AdaNexus: An Improved Nexus Algorithm

A PROJECT REPORT
SUBMITTED IN PARTIAL FULFILMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
Ntaster of Technology

IN
Saculty of Engineering

BY
Achint Chaudhary

Computer Science and Automation
Indian Institute of Science
Bangalore — 560 012 (INDIA)

July, 2020

Declaration of Originality

I, Achint Chaudhary, with SR No. 04-04-00-10-42-18-1-15879 hereby declare that the

material presented in the thesis titled
AdaNexus: An Improved Nexus Algorithm

represents original work carried out by me in the Department of Computer Science and
Automation at Indian Institute of Science during the years 2018-20.

With my signature, I certify that:
e [have not manipulated any of the data or results.

e [have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.
e [have explicitly acknowledged all collaborative research and discussions.
e [have understood that any false claim will result in severe disciplinary action.

e [have understood that the work may be screened for any form of academic misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements
are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Advisor Signature

(© Achint Chaudhary
July, 2020
All rights reserved

DEDICATED TO

My Parents €9 Close People

For those whom I have lost, wish you can see this

Acknowledgements

I am deeply grateful to Prof. Jayant R. Haritsa for his unmatched guidance. He was and always
will be an inspiration to me for his thoughts and his perception of looking at things around us,
be it academia or real life. It is my good luck that I got a chance to work with him and obtain
few chunks of knowledge from him.

I am thankful to Anshuman Dutt, Srinivas Karthik and Sanket Purandare for their guidance
and discussions. I am thankful to my lab mates for providing me with valuable suggestions
during this work. My sincere thanks goes to my friends Diksha and Hemant, who have patiently
listened and understood many complications and helped me bring out clearer pictures to work
with. My heartfelt appreciation goes to CSA and CDS office staff who made the academic
functioning smooth with best co-ordination possible.

Finally, T would express my gratitude wholeheartedly to my parents, who have taught me
how to stay calm and keep working on what is essential. Nothing I have done or will ever do

will match their support that I carry within.

Abstract

Declarative query processing in database systems often leads to sub-optimal performance due
to wrong selectivity estimation from those encountered during actual execution. Plan Bouquets
is a technique proposed to substitute selectivity estimation by selectivity discovery at run-time,
to provide worst case performance guarantees. This is done by performing multiple partial
executions for same query in an incremental fashion of cost budget from a bouquet which is
compiled at very first stage.

This technique is suitable for OLAP queries as high overheads of optimizing most part of
selectivity error space are amortized over multiple invocation of query in OLAP scenarios. Full
space exploration overheads in the past are improved upon with NEXUS algorithm, that only
discovers points useful for bouquet compilation.

In this work, we proposed an adaptive version of NEXUS named AdaNEXUS, which utilizes
geometrical properties of contours to be discovered for bouquet. This algorithm reduces over-
heads of compilations empirically with the same theoretical worst case performance complexity.
Further, we provide upper bounds for maximum cost deviation possible during bouquet com-
pilation due to use of either NEXUS or AdaNEXUS. Evaluation of proposed system is done
on TPC-DS benchmark with different scales to test system. It is demonstrated that around
an order of magnitude reduction is observed in compilation overheads when compared with
NEXUS. Also, quality of contours discovered by AdaNEXUS is better than those discovered by
NEXUS.

1

Contents

Acknowledgements

Abstract

Contents

List of Figures

List of Tables

1 Introduction

1.1 Background
1.2 Motivation
1.3 Contributions
1.4 Organization

2 Plan Bouquets

2.1 OVErVIEW o
2.2 Worst case performance guarantee of Plan Bouquet
2.3 Impact of Cost Deviation on MSO,

3 Problem Formulation

3.1 Notations
3.2 Assumptions
3.2.1 Plan Cost Monotonicity(PCM)
3.2.2 Axis Parallel Concavity(APC) oL
3.2.3 Bounded Cost Growth(BCG)
3.2.4 Piece-wise Axis Parallel Linearity(APL)

1l

ii

iii

vi

CONTENTS

3.2.5 Perfect Cost Model of Optimizer 10

3.2.6 Selectivity Independence 11

3.3 Existing compilation methodso 11
3.3.1 Full ESS Enumeration 11

3.3.2 NEXUS(Neighborhood EXploration Using Seed) 11

3.4 Complexity issues in compilation 12
3.5 Problem Statement 14

4 Leveraging Contour Geometry 15
4.1 Where NEXUS can be improved 15
4.2 AdaNEXUS design 15
4.3 Step-size adaptive exponential smoothing 19

5 Cost Deviation Bounds 21
5.1 Cost Deviation with NEXUS 21
5.2 Cost Deviation with AdaNEXUS 22

6 Experimental Evaluation 24
6.1 BCG Validation e 24
6.2 Uniform vs Exponential Distribution 25
6.3 Tuning exponential smoothing 0oL 26
6.4 Deviation bounds due to Exponential Distribution 26
6.5 Overhead reduction using AdaNEXUS 28
6.6 Plan Cardinalities 30

7 Conclusion and Future Work 33
7.1 Conclusion e 33

7.2 Future Work 33
Bibliography 34

v

List of Figures

2.1
2.2

3.1
3.2

4.1

5.1

6.1
6.2
6.3
6.4
6.5
6.6

OCS and Plan Trajectories intersection 4
Cost incurred (Oracular vs Bouquet) 5
Multiple APL functions to fit OCS 10
Contour discovery issue in low resolution ESS 13
Q91 contours on 50GB TPC-DS 16
Worst case scenario for NEXUS cost deviation 22
Comparison of Cost deviation for Q67 compilation 25
Step-size and v impact on tuningo 26
Cost deviation for NEXUS vs AdaNEXUS on Q7 TPC-DS 100GB 27
Cost deviation for NEXUS vs AdaNEXUS on Q73 TPC-DS 100GB 28
Optimizer calls using different compilation approaches 30
Total contour plan cardinalities, 32

List of Tables

3.1 Notations used In text,

vi

Chapter 1
Introduction

SQL query processing is declarative in nature, user only specifies what needs to be done, how
the intended task will be done is role of underlying system. There are a large number of
execution strategies for a SQL query, each called a query plan. All these query plans will
yield same results but have high variations in running times. Role of database optimizer is
to select optimal (in terms of running cost) query plan. During choice of optimal query plan,
database optimizer makes multiple cost based decision to compare different query plans. Cost
for each physical operator in a query plan is a function of number of tuple, it processes, known
as cardinality. Cardinality normalized in range of [0,1] is known as selectivity throughout
literature. Selectivity estimations of optimizer for identifying the optimal query plan are done
using statistical models and meta-data information about schema. Selectivity estimates are

often poor due to variety of reasons [14], which results in inflated query response time.

