaneously with equal
probability in a quantum superposition state. To validate this, we cut the Oracle quantum circuit (shown
in Figure 5) at this point and apply inverse Quantum Fourier Transform operation on the cost and benefit
qubits (to make their quantum state measurable) and then apply the measurement operations on all the
qubits. The truncated quantum circuit with measurement operation is shown in Figure 6.

Figure 6: SQIA Oracle with measurement after Data Load operation

We then execute this quantum circuit and observe the state of the qubits. After one execution, we
get the information of only one randomly selected quantum state from among all the states that exist
simultaneously in the quantum superposition state. Therefore, to obtain the full picture, we repeat the
execution 5000 times and plot a histogram over the observed quantum states, which is shown in Figure
7a. The x-axis of the histogram represents the observed quantum states, while the y-axis shows the
number of times each quantum state was observed. Note, an observed quantum state on the x-axis is
grouped into four chunks of bits and its interpretation is summarized in Figure 8. Further, the aggregate
cost and benefit values are projected in their two’s complement notation. For an easy understanding,
the observed quantum states after data load are interpreted and summarized in Table 2. We can see that,
as expected, all the four possible index configurations appear in the quantum superposition state with
an equal probability (since each quantum state was randomly sampled almost equal number of times),
validating the correctness of the data load operation via qubit phase manipulation.

Quantum State After Applying Constraints: Next we apply the storage and benefit constraints
(Step 4 of Figure 5) and again execute and measure the quantum circuit. The histogram over the
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(a) Quantum State After Data Load (b) Quantum State After Applying
Constraints

(c) Quantum State After Checking
Qualification

Figure 7: Quantum State of SQIA Oracle after Different Operations

Figure 8: Observed Quantum State

Index Configurations After Data Load After Constraints After Qualification Test
(i1 i0) Cost Benefit Qualify Cost Benefit Qualify Cost Benefit Qualify

0 0 0 0 0 -4 -2 0 -4 -2 0
0 1 1 2 0 -3 0 0 -3 0 1
1 0 4 4 0 0 2 0 0 2 1
1 1 5 6 0 1 4 0 1 4 0

Table 2: Evolution of Quantum States

observed quantum states is presented in Figure 7b and is interpreted again in Table 2. We can see that
as expected, the constraints are applied to all the index configurations simultaneously with just one
application of the quantum P gate. Hence validating the correctness of this part of the SQIA oracle.

Quantum State After Checking Qualification: Finally, we apply the constraints satisfaction checks
(Step 6 of Figure 5) to record the qualification of the index configuration in the output qubit. We then
again execute and measure the quantum circuit. The histogram over the observed quantum states is
shown in Figure 7c and is interpreted again in Table 2. We can see that, only two index configurations
qualify and are indicated by setting their corresponding output qubit. Specifically, index configurations
1) comprising of only index {i0} and 2) comprising of only index {i1} qualify, while the remaining
two configurations are marked as invalid, since the empty index configuration failed the target benefit
validation check, while the index configuration comprising of both the indexes {i1, i0} failed the storage
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constraint check. Hence validating the correctness of the SQIA oracle.

5.2 Finding Optimal Index Configuration
We now turn our attention to the selection process, implemented via the SQIA _search procedure
outlined in Algorithm 3. It takes an index selection problem instance comprising of [I,W, V,Wmax] as
input and produces an optimal index configuration with a user-settable success probability δ ∈ [0.5, 1).

Since the precise benefit accrued by the optimal configuration is initially unknown, Algorithm 3
employs a recursive halving strategy, starting with Vmax, the upper bound, to identify this value. In
each iteration, the find_opt_config procedure (shown in Algorithm 4), is used to identify the optimal
index configuration achieving a benefit greater than or equal to the targeted benefit value. A failure
indicates that the target benefit is too large to be feasible. The first successful identification indicates a
transition from infeasible to feasible range, and we now again carry out a recursive halving within this
transition range to finally identify the optimal configuration.

At its core, the find_opt_config method relies on the GS algorithm. However, as mentioned in
Section 2, for the effective utilization of the GS algorithm, three key elements must be provided: 1)
an appropriate quantum oracle, 2) the precise number of Grover Iterations, and 3) an enhancement
of its success probability from 0.5 to the desired δ. While Section 5.1 guides the construction of the
corresponding quantum oracle for any target benefit value, the following discussion will address the
remaining two issues.

Algorithm 3 SQIA _search
Require: List: (I,W, V ), Int: Wmax

1: Vtarget = Vmax

2: Vmin = 0
3: optind = null
4: while Vmin < Vtarget do
5: Pres ← find_opt_config(I,W, V,Wmax, Vtarget, δ)
6: if Pres[qualify] == True then
7: optind = Pres[ind]
8: Vmin = Vtarget

9: Vtarget = ⌈(Pres[val] + Vmax)/2⌉
10: else
11: Vtarget = ⌈(Vmin + Vtarget)/2⌉
12: return optind

5.2.1 Finding precise number of Grover Iterations

To calculate the number of Grover Iterations (Oracle + Diffusion), the GS algorithm needs precise
knowledge of the number of qualifying index configurations. However, since this information is un-
available, we turn towards the Generalized Grover Search (GGS) algorithm [20]. Precisely, in one GGS
run, the GS quantum circuit is executed iteratively, with the number of iterations dynamically adjusted
in each instance until success. In this paper, we implement the timed-out variant of GGS, with a fixed
maximum budget of iterations denoted as Maxiter. Furthermore, in each iteration, the number of itera-
tions j is uniformly sampled from the range [1, l], where l is initially set to a constant λ. Subsequently,
l is incremented by an amount λ after each iteration and is upper-bounded by

√
L. The rationale behind

choosing λ is detailed in [23].
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5.2.2 Setting Maxiter

Without loss of generality, in the worst case, the GS algorithm needs
√
L iterations. Therefore, the

iteration budget for GGS is set to be ⌊α ·
√
L⌋, where α is a positive rational number. A universal lower

bound for α, specifically αlb = 9.2, was presented in [23]. Subsequently in the next section, we will
delve into the establishment of instance-specific upper bounds, denoted as αub.

