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Abstract

Database software vendors often need to generate synthetic databases for a variety of applica-

tions, including (a) Testing database engines and applications, (b) Data masking, (c) Bench-

marking, (d) Creating what-if scenarios, and (e) Assessing performance impacts of planned

engine upgrades. The synthetic databases are targeted toward capturing the desired schematic

properties (e.g., keys, referential constraints, functional dependencies, domain constraints), as

well as the statistical data profiles (e.g., value distributions, column correlations, data skew,

output volumes) hosted on these schemas.

Several data generation frameworks have been proposed for OLAP over the past three

decades. The early efforts focused on ab initio generation based on standard mathematical

distributions. Subsequently, there was a shift to database-dependent regeneration, which aims

to create a database with similar statistical properties to a specific client database. However,

these mechanisms could not mimic the customer query-processing environments satisfactorily.

The contemporary school of thought generates workload-aware data that uses query execution

plans from the customer workloads as input and guarantees volumetric similarity. That is, the

intermediate row cardinalities obtained at the client and vendor sites are very similar when

matching query plans are executed. This similarity helps to preserve the multi-dimensional

layout and flow of the data, a prerequisite for achieving similar performance on the client’s

workload. However, even in this category, the existing frameworks are hampered by limitations

such as the inability to (a) provide a comprehensive algorithm to handle the queries based

on core relational algebra operators, namely, Select, Project, and Join; (b) scale to big data

volumes; (c) scale to large input workloads; and (d) provide high accuracy on unseen queries.

In this work, motivated by the above lacunae, we present HYDRA, a data regeneration tool

that materially addresses the above challenges by adding functionality, dynamism, scale, and

robustness. Firstly, extended workload coverage is provided through a comprehensive solution

for modeling select-project-join relational algebra operators. Specifically, the constraints are

represented as a linear feasibility problem, in which each variable represents the volume of a

partitioned region of the data space. Our partitioning scheme for filter constraints permits the
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Abstract

regions to be non-convex and ensures the minimum number of regions, thereby hugely reducing

the problem complexity as compared to the rectangular grid-partitioning advocated in the

prior literature. Similarly, our projection subspace division and projection isolation strategies

address the critical challenge of capturing unions, as opposed to summations, in incorporating

projection constraints. Finally, by creating referential constraints over denormalized equivalents

of the tables, Hydra delivers a comprehensive solution that also handles join constraints.

Secondly, a unique feature of our data regeneration approach is that it delivers a database

summary as the output rather than the static data itself. This summary is of negligible size

and depends only on the query workload and not on the database scale. It can be used for

dynamically generating data during query execution. Therefore, the enormous time and space

overheads incurred by prior techniques in generating and storing the data before initiating

analysis are eliminated. Our experience is that the summaries for complex Big Data client

scenarios comprising over a hundred queries are constructed within just a few minutes, requiring

only a few MBs of storage.

Thirdly, to improve accuracy towards unseen queries, Hydra additionally exploits metadata

statistics maintained by the database engine. Specifically, it adds an objective function to the

linear program to pick a solution with improved inter-region tuple distribution. Further, a

uniform distribution of tuples within regions is modeled to obtain a spread of values. These

techniques facilitate the careful selection of a desirable database from the candidate synthetic

databases, and also provide metadata compliance.

The proposed ideas have been evaluated on the TPC-DS synthetic benchmark, as well

as real-world benchmarks based on the Census and IMDB databases. Further, the Hydra

framework has been prototyped in a Java-based tool that provides a visual and interactive

demonstration of the data regeneration pipeline. The tool has been warmly received by both

academic and industrial communities.
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Chapter 1

Introduction

In industrial practice, a common requirement for enterprise database vendors is to adequately

test their database engines. The enormous size and complexity of these software make the

testing process challenging. The importance of addressing these challenges is also showcased

by a recent Dagstuhl seminar [3].

The testing process commonly requires generating synthetic databases and query workloads.

Traditionally, the vendors have relied on using synthetic benchmarks such as TPC-H [11] and

TPC-DS [12]. However, these benchmarks cover only a limited input testing space [25], due to

lack of flexibility with respect to the schema, queries, and data distribution.

Several database generators have been proposed from both industry and academia (e.g.