1.1 Background

There are multiple techniques proposed in literature to improve quality of selectivity estimates
like better statistical models, on-the-fly re-optimization, etc., but none of them provides bounds
on worst case performance guarantees.

An entirely different approach based on run-time selectivity discovery is proposed called plan
bouquets, which for the first time, provides strong theoretical bounds on worst-case performance
as compared to oracular optimal performance possible from all the available plan choices.

For each given query, predicates prone to selectivity error contribute as dimension in Error-
prone Selectivity Space(ESS). ESS is a multi-dimensional hyper-cube. The set of optimal
plans over the entire range of selectivity values in ESS is called Parametric Optimal Set of

Plans(POSP). POSP is generated by asking optimizer’s chosen plans at various selectivity lo-

cations in ESS using selectivity injection module. Cost surface generated over entire ESS is
called Optimal Cost Surface(OCS). An Iso-cost Surface(IC) is a collection of all points from

OCS which have same cost of optimal plan at each of these locations cost.

1.2 Motivation

Compilation of plan bouquet is process of drawing iso-cost contours, which involves getting
selectivity points and corresponding optimal plans at each point for any contour we are draw-
ing. In experimental setting ESS is discretized at some resolution ‘RES’ where let ‘D’ be the
dimension of ESS. Number of optimizer calls in entire ESS can reach RESP. This number
is exponential in number of dimensions and results in high overheads of bouquet compilation.
NEXUS is an algorithm developed in past to avoid doing optimizer calls on entire ESS, it
does so by making optimizer calls only on points lying on contours. Number of optimizer calls
made by NEXUS to draw ‘m’ contours in worst case is twice of m * RESP~Y which is still
exponential in nature.

When ‘m’ is sufficiently high and ‘D’ is also high, to keep things computationally feasible
a moderate choice of ‘RES’ is made. When this is the case, contours drawn by NEXUS can
suffer from cost deviation from ideal desired cost value which does affect worst case perfor-
mance guarantees. So it is desired to keep total overhead feasible with acceptable contour cost

deviations.

1.3 Contributions

In this work, we have devised algorithms to improve contour discovery for plan bouquet, which

constitutes most in compilation overhead. We have contributed in the following two ways

e Speeding-up contour discovery: We proposed AdaNEXUS algorithm, which is an
improvement over NEXUS, that utilizes geometric properties of iso-cost contours generally
observed in practice. This algorithm is designed to reduce total overheads in terms of
optimizer calls and also to keep low contour cost deviations then what is there with
NEXUS algorithm. Even in absence of geometric properties that AdaNEXUS utilizes to
gain speed-up, AdaNEXUS still has same worst case complexity as NEXUS.

e Contour cost deviation bounds: We provide upper bounds on contour cost deviation
values for both NEXUS and AdaNEXUS, from which it will be clear that AdaNEXUS
provides less cost deviation during contour construction than NEXUS and should be
preferred over NEXUS.

1.4 Organization

Rest of the thesis is organized as follows:

1.

Chapter 2 provides a brief detail on Plan Bouquets technique.

. Chapter 3 discusses existing bouquet compilation techniques, associated overheads and

re-formulation of contour discovery problem.

Chapter 4 focuses on design of AdaNEXUS by leveraging geometric properties of OCS

and iso-cost contours.
Chapter 5 gives worst case cost deviation bounds for both NEXUS and AdaNEXUS.
Chapter 6 discusses experimental evaluation of our work.

Chapter 7 discusses conclusion of our work and future work.

Chapter 2
Plan Bouquets

Basics of Plan Bouquets from [1] are given in this chapter which is an approach for robust

query processing.

2.1 Overview

Plan Bouquet is an approach where compile time selectivity estimation is eschewed by sys-
tematic discovery of selectivity values at run-time by multiple partial execution carried in

incremental cost-budgeted manner from a subset of POSP called Plan Bouquet.

Icg
E
X
e
e - IC,
(2) ¢
i)’ i
: IC>
= ic.
(0,0) (1,1)
- _partke‘/

O_orderkey = '_Ol’dEery (0,1) p_paﬂ\(ey
)

Figure 2.1: OCS and Plan Trajectories intersection

A subset of POSP is identified as Plan bouquet, which is obtained by the intersection of
plan trajectories with OCS, creating multiple Iso-cost surfaces, each of which is placed at some
cost-ratio (rp,) from the previous surface. Following Fig 2.1 [8] depicts an exemplar OCS and

its intersection with IC trajetories for a sample 2-Dimensional ESS.

2.2 Worst case performance guarantee of Plan Bouquet

Since each plan on an iso-cost surface has a bounded execution limit, and incurred cost by exe-
cution using bouquet will form geometric progression. The figure below shows the performance

of 1D plan bouquet w.r.t to optimal oracular performance.

COST/\ —— Bouquet (worst-case) o
----Oracle (best-case) a+...4+ar™!
m-1
(ICm) ar by -
m-2_| _..aI.’T..z
(ICm_l) ar
k
(k+1) Gl
k-1
(ICk) a1
(ic) ar> R
a+ar+ar?
P 2
(Icg) ar’— - o
a+ar ar
(G wErf (B[e
(c) a2 -2 Ay
. mlnél | | | | ' > SELECTIVITY
1 q2 q3 qk-l qk qk+1 qm-l qm

Figure 2.2: Cost incurred (Oracular vs Bouquet)

In the above Fig 2.2 [1], various plans up to actual selectivity value g, are executed. Each
plan has a limit provided by the next iso-cost surface. This yields total execution cost of
k 2 k-1 a*(r];b—l)
Chouguet =) _i—q COSt(IC;) a+a*rp +a*ry, + ...+ +ax Ty — W
This leads to sub-optimality (ratio of incurred cost to optimal cost) of plan bouquets ap-

proach as follows

a*(rgb—l) 7,2 T2*k 7,2
Tpb 1 pb_ _ _pb _pb_
SubOpt(*, ga) < axry® Tpp—1 rpp—1 — Tpp—1

This value is minimized using r,, = 2, which provides theoretical worst case bound of 4

times the optimal execution time.