5.2.3 Boosting Success Probability

The GGS algorithm finds a valid solution with probability 0.5. To boost the probability to the desired
δ, we employ the Powering Lemma [40], which resorts to repeat executions of every GGS run. The
number of repetitions required for the boosting is R = ⌈log( 1

1−δ
)⌉.

Algorithm 4 find_opt_config
Require: List: (I,W, V ), Int: (Wmax, Vtarget), Float: δ, λ, α
1: R = ⌈log( 1

1−δ )⌉
2: r = 0
3: L = 2|I|

4: while r < R do
5: l = λ
6: Totaliter = 0
7: j ← Uniform_Sample(l)
8: while Totaliter + j < ⌊α ·

√
L⌋ do

9: qc← q_search(I,W, V,Wmax, Vtarget, j)
10: Pind ← execute(qc)
11: Pres ← validate_pred(W,V,Wmax, Vtarget, Pind)
12: if Pres[qualify] == True then
13: return Pres

14: else
15: Totaliter = Totaliter + j
16: l = min(λ · l,

√
L)

17: j ← Uniform_Sample(l)

18: r = r + 1

19: return Pres

The above considerations are incorporated in Algorithm 4. It first determines the number of repe-
titions R required for the boosting the success probability of the GGS algorithm to δ. Next, for each
run r ∈ R of the GGS algorithm, the qsearch procedure (shown in Algorithm 5) is invoked to con-
struct a GS quantum circuit (qc) with j iterations, where j is uniformly sampled from the range [1, l].
Subsequently, qc is executed on a quantum platform to predict an optimal configuration. As the GS
algorithm is probabilistic, the algorithm utilizes the validate_pred procedure (shown in Algorithm 6)
to verify if the predicted configuration is valid. This procedure simply calculates the aggregate cost and
benefit of the predicted configuration and compares it with the storage and target benefit constraints. If
the validation is successful, the algorithm returns the identified configuration; otherwise, the sampling
range l is adjusted, and a new iteration count j is sampled. Now, if j is within the remaining iteration
budget, then the qsearch procedure is invoked. Otherwise, the run is incremented, and l is re-initialized
to λ. This whole procedure is repeated till a valid configuration is identified, or the number of runs are
exhausted. At termination, the optimal configuration is identified and returned with probability δ.

Algorithm 5 provides a comprehensive overview of the construction of the Grover Search quantum
circuit specifically tailored to the index selection problem. The algorithm commences by determin-
ing the required number of qubits for representing the candidate index configurations (n), as well as
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their corresponding costs (w) and benefits (v). We also needs qubits to indicate individual constraints
satisfaction (Wsig and Vsig, hence c = 2), and final candidate configuration qualification (Csig hence
out = 1). Next we initialize a quantum circuit with the needed qubit capacity along with n classical
bits to store the output of the execution. Note, all the qubits are initially in the quantum |0⟩ state.

Algorithm 5 q_search
Require: List: (I,W, V ), Int: (Wmax, Vtarget, j)

1: n = |I| ▷ # of Index Qubits
2: w = ⌈log2(

∑n−1
i=0 wi)⌉+ 1 ▷ # of cost qubits

3: v = ⌈log2(
∑n−1

i=0 vi)⌉+ 1 ▷ # of Value qubits
4: c = 2 ▷ # of Constraint qubits
5: out = 1 ▷ Output qubit
6: qc← QuantumCircuit(n+ w + v + c+ out, n)
7: qc.h(n) ▷ Generate configurations (Section 5.0.1)
8: qc.h(w + v) ▷ Init. cost and Value qubits
9: qc.x(out)

10: qc.h(out) ▷ Init. out qubit in |−⟩ state
11: qc_oracle← config_sel_oracle(I,W, V,Wmax, Vtarget)
12: qc_oracle_inv = qc_oracle.inverse()
13: for i ∈ range(j) do
14: qc.append(qc_oracle)
15: qc.ccx(wtflag, valflag, out)
16: qc.append(qc_oracle_inv)
17: qc.append(grover_diffuser())
18: qc.measure(inqubit, incbit)
19: return qc

Now, we generate all the candidate configurations using the quantum H gates as summarized in Sec-
tion 5.0.1. Next, the configuration qualification qubit out is initialized in |−⟩ state by applying the
quantum X and H gates in succession. This is needed by the Grover Search algorithm to signal the can-
didate qualification using the quantum Phase Kickback phenomenon [6]. Next, the config_sel_oracle
procedure is invoked (described previously in Section 5.1), which generates a quantum oracle qc_oracle
for our problem instance. Since the qc_oracle is fundamentally a unitary matrix, we can compute its
inverse using Qiskit’s inbuilt inverse() procedure. In Lines 13 - 17, the quantum circuit qc is appended
with j Grover’s iterate operations. Each Grover’s iterate comprises of an application of qc_oracle, then
flagging of the out qubit followed by the Grover’s diffusion operation on the index qubits. But for the
diffusion operation to work as expected, we need to un-entangle the index qubits from other qubits
which got entangled by the qc_oracle. To achieve this, we first apply the inverse qc_oracle and then
Grover’s diffusion operation (using the standard diffusion method available in the Qiskit library [16]).
Finally, we add quantum measurement gates to measure the value of the index qubits into the classical
bits and return the composed quantum circuit.

