
Big Data Testing Environments

Ankur Gupta
ankur.gupta@csa.iisc.ernet.in

SR No: 04-04-00-10-41-12-1-09278
Department of Computer Science and Automation

Indian Institute of Science, Bangalore
Final Report of ME dissertation (2013-2014)

Abstract

It is the era of big data. Over the last decade, the
quantity of data has been exploding in an unprece-
dented manner. This trend is likely to continue even
in the future[1]. To handle this massive amount of
data, which is ever increasing, the database engines
should be robust. An inadequately tested database
engine can wreak havoc for the organization using it.
In order for them to be robust for futuristic databases,
we need to test them on various alternative futuristic
big data scenarios. However, to generate and store
such a humongous database is infeasible due to time
and space constraints. The performance of a database
engine depends not only on the alternative database
scenarios, but also on the hardware available to ex-
ecute the queries on those scenarios. Therefore, we
also need some mechanism to test the database engine
on alternative hardware configurations, to make the
engine robust for futuristic hardware configurations.
All this calls for a testing tool which can simulate
such environments virtually on a low end machine by
generating the data at query execution time, instead
of physically storing it. In this work, we worked on
engineering CODD[2] to simulate such environments
for COM OPT - an industrial strength distributed
database system, which supports big data. Specifi-
cally, we have engineered CODD for (a) simulating
different metadata configurations on COM OPT for
query compilation time testing, (b) simulating differ-
ent hardware configurations on COM OPT for hard-
ware based testing and (c) synthetic database genera-
tion for query execution time testing.

1 Introduction

Database engine testing is a crucial activity during the
development of database systems. The performance of
database systems usually depends on various factors,

like generation of good query execution plans, avail-
ability of different kinds of access paths and resources
available at the server. There are various benchmark
databases, like TPC-H[3] and TPC-DS[4], which are
used for the performance testing of database systems.
In the era of big data, the quantity of data has been
exploding in an unprecedented manner. This trend is
likely to continue even in the future[1]. To handle this
massive amount of data, which is ever increasing, the
database engines should be robust. An inadequately
tested database engine can wreak havoc for the organi-
zation using it. Today, the testing of database engines
is constrained by the resources available to generate
and store the test databases with desired scenarios,
which has increased the need of finding alternative
ways to test the database engine for big data envi-
ronments manifold. In this work, we have focused on
three different aspects of big data testing for HP Non-
Stop SQL database, which is a relational database en-
gine, designed for a clustered and massively-parallel
system architecture. Now onwards, we will refer this
database engine as COM OPT.

i. Query Compilation Time Testing. There are
various modules in a database system, such as query
optimizer, which depend only on the metadata of ac-
tual data at query compilation time. The testing of
these modules does not require the presence of actual
data in the database system. To test these modules, a
software CODD[2], along with the software Picasso[5]
is used, both of which are developed in our lab. CODD
is a tool, which supports the construction of alter-
native database scenarios without storing the actual
database contents, while Picasso is a tool, which is
used to analyze the behavior of query optimizers, using
various kind of diagrams, at query compilation time
as well as query execution time. Earlier, CODD was
functional for IBM DB2, MS SQL Server, Oracle and
PostgreSQL database systems. This part of our work
focuses on engineering CODD for COM OPT to al-



low query compilation time testing of a futuristic big
data system using the metadata of actual data. In this
work, we were able to simulate 1-Zettabyte(1021Bytes)
TPC-H database on COM OPT, which is currently
infeasible even on high-end systems, and we found
that 1-Zettabyte is the maximum limit supported by
COM OPT for a scaled version of TPC-H database.
We also found a bug in the cardinality estimation mod-
ule of COM OPT, where it had exaggerated the value
of cardinality to orders of magnitude of the maximum
possible cardinality.

ii. Hardware Based Testing. CODD supports
creation of alternative database scenarios, but it cur-
rently does not support the creation of alternative
hardware scenarios. The choice of the optimal query
execution plans depends not only on the metadata
available in the system, but also on the hardware
availability. Creating alternative hardware configura-
tion scenarios is useful for testing the functionality of
query optimizer on different kinds of hardware config-
urations, which allows us to make the database engine
robust for futuristic hardware scenarios. In this part
of our work, we added a new feature in CODD, which
allows us to simulate different kinds of hardware con-
figurations to analyze the behavior of COM OPT on
futuristic hardware scenarios.

iii. Query Execution Time Testing. The compile
time testing of database engines can be done using
metadata statistics, but for execution time testing, the
actual data needs to be present in the system. Since
generating and storing alternative big data scenarios
is infeasible even on high end systems, because of time
and space constraints, therefore we need a way to do
execution time testing without storing the database
contents. This can be made possible, if we do on-
the-fly generation of data whenever a query gets exe-
cuted. The first step in on-the-fly data generation is to
generate a synthetic database, which has similar data
distribution as the actual database. This part of our
work focuses on generating a synthetic database hav-
ing data distributions similar to the actual database,
for execution time testing using the metadata statis-
tics calculated from the actual database.

The rest of this report is organized as follows. We
start with the background of CODD Metadata Pro-
cessor in Section 2. Section 3 tells about the new
features added to CODD, which are metadata con-
figuration for COM OPT, hardware configuration for
COM OPT and execution time testing. In Section 4,
5 and 6, we discuss each one of these in detail. Section
7 gives the details of the coding and other efforts re-
quired in this work. Section 8 contains the literature

survey related to the synthetic database generation for
execution time testing. Finally we conclude the report
with future work in Section 9.