Extending the same idea to multiple dimensional ESS, MSO guarantee will become 4p,
where p is maximum cardinality (of plans) on any of iso-cost surface.

Computing value of p requires huge compile time effort. Also, it is platform dependent
and low value of p is desired for practical M SO, which was obtained using anorexic reduction
heuristic at the time plan bouquets was developed.

Later an improved algorithm called SpillBound[2], which is able to provide performance
guarantee based only on query inspection and is quadratic function in number of error-prone

predicates, which is same as dimensionality of ESS. MSO guarantee obtained by SpillBound is
D*+3D

It is notable that Spillbound provides pre-compilation guarantees independent of p, which is

platform dependent.

2.3 Impact of Cost Deviation on MSO,

For any existing or yet proposed contour discovery mechanism, it is not always possible to
obtain exact desired cost value C'C; for a contour IC; that is drawn. Each contour in practice
deviates by some value (1 + «) from C'C;, which means contour cost will lie in the cost interval
[CC;/(1+a), (1+«a)*xCC;]. We will now see the impact of cost deviation on M SO,.

Let,

The total number of contours be k (1C},IC}).

Cost of all contours except ICy_; is deviated on higher side by (1 + «)

Cost incurred due to execution of bouquet sequence is

k—2
BSeost = CChoy + (L4 a) % (CCr+ > CC)

i=1

While optimal cost can be

OPT.s = lim ((J(Jk_l + h) =CC,_
h—0+

In this case, M SO, will be

BScost _ (1 + Oé) * Zle COZ — ¢k OCk_l
OPTcost B CC}g_l

2 2 2
rpb r

-1 <1 A L
<+a)*7‘pb—1 oz_(+oz)>|<rpb_1 n *

Using 7, = 2, we will get MSO,

4 (14+a)=4x%n

Also, it is worth notable that cost deviation (1 4+ «) or n should always respect

I1<(I4a)=n<<ry

Chapter 3

Problem Formulation

3.1 Notations

The following notations are used within the text:

Notation Description
SP Selectivity Predicates
EPP Error Prone Predicates
ESS EPP Selectivity Space
ocs Optimal Cost Surface
POSP Parametric Optimal Set of Plans
RES Resolution of Discretized ESS
Dim or D Dimensions of ESS
&; Minimum Selectivity of Predicate SP;
m Number of Iso-cost Contours
1C; 14, Iso-cost contour
CC; Cost budget of 1C;

Tpb Cost Ratio of Iso-cost contours
(0,1] or [g,1] | Selectivity interval of Discretized ESS
P; Plan with assigned identity j
F; or PCF; | Plan Cost Function(PCF) for Plan P;
Cost(P, q) Cost of plan P at location q in ESS
dser Uniform spacing of selectivity in ESS

Tsel Ratio of selectivity values in ESS
Bmaz Worst case slope of Plan Cost Function
! Tolerance of contour thickening
¥ Constant for exponential smoothing

Table 3.1: Notations used in text

3.2 Assumptions

3.2.1 Plan Cost Monotonicity (PCM)

This assumption implies that if location ¢; spatially dominates location ¢; in ESS, cost of

optimal plan at location g; is more than cost of optimal plan at location g;.
(¢; = @) = (Cost(g;) > Cost(q;))

This also comes from a simple fact that processing more tuples will incur more cost. We assume

that Plan Cost Functions and OCS are continuous and smooth in nature.

3.2.2 Axis Parallel Concavity(APC)

This assumption, as stated in [3], is on Plan Cost Function (F},) which is not just monotonic
but exhibits a weak form of concavity in their cost trajectories. For 1D ESS, F), is said to
be concave if for any two selectivity locations ¢;, ¢; from ESS and any 6 € [0,1] following

condition holds

Generalizing to D dimensions, a PCF F, is said to be azis parallel concave (APL) if the
function is concave along every axisparallel 1D segment of ESS. It simply states that each PCF
should be concave along every vertical and horizontal line in the ESS. Further, an important
and easily provable implication of the PCF' exhibiting APC is that the corresponding Optimal
Cost Sur face(OCS) which is the infimum of the PCFs, also satisfies APC. Finally, for ease of

presentation we will generically use concavity to denote APC in the remainder of this work.

3.2.3 Bounded Cost Growth(BCG)

BCG property as defined by [4], is as follows for plan cost function F),.

Here, f(«) is an increasing function. Increase in selectivity by o > 1 will result in maximum
cost increase by a factor of f(«). As in the case of APC assumption, BCG is also proven to
hold for OCS when it is true for all POSP plan cost functions.

Fylaxq.j) < fla)* F,(q.5)
Viel,2,....,DAVa>1

They have also claimed that identity function f(a) = « suffices in practice.

3.2.4 Piece-wise Axis Parallel Linearity (APL)

Plan Cost Functions and OCS are shown to be piece-wise linear in [5]. This property commonly
comes from the fact that partial derivatives of common physical operators (except the sort

operator, which is seldom found in industry strength benchmark [4]) are linear in nature.

9

«108 18

Cost (PIC)

Selectivity Dim 2 0 ’ 0 ' SE|ECtiVitY Dim 1

Figure 3.1: Multiple APL functions to fit OCS

When it is the case that OCS or Plan Cost Functions are not truly piece-wise linear, a
coarse approximation of piece-wise linear function can still be fitted to them. Similar work has
been done in our lab in the past [6].

While in our work, there is no need to fit any such piece-wise linear function. This will reduce
our effort of fitting points from entire OCS into a piece-wise APL function which will itself be

exponential in nature.

3.2.5 Perfect Cost Model of Optimizer

This assumption states that poor choices of plan come only from the cardinality estimation
error of optimizer and not from the cost model itself. While we have assumed perfect cost
model of optimizer, an optimizer with bounded cost model will also work well. Improving the
cost model is an orthogonal problem. One work on offline tuning [7] proves that the cost model

can be tuned to predict value within 30% of the estimated cost values.