5.3 Computational Complexity
Aligned with the quantum computing literature, our complexity measure is the number of calls made
to the quantum oracle, since it is architecture-independent. The SQIA _search procedure (Algorithm
3) performs recursive halving over the range [0, Vmax] which takes a maximum of ⌈log2(Vmax)⌉ steps.
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Algorithm 6 validate_pred
Require: List: (W,V ), Int: (Wmax, Vtarget), Str: Pind

1: Pres[ind] = Pind

2: Pres[wt] =
∑n−1

i=0 Pind[i] · wi

3: Pres[val] =
∑n−1

i=0 Pind[i] · vi
4: if Pres[wt] ≤ Wmax and Pres[val] ≥ Vtarget then
5: Pres[qualify] = True
6: else
7: Pres[qualify] = False

8: return Pres

Now, for every target benefit value Vtarget, the algorithm invokes the GGS algorithm R = ⌈log
(

1
1−δ

)
⌉

times. In each run of GGS, we execute the GS algorithm multiple times but with a budget of Maxiter
iteration, which is heuristically set to ⌊α ·

√
L⌋. Further, each iteration makes 2 invocations of the

quantum oracle – once to apply the Oracle, and the second time to undo its effect. Therefore, the total
number of Oracle calls made by Algorithm 3 is upper bounded by:

⌈2 · ⌊α ·
√
L⌋ · ⌈log

(
1

1− δ

)
⌉ · ⌈log2(Vmax)⌉⌉ (11)

As mentioned earlier, a universal lower bound αlb = 9.2 for all L, and the success probability δ is set
by the user during system initialization. Therefore, only the terms

√
L and Vmax vary based on the input

problem instance. Further, if we reasonably assume that Vmax can be accommodated within a 32-bit
integer, then log2(Vmax) can be upper bounded to 32. Therefore, we can conclude that the overall rate
of growth of the number of oracle calls is O(

√
L).

Further, instance-specific upper bounds, αub, are computable through Equation 11, by imposing a
constraint that the resulting value must be below τ ·

√
L, where τ <<

√
L. Now, depending on the

index scenario, it is possible that αub may turn out to be less than αlb. For such situations, it becomes
impossible to simultaneously ensure the δ success probability and computational efficiency, and one
has to choose α to achieve one or the other. On the other hand, if αub is greater than αlb, we can set α
to 9.2 to maximize the computational efficiency.

5.4 SQIA Resource Scaling
The number of qubits required for implementing the SQIA pipeline is detailed in Table 3. The entries
in the table show that the qubit count exhibits a linear relationship with the number of indexes and a
logarithmic correlation with the cumulative cost and benefits. However, if we reasonably assume that
the aggregate cost & benefit (log terms) can fit within a 32-bit integer, in that case, the qubit count
effectively scales linearly with the number of indexes.

6 Experiments
In principle, the correct methodology for evaluating quantum performance relative to the classical ap-
proaches would be to execute both classes of algorithms on their respective devices, assess the quality
of the recommended outcomes, and measure the index selection overheads. However, this is not prac-
tical at the current time due to lack of industrial-strength quantum platforms. Therefore, we settle for
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Symbol Description Count
n # of Qubits for Indexes |I|
w # of Qubits for Cost ⌈log2(

∑n−1
i=0 wi)⌉+ 1

v # of Qubits for Benefit ⌈log2(
∑n−1

i=0 vi)⌉+ 1
c # of Qubits for Constraints 2
out # of Qubits for Output 1

Table 3: SQIA Qubit Requirement

the approach prevalent in the quantum computing literature (e.g. [23, 37]), wherein comparisons are on
architecture-independent metrics – in our case, the number of oracle calls.

6.1 Experiment Environment
We implemented the proposed ideas using the Qiskit SDK [16] and performed evaluations with Qiskit
Aer [7], on a 32-qubit gate-based noiseless simulator. Using Qiskit Runtime Primitives [14], the
same code was also ported to and evaluated on an IBM Eagle circuit processor with 127-qubits
(“ibm_sherbrooke”). Our experiments have perforce been carried out on modest problem instances
due to current platform limitations; however, we expect the design techniques to carry through to futur-
istic scaled platforms.

As shown in Stage 4 of Figure 2, the Quantum Index Advisor module receives an index selection
problem instance comprising of (a) an index set (I), (b) the associated time benefit (V ) and storage cost
(W ) of each index in I , and (c) the storage budget Wmax. In our evaluation, the instance is solved with
the proposed quantum schemes, OQIA and SQIA, and compared with the classical baselines, Greedy
and Exhaustive Search.

Our problem suite consists of four index selection instances. The first instance, comprising 7 indexes,
is the motivating example of Figure 1, generated on the commercial database engine – we refer to it
as CDB_I7. The remaining three problem instances comprising 5, 6, and 7 indices, respectively, are
synthetically generated – we hereafter refer to them as I5, I6, and I7. These problem instances are
shown in Figure 9, and they all have the same storage constraint, namely Wmax = 19. In addition, in all
of them, Exhaustive Search provides the same optimal configuration, namely {i0, i1, i2, i3} with benefit
44, while Greedy provides the same (sub-optimal) recommendation, namely {i0, i2, i3, i4} with benefit
35. We define the quality of a configuration as its benefit normalized to the ideal solution (as obtained
by the Exhaustive Search algorithm).