2 Background on CODD Meta-
data Processor

CODD[2] is a Java based graphical tool, developed in
our lab, which is used to create dataless databases in
database systems. The database engines are usually
tested on alternative database scenarios to make them
robust with respect to various kinds of data distribu-
tions as well as different database sizes. Creation of
alternative database scenarios involves a lot of time
and space overheads in generating and storing those
databases, which makes it difficult to test the database
engine on those database scenarios. There are various
components in a database system, such as query opti-
mizer, which do not depend directly on data, but on
the metadata. CODD makes the testing of those com-
ponents possible, by providing a graphical user inter-
face through which databases with the desired meta-
data characteristics can be simulated by constructing
the metadata of those databases. For construction of
different kinds of metadata scenarios, CODD provides
the following modes of operation:

2.1 Metadata Construction

Metadata Construction Mode of CODD allows the
users to simulate desired database scenarios by pro-
viding a graphical user interface, which is used to con-
struct a dataless database using the metadata of that
database. CODD uses the existing techniques pro-
vided by the commercial database engines for manu-
ally updating the metadata statistics. To create the
dataless database, first we update the relation level
metadata statistics, followed by the attribute and in-
dex level metadata statistics. Attribute level meta-
data statistics also includes the histograms for which
CODD supports two kinds of interfaces, manual and
graphical. In manual interface, the user is supposed to
write all the histogram information manually, while
the graphical interface allows the users to create the
desired histogram using mouse.

Construct Mode uses a directed acyclic graph based
validation algorithm to ensure that the input meta-
data values are both legal (valid range, correct type)
and consistent (compatible with other metadata val-
ues). After validation of input metadata statistics
at relation, attribute, and index level, the metadata
statistics are written in database catalogs to complete

2



the construction of metadata. Since this mode works
only on metadata, the construction process is very fast
and it takes very less time and space even for a big
database.

2.2 Metadata Scaling

The testing of database engines is also done on differ-
ent scaled versions of the original database, to analyze
the behavior of query optimizer on different sizes of
same database as well as the futuristic big data ver-
sion of the database. CODD supports two kinds of
scaling methods, which scale the metadata of original
database to simulate the scaled database.

2.2.1 Size-based Scaling

Given an initial metadata shell and a scaling factor
α, as input, it produces a scaled metadata shell such
that the size of the database represented by the scaled
metadata shell, is α times of the size of the database
represented by the initial metadata shell.

2.2.2 Cost-based Scaling

Given a query workload, an initial metadata shell, and
a scaling factor α, as input, it produces a scaled meta-
data shell such that the optimizer’s estimated cost of
executing the query workload on scaled metadata shell
is scaled by the scale factor α.

3 New Features Added To
CODD Metadata Processor

Earlier, CODD had the support to simulate dataless
databases for compile time testing on various commer-
cial centralized database engines, but it was not sup-
ported on COM OPT. It was also lacking the support
for hardware based testing and execution time testing,
which is useful for the testing of database engines on
futuristic big data scenarios. In this work, CODD has
been engineered to make the big data testing possible
on COM OPT, and the following three features have
been added in CODD for that purpose:

• Metadata Configuration

• Hardware Configuration

• Execution Time Testing

Sections 4, 5 and 6 discuss each one of these in
details, along with the experimental results.

4 Metadata Configuration For
Compile Time Testing

In [6], CODD was engineered for COM OPT and it
was just a pilot project, developed on the older NT
version of COM OPT. This pilot project had various
functionalities, which were either missing or not cor-
rectly implemented. In this work, we worked closely
with COM OPT developers to resolve all those issues,
made lots of improvements in the functionality, and
tested it on the latest version of COM OPT. Now
this software has been brought from a pilot version
to a production level software, and currently it has
been deployed in industry for the big data testing of
COM OPT. The rest of this section discusses about
the various modes of CODD for COM OPT, and the
improvements made in them.

4.1 Metadata Construction

Metadata Construction mode of CODD allows the
users to create a metadata shell for the given input
relations, without requiring the presence of data in
those relations. The input to the construct mode
are the empty relations, which are grouped under a
schema. Construct Mode GUI for COM OPT requires
the initial metadata statistics to be present for all the
relations selected by user for metadata construction,
and then it updates those initial metadata values with
user provided values. The initial metadata statistics
for empty relations are created using the following
command for each input relation:

UPDATE STATISTICS FOR TABLE
<TABLENAME> ON EVERY COLUMN

The above command creates an entry for the input
relation and all of its attributes in histograms and his-
togram intervals tables, shown in Figures 1 and 2. The
user is supposed to update these statistics manually
before starting the metadata construction process. If
these statistics are missing, the user is informed about
it by the construct mode interface.

COM OPT supports the following three kinds of
metadata statistics for each relation:

• Relation Statistics,

• Attribute Statistics,

• Index Statistics.

The details about all these three kinds of statistics
are given below.

3



4.1.1 Relation Statistics

Relation level metadata statistics for COM OPT in-
clude the following:

• cardinality (Number of records in the relation),

• record size (Number of bytes in each record),

• block size (Number of bytes in each disk block),
etc.

Apart from the cardinality of the relation, all other
values are stored in system metadata tables, which
can’t be modified by the user. Therefore, metadata
construction mode allows the user to update only the
value of relation cardinality. Once the value of rela-
tion cardinality has been updated in construct mode
user interface, it can’t be modified again (to keep it
consistent with the metadata of all attributes of the
given relation). The rowcount attribute of the his-
tograms table, see Figure 1, is used to store the value
of relation cardinality.

Figure 1: HISTOGRAMS Table

4.1.2 Attribute Statistics

Once the relation level metadata has been updated,
the attribute level metadata statistics are updated for

each attribute of that relation. Attribute level meta-
data statistics are created for each column as well as
for the group of columns (in case of multi-column
attributes). Attribute level metadata statistics for
COM OPT are stored in histograms table, see Figure
1, and include the following:

• total uec (Number of distinct values),

• high value (Highest value in the column for sin-
gle column attributes / Highest value from each
column separated by comma for multi-column at-
tributes),

• low value (Lowest value in the column for single
column attributes / Lowest value from each col-
umn separated by comma for multi-column at-
tributes).