10

3.2.6 Selectivity Independence

We assume that selectivity of predicates is independent of each other. While this is a common

assumption in query optimization literature, it often does not hold in practice.

3.3 Existing compilation methods

Next step of compilation is to identify selectivity location and their optimal plans for each of

the iso-cost contours. For now, there are two options available for contour construction:
1. Full ESS Enumeration

2. NEXUS (Neighborhood Exploration Using Seed).

3.3.1 Full ESS Enumeration

This is most naive yet effective approach and will be referred as full space enumeration at most
places. In this approach, optimal plan and its cost at all points of ESS is asked from query
optimizer.

The points at which cost of optimal plan is equal to cost value of any iso-cost contour is qualified
to be added to that contour. This will incur O(RESP) optimizer calls. Here, RES is resolution
chosen to discretize ESS and Dim is dimension of ESS. Each dimension in ESS represents a
error-prone predicate.

This approach is certainly exponential in number of dimensions and a suitable value of RES
should be chosen to make overall cost computationally feasible. Full space enumeration can

completely exploit parallel architecture of modern multi-core systems available.

3.3.2 NEXUS(Neighborhood EXploration Using Seed)

An optimization over full space enumeration is introduced in plan bouquets [1]. NEXUS is
an algorithm proposed to avoid making unnecessary optimizer calls on points lying in between
contours. If we have total m iso-cost contours to discover, worst case complexity of NEXUS for
entire compilation process can go up to O(m * D x RESP~1).

At first, NEXUS seems to be promising for reducing compilation overhead, but faces following

multiple issues [8]:

1. If large number of contours need to be drawn, NEXUS is effectively close to full space

enumeration, especially in high dimensional ESS.

11

2. If a lower bound on selectivity of query predicate is known through domain knowledge,
SpillBound can shrink ESS by making this lower bound as origin. However, NEXUS needs

to redraw new iso-contours from scratch.

3. Randomized contour placement to introduce fairness in plan bouquets needs more con-
tours to be drawn. This makes NEXUS cumulatively more expensive than full space

enumeration.

In worst case, total optimizer calls made by NEXUS is twice the number of points lying on
iso-cost contours.

Note: Both of the above methods for finding iso-cost contours make a common assumption
that resolution of discretized ESS grid should be sufficiently high such that we can always
find contiguous iso-cost locations with cost of optimal plans at these locations lying in interval
[CCy, (1 + a) x (CC;)] even with small values of «, say, 0.05.

Due to this assumption, we will see some issues which are common to both full ESS enumeration
and NEXUS.

3.4 Complexity issues in compilation

Both methods have associated behavior or requirements with them as follows:

1. Complexity is exponential in Dim

2. Need of sufficiently high resolution on each axis

The algorithm with complexity O(RESP™) becomes computationally unfeasible to run with
sufficiently high-resolution dimensions of ESS. To prevent this in practice, instead of going
with sufficiently high resolution with uniform distribution of selectivity values on each axis,
experiments can be tried to run on low-resolution picture.

Next we will see a potential issue which may arise with the use of low resolution uniformly
distributed selectivity values.

But first, we will discuss both methods in brief for a 2D ESS example, to find points lying on
contour IC; with cost CC;.

1. Full space enumeration
The grid points lying in the interval should be on contour if cost of optimal plan lies
within cost interval [CC;, (1 + a) * (CC;)].

2. NEXUS
Locate seed S(z,y) and then iterate to find next neighbor until loop ends to find any next

12

location with given search condition.

while (S has a neighbor in 4" quadrant):
if Cost(S(x,y — 1)) < CC;:
Sty)=Sx+1y)
else:
Stuy) =Sxy—-1)
Algo 1. Neighbor exploration in NEXUS
Due to usage of low resolution and low tolerance factor «, full space enumeration may result
into incomplete contour while NEXUS may result into contour with cost inflated more than

factor of (1 + «). Pictorial representation of potential issues encountered are depicted in Fig
3.2.

Figure 3.2: Contour discovery issue in low resolution ESS

NEXUS's Contour
[| Enumeration's Contour

mmmm Actual Contour
1 1

To avoid this yet keeping computational feasibility, one possible option is to raise the value
of a but that does impact M SO,. Also, from observation and from APC, we know most changes

in slope will happen close to origin.

13

So, to (empirically) avoid above explained issue, when working with low resolution and high
dimensional ESS and to keep cost computationally feasible, geometric distribution of selectivity
value was used on each axis of ESS in practice.

This use of low resolution and geometric distribution is never explicitly stated in literature and
may violate M SO, in practice. This violation is not observed yet, but proof for the same is also
pending like a conjecture. Rationale for using geometric distribution in selectivity space till
now is that it captures many points in low selectivity values and most changes in plan choices
take place in low selectivity values.

For making a geometric distribution to work, there are numerous hyper-parameters to tune. The
methods, tips and techniques along with their impact on contours discovered are the missing

part from literature which we will try to provide and prove in a systematic way.

3.5 Problem Statement

Given a D-dimensional ESS, construct all contours for plan bouquet in cost budget ratio of 7,
in a time efficient manner, reducing both number of optimizer calls and cost deviation from
desired cost for each contour without empirically affecting the performance guarantee of plan

bouquet technique.

14

Chapter 4

Leveraging Contour (Geometry

4.1 Where NEXUS can be improved

NEXUS in worst case makes number of optimizer calls twice the number of points lying on
contour in high resolution discretized ESS. So idea of NEXUS is to eliminate unnecessary
optimizer calls on points lying between contours, but this optimization fails and cost close to
full-space enumeration when we have moderate resolution to work with and large number of
contours needs to be discovered.

From past works [5][10], contours are observed to be either piece-wise linear or approximated
to be piece wise linear. See Fig 4.1 for reference of contours generated on a 50GB TPC-DS

with Query instance Q91.

4.2 AdaNEXUS design

We have attempted to utilize this highly piece-wise linear nature of contours to get improved
and faster version of NEXUS, namely AdaNEXUS, which should in practice speed up the
contour discovery process, the main cost overhead of compilation.

We have removed discretization of ESS at very first place. AdaNEXUS considers ESS as
continuous hyper-cube but a minimum fixed step size is used as a substitute for discretization
that still provides more flexibility than discretization as first step.