While the original CDB_I7 instance could be directly used with OQIA, its costs and benefits were
normalized for SQIA evaluation to reduce the complexity of the quantum circuit. Specifically, the
following transformed problem instance produces the same greedy and optimal solution as the original
problem: I = [i0, i1, i2, i3, i4, i5, i6], W = [126, 114, 3, 72, 95, 1, 4], V = [4, 5, 27, 27, 27, 1, 1], and
Wmax = 75. Furthermore, the algorithmic parameters for OQIA were set to (p = 1, S = 100), while
SQIA had (δ = 0.9, S = 1). The sensitivity to these parameters is discussed later in the section.

6.2 Performance Comparison
Configuration Quality Table 4 presents a summary assessment of the configuration quality delivered
by the four index selection strategies when invoked on our problem suite on the noiseless quantum
simulator. For the quantum algorithms, the Weighted Average column reports the average of the
quality scores over the ten repeat invocations, the Optimal Fraction column represents the fraction of
outcomes delivering the optimal benefit, while the Worst Case column represents the smallest benefit
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(a) I5 (b) I6 (c) I7

Figure 9: Index Problem Suite

obtained across the invocations. Recall that the expectation from OQIA is to recommend a solution
having better quality than the Greedy scheme, while SQIA should produce the optimal solution with
the desired δ probability. The good news from these results is that both schemes consistently achieve
their objectives (except for I5). The detailed instance-specific analysis is as follows:
CDB_I7: The Greedy configuration delivers only 0.54 of the optimal. OQIA improves the quality to
0.76, while SQIA delivers the optimal configuration with the desired δ = 90%. Nevertheless, owing to
the inherently probabilistic nature of quantum platforms, the worst-case recommendation could be of
arbitrary quality. However, as observed for both schemes, the worst-case quality is about the same as
the greedy solution.
I5: Here, Greedy delivers a configuration quality of 0.8, and OQIA enhances the configuration quality
to as high as 0.99. On the other hand, SQIA although delivering 0.9 quality, does not satisfy its desired
δ success probability. This is because the α value is impractical for this instance, as explained later in
the section.
I6 and I7: In both these instances, OQIA enhances the solution quality to 0.97. Further, SQIA always
recommends the optimal solution, and exceeds the δ threshold. The worst-case quality of both schemes
is also significantly better than the greedy recommendation. Notably, this exceptional performance is
delivered despite the exponential increase in the number of candidate configurations from I6 to I7.

Computational Overheads Turning our attention to the computational effort, also delineated in Ta-
ble 4, we observe that for CDB_I7, I6 and I7, SQIA incurs only marginally fewer Oracle calls compared
to Exhaustive Search. This is further substantiated when we consider the smallest-sized I5, where the
Oracle calls even exceed those of Exhaustive Search. This may seem surprising; however, this is an ar-
tifact of our small-sized examples and is again due to the impractical values of α. The resource gap will
become clearly apparent in large-index scenarios seen in enterprise environments. For instance, con-
sider the full TPC-H benchmark query suite with 53 single-attribute candidate indexes [41]. Assuming
that the aggregate benefits can be accommodated in a 32-bit integer, then for δ = 0.9, using Equa-
tion 11, we can estimate that SQIA will only need 0.003% of the oracle calls incurred by Exhaustive
Search.

A similar trend is observed for the OQIA scheme and is attributed to the variational principle used
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Problem # of
Configs IA Scheme Configuration Quality Quantum Resources Comp.

OverheadWeighted Avg. Optimal Fraction Worst Case Qubits Depth

CDB_I7 128

Exhaustive 1.0 1.0 1.0 – 100%
SQIA (δ = 0.9, S = 1) 0.95 0.9 0.54 28 80 73.4%
OQIA (p = 1, S = 100) 0.76 0.3 0.5 15 30 22.6%

Greedy 0.54 0 0.54 – –

I5 32

Exhaustive 1.0 1.0 1.0 – 100%
SQIA (δ = 0.9, S = 1) 0.9 0.8 0.34 21 58 112.5%
OQIA (p = 1, S = 100) 0.99 0.9 0.89 10 20 90.6%

Greedy 0.8 0 0.8 – –

I6 64

Exhaustive 1.0 1.0 1.0 – 100%
SQIA (δ = 0.9, S = 1) 1.0 1.0 1.0 22 60 93.7%
OQIA (p = 1, S = 100) 0.97 0.6 0.86 11 22 45.3%

Greedy 0.8 0 0.8 – –

I7 128

Exhaustive 1.0 1.0 1.0 – 100%
SQIA (δ = 0.9, S = 1) 1.0 1.0 1.0 25 68 75%
OQIA (p = 1, S = 100) 0.97 0.4 0.89 12 24 22.6%

Greedy 0.8 0 0.8 – –

Table 4: Evaluation of IA Schemes on a 32-qubit Quantum Simulator

by the underlying QAOA algorithm, which dynamically explores and refines the solution space, and
quickly converges to optimal or near-optimal solutions. Hence, it is evident that both the proposed
schemes are targeted towards larger problem instances. Later in this section, we delineate the problem
size landscape in which the SQIA scheme ensures both guaranteed quality and computational advan-
tage.