Figure 2: HISTOGRAM INTERVALS Table

After updating the attribute statistics, attribute
histogram related metadata statistics are updated.
COM OPT uses equi-width histograms to represent
the data distributions of each column. The number
of buckets present in the histogram is stored in in-
terval count column of histograms table, see Figure 1,
while individual bucket related information is stored in
histogram intervals table, see Figure 2. In COM OPT,
if the histogram contains N number of buckets, then
N+1 buckets are stored in histogram intervals tables,
where first bucket is the default bucket, which con-
tains low value in place of interval boundary, and zero
in place of interval rowcount and interval uec. In
CODD, the default bucket is created internally with-
out the knowledge of the user, since it don’t need

4



any extra input from the user. For multi-column at-
tributes, COM OPT creates only two buckets, where
interval boundary contains low value and high value
for first and second buckets respectively. Since it con-
tains only two buckets and there is no need of any
extra input from the user, therefore the histogram
editing is disabled in user interface for multi-column
attributes, and two buckets, as discussed above, are
created internally without the knowledge of the user.

Construct mode interface allows the user to input
histogram statistics either manually or from a file.
Whenever user updates the metadata for an attribute,
the attribute level as well as histogram level metadata
statistics are written in a file, which can be used later
to read this information while editing the metadata for
the same attribute again. In this work, the function-
ality to create new buckets and delete existing buckets
in the manual histogram editing interface has been im-
proved significantly. The format of histogram file has
also been improved, and now it contains the additional
information about the histogram, which was missing
earlier.

CODD also provides graphical user interface to edit
the histograms so that the user can create the desired
histogram using mouse. Earlier, the user was sup-
posed to make few entries in the manual histogram
editing interface, before using the graphical histogram
editing interface. Now this restriction has been re-
moved and the user can start using graphical his-
togram editing interface, by just entering the infor-
mation about the total uec, low value and high value.

To finally write all the metadata information in
database catalogs, COM OPT supports direct IN-
SERT and UPDATE commands over histograms and
histogram intervals table. In current release, the func-
tionality to write the metadata information in the
database catalogs, has been rewritten, since earlier
functionality was not correct. The following are the
steps to update the metadata information in his-
tograms and histogram intervals tables, which are now
part of the current release:

• First we clear all the statistics for the input rela-
tion using the following command:

UPDATE STATISTICS FOR TABLE <TABLE-
NAME> ON EVERY COLUMN CLEAR;

• Then, we create the default statistics for the input
relation using the following command:

UPDATE STATISTICS FOR TABLE <TABLE-
NAME> ON EVERY COLUMN;

• Once the default statistics are created for the in-
put relation, the relation level and attribute level
statistics are updated in histograms table using
the SQL UPDATE command.

• The UPDATE STATISTICS command creates
two default buckets in histogram intervals table
for each attribute histogram, where the inter-
val boundary value is empty, while other values
are zero. To write the histogram related infor-
mation, these two buckets are updated using the
SQL UPDATE commands, while the extra buck-
ets are added using SQL INSERT commands.

One more major change has been made in the func-
tionality of CODD for COM OPT. Earlier, after the
metadata statistics were updated for an attribute, that
attribute used to be removed from the drop down
menu. In this functionality, it was not possible for
the user to update the metadata for that attribute
again. In case of an error, the user used to be redi-
rected to the database connection interface and all the
information written in Construct Mode interface were
lost. This functionality has been improved now, so
that the user can update the metadata multiple times
before writing it in the database catalogs.

4.1.3 Index Statistics

COM OPT also supports the index level metadata
statistics, which are stored in system metadata tables
and cannot be modified by users. Therefore, index
level metadata statistics were excluded from the con-
struct mode interface for COM OPT.

4.2 Metadata Validation

CODD incorporates metadata validation mechanism
in Construct Mode to ensure that the input metadata
values are both legal (valid range, correct type) and
consistent (compatible with other metadata values).
Whenever the user updates the relation level or at-
tribute level metadata, the input metadata values are
validated, and if there is any validation error, an ap-
propriate error message is shown to the user. The
metadata values are validated for two kinds of con-
straints:

i. Structural Constraints or Legality Con-
straints: The input metadata value should be of cor-
rect type and it must be in the valid range of values
for that type. For example, cardinality for a relation
must be of positive integer type and the value must
be less than or equal to 263 − 1.

5



ii. Consistency Constraints: Input metadata
value should be compatible with other metadata val-
ues. For example, total uec in a column must be less
than or equal to the cardinality of the relation.

Figure 3: Metadata Constraint Graph

Figure 4: Constraint Graph For Distributions

To validate the input metadata in CODD, we first
construct a directed acyclic constraint graph G(V,E)
from all the metadata entities. In this graph G, the
set of nodes V represents the structural/legality con-
straints, while the set of edges E represents the con-
sistency constraints, as discussed in [2]. The directed
acyclic constraint graph G for COM OPT is shown in
Figures 3 and 4. The numbers present on the nodes
of acyclic constraint graph G represent the structural
constraints, see Figure 5, while the numbers present
on the edges represent the consistency constraints, see
Figure 6. Once we have the directed acyclic constraint
graph G, we run a topological sort on G, which pro-
vides a linear ordering of the nodes. This linear order-
ing of nodes is used to validate the input metadata for
structural and consistency constraints. If any of the
above type of constraint is not satisfied, then the user
gets an error message containing the type of constraint

and the details about it. When the user inputs all the
valid metadata, the metadata validation becomes suc-
cessful and the metadata is updated into the database
catalogs to complete the metadata construction pro-
cess.

Figure 5: Structural Constraints

Figure 6: Consistency Constraints

6



In earlier version of CODD, some of the structural
constraints as well as the consistency constraints were
missing, because of which the metadata written was
inconsistent in some of the cases. To ensure that the
metadata is legal and consistent, we discussed all the
constraints with COM OPT developers and then came
up with some additional constraints, which have been
added in current version of CODD for COM OPT.
The final set of constraints are shown in Figures 5
and 6.

4.3 Metadata Scaling

CODD supports two kinds of metadata scaling for
COM OPT, Size-based scaling and Cost-based Scaling.
The details of both are given below.

4.3.1 Size-based Scaling

Given an initial metadata shell and a scaling factor
α, as input, it produces a scaled metadata shell such
that the size of the database represented by the scaled
metadata shell, is α times of the size (in Bytes) of the
database represented by the initial metadata shell.