MUDD [68], PSDG [40], PDGF [62], Myriad [16]) that do an ab initio data generation. How-

ever, here as well, there is limited control on the input/output of the intermediate operators of

a query during a test, which can be an important requirement while testing individual DBMS

components. As a result, the client applications may reflect unforeseen problems. Therefore,

vendors need a way to generate representative data and workloads that accurately mimic the

data processing environments at customer deployments. While, in principle, clients could trans-

fer their original data and workloads to the vendor for the intended evaluation purposes, this

is often infeasible due to privacy and liability concerns. Moreover, even if a client is willing

to share the data, transferring and storing the data at the vendor’s site may have impractical

space and time overheads, especially in this Big Data era. Therefore, an important requirement

is to be able to dynamically regenerate representative databases while executing queries during

the testing process.

Several frameworks have been proposed in the last two decades for generating client-specific

synthetic databases. These frameworks can be classified into two main classes: (a) Database-

Dependent Regeneration, and (b) Query-Dependent Regeneration. We will discuss these classes
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next.

Database-Dependent Regeneration

The frameworks in this category (e.g. DBSynth [61], RSGen [66], DScaler [82]) derive coarse

statistics from the original data and ensure the synthetic data also obeys these statistics. For ex-

ample, RSGen generates data using one-dimensional histograms with respect to various columns

in the database. The key limitation here is that the accuracy is restricted to simple queries,

typically dealing with single attribute filters.

More recently, a new breed of generators in this category has emerged that makes use of

machine learning models such as auto-encoders and generative adversarial networks. However,

these models are focused on synthesizing a single table [36]. Therefore, evaluation of even

simple queries involving joins between multiple tables cannot be satisfactorily performed.

Query-Dependent Regeneration

Here the objective is to ensure that the generated data ensures volumetric similarity for a given

set of input queries. That is, assuming a common choice of query execution plans at the client

and vendor sites, the output row cardinalities of individual operators in these plans are very

similar in the original and synthetic databases. This similarity helps to preserve the multi-

dimensional layout and flow of the data, a prerequisite for achieving similar performance on the

client’s workload. There are two sub-classes in this category based on the nature of constraints:

Parameterized Constraints: Here the queries are parameterized with regard to the con-

stants in the query, and the generators (e.g. MyBenchmark [55], TouchStone [52])

additionally also provide parameter values for which the intermediate cardinalities are

matched.

Value Constraints: Here predicate constants are pre-specified in the input as part of the

workload. The generators (e.g. DataSynth [17], Linked-Data [37]) ensure that the inter-

mediate cardinalities are matched for these constants.

Consider the SQL query shown in Figure 1.1(b). Here the predicate constants are specified in

the query and therefore result in value constraints. The parameterized equivalent of this query

is as follows:

Select Age, Average (Score) From Register Reg, Student Std

Where Reg.RollNo = Std.RollNo and Year = param1 and Age >= param2

In the above query, param1 and param2 are variables.
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While the parameterized constraints can be preferable from a privacy perspective, value

constraints allow construction of databases that are closer to the original and, therefore, more

robust to unseen queries. The existing frameworks across both categories suffer from one or

more of the limitations, such as the inability to (a) provide a comprehensive algorithm to handle

queries based on core relational algebra operators, namely, select, project, and join; (b) scale to

big data volumes; (c) scale to large input workloads; and (d) provide high accuracy on unseen

queries.

In this thesis, motivated by the above lacunae, we present HYDRA, a new (value) query-

dependent data generation framework, that materially addresses the above challenges by adding

functionality, dynamism, scale, and robustness. The extended workload coverage is obtained

by providing a comprehensive solution to support SPJ queries. At its core, the constraints are

modeled using linear feasibility problem, where each variable represents the volume of a region

of the data space. These regions are computed using a series of partitioning strategies. Hydra

further exploits metadata statistics maintained by the database engine in order to improve

accuracy towards unseen queries.

A unique feature of our data regeneration approach is that it delivers a database summary as

the output rather than the static data itself. This summary is of negligible size and depends only

on the query workload and not on the database scale. It can be used for dynamically generating

data during query execution. Therefore, the enormous time and space overheads incurred

by prior techniques in generating and storing data before initiating analysis are eliminated.