6.3 IBM Eagle Circuit Processor
We now turn our attention to the performance observed on the 127-qubit Eagle quantum circuit pro-
cessor. It is one of the most performant IBM quantum systems with an average error rate of less than
2% per layered gate operation [13]. To optimize the quantum circuits for this hardware and reduce the
impact of errors, we used Qiskit runtime compilation techniques and transpiled the Qiskit simulator
quantum circuits for OQIA and SQIA by setting the optimization level to 3 [10] and verified that it runs
correctly. Further, their performance on the index instances of Table 4 was evaluated and the results are
summarized in Table 5. The Configuration Quality column reports the average of the quality scores
over three repeat invocations. The outcomes of these experiments are qualitatively in agreement with
the simulated results, demonstrating that achieving high-quality solutions is feasible even on these early
quantum hardware. Moreover, an additional insight is that OQIA is more robust to quantum noise than
SQIA, leading to better configuration quality on this platform. This is due to the QAOA algorithm used
in OQIA, which is more effective in noisy hardware environments than the GS algorithm employed by
SQIA.

6.4 D-Wave Leap Annealing Processor
We have also conducted experiments on the D-Wave 5000-qubit Leap annealing processor. Since
annealing processors are highly suited for handling optimization problems in general, we take the
QUBO generated in OQIA and supply it to the D-Wave Leap Hybrid Solver [11]. And, as expected,
the annealing processor consistently provided optimal solutions for all the index instances considered
in our study. But this exceptional success needs to be qualified with the following observations: (1) A
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Problem IA Scheme
Configuration

Quality

CDB_I7
SQIA (δ = 0.9, α = 0.26, S = 1) 0.85

OQIA (p = 1, S = 100) 0.68

I5
SQIA (δ = 0.9, α = 0.18, S = 1) 0.89

OQIA (p = 1, S = 100) 1.0

I6
SQIA (δ = 0.9, α = 0.22, S = 1) 0.86

OQIA (p = 1, S = 100) 0.98

I7
SQIA (δ = 0.9, α = 0.26, S = 1) 0.95

OQIA (p = 1, S = 100) 1.0

Table 5: Evaluation of IA Schemes on IBM 127-qubit Eagle Quantum Circuit Processor
(ibm_sherbrooke)

circuit processor of matching qubit capacity (expected within this decade as per the IBM roadmap) is
likely to have similar performance quality; (2) The overall industry trend is towards circuit processors,
with even D-Wave itself recently including such processors in its roadmap [1]; (3) In a practical DBMS,
it appears reasonable to expect a single quantum platform that is usable for both generic computation
as well as optimization – a circuit processor provides this computational flexibility. Therefore, hosting
optimization problems on circuit processors is of independent interest.

6.5 OQIA using VQE
We have initially implemented OQIA using QAOA. The reason for our choosing QAOA over VQE (and
similar techniques) to solve the QUBO problem was the expectation that these alternative techniques
would incur higher computational overheads. Specifically, VQE operates over a generic solution space,
whereas QAOA leverages the structure of the specific problem’s solution space, and is therefore likely
to be more efficient.

For completeness, we have now implemented VQE as well, and the results are shown in Table 6.
In this table, the configuration quality and computational overheads of VQE are compared to QAOA
for the various index problem instances. We see that although the solution quality of VQE is generally
similar to that of QAOA, its computational overheads are much higher, almost by an order of magnitude.

Problem VQE Solution QAOA Solution VQE Computational
Instance Quality Quality Overhead wrt OQIA
CDB_I7 0.76 0.76 9.0x

I5 0.89 0.99 6.5x
I6 0.93 0.97 7.3x
I7 0.94 0.97 7.3x

Table 6: Evaluation of VQE-based OQIA

6.6 OQIA Knob Settings
Since OQIA internally uses the QAOA algorithm, there are a couple of knobs that can be set: (1) The
classical optimizer used to update the parameters; (2) The repetition depth of QAOA (p); and (3) The
number of shots (S). As explained below, we set the classical optimizer to COBYLA [4]. For this
optimizer choice, Table 7 displays OQIA performance for various settings of the p and S knobs.
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p Solution Quality Q. Resource
S = 1 S = 10 S = 100 S = 1000 Qubits Depth

CDB_I7

1 0.1 0.31 0.76 1.0 15 30
2 0.1 0.41 0.81 1.0 15 46
3 0.1 0.41 0.81 1.0 15 62

I5

1 0.4 0.84 0.99 1.0 10 20
2 0.46 0.84 1.0 1.0 10 31
3 0.53 0.88 1.0 1.0 10 42

I6

1 0.42 0.87 0.97 1.0 11 22
2 0.45 0.88 0.98 1.0 11 34
3 0.54 0.88 0.98 1.0 11 46

I7

1 0.49 0.84 0.97 1.0 12 24
2 0.5 0.85 0.98 1.0 12 37
3 0.6 0.87 0.98 1.0 12 50

Table 7: OQIA Evaluation

6.6.1 Choice of Classical Optimizer:

Qiskit offers a suite of optimizers [2]. In our experiments, we opted for the Constrained Optimization
By Linear Approximation (COBYLA) optimizer. COBYLA is a gradient-free optimization algorithm
that uses a linear approximation of the function in the neighborhood of the current point to determine
the next point to evaluate. We chose COBYLA primarily because, being gradient-free, it does not
require any additional execution of the quantum circuit to update the parameters.

6.6.2 Configuring the QAOA repetition depth p:

The depth of the QAOA quantum circuit grows proportionally with the parameter p. It is anticipated that
the approximation quality will improve with p. But, there are no theoretical bounds for p – since QAOA
can be seen as a Trotterized version of quantum annealing, with the adiabatic evolution employed in
quantum annealing achievable in the limit as p approaches infinity. However, in practice, a common
choice for p is a low value of 1, striking a balance between solution quality and quantum feasibility.
Previous research, including the recent quantum join-order optimization paper [53], has consistently
employed p = 1 in their experiments.