For size-based scaling, the metadata statistics for
the relations and their attributes are scaled separately.
To scale the size of a relation, the cardinality of the
relation is scaled by a factor of α. The size scal-
ing is implemented differently for different kinds of
columns. If the columns are either part of primary
key, or are part of foreign key, or have unique con-
straint on them, then the domain scaling is imple-
mented and the value of total uec is scaled by scale
factor α. For the histograms of these columns, the
values of interval rowcount, interval uec are scaled by
α for each bucket, and the domain scaling is imple-
mented for interval boundary. For domain scaling, if
the data type of the columns are either integer or
largeint, then low value and high value are scaled by
scale factor α for each column, and the value of in-
terval boundary is scaled by scale factor α for each
bucket, otherwise these values remain unchanged. For
other columns, the values of total uec, low value and
high value remain unchanged, and in the histograms
of these columns, the value of interval rowcount is
scaled by α, while the values of interval uec and in-
terval boundary remain unchanged in each bucket.

One limitation of the current implementation of size
scaling is that, the string type columns should not
have a comma(,) present in low value or high value,
which also separates the values of different columns
for multi-column attributes.

4.3.2 Cost-based Scaling

Given a query workload Q, an initial metadata shell
M , and a scaling factor α, as input, it produces a
scaled metadata shell Mα, such that the optimizer’s
estimated cost of executing the query workload Q on
scaled metadata shell Mα is scaled by the scale factor
α. The details of the implementation of cost-based
scaling algorithm are given in [2].

For example, consider a 1GB TPC-H workload con-
sisting of queries Q3, Q4 and Q12, with full selectivity,
which operates on lineitem, customer and orders rela-
tions. Lets suppose the probabilities of the appearance
of these queries are 0.4, 0.3 and 0.3 respectively, and
we want to scale the execution cost of these queries by
a scale factor of 3. The cost scaling, on this workload
gives us a unique solution with the scale factors 3, 1
and 3 for the three relations respectively, and the over-
all scaling factor obtained is 2.37. The cost of queries
before scaling and after scaling, along with scale fac-
tors obtained for each query is shown in Figure 7.

Figure 7: Cost of queries after cost-based scaling

4.4 Brief details of the additional mod-
ifications done for current version:

• Improved the functionality to create and delete
the histogram buckets in construct mode interface

• Improved Graphical Histogram Editing Interface
to make it intuitive.

• Added additional validation tests for histogram
validity in Construct Mode Interface and added
support to allow a bucket to have zero records.

• Earlier graphical histogram editing interface was
supporting only 232 − 1 cardinality. Now it has
been to updated to allow 264 − 1 cardinality for
columns.

• Improved functionality to give proper error mes-
sages, whenever there is any issue.

7



• Added the support to trim all the strings read
from construct mode user interface.

• Removed the SYSKEY attribute from the at-
tribute drop-down, since it is created only when
we don’t have the primary key on the relation.

• For string type columns, only first 30 charac-
ters are written while writing the histogram in
database catalog tables. For this, we added the
functionality to write only first 30 characters of
the string in metadata tables.

• Added the support for date and timestamp data
types.

• Modified scale mode to work properly for multi-
column attributes, etc.

4.5 Experimental Results

For doing our experiments, we tried to construct a
1-Yottabyte(1024Bytes) TPC-H dataless database on
COM OPT using CODD, and during this construc-
tion, we found that it is not possible for COM OPT
to support 1-Yottabyte TPC-H database. When we
explored more, we found that the maximum TPC-H
database size supported on COM OPT is 1-Zettabyte
(1021Bytes), and if it has to support a database big-
ger than this, then it will need significant changes
in its architecture. We informed about this issue to
COM OPT developers, and then we started our ex-
periments by constructing a 1-Zettabyte TPC-H data-
less database. To analyze the behavior of COM OPT
optimizer, we generated different kinds of Picasso
Diagrams[5], and then analyzed them. Figure 8 shows
a 300x300 resolution Picasso plan diagram for TPC-
H Query Template 21, see Figure 12, on 1-Zettabyte
dataless database which contains 158 different plans.

Figure 8: Plan Diagram for Query Template 21

4.5.1 Analysis of diagrams for TPC-H Query
Template 8

Testing Environment

• Database: 1-Zettabyte (1021Bytes) TPC-H data-
less database, generated using CODD, with in-
dexes on all attributes

• Computational Platform: COM OPT Operating
System, Intel Itanium Quad Core CPU 1.6 GHz,
16 GB RAM

• Picasso Settings: Diagram resolution was set to
100 and the distribution of query points was set
to exponential. Optimization level was set to the
highest level.

Figure 9 shows Query Template 8 of TPC-H Bench-
mark with selectivity variation on S ACCTBAL and
L EXTENDEDPRICE attributes of SUPPLIER and
LINEITEM relations, respectively. For testing of
COM OPT on big data, we created 1-Zettabyte TPC-
H dataless database by scaling the metadata of 1GB
TPC-H database by scale factor of 1012, and then we
generated Plan Diagram, Compilation Cardinality Di-
agram and Compilation Cost Diagram for Query Tem-
plate 8 using Picasso and analyzed the behavior of
COM OPT on big data system.

Figure 9: Query Template 8 of TPC-H Benchmark

8



i. Plan Diagram

Figure 10 shows the plan diagram for Query Template
8. A set of 47 different optimal plans, P1 through P47,
covers the entire selectivity space. The legend shows
that plan P1 is covering 68.48% of the space, whereas
plan P5 onwards cover less than 1% area each, which
shows that the optimizer has made extremely fine
grain choices near the low selectivity region. There are
plans which are not convex and unique. For example,
plan P3 is occurring inside P2 at multiple places. The
plans here violates the assumptions of PQO[7] that
the plan regions must be convex and unique.