So, initial seed discovery using binary search of NEXUS is replaced with piece-wise linear
interpolation search. This lead to better quality seed discovery as starting point for AdaNEXUS.
Now we will look at design of contour exploration of AdaNEXUS.

As an example, consider the red contour (which is 4 contour in the diagram). The seed, as
usual, will be located on top boundary of ESS.

Now, what if we can magically get the slope of contour in ESS space (do not consider cost into

15

1.000

0.100

0.010

Sel Y (log scale)

0.001 4

0.001 0.010 0.100 1.000
Sel X (log scale)

Figure 4.1: Q91 contours on 50GB TPC-DS

picture), which is nothing but infinity, as contour is parallel to Y-axis.

We could have used exponential search to reduce number of points to be discovered on the
contour where optimizer calls are made. In the best-case complexity will change from O(RES)
to O(log(RES)).

There are some fundamental issues with this approach:

1. Slope in ESS space for any piece of piece-wise linear contour is not known a priori.

2. Even if exact slope can be approximated, exponential search may miss some plans on

contours due to large steps taken.

First, we will see how to overcome the second issue in our idea.

We will be using a bisection exploration to find if we can find a different plan in between two
successive points discovered by exponential search. If different plans are obtained in either half,
a recursive function is called until either an interval on bisection exploration has the same plans

on both endpoints or interval length vanishes. Same idea is formulated in form of pseudo-code

as follows:

16

def bisectionEXP(left,right) :
P, Pp = Papt(left): Popt(right)

if (left <right)and (P! = Pg) :

left+right
2

Py = P,y (mid)
if (Ppl = Py)z
bisectionEXP(left, mid)
if (Pg!=Py):
bisectionEXP(mid, right)

mid =

Algo 2. Bisection exploration to find plans missed by exponential search

Now, let’s come to the first issue of our search approach, which is getting slope of each piece
of piece-wise linear function. Let us pose it as an online control system problem with feedback

and fallback strategies.

As we know even with original NEXUS and full ESS exploration, a tolerance interval of
[CCy, (1 4+ a) x CCy] (with sufficient low value of «, say, 0.05) is used and points are chosen
such that surface thickening is avoided, i.e., points must be chosen as close as possible to
lower bound of search cost interval.We will exploit similar idea to search within cost interval
[CC;/(14 «),CC; % (1 +)] and our search method will try to pick the point having optimal

cost lying in mid of specified cost interval.

NEXUS solves D-dimensional contour discovery by recursively solving 2-dimensional sub-
problems, and this is shared with AdaNEXUS also.

With the knowledge of seed, we will start from one end of contour and will explore neigh-
borhood location in ESS. Slope information will be obtained on-the-fly and tuned based on
deviation from mid-value of cost interval so that search will always lie within the given interval.
When search goes beyond the tolerable cost interval, we always have a fallback to last valid

point and try with half the step size taken in last wrong decision.

17

Sometimes, even at the minimum possible step-size, the present tuned direction vector can
make the search go outside the cost interval. In this case, an aggressive search for the next
direction will be done in first, third and fourth quadrants without any tuning. This sets a new

tuned direction vector to continue search further.

This will not be an exact exponential search procedure but is expected to run much faster
than linear step sizes in earlier NEXUS which exploits very less information about geometry
of contour. This method of dynamic tuning of slope with exponential steps and finding points
missed in between using bisection exploration will require lesser optimizer calls for piece-wise

linear contours, which is expected to be observed in practice.

Next we have given a pseudo-code for AdaNEXUS in Algo 3. §, C, P, A correspond to
selectivity, cost, plan and direction vector to continue search respectively. now in this context
refers to current value, e.g. P, ., refers to optimal plan at current point on contour, next refers

to next point we are discovering on contour.

Cost() function returns both cost and optimal plan at some selectivity location in ESS if
P, is given in argument. Correct() function is used to find new direction to search based on
correction done with information from proxy location. TuneDir() function does devised ex-
ponential smoothing, bisectionEXP() does bisection exploration when plans at two end points
are different. At the end Rotate() is a function to find direction when tuned direction vector
(Anow) is unable to find a point on contour even with smallest possible size.

Note: All corrections and additions done in AdaNEXUS are in logarithmic selectivity space,
and will result in multiplicative change in selectivity values. Same is done when NEXUS is

applied in ESS discretized with exponential distribution.

18

def AdaNEXUS(CC;):
Snows Poow = InitializeSeed(CC;)

Crow = Cost(Popt, Snow)

step, Apow =1, [0,—1]

while (There exist next point) :
Sproxy = Snow T Step * Apow
Coroxys Poroxy = CoSt(Popt » Sproxy)
Snext 1 Bnext = Correct(CCy Cproxy)

Crextr Prext = COSt(Popt s Snext)

. Cnex CC;
lf (max(?it ,E) < (1 + a)) :

Dpow = TuneDir (Dpow » Dpexe » Step)
bisectionEXP(S,ow » Snext)
Snow »Step = Spext , 2 * Step
else :
if step>1:
step = step / 2
else :
Apow = Rotate(Spoy , CCy)

Algo 3. AdaNEXUS with Bisection exploration, direction tuning and angle correction

We have not mentioned a strict condition on searched points so that they lie exactly in between
the cost interval [CC;/(1 + a), CC; * (1 + «)] to avoid surface thickening like NEXUS.

() — Error [10] is chosen as error function to make AdaNEXUS algorithm discover points
having cost close to mid value of tolerable cost interval. An online tuning algorithm based on
PID Control [11] is used for tuning direction vector which is referred as step-size adaptive

exponential smoothing.

4.3 Step-size adaptive exponential smoothing

Like integral term in PID control is used to get a smooth search instead of a zig-zag path.
Tuning the direction vector during contour discovery in AdaNEXUS also requires us to use

multiple errors made during process contour discovery.

19

A simple functioning like that of integral term is achieved using exponential averaging. A is

used to denote the direction vector. Simple exponential average is formulated as

Let, Ao and A,y be immediate A and average A
Aavg =7y * Anow + (1 - ’7) * Anow
for some, 0 <y <1

Since we are taking steps of variable sizes during exponentiation, a simple exponential average
assigns same impact value to each point, which should not be the case.