Specifically, the summaries for complex Big Data client scenarios comprising over a hundred

queries are constructed within just a few minutes, requiring only a few MBs of storage.

As a proof of concept, the Hydra framework has been prototyped in a Java based-tool and

evaluated on both synthetic and real-world benchmarks. Our work is closest to DataSynth [17,

18] tool from Microsoft. DataSynth also expresses the value constraints in the form of linear

feasibility program whose solution is used to construct the synthetic database. We also show a

comparison of Hydra with DataSynth on various facets in our experimental evaluation.

1.1 Volumetric Similarity

Synthetic databases have been targeted toward capturing the desired schematic properties (e.g.

keys, referential constraints, functional dependencies, domain constraints), as well as the sta-

tistical data profiles (e.g., value distributions, column correlations, data skew, output volumes)

hosted on these schemas. The contemporary school of thought [25, 55, 17, 52, 37, 80] is gener-

ating query-dependent databases that use query execution plans from the customer workloads
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as input and provide volumetric similarity. That is, the intermediate row-cardinalities obtained

at the client and vendor sites are very similar when matching query plans1 are executed. This

similarity helps to preserve the multi-dimensional layout and flow of the data, a prerequisite

for achieving similar performance on the client’s workload. Therefore, in this thesis, we have

primarily focused on data synthesis that achieves volumetric similarity. Extensions to other

important metrics such as Duplication Distribution and Presortedness in Chapter 9.

Now, we will discuss the preliminaries of volumetric similarity. Subsequently, we will present

some of its prominent applications.

1.1.1 Preliminaries

We start with background information on the key foundations – Annotated Query Plans [25]

and Cardinality Constraints [17] – that form the basis for achieving volumetric similarity, and

are therefore relevant to our design of the Hydra system.

Annotated Query Plans. Consider a toy university database with the schema shown in

Figure 1.1(a). A sample client query on this schema is shown in Figure 1.1(b), with the

corresponding query execution plan in Figure 1.1(c). Note that this execution plan has the

output edge of each operator annotated with the associated row cardinality2 in green color –

for instance, there are 3000 rows resulting from the join of filtered Register and Student tables

and 10 rows qualify after the final projection as a result of Group By clause. Such a plan is

referred to as an “Annotated Query Plan” (AQP) in [25].

We wish to highlight that in the context of volumetric similarity, Group By clause behaves

same as Distinct SQL operation. Distinct is expressed as duplicate eliminating projection

relational algebra operation and therefore we have used projection as an umbrella term to

include Group By as well.

Cardinality Constraints. A unified and declarative mechanism for representing AQP data

characteristics, called cardinality constraints (CCs), was proposed in [17]. The canonical rep-

resentation of the constraint is:

|πA(σf (T1 ./ T2 ./ ... ./ TN))|= k (1.1)

where f represents the filter predicates applied on the inner join of a group of tables T1, ...TN

in the database; A represents the projection-attribute-set (PAS), i.e. the set of attributes on

1ensured through “plan forcing” [13] or “metadata matching” [73]
2These are the actual row cardinalities as evaluated during the client’s execution. Using compile-time

estimates instead can lead to a qualitatively poor synthetic database, since the estimates are routinely highly
erroneous, as emphasized in the query optimization literature.
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Figure 1.1: Example Scenario

which the projection is applied; and k is a count representing the output row-cardinality of the

relational expression. For example, the CCs expressing the AQP of Figure 1.1(c) are shown in

Figure 1.1(d).

To ensure volumetric similarity, the schematic information and the set of AQPs with respect

to all the queries in the workload are taken as input from the client site. The synthetic data

produced is aimed at closely meeting the CCs derived from the AQPs.

1.1.2 Applications

By ensuring volumetric similarity, Hydra can be beneficial for a variety of use-cases. We enu-

merate some of these next.

Regression Testing. In the context of engine upgrades, a critical requirement is to synthesize

data that can mimic client environments for regression testing. This facility enables: (a)
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Catching optimizer bugs such as a change in query plan leading to performance degra-

dation, or incorrect query rewriting leading to erroneous query results; (b) Performance

evaluation of operators in the query execution pipeline. For instance, a thorough as-

sessment of a new memory manager’s ability to handle a hash operator is predicated on

accurate modeling of input row cardinality; and (c) Given an operator of interest, eval-

uating its impact on the performance of downstream operations. For instance, 12 out of

the 22 queries in the TPC-H benchmark require a sort operation immediately following

a projection-based operator. Therefore, in these cases, the projection output cardinality

affects the performance of sort operator.