Figure 10: Plan Diagram for Query Template 8

Figure 11: Compilation Cardinality and Compilation
Cost Diagrams for Query Template 8

ii. Compilation Cardinality Diagram

Figure 11(a) shows the compilation cardinality dia-
gram for Query Template 8, which looks very inter-
esting. In this diagram, most of the area has same
cardinality except the area near to origin. For Query
Template 8, maximum cardinality can reach only upto
2.4E3, since in Query Template 8, there is an order

by clause on o year attribute of orders table which
had only 2.4E3 distinct values in 1-Zettabyte dataless
database, but what we see in the diagram is that at
origin, the cardinality reaches upto 4.03E7 which is
wrong. It shows the possibility of bugs in cardinal-
ity estimation module of COM OPT for a big data
system.

iii. Compilation Cost Diagram

Figure 11(b) shows the compilation cost diagram for
Query Template 8. The compilation cost diagram
shows that the cost of query execution increases along
with the increase in selectivities in most of the regions.
However, there are some regions where we see a sudden
decrease in the query execution cost with the increase
in the selectivities, which is a clear violation of Plan
Cost Monotonicity.

5 Hardware Configuration For
Hardware-based Testing

In Section 4, we engineered CODD Metadata Proces-
sor for COM OPT, which is used for testing of big
data environments using the metadata of that big
data. Since it uses only the metadata, creating al-
ternative big data scenarios is highly efficient in terms
of time and space. Whenever the database engine ex-
ecutes a query, it tries to determine the most efficient
plan to execute the query by considering the possible
query plans. The choice of optimal query execution
plan depends on the metadata as well as the hardware
available in the system. As the size of data is grow-
ing day by day, we will need more and more hard-
ware to process that data in future. Earlier CODD
had the support only for the simulation of futuristic
big data, not the futuristic hardware, hence it was
not possible to fully simulate the futuristic big data
environments. In this work, we worked in collabora-
tion with COM OPT developers and added the func-
tionality which allows us to simulate alternative hard-
ware scenarios for COM OPT. Now the COM OPT
database engine can be tested on futuristic big data
environments, without having the futuristic big data
as well as futuristic hardware actually present in the
system, which was not possible earlier.

5.1 Implementation Details

To simulate different hardware configurations,
COM OPT provides OSIM (Optimizer Simulation)

9



environment, which has several configuration param-
eters related to system configuration that can be
modified by the user. The following are the steps to
simulate different hardware configurations:

• First generate the configuration files for OSIM
using the following command:

CONTROL QUERY DEFAULT
OSIM CAPTURE LOC ′C:\osim.test′

This command generates various configuration
files, under the directory ′C:\osim.test′, which are
used for the simulation of virtual hardware envi-
ronments.

• Update the CPU related information in following
configuration file:

C:\osim.test\NAClusterInfo.txt

• Update the memory related information in follow-
ing configuration file:

C:\osim.test\DEFAULT DEFAULTSFILE.txt

• Make sure that all the tables present in database
have atleast one record present, so that metadata
statistics are not empty. Otherwise the simula-
tion mode will not work and will give errors.

• Generate metadata statistics on all tables present
in the database using the following command:

UPDATE STATISTICS FOR TABLE <TABLE-
NAME> ON EVERY COLUMN;

• The next command is used to run the COM OPT
in simulation mode:

CONTROL QUERY DEFAULT
OSIM SIMULATION LOCATION
′C:\osim.test′

• The setup for hardware simulation is done and
the query optimizer will now work in simulated
hardware environment.

• To exit the simulation mode, use the following
command:

CONTROL QUERY DEFAULT
OSIM SIMULATION LOCATION ′ ′

5.2 Experimental Results

5.2.1 Testing Environment

• Database: 1-ZettaByte (1021Bytes) TPC-H data-
less database, generated using CODD, without
any index on attributes

• Computational Platform: Windows XP Operat-
ing System, Intel Core i3 CPU 2.53 GHz, 4 GB
RAM

• Picasso Settings: Diagram resolution was set to
30 and the distribution of query points was set to
uniform. Optimization level was set to the highest
level.

Figure 12: Query Template 21 of TPC-H Benchmark

5.2.2 Analysis of diagrams for TPC-H Query
Template 21

To do the experiments for hardware simulation, dif-
ferent hardware settings were configured and then
plan diagrams were generated using Picasso. Query
Template 21 of TPC-H Benchmark, see Figure
12, with selectivity variation on S ACCTBAL and
L EXTENDEDPRICE attributes of SUPPLIER and
LINEITEM relations respectively, was used for gener-
ation of plan diagrams. These experiments were done
on the 32-bit version of COM OPT. Figure 13 shows
the Picasso plan diagrams, generated for 4 different
combinations of Memory and CPUs. It also shows the
number of plans generated along with the minimum
and maximum cost to execute the query.

• Top Left diagram shows the plan diagram gener-
ated for 64MB Memory and 1 CPU.

10



• Top Right diagram shows the plan diagram gen-
erated for 64MB Memory and 16 CPUs.

• Bottom Left diagram shows the plan diagram
generated for 4GB Memory and 1 CPU.

• Bottom Right diagram shows the plan diagram
generated for 4GB Memory and 16 CPUs.

Figure 13: Picasso Diagrams for Hardware Simulation

From Figure 13, it’s clear that the cost of execut-
ing the queries decreases when we increase the mem-
ory or the number of CPUs, but the improvement is
not significant. These experiments were done on 32-
bit version of COM OPT, which supports only upto
4GB of memory. Therefore we don’t see much im-
provement in costs after increasing the memory, be-
cause the database size is very large compared to the
memory supported by the database engine. The same
approach can be used on 64-bit version of COM OPT
to simulate systems with higher memory, which can
give better insights about the improvement in cost af-
ter increasing the memory. The most important thing
here is that increasing the number of CPUs is not giv-
ing much improvement in cost. COM OPT is designed

for highly parallel machine architectures, and it is ex-
pected that increasing the number of CPUs should
give significant improvement in the execution cost of
queries on big data.