So considering the present step size is S, the impact of A, on tuned direction vector can be

better formulated as

W*Anow_’_'y* (1 _5) *Anow‘i_m""y* (1 —5)(3_1) *Anow
(1~\S
= (7 B0 sk Ay = (1= (1= 7)) * Ay

This leads us to modified expression for step-size adaptive exponential smoothing, which is

used in tuning Ag,, in AdaNEXUS search and given as

Agpg = (1= (1 - V)S) * Apow + ((1— 7)5) * Aang

20

Chapter 5
Cost Deviation Bounds

This chapter provides upper bounds on cost deviation bounds due to NEXUS and AdaNEXUS

We have seen at end of chapter 2 that contour cost deviation has a linearly proportional
impact on MSO,. Also, we have designed the conceptual framework for AdaNEXUS. In this
chapter we will prove the theoretical upper bounds on contour cost deviations of NEXUS and
AdaNEXUS, and will try to prove that if in theory AdaNEXUS provides lesser cost deviation

during contour construction than NEXUS.

5.1 Cost Deviation with NEXUS

Assume f,,,. = 1 in BCG assumption, r, is the ratio at which ESS is discretized, r..s be cost

ratio change per step in ESS

Tcost S /Bma$ * Tsel = Tcost S ﬁmaa: * Tsel

Also discretization of ESS in interval [e, 1] is done at a ratio

Tsel = ((RE37%)71

Consider Fig 5.1 where NEXUS is discovering contour of cost C'C;. Let all black points have

cost C due to inherent deviation due to discretization, where

CCZ * Tsel

1+h)

Ck = limhﬁ(ﬁ(

Then, the yellow point will have cost less than C'C;. In that case, blind search of NEXUS will

pick a next red point.

21

.— Ck < Cci * Tsel * Bmax
 J
° []
I (@) []
CC;) °
[
[]

Figure 5.1: Worst case scenario for NEXUS cost deviation

Cost of red point be C.., where C,. due to BCG is

CC; * rgg

T)*TSGZSCCi*TQ =CC;*n

Cr = Ok *Tsel = limh—>0+(sel

So, we can claim that worst case cost deviation for NEXUS is
n= (1—{—&) :rgel
Or in a general case when (3,4, is not known but yet BCG assumption holds

n= (1 + a) = (Bma:t: * Tsel)2

5.2 Cost Deviation with AdaNEXUS

AdaNEXUS does not apply explicit discretization but does limit itself to a minimum step size
to be taken in ESS. These steps are multiplicative in nature, and during 2-dimensional explo-

ration AdaNEXUS will take a step in either of two predicates or partial steps to change value of

22

both selectivities at once, keeping the constrain that L1-norm of step size is still of unit measure.

Let, 3; and ; be partial derivatives of OCS w.r.t selectivity predicates sp; and sp; respec-
tively.

Then cost change in one step will be,

(ﬁz * rsel)(w) * (6] * rsel)(l_w)

For any,
w € [0,1]

Since both ; and j3; are upper bounded by Baqe

(ﬁz * Tsel>(w) * (ﬁ] * rsel)(l_w) S Bmaz * Tgel

So, for AdaNEXUS maximum cost deviation is

n= (1 + O‘) = (ﬁmax * 7ﬂsel)

It can be noted that NEXUS has larger cost deviation specially for higher value of r,,; than
AdaNEXUS.

23

Chapter 6
Experimental Evaluation

Now we will move towards profiling the performance of our proposed methods over existing
ones in literature. Overheads incurred during bouquet compilation are discussed in terms of
optimizer calls, while quality of contours discovered is measured in terms of cost deviation from
ideal contour cost.

Database environment: Queries for evaluation are taken from TPC-DS benchmark that covers
wide spectrum of join geometries including star, chain, etc. Number of base relations varies
from 3 to 6. Number of error prone predicates varies from 3 to 5, all of which are join selectivity
errors. Since physical schema has indexes on all columns, which lead to more variety of plans
possible, making it difficult to achieve robustness due to large ratio of Cuz/Chin. TPC-DS
benchmark is used at different scale, varying from 1GB to 250GB. Benchmark metadata is
scaled (keeping the same distribution) for each scale using CODDJ[13].

System environment: Database engine used in our experiments is modified version of Postgres-
9.4. Hardware platform is vanilla HP-Z4-G4 workstation with Intel Core i9-7900X CPU, 32GB
DDR4 2666MHz RAM and 2TB disk storage. Now we will compare different frameworks of

bouquet compilation and also our devised algorithms over existing algorithms like NEXUS.

6.1 BCG Validation

We have verified that bounded cost growth does hold in all our queries on different scales of
database instances we have experimented upon. To find out [,,,,, we did optimizer calls in
close neighborhood of all end points of ESS, this took total cost of

s} (2(2*Dzm))

We have observed that claim of [4] does hold, and f3,,,4, is bounded by 1.0 in all our experiments.

This is due to the fact that contribution from Sort is very less compared to the total cost of a

24

plan in industrial strength benchmarks[4]. This bound on (3,4, is then used to calculate cost

deviation bound during contour discovery.

6.2 Uniform vs Exponential Distribution

We have evaluated both uniform distribution and exponential distribution of selectivity values
to discretize ESS before applying NEXUS with a moderate resolution to make compilation time
feasible (few hours for 5 dimensional queries), cost deviation values («) for each contour for a
Q67 using uniform and exponential distribution is given in Fig 6.1. These are later referred as
AP NEXUS and GP NEXUS respectively, since selectivity values on each axis of ESS are in

arithmetic and geometric progression respectively.

Cost Deviation of Nexus tpcds 100GB Qup,s.67

0.6 1

I o
IS wn

o
N
L L s L
-
N
w

o
w

Cost Deviation

0.1

0.0 -

[h[] Contour Index
(a) Uniform distribution

Cost Deviation of Nexus tpcds 100GB Qap,s,67

Lu

Contour Index

0.20 1

0.15 1

0.10 1

Cost Deviation

HEH

0.05 A

0.00

(b) Exponential distribution

Figure 6.1: Comparison of Cost deviation for Q67 compilation

25

It is notable that (1 4+ «) < 7, and uniform distribution will lead to high value of «. For
some queries in our test suite, we have observed that this assertion of (1 +) < ry is not
respected. Hence we can conclude that uniformly spaced selectivity values should not be used

even for discretization of ESS with moderately high resolution.