Notwithstanding the above practice, it has been argued in the literature that a logarithmic depth
QAOA may be required to outperform classical optimizers [56]. Therefore, in our experiments, we have
evaluated for p ∈ {1, 2, 3 (= ⌈log2(|I|)⌉)} to conduct an empirical cost-benefit analysis. Interestingly,
as p increased, we observed only a marginal improvement in the solution quality, accompanied by the
expected linear rise in quantum circuit depth. The average number of optimizer calls also increased
linearly, resulting in longer convergence times. This phenomenon occurs because a larger value of p
supports discerning finer details within the optimization landscape. Overall, our recommendation is to
utilize p = 1, thereby optimizing both computational efficiency and solution quality.

6.6.3 Number of Shots (S)

In our experiments, we considered S ∈ {1, 10, 100, 1000}. From Table 7, it is evident that, independent
of the p value, the solution quality of OQIA substantively improves as the number of shots increases,
and for S beyond 100, is virtually optimal. On the down side, the number of iterations also increases
with the number of shots, leading to higher convergence times. This is again due to the optimizer being
able to discern finer details within the optimization landscape. Given this trade-off between solution
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quality and computational effort, our goal is to maximize solution quality while minimizing the number
of shots.

To find the optimal number of shots, we evaluated OQIA for problems I5, I6, and I7 by setting p = 1
and varying S in the range [1, 130]. Each experiment was repeated ten times, and Figure 10 shows the
average quality score against S. For comparative purposes, the performance of Greedy and Exhaustive
are also shown. Three key insights emerge from this figure: 1) OQIA rapidly outperforms the greedy
algorithm with a small S [≥ 10]; 2) The solution quality achieved by OQIA consistently surpasses that
of the greedy solution, resulting in a superior approximation ratio; and 3) Starting from around 100
shots, the outcome is effectively optimal.

Figure 10: OQIA Sol. Quality vs Shots (p = 1) Figure 11: SQIA Advantage Space

6.7 SQIA Parameter Settings
In the SQIA scheme, we need to set the following parameters: (1) the timeout parameter (α), and (2)
the number of shots (S). Moreover, there is a constraint in terms of δ, the success probability set by the
user, which needs to be factored into these settings to ensure compliance. We evaluate the parameter
settings for three representative values of δ: {0.8, 0.9, 0.99} (Due to our use of the GS algorithm, an
implicit lower bound on δ is 0.5).

6.7.1 Timeout parameter α:

As discussed in Section 5.3, we use Equation 11 to calculate the value of α. Due to the limited index
sizes in our evaluation suite, the calculated α values were consistently lower than the minimum required
for ensuring δ. For instance, for I5 with a δ ≥ 0.9, the computed value of α was so minuscule that
it effectively set the iteration budget to 0. Therefore, we had no choice but to set α to the minimum
feasible value, which was 0.18, such that ⌊α ·

√
L⌋ = 1. However, this adjustment resulted in a higher

number of Oracle calls as compared to the Exhaustive Search.
In other situations where α < αlb, our approach aimed to enhance the likelihood of achieving an

optimal configuration. This involved the introduction of a “fudge factor” into the timeout budget. The
fudge factor entailed an incremental adjustment to the α value while ensuring that the SQIA scheme
continued to outperform the Exhaustive Search in terms of the number of required oracle calls. As
illustrated in Table 8, the outcomes indicate that for most situations, we attain the desired success
probability, δ, except for a few cases highlighted in red. However, this achievement was not guaranteed
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δ α
Solution Quality Q. Resource
S = 1 S = 100 Qubits Depth

CDB_I7

0.8 0.39 1.0 1.0 28 80
0.9 0.26 0.9 1.0 28 80

0.99 0.16 1.0 1.0 28 80

I5

0.8 0.2 0.8 0.8 21 58
0.9 0.18 0.8 0.8 21 58

0.99 0.18 0.9 1.0 21 58

I6

0.8 0.33 0.9 1.0 22 60
0.9 0.22 1.0 1.0 22 60

0.99 0.13 0.8 1.0 22 60

I7

0.8 0.39 0.8 1.0 25 68
0.9 0.26 1.0 1.0 25 68

0.99 0.16 1.0 1.0 25 68

Table 8: SQIA Evaluation

by theory. Instead, it may be attributed to an implicit side effect of the repeated executions inherent
in the SQIA scheme. Notably, within the SQIA procedure, we employ a recursive halving approach,
commencing with Vmax and proceeding until the optimal target value is identified. At each step in this
process, the GGS algorithm is employed to search for a valid configuration until the timeout budget is
exhausted. Further, each call to the GGS algorithm is repeated R times to boost the success probability
to δ. The best configuration found during all these executions is subsequently returned as the output.
Consequently, even when α is set below its lower bound, this algorithmic characteristic may contribute
to achieving the desired success probability, as any encounter with the optimal configuration is retained
and presented as the output.

6.7.2 Number of Shots (S)

In SQIA, every GS quantum circuit (within a GGS run) is executed for S shots. After the execution, the
GS algorithm uses the generated probability distribution over the observed configurations to identify
and return a candidate optimal recommendation. But this comes at the cost of making additional Oracle
calls incurred due to S repetition of the GS. Therefore, S should be set based on the available computa-
tional budget left after selecting the timeout parameter α. However, to explicitly demonstrate the effect
of shots, we considered S ∈ {1, 100} for any fixed value of δ and α. From Table 8, it is evident that
for all the problem instances, the solution quality of SQIA with S = 100 is virtually optimal (except
for I5, due to infeasible α). This is because the GS algorithm is able to identify a better solution due to
repeat executions.