Execution Tuning. Due to the dynamic nature of production environments, it is often re-

quired to carry out on-the-fly platform tuning, especially with regard to system config-

urations or query execution plans. As a non-invasive and arm’s length precursor, the

DBA can evaluate the expected tuning impacts on a synthetic equivalent – here mimick-

ing intermediate row cardinalities can be of particular utility since cardinality estimation

techniques are known to have difficulty in accurately modeling of operator outputs, es-

pecially for the higher operators in the plan tree. For instance, knowledge of left and

right intermediate table cardinalities can be used by the DBA to choose the better plan

between nested loops vs hash join based plans and subsequently force it.

Application Testing. Organizations often outsource the testing of their database applica-

tions to other organizations. However, sharing the internal databases on which these

applications operate may be infeasible due to privacy concerns. In these cases, testing

the applications using the database synthesized using cardinality constraints is a viable

option. For instance, in the context of banking applications, a routine analytical query

could be asking for the number of distinct bank accounts performing online transactions

in remote areas. Therefore, modeling this as a CC and ensuring synthetic data satisfies

it can be useful.

System Benchmarking. When evaluating competing database platforms for hosting an ap-

plication, carrying out the evaluation on an application-specific database is of much richer

relevance as compared to a generic benchmark such as TPC-H or TPC-DS. Creating a

synthetic database that models the application’s environment allows for a detailed assess-

ment of both current and future scenarios. In this context, greater realism of the synthetic

data would help to make informed choices. Volumetric similarity helps in achieving greater

fidelity to the application’s framework.
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1.2 Summary of Contributions

In this thesis, we present HYDRA, a data regeneration tool that materially advances state of the

art on a variety of facets such as functionality, dynamism, scale, and robustness. Specifically,

the key contributions of Hydra are enumerated below.

Extended Workload Coverage. Hydra provides a comprehensive solution to support

queries based on SPJ relational algebra operators. Specifically, the constraints are mod-

eled using linear feasibility problem (LP)1, in which each variable represents the volume

of a region of the data space. These regions of data space are computed using a series of

partitioning strategies. For example, to encode the filter constraints, our Region Parti-

tioning approach divides the data space into the provably minimum number of regions.

Our projection subspace division and projection isolation strategies address the critical

challenges in incorporating projection constraints. By modeling referential constraints

over denormalized equivalents of the tables, Hydra delivers a comprehensive solution that

also additionally handles join constraints.

Apart from the scope of queries, by ensuring minimum region count in the output of the

partitioning algorithm, Hydra covers a larger number of input queries. As a case in point,

on comparing the Region Partitioning strategy of Hydra against the more fine-grained

Grid Partitioning approach used in DataSynth, the former reduces the LP complexity by

many orders of magnitude.For instance, an LP with a few thousand variables in Hydra

requires more than a billion variables in DataSynth– in fact, in this case, the LP is

solved in a less than a minute on the Hydra formulation, while the solver crashes on the

DataSynth formulation.

Database Summary and Dynamic Database Regeneration. Hydra introduces the con-

cept of dynamic database regeneration by constructing a minuscule database summary

that can on-the-fly regenerate databases of arbitrary size during query execution. This

approach is imperative for Big Data systems, where working with materialized solutions

entails impractical time and space overheads. Specifically, dynamic generation eliminates

the need to store data on the disk and its subsequent load by the engine – instead, all data

is created and delivered on demand. An orthogonal benefit is that the generation rate

can be strictly controlled, thereby addressing velocity, one of the several V’s associated

with Big Data [2].

1LP term has been used to be consistent with terminology used in literature.
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Data Accuracy, Scalability and Efficiency. Hydra provides perfect volumetric similarity

on the input query workload, a property not seen in the prior work. Moreover, Hydra

does so without compromising on the efficiency of the generation pipeline. In fact, the al-

gorithm proposed for database summary production is data-scale-free. That is, it depends

only on the query workload and not on the database scale. Specifically, the summaries

for complex Big Data client scenarios comprising over a hundred queries are constructed

within just a few minutes, on a vanilla computing platform, requiring only a few MBs of

storage.