6.3 Tuning exponential smoothing

We have given an expression for step-size adaptive exponential smoothing at end of chapter 4
where v is constrained in interval (0, 1). We have empirically observed that v=0.7 gives best
results during our experiments. In the further experiments we have used the same value as
smoothing constant. Fig 6.2. gives an idea about different values of smoothing constant and

present step-size on contribution of latest direction vector towards tuned vector.

Weight Calculation for Tuning Direction Vector in ESS Space

1.0 1 =

0.81

0.6 1

Exponential Weight

0.2 1

2 2 2 2 2 2
Step Size

Figure 6.2: Step-size and ~ impact on tuning

6.4 Deviation bounds due to Exponential Distribution

In the end of chapter 5, we have come up with cost deviation bounds when using either ex-
ponential discretization with NEXUS or exponential step size into continuous ESS space for
AdaNEXUS with an example of Q7 which is a 4-dimensional query. Below Fig 6.3. shows
contour-wise cost deviation distribution for NEXUS and AdaNEXUS respectively.

26

Cost Deviation of Nexus tpcds 100GB Qop,s,7

0.6

0.5

0.4 - 1 e =

Cost Deviation
o
w

I
N}

©
-

0.0 T T T T T T
0 1 2 3 4 5 6 7 8 9 10 11 12
Contour Index

(a) NEXUS with exponentially discretized ESS

Cost Deviation of AdaNexus tpcds 100GB Qop,s,7

0.20 ==

o
=
v

Cost Deviation
53
o
o

0.05 .

0.00 |- T T T T T T T t
0

1 2 3 4 5 6 7 8 9 10 11 12
Contour Index

(b) AdaNEXUS with exponential steps in ESS

Figure 6.3: Cost deviation for NEXUS vs AdaNEXUS on Q7 TPC-DS 100GB

This behavior of cost deviation reduction is not just observed in queries where NEXUS has

high cost deviation, but also on queries having low deviation with NEXUS. As an example we

will see QT73.

27

Cost Deviation of Nexus tpcds 100GB Qgp,s,73

0.02 1 __’__

0.00

Cost Deviation
o o
o o
o oo
H 1=H

0
Contour Index

(a) NEXUS with exponentially discretized ESS

Cost Deviation of AdaNexus tpcds 100GB Qgp,s,73

_ ==

Contour Index

Cost Deviation
o ©
o o
@ B

o
o
N}

o
o
=]

(b) AdaNEXUS with exponential steps in ESS

Figure 6.4: Cost deviation for NEXUS vs AdaNEXUS on Q73 TPC-DS 100GB

We have observed in all our experiments that cost deviation bounds and empirically ob-
served deviation are lesser for AdaNEXUS as compared to those obtained using NEXUS. These
deviations in contour cost have a directly proportional impact on M.SO, similar to A in anorexic

reduction [9] (however that provides a gain by reducing plan cardinality on each contour).

6.5 Overhead reduction using AdaNEXUS

The main role of AdaNEXUS is to reduce overhead in compilation process, where reduced cost
deviation is just a plus point of AdaNEXUS design. Now we will see a comparison of overheads

incurred using different bouquet compilation approaches.

28

Total Optimizer calls during compilation

1---...-.---

—-1I==--

- = AP Nexus
| Bl GP AdaNexus

- B GP Nexus

106]

T
n

o

—

T
<

o

—

D01 40 JsquinN

103]

73

67

62

27

22

21

19

Query

(a) TPC-DS 1GB

Total Optimizer calls during compilation

%]
35
)
292
| X X ®
o UV T
Z2 2 <
2506 I
Hrrrr T
T T T
o < m
o o o
— — —

D01 40 JsquinN

73

67

62

27

22

21

19

Query

(b) TPC-DS 10GB

29

Total Optimizer calls during compilation

6l I
10 |- Il AP Nexus
|- W GP Nexus
| mmm GP AdaNexus
10°
: =
5]
o
; _ B
£ 10%1 = = =
2 — — | —
|| | || |
| | | |
[| | | | | | |
| | | | | | | |
I g
— — — —
|| | | |
| | | |
[| | | | | | |
[| [| [| [|
19 21 22 27 62 67 7 73

Query

(¢c) TPC-DS 100GB

Figure 6.5: Optimizer calls using different compilation approaches

AdaNEXUS brings approximately an order of magnitude reduction in compilation efforts
even with moderate minimum step sizes. Also as a bonus, it reduces deviation observed in
contour discovery.

An important note here is that AP NEXUS, the execution of NEXUS with uniformly spaced
selectivity values, results in higher cost deviations that makes it useless to provide useful M SO,

for plan bouquets, specially in higher dimensions.

6.6 Plan Cardinalities

It is not claimed that AdaNEXUS along with binary exploration will find out all plans on
contours, that were otherwise observed using NEXUS.

So, we have observed number of plans for all queries and reported the same using both uniform
and exponential distribution in NEXUS and AdaNEXUS.

30

Plan Cardinality in Plan Bouquets over ESS

1
I AP Nexus
| B GP Nexus
I GP AdaNexus
102 4
O
a.
(@]
Y
o
@
Q
€
>
=z
101 4
19 21 22 27 62 67 7 73
Query
(a) TPC-DS 1GB
Plan Cardinality in Plan Bouquets over ESS
T T
I AP Nexus
, I GP Nexus
1071 I GP AdaNexus |
O
a.
(@]
Y—
o
@
o]
€
=}
=z
101 i
19 21 22 27 62 67 7 73
Query

(b) TPC-DS 10GB

31

Plan Cardinality in Plan Bouquets over ESS

I AP Nexus
[GP Nexus
Il GP AdaNexus

Number of CPC

(c) TPC-DS 100GB

Figure 6.6: Total contour plan cardinalities

Note that we have calculated each plan on different contour multiple times, so above pic-
ture can be better understood in terms of number of executions on all contours. In general
AdaNEXUS finds out almost all executions discoverable by NEXUS with geometric progres-
sion.

So, an empirical claim can be made that almost all plans on each contour discoverable by
NEXUS can be discovered also with AdaNEXUS.

Additionally now either a weighted greedy algorithm for anorexic reduction can be deployed
before plan bouquet execution, or a contour density independent algorithm like SpillBound can
utilize AdaNEXUS as a better substitute to NEXUS.