6.7.3 Minimum Problem Instances for SQIA

As demonstrated earlier, for smaller problem instances such as I5 − I7, the SQIA scheme does not
theoretically guarantee the desired success probability, δ. To identify the problem sizes for which both
the guarantee and the computational advantage can be expected, we set α = 9.2 (lower bound), δ = 0.9,
log2(Vmax) = 32 (assuming a 32-bit integer limit) and calculated the number of Oracle calls made by
the Exhaustive Search and the SQIA scheme for the index sizes in the range [1, 100]. Figure 11 shows
the corresponding plot with the number of oracle calls on a logarithmic scale.

In the plot, the shaded area precisely delineates the "Potential Advantage" region. Problem instances
within this region demonstrate a promising potential of achieving the desired success probability (δ)
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while demanding fewer Oracle calls compared to the Exhaustive Search. Specifically, for the current
setting, problem instances featuring more than 22 indexes are required for viably harnessing the SQIA
scheme. This is in compliance with our underlying motivation for utilizing quantum platforms, namely,
to address large problem instances that transcend the capabilities of classical platforms.

6.7.4 Estimated Efficiency on Practical Workloads

We now project the performance profile that could be expected on the full TPC-H benchmark query
suite. The number of single-attribute candidate indexes I = 53 [41], therefore L = 253. Assuming
that the aggregate costs and benefits can be accommodated in 32-bit integers, the estimated depth of
the Quantum Oracle circuit constructed in the SQIA scheme is around 100 (calculated by analyzing
Algorithm 3). Further, as shown in [29], a single two-qubit gate currently takes around 6.5ns. Now,
anticipating a reduction to 1ns within the next decade, a Quantum Oracle call in the SQIA scheme
is estimated to take around 100ns. Next, assuming δ = 0.99 and α = 9.2, we use Equation 11
to estimate the number of Oracle calls made by the SQIA scheme, which is equal to 279.4 · 109.
Multiplying this with the calculated time for one Oracle call (100ns), the SQIA scheme is estimated
to take approximately 8 hours to identify an optimal configuration with 99% probability. In contrast,
assuming a classical Oracle call duration of just 1ns, an Exhaustive Search would need 900.7 · 1013
oracle calls and hence would take around 3.5 months to find the optimal solution.

7 Related Work
Recently, there have been vision papers and tutorials advocating the need to accelerate database tasks
using quantum computing [24, 60, 59, 38]. But, we are not aware of any prior work performing index
selection using quantum platforms. Therefore, in this section, we separately review the literature on in-
dex selection, 0-1 Knapsack Problem on quantum platform, and use of quantum platforms for database
operations.

Index Selection

The index selection problem has been studied for decades, and recent comprehensive surveys are avail-
able in [39, 41]. Further, all major database engines feature an Index Advisor as an essential ancillary
tool. We have already considered DB2’s Index Advisor in the preceding sections. Microsoft SQL
Server features a broad-based Database Engine Tuning Advisor (DTA) [27], which includes a sophisti-
cated index advisor in its ambit. DTA considers both single and multi-column indexes, as well as their
interactions.

Recently, a few machine learning (ML) based index selection methods have also been introduced as
attractive alternatives to the existing strategies. A comprehensive review of these approaches can be
found in [42, 43]. Most of this work uses a reinforcement learning-based approach, where the state is
defined as the currently built indexes, and the action is defined as choosing an index to build. These
methods exhibit promising outcomes in enhancing the index selection process’s efficiency. However, as
demonstrated in the detailed evaluation of [42], the quality of the recommended configuration remains
similar to that of the non-ML systems.

The approaches proposed in our work aim to enhance the configuration quality provided by the above
tools by leveraging the computing power offered by quantum platforms.
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0-1 Knapsack Problem on quantum platform

The papers in this area could be broadly classified into two categories: Some address a weaker formu-
lation of the original problem, while others use non-standard quantum gates with heuristic parameter
settings to find close-to-optimal solutions. Specifically in [35], the authors consider 0-1 Knapsack
Problem instances that do not have item-specific benefit values. Whereas in [57], an approach called
“Quantum Tree Generator (QTG)” was introduced. Here, they generate in superposition all feasible
solutions for a given problem instance and then leverage the Grover Search algorithm to find the solu-
tion. However, their protocol uses non-standard biased Hadamard gates and heuristically sets the bias
value. These deviations raise concerns about the feasibility of implementing the proposed approaches
on real quantum computers. In contrast, we have considered standard 0-1 Knapsack Problem instances
and utilized only standard quantum gates in designing our solutions.

Quantum Database Platforms

There have been some earlier efforts to showcase the potential of quantum platforms for database opti-
mization. For instance, the generation of optimal execution plans in the context of Multi-Query Opti-
mization was proposed in the pioneering work of [54]. Their technique is based on utilizing the inherent
parallelism of quantum annealing. Moreover, a singular feature of the study is its implementation on
the D-Wave Quantum Annealer [5].

More recently, the core relational join-order optimization problem was addressed in [53, 46, 58] on
quantum hardware. These proposals reformulated the problem to an equivalent QUBO task that can be
evaluated on quantum computers. Specifically, [53] conducted a comprehensive evaluation of various
query graphs and successfully generated about 41% valid join orders, among which 10% were optimal,
for three-relation chain queries using the D-Wave annealing processor. These results demonstrate the
feasibility of quantum solutions and also serve as a motivation for our OQIA scheme.