6 Execution Time Testing

The compile time testing of database engines can be
done using metadata statistics, but for execution time
testing, the actual data needs to be present in the
system. Generating and storing alternative big data
scenarios for testing is infeasible even on high end sys-
tems, because of time and space constraints. There-
fore we need a way to do execution time testing with-
out storing the database contents. This can be made
possible, if we do on-the-fly generation of data on
the operators of the query execution plan whenever a
query gets executed. The first step in on-the-fly data
generation is to generate a synthetic database, which
has similar distributions as the actual database. In
Section 8, we have discussed different kinds of tech-
niques available to generate synthetic databases. The
technique which is closely related to this work is by
Shen and Antova[8], which uses the single dimensional
histograms present in database catalog to generate the
synthetic data. The drawback of this technique is
that it focuses only on single dimensional histograms
for data generation, because of which the correlations
present in the database are lost. This section focuses
on the generation of a synthetic database using PCA
based techniques, such that the generated database
has similar distributions to the actual database, as
well as, all the correlations are also maintained.

6.1 Problem Statement

• Given the following information about a database
instance D:

– Logical Schema S, and

– Set of schematic constraints C, such as pri-
mary key, foreign key, not null, unique etc.

• Generate a synthetic database instance D̄, which:

– has the same logical schema as S,

– satisfies all the schematic constraints in C,

– has the same size (Number of records in each
relation) as D, and

– each relation R̄i ∈ D̄ has data distributions,
similar to Ri ∈ D.

11



6.2 Assumptions for the suggested so-
lution:

The suggested solution is only a partial solution and
following are the assumptions made for it:

• Relations are in 3-NF,

• There exists no NULL values in the relations,

• The data present in relations is numeric type,

• There is no foreign key relationship between rela-
tions.

6.3 Synthetic Database Generation

Let relation R contains 5 attributes:
A1, A2, A3, A4, A5, and n rows, as shown in left
side of Figure 14. Consider each attribute Ai of R
as a Random Variable and let Āi be the mean of Ai.
Calculate Covariance Matrix of R, using the following
formula:

Cov(Ai, Aj) =
1

n− 1

n∑
k=1

(
Ai,k − Āi

)(
Aj,k − Āj

)

Figure 14: Covariance Matrix calculated from Rela-
tion R

The Covariance Matrix calculated from Relation R
will be a square matrix, as shown in right side of Fig-
ure 14. If the covariance matrix is diagonal, then it
represents that all attributes of the relation are un-
correlated and we can generate the data for each at-
tribute using 1-dimensional histograms, as discussed
in [8]. The main issue comes when some or all the
attributes of the relation are correlated, in which case
the covariance matrix will not be diagonal. For such a
case, we can use Principal Component Analysis to de-
correlate all attributes of the relation. PCA provides
a linear transformation of the data such that after the
transformation, the attributes of the relation become
uncorrelated with each other. This transformation is

given by multiplication with the matrix P, which con-
tains the principal components of the relation in each
column.

Let us suppose that we apply PCA on relation R
to get the uncorrelated relation RPCA, using the fol-
lowing transformation:

RPCA = R.P,

where P is an orthonormal matrix, which contains the
principal components of R in each column. Here the
Covariance Matrix of relation RPCA will be diagonal,
as shown in Figure 15, since the relation RPCA is un-
correlated.

Figure 15: Diagonal Covariance Matrix calculated
from Covariance Matrix

Since all the attributes of RPCA are uncorrelated,
we can generate the 1-dimensional histograms from
RPCA and generate the synthetic relation R̄PCA (in
transformed space), by generating data for each col-
umn independently using those 1-dimensional his-
tograms, as shown in Algorithm 1.

Algorithm 1 Calculating the histograms:

1: Take a relation R as input.
2: Calculate the mean Āi of each column Ai of R,

and store it.
3: From each column Ai of R, subtract its mean Āi.
4: Calculate the eigen vectors of RTR, which are

called the principal components of R.
5: Arrange the eigen vectors of RTR in a matrix P,

where each column of P is one of the eigen vectors.
6: Calculate RPCA = R.P
7: Calculate 1-dimensional histograms for each col-

umn of RPCA.

From synthetic relation R̄PCA (in transformed
space), we can generate the synthetic relation R̄ (in
actual space), as shown in Algorithm 2, using the fol-
lowing inverse transformation:

R̄ = R̄PCA.P
−1 = R̄PCA.P

T

Here P−1 = PT , since P is an orthonormal matrix.

12



Algorithm 2 Generating the synthetic relation:

1: Generate the synthetic relation R̄PCA (in trans-
formed space), using 1-dimensional histograms.

2: Calculate the synthetic relation R̄ (in actual
space), using the following inverse transformation:

R̄ = R̄PCA.P
T

3: In each column Ai of R, add the mean Āi, which
was calculated earlier.

4: Return R̄.

6.4 Overview of the synthetic database
generation algorithm

Figure 16 gives us the overview of the algorithm to
generate a Synthetic Relation R̄, corresponding to the
actual Relation R, using Principal Component Anal-
ysis and 1-dimensional histograms. The dotted arrow
represents the synthetic relations corresponding to the
actual relations.

Figure 16: Original Relation to Synthetic Relation

6.5 Experimental Results

To test the performance of our algorithm, we took
first 1.5 million records from store returns relation of
TPC-DS database as input, call it R, and then gen-
erated one synthetic relation R̄ using our PCA based
algorithm and another synthetic relation R1D using 1-
dimensional histogram based algorithm given by Shen
and Antova[8]. Then we did two kinds of comparison
between our algorithm and the 1-D histogram based
algorithm.

6.5.1 Comparison based on correlation coeffi-
cients and attribute distributions

For comparing the correlation coefficients, we took
all the attribute pairs of three correlated at-
tributes of store returns relation: sr return quantity,
sr return amt and sr return tax, and then compared
the correlation coefficients for those attribute pairs.