32

Chapter 7

Conclusion and Future Work

7.1 Conclusion

We have proved (with an additional assumption of BCG) that exponential distribution in ESS
discretization leads to usable cost deviation in contour discovery. We have given bounds on
cost deviations and validated that they are followed in all our experiments.

Next, we have devised AdaNEXUS with complete removal of ESS discretization which leads to

contour discovery with lesser cost deviations and also with lesser optimizer calls.

7.2 Future Work

Both NEXUS and AdaNEXUS use 2-dimensional seed exploration as a subroutine. This way
solution to multi dimensional contour discovery is obtained by merging the results of multi-
ple low dimensional sub-problems in a recursive manner. Solutions to all these sub-problems
do not share any information with each other e.g. related to slope of adjacent sub-problems
being solved. So, AdaNEXUS can gain further speed-up using information shared by related
sub-problems already solved. Hence, contour discovery can gain speed with a dynamic pro-
gramming style solution instead of a simple divide and conquer based search.

Tuning during contour discovery can be improved using a full PID control with parameter
tuning using machine learning techniques (as parameter tuning is crucial in PID, even when
they are suitable for optimizing linear processes). Also, some full-fledged machine learning
algorithms (preferably robust and interpretable) can be used to speed up contour discovery
process.

Given proper framework to work on discretization of ESS with exponential distribution, in-
cremental algorithms can be devised in conjunction with AdaNEXUS, as additional work in

database scale-up is expected to be sub-linear in scale-up.

33

Bibliography

1]

2]

Anshuman Dutt and Jayant R. Haritsa. Plan bouquets: A fragrant approach to robust query
processing. In ACM Trans. on Database Systems (TODS), 41(2), pages 1-37, 2016. 4, 5, 11

Srinivas Karthik, Jayant R. Haritsa, Sreyash Kenkre and Vinayaka D. Pandit. Platform-
independent Robust Query Processing. In Proc. of the 32nd Intl. Conf. on Data Engg., ICDE
16, pages 325-336, 2016. 6

Srinivas Karthik, Jayant R. Haritsa, Sreyash Kenkre and Vinayaka D. Pandit. A Concave
Path to Low-overhead Robust Query Processing. In Proc. of the VLDB Endow., 11(13),
pages 2183-2195, 2018. 9

Anshuman Dutt, Vivek Narasayya, and Surajit Chaudhuri. Leveraging re-costing for online
optimization of parameterized queries with guarantees. In Proc. of the 2017 ACM SIGMOD
Intl. Conf., pages 1539-1554, 2017. 9, 10, 24, 25

Arvind Hulgeri and S. Sudarshan. Parametric query optimization for linear and piecewise
linear cost functions. In Proc. of the 28th Intl. Conf. on Very Large Data Bases, VLDB ’02,
pages 167-178, 2002 10, 15

Sanket Purandare, Srinivas Karthik and Jayant R. Haritsa. Dimensionality Reduction Tech-
niques for Robust Query Processing. Technical Report TR-2018-02, DSL. CDS/CSA, IISc,
2018. DS Website 10

Wu, Yun Chi, Shenghuo Zhu, Junichi Tatemura, Hakan Hacigumus, and Jeffrey F.
Naughton. Predicting query execution time: Are optimizer cost models really unusable?.
In Proc. of the 29th IEEE Intl. Conf. on Data Engg., ICDE 13, pages 1081 1092, 2013. 10

Srinivas Karthik V. Geometric Search Techniques for Provably Robust Query Processing.
PhD thesis, Indian Institute of Science Bangalore, December 2019. 4, 11

34

BIBLIOGRAPHY

[9] D. Harish, Pooja N. Darera, and Jayant R. Haritsa. On the production of anorexic plan
diagrams. In Proc. of the 33rd Intl. Conf. on Very Large Data Bases (VLDB’07). 1081-1092.
28

[10] Guido Moerkotte, Thomas Neumann, Gabriele Steidl. Preventing Bad Plans by Bounding
the Impact of Cardinality Estimation Errors. In Proc. of the VLDB Endow., 11(13), pages
2183-2195, 2009. 15, 19

[11] Wikipedia contributors. (2020, March 12). PID controller. In Wikipedia, The Free Ency-
clopedia. Retrieved 09:25, April 11, 2020. 19

[12] Anshuman Dutt. Plan bouquets: An Ezxploratory Approach to Robust Query Processing.
PhD thesis, Indian Institute of Science Bangalore, August 2016..

[13] Ashoke S. and J. Haritsa. CODD: A Dataless Approach to Big Data Testing PVLDB
Journal, 8(12), August 2015. 24

[14] M. Stillger, G. Lohman, V. Markl and M. Kandil, "LEO - DB2’s LEarning Optimizer”,
VLDB, 2001. 1

35

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Contributions
	1.4 Organization

	2 Plan Bouquets
	2.1 Overview
	2.2 Worst case performance guarantee of Plan Bouquet
	2.3 Impact of Cost Deviation on MSOg

	3 Problem Formulation
	3.1 Notations
	3.2 Assumptions
	3.2.1 Plan Cost Monotonicity(PCM)
	3.2.2 Axis Parallel Concavity(APC)
	3.2.3 Bounded Cost Growth(BCG)
	3.2.4 Piece-wise Axis Parallel Linearity(APL)
	3.2.5 Perfect Cost Model of Optimizer
	3.2.6 Selectivity Independence

	3.3 Existing compilation methods
	3.3.1 Full ESS Enumeration
	3.3.2 NEXUS(Neighborhood EXploration Using Seed)

	3.4 Complexity issues in compilation
	3.5 Problem Statement

	4 Leveraging Contour Geometry
	4.1 Where NEXUS can be improved
	4.2 AdaNEXUS design
	4.3 Step-size adaptive exponential smoothing

	5 Cost Deviation Bounds
	5.1 Cost Deviation with NEXUS
	5.2 Cost Deviation with AdaNEXUS

	6 Experimental Evaluation
	6.1 BCG Validation
	6.2 Uniform vs Exponential Distribution
	6.3 Tuning exponential smoothing
	6.4 Deviation bounds due to Exponential Distribution
	6.5 Overhead reduction using AdaNEXUS
	6.6 Plan Cardinalities

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	Bibliography