Another set of researchers have explored the application of quantum platforms for database trans-
action scheduling. Specifically, to optimally schedule transactions in a two-phase locking database
[18, 19] introduced a quantum algorithm that uses quantum annealing , while [36] employs the Grover
Search algorithm.

Finally, there is another line of research [49, 45] that focuses on designing “quantum-inspired” algo-
rithms for DBMS. These algorithms are designed to run on classical computers but incorporate ideas
derived from quantum computing to potentially improve their performance in solving certain prob-
lems. For instance, in [49], the authors perform resource allocation reasoning on traditional relational
databases in an OLTP setting. They borrow ideas of quantum superposition and quantum measurement
and allow resource transactions to commit without assigning concrete resource instances. To achieve
this, they keep track of all possible worlds corresponding to all feasible concrete resource assignments.

8 Conclusions and Future Work
We presented here, for the first time, Quantum-computing-based Index Advisors for efficiently de-
livering index selections that provide close-to-optimal benefits under a storage budget. We first de-
scribed an optimization-based approach, OQIA, which composed well-known quantum algorithms to
provide high-quality configurations with limited expense of quantum resources. Then, we designed
from scratch a novel Grover Search-based approach SQIA, which provides optimal solutions with high
probability, in conjunction with resource consumption that is compatible with the quantum platforms
expected in the coming decade. The key novelty was the construction of an efficient quantum oracle
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where data is represented in qubit phases, rather than basis states, and using only standard quantum
gates.

Our design is a hybrid quantum-classical architecture that lends itself to easy implementation on
contemporary database environments. Using classical components to enumerate the search space and
the benefits and costs of indexes, it leverages the power of the quantum computing platform for the
computationally expensive index selection process.

The evaluation of modest index scenarios on both a noiseless quantum simulator and real quantum
hardware demonstrated the feasibility of our proposed schemes on quantum platforms. Further, they
indicated that high-quality configurations can be reliably produced by suitable choices of algorithmic
parameter settings. We also showed that the complexity of our circuit design scales linearly to future
deployment scenarios with large databases. In our future work, we plan to evaluate our algorithms on
more powerful quantum hardware, such as the recently announced IBM Condor [12], which has 1121
qubits, and also extend our algorithms to include additional components of the IA pipeline in quantum
processing.

In summary, we have taken an initial step in this paper toward designing and constructing index
advisors using quantum platforms that are both close-to-optimal in solution quality and efficient with
regard to index selection. We hope that our results will spur new research to address the challenges of
making quantum-based databases a practical reality in the near future.
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A Details of Problem Instances
In this section, we provide the details of the index selection problem instances used in the evaluation of
OQIA and SQIA.

CDB_I5

Consider an SQL workload comprising TPC-H [9] queries Q4, Q5, Q6 and three instances of Q2 over
a 1GB TPC-H database. Given this setup, the index selection problem instance generated by a popular
commercial database (CDB) engine is shown in Figure 12 – we refer to it as CDB_I5. The problem
instance comprises five candidate indexes, their expected time benefit wrt query response time, and
storage cost overhead. Now, for a storage budget of 268MB, CDB recommends a sub-optimal index
configuration {i0, i1, i2, i3} with a total benefit of 70964, while the optimal configuration comprises
indexes {i1, i3, i4} with a benefit of 194545. In this scenario, it is evident that around 64% of the
available index benefit is lost due to a sub-optimal choice.

Figure 12: Suboptimality of Heuristic IA on CDB_I5

CDB_I7

Consider an SQL workload comprising TPC-H queries Q6, Q14, Q22, and two instances of Q17 over
a 1GB TPC-H database. Given this setup, the index selection problem instance generated by a popular
CDB engine is shown in Figure 13 – we refer to it as CDB_I7. The problem instance comprises seven
candidate indexes, their expected time benefit wrt query response time, and storage cost overhead.
Now, for a storage budget of 140, CDB recommends a sub-optimal index configuration {i2, i5, i6} with
a total benefit of 1302510, while the optimal configuration comprises indexes {i2, i3} with a benefit of
2427540. In this scenario, it is evident that around 50% of the available index benefit is lost due to a
sub-optimal choice.

I5, I6, and I7

Three problem instances comprising 5, 6, and 7 indices, respectively, are synthetically generated – we
refer to them as I5, I6, and I7. These problem instances are shown in Figure 14, and they all have the
same storage constraint, namely Wmax = 19. In addition, in all of them, Exhaustive Search provides
the same optimal solution: {i0, i1, i2, i3} with benefit 44, while Greedy provides the same (sub optimal)
recommendation: {i0, i2, i3, i4} with benefit 35.
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Figure 13: Suboptimality of Heuristic IA on CDB_I7

(a) I5 (b) I6 (c) I7
Figure 14: Index Problem Suite

I9, I15, and I20

These problem instances were constructed by extending the I7 problem (in Figure 14c), so that for
the same storage constraint, namely Wmax = 19, the Exhaustive Search provides the same optimal
solution: {i0, i1, i2, i3}with benefit 44, while Greedy provides the same (sub optimal) recommendation:
{i0, i2, i3, i4} with benefit 35. Specifically, the I9 instance is created by appending two new indexes to
the I7 instance, each with an identical cost of 7 and a benefit of 12. By adding the new indexes in this
fashion, they only expand the search space but are not included in the final solution. In particular, in
the Greedy ROI-based criterion, the new indexes rank low, and hence, other indexes are picked first,
saturating the available capacity.

Similarly, the I15 and I20 problem instances are created by adding 8 and 13 new indexes to the I7
instance, respectively, each with an identical cost of 7 and benefit of 12.
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