The table shown in Figure 17 contains the correlation
coefficients between attribute pairs, shown in first col-
umn, for original relation R as well as synthetic re-
lations R̄ and R1D generated using both algorithms.
The second, third and fourth column contains the val-
ues of correlation coefficients for the attribute pairs in
R, R̄ and R1D respectively. From this table, it’s clear
that our algorithm retains most of the correlations
because we are generating the data after making all
the attributes uncorrelated using PCA and then again
converting those uncorrelated attributes into corre-
lated, while the 1-D histogram based algorithm loses
all these correlations because the data is generated in-
dependently even for correlated attributes.

Figure 17: Correlation Coefficients between attribute
pairs for Original Relation R, and Synthetic Relations
R̄ and R1D

Figure 18: KL-divergence from attributes of Original
Relation R to the attributes of: (a) Synthetic Relation
R̄, (b) Synthetic Relation R1D

For comparing the attribute distributions, we
again took the three attributes sr return quantity,
sr return amt and sr return tax, approximated their
probability distributions using histograms, and then
compared the distance between those distributions us-
ing KL-divergence[9]. The KL-divergence gives us the
difference between two probability distributions, and
the value of KL-divergence is near to zero if two distri-
butions are similar to each other. From Figure 18, it’s
clear that both algorithms gives the attribute distribu-
tion similar to the attribute of original relation, but
relatively 1-D histogram based algorithm gives bet-
ter results then our algorithm, because it is directly

13



generating the distribution for each attribute without
changing the basis.

6.5.2 Comparison based on Picasso diagrams

For comparing the Picasso diagrams, we formed
the following query with selectivity variation
on sr return amt and sr return tax attributes of
store returns relation, which are highly correlated,
see Figure 17.

select * from

store_returns s1, store_returns s2

where

s1.sr_item_sk = s2.sr_item_sk

and s1.sr_ticket_number = s2.sr_ticket_number

and s1.sr_return_amt :varies

and s2.sr_return_tax :varies

In Picasso, we generated the diagrams with reso-
lution 30 on both axis and the distribution of query
points was set to uniform. Optimization level was set
to the highest level. Because of some technical is-
sues related to loading of data in 32-bit test version
of COM OPT, these diagrams were generated on an-
other widely used commercial database optimizer.

Figure 19: Picasso Diagrams for: (i) Original Relation
R, (ii) Synthetic Relation R̄, (iii) Synthetic Relation
R1D

Figure 19(a) contains the plan diagrams generated
on relations R, R̄ and R1D. From this figure, we can
see that all the plan diagrams have same number of
plans, which is 6, and the area and position of each
plan is different in different diagrams. Here it’s clear
that except the low selectivity region, the plan dia-
gram for R̄ is more similar to the plan diagram R,
which shows that our algorithm works better than 1-
D histogram based algorithm.

Figure 19(b) contains the compile time cardinality
diagrams generated on relations R, R̄ and R1D. From
this figure, we can see that the shape of the diagram
on relation R1D is more close to the shape of diagram
on original relation R. The diagram generated on our
relation R̄ is also similar to the diagram on original
relation R except for the low selectivity region.

Figure 19(c) contains the execution time cardinality
diagrams for all three relations. From this figure, we
can see that the shape of the diagram for relation R̄ is
more close to the shape of diagram for original relation
R, except for the low selectivity region. The shapes
of compilation and execution cardinality diagrams, see
Figures 19(b)(iii) and 19(c)(iii), generated on relation
R1D look very similar, because the optimizer at com-
pile time assumes the attribute value independence
property, which is true for the relation R1D at execu-
tion time, since all its attributes are generated using
1-D histograms independently. While the shapes of
compile and execution time cardinality diagrams gen-
erated on our relation R̄, see Figures 19(b)(ii) and
19(c)(ii), are dissimilar to each other, because we cap-
ture the correlations, which is clear from the difference
between the slope of both diagrams.

These experiments show that our PCA based al-
gorithm works far better than 1-D histogram based
algorithm, but it still needs more improvements, be-
cause it does not work well for low selectivity region.

7 Coding Efforts in New Fea-
tures

In this work, we did all our implementations using
the Java language. For metadata configuration and
hardware configuration part, no additional library was
used, except the libraries which had been used earlier
for CODD. For synthetic data generation, we used
three mathematics libraries. The Apache Commons
Mathematics Library[10] was used for matrix mul-
tiplications and generating random numbers. The
EJML[11] library was used for Principal Components
Analysis. The BEAST2[12] library was used initially

14



for generating a covariance matrix using the Wishart
distribution, which was used to generate the corre-
lated data for our experiments. Later we used the
store returns relation of TPC-DS database, which had
the correlated data. In this work, we improved about
8K lines of code and added about 2K lines of new code.

8 Literature Survey

Synthetic databases are widely used for testing of
database system components and performance testing
of database engines. There has been a wide variety of
research done on generation of synthetic databases,
which cover different aspects of synthetic database
generation, as discussed below:

i. Synthetic databases with large amount of
data:

As database sizes grow, the generation of databases
starts taking longer than the testing of database sys-
tem components. To solve this problem, Gray et al
presented a paper[13] which focuses on generation of
databases having large amount of data quickly using
parallelism. It first discusses the techniques to gen-
erate the data sequentially and then generalizes those
techniques to generate the data in parallel. It also
discusses various techniques for generation of Dense
Unique Random Data, and then shows that the tech-
nique which generates the numbers using a generator
of the cyclic group of integers under multiplication is
best for this purpose. The algorithm presented in this
paper is as follows. Pick a prime P larger than N and
a generator G for the multiplicative group modulo P.
Then the series is:

< GimodP | i = 1, . . . , P and (GimodP ) ≤ N >

ii. Synthetic databases with various kinds of
data distributions:

The paper by Bruno and Chaudhury[14] focuses on
generating databases with different kinds of inter and
intra table dependencies. For this, they presented a
special purpose language called DGL - Data Genera-
tion Language, for generation of synthetic databases
with different kinds of distributions in each column.
DGL supports various kinds of data types and it has
a big collection of primitive iterators, which can gener-
ate different kinds of distributions, store the generated
data into database tables etc.

iii. Synthetic databases which are query aware:

The paper by Binnig et al[15] presented a unique con-
cept of reverse query processing, which is opposite to
traditional query processing. In reverse query process-
ing, we are given a query, its output and a database
schema, as input, and by using reverse query process-
ing, we create a database instance which satisfies all
the consistency constraints and gives the same out-
put result. Reverse query processing has applications
in generating test databases and functional testing of
database applications.

In [16], Lo et al presented a framework for testing
DBMS features, which is an extended version of their
earlier work[17]. In this paper, they presented the con-
cept of symbolic query processing, and a database gen-
erator called QAGen, which is based on symbolic query
processing. QAGen is a query aware database gener-
ator which takes a query and the set of constraints,
like cardinality at each query operator, defined on the
query as input and generates a query aware database
as output.

iv. Synthetic databases with similar data dis-
tributions as original databases:

Execution time testing part of our work falls in this
category, since we are generating a synthetic database,
which has data distributions similar to a given real
world database. It is different from [15] and [16], in
the sense that they were generating databases which
were query dependent and had nothing to do with the
data present in the original database, while we are
generating a database which has data distributions
similar to the real world database. The work which
is closely related to our work on synthetic database
generation is by Shen and Antova[8]. In [8], Shen and
Antova presented a tool called RSGen, which reverses
the metadata statistics for scalable test database gen-
eration. This tool uses the histograms available in
database catalogs of database systems to generate the
data for each attribute independently. The drawback
of this tool is that it focuses only on single dimensional
histograms for data generation, because of which the
correlations present in the database are lost, see Sec-
tion 6.5.

9 Conclusions and Future Work

In this work, we engineered CODD for COM OPT,
which is a distributed relational database system,
designed for highly parallel system architectures.
We also added two additional features in CODD,

15



Hardware-based testing and Synthetic database gener-
ation for execution time testing. During our exper-
iments, we found some serious issues in COM OPT,
related to the maximum database size supported, and
the cardinality estimation module of the query opti-
mizer. The COM OPT currently supports only 1018

cardinality in a relation, which may not be enough for
a futuristic big database. These issues have also been
communicated to the COM OPT developers, and they
are looking into these issues with high priority.

In Section 6, we proposed a PCA based algorithm to
generate a synthetic database, similar to the original
database, for execution time testing. This algorithm
assumes that there are no null values in the relations
and there are no foreign-key constraints. This algo-
rithm needs to be improved to take care of null values
and foreign-key constraints. Currently this algorithm
works only for numeric type data, and it needs to be
extended to work for other kinds of data types. In fu-
ture, our plan is to extend this synthetic database gen-
eration algorithm to mimic full scale execution time
environments for big data testing, by generating the
data at query execution time instead of persistently
storing the data.

References

[1] As big data explodes, are you ready for yot-
tabytes? http://www.forbes.com/sites/oracle/
2013/06/21/as-big-data-explodes-are-you-ready-
for-yottabytes.

[2] Rakshit S. Trivedi, I. Nilavalagan, and Jayant R.
Haritsa. Codd: Constructing dataless databases.
In Proceedings of the Fifth International Work-
shop on Testing Database Systems, DBTest ’12,
pages 4:1–4:6. ACM, 2012.

[3] TPC Benchmark H. http://www.tpc.org/tpch.

[4] TPC Benchmark DS. http://www.tpc.org/tpcds.

[5] Harish D, Pooja N. Darera, and Jayant R. Har-
itsa. On the production of anorexic plan dia-
grams. In Proceedings of the 33rd International
Conference on Very Large Data Bases, VLDB
’07, pages 1081–1092. VLDB Endowment, 2007.

[6] Deepali Nemade. Analyzing the behavior
of a distributed database query optimizer -
http://dsl.serc.iisc.ernet.in/publications/thesis/
deepali.pdf.

[7] Yannis E. Ioannidis, Raymond T. Ng, Kyuseok
Shim, and Timos K. Sellis. Parametric query
optimization. The VLDB Journal, 6(2):132–151,
May 1997.

[8] Entong Shen and Lyublena Antova. Reversing
statistics for scalable test databases generation.
In Proceedings of the Sixth International Work-
shop on Testing Database Systems, DBTest ’13,
pages 7:1–7:6. ACM, 2013.

[9] Solomon Kullback and Richard A Leibler. On in-
formation and sufficiency. The Annals of Mathe-
matical Statistics, pages 79–86, 1951.

[10] Commons Math: The Apache Commons Math-
ematics Library. http://commons.apache.org
/proper/commons-math/.

[11] EJML: Efficient Java Matrix Library.
http://code.google.com/p/efficient-java-matrix-
library/.

[12] BEAST2: Bayesian Evolutionary Analysis
by Sampling Trees. http://www.beast2.org/.

[13] Jim Gray, Prakash Sundaresan, Susanne Englert,
Ken Baclawski, and Peter J. Weinberger. Quickly
generating billion-record synthetic databases. In
Proceedings of the 1994 ACM SIGMOD Interna-
tional Conference on Management of Data, SIG-
MOD ’94, pages 243–252. ACM, 1994.

[14] Nicolas Bruno and Surajit Chaudhuri. Flexible
database generators. In Proceedings of the 31st
International Conference on Very Large Data
Bases, VLDB ’05, pages 1097–1107. VLDB En-
dowment, 2005.

[15] Carsten Binnig, Donald Kossmann, and Eric Lo.
Reverse query processing. In Proceedings of the
23rd International Conference on Data Engineer-
ing, ICDE ’07, pages 506–515. IEEE, April 2007.

[16] Eric Lo, Carsten Binnig, Donald Kossmann,
M. Tamer Özsu, and Wing-Kai Hon. A frame-
work for testing dbms features. The VLDB Jour-
nal, 19(2):203–230, April 2010.

[17] Carsten Binnig, Donald Kossmann, Eric Lo, and
M. Tamer Özsu. Qagen: Generating query-aware
test databases. In Proceedings of the 2007 ACM
SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’07, pages 341–352.

16