Improved Robustness. Hydra provides a mechanism that is expected to provide better ac-

curacy on unseen queries – the mechanism leverages the metadata statistics maintained

by the database engine. Specifically, it adds an objective function to the linear program

to pick a solution with improved inter-region tuple distribution. Further, a uniform dis-

tribution of tuples within regions is generated to get a spread of values. In a nutshell,

these techniques facilitate careful selection of a more representative database from the

candidate synthetic databases and also provide metadata compliance.

Enhanced Evaluation. We have evaluated the proposed ideas using both synthetic bench-

marks, such as TPC-DS, and real-world benchmarks based on Census (from [37]) and

IMDB databases [45, 5]. Therefore, our evaluation is more comprehensive than that in

prior techniques, which have largely been evaluated on simpler and small-sized query

workloads operating on modest databases.

Prototype Tool. As a proof of concept, the Hydra framework has been prototyped in a Java

based-tool, running to over 50K lines of code, and is currently operational on the Post-

greSQL v9.6 engine [7]. It has an intuitive user interface that facilitates modeling of

enterprise database environments, delivers feedback on the regenerated data, and tab-

ulates performance reports on the regeneration quality. The entire tool, including the

source, is downloadable 1. The tool has been warmly received by both the academic and

industrial communities.

1.3 Thesis Overview

In this section we present an overview of the thesis with a brief description of the various

chapters included. The flow of information from the client to vendor is shown in Figure 1.2.

The client ships the schema information, and the query workload with its corresponding AQPs

1https://dsl.cds.iisc.ac.in/projects/HYDRA/index.html
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Figure 1.2: Data Flow

obtained from the database engine. The statistical metadata from the database catalogs is

captured with the help of CODD metadata processor tool [19] tool. Using this information,

Hydra generates synthetic data at the vendor cite.

As discussed earlier, at its core Hydra expresses the volumetric constraints using LP. Each

variable in the LP accounts for the cardinality of a specific region of the data space. We use an

LP solver to obtain a feasible solution to the problem. 1

Using LP solution, Hydra produces a collection of database summaries. Database summary

is used to produce data on demand during query execution using the Tuple Generator module

that is implemented inside the database engine. The produced data ensures volumetric simi-

larity on the client queries. In addition to this, the vendor can also evaluate unseen queries on

the produced synthetic database.

We shall now present the organization of the thesis followed by a summary of the core

technical chapters.

1An alternate strategy could have been to construct an SQL query for each region and have another iteration
of client interaction where the client provides the actual values for these queries. While this strategy has the
potential to produce more robust databases, it requires significant extra work from the client-side and may not
be always desirable from a privacy point of view.
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1.3.1 Organization

The thesis Introduction and Related Work are presented in Chapters 1 and 2, respectively. The

Problem Framework is presented in Chapter 3. The mechanism for synthesizing data using

the input CCs is explained progressively in Chapters 4 through 6. Specifically, we begin by

discussing the single table synthesis method, where initially we assume only filter operators in

the CCs in Chapter 4, and subsequently include projection operator in Chapter 5. Further,

Chapter 6 discusses multiple table synthesis, which includes join operators in the CCs. Next, the

discussion on improving robustness to unseen queries is presented in Chapter 7. The complete

implementation and prototype details are provided in Chapter 8. We discuss the extensions of

Hydra in Chapter 9 and finally, conclude in Chapter 10.

1.3.2 Problem Framework (Chapter 3)

We summarize the basic problem statement, assumptions made and the output delivered.

Statement. Given an SPJ query-workload W, with its corresponding set of AQPs Q, derived

from an original database with schema S and statistical metadata M, the objective is to generate

a synthetic database D such that it conforms to S and Q. That is, the AQPs obtained from

the original database match, wrt the cardinality annotations, the AQPs obtained on D.

Assumption. We assume that W comprises of only PK-FK joins. Further, we assume that

the filters and projections are applied only on non-key columns. For simplicity, we assume that

Q is collectively feasible, that is, there exists at least one legal database instance conforming

to Q. In the regeneration usecase, this assumption holds trivially since the constraints are

produced from an original client database.

Output. Given S, M, W and Q, Hydra outputs a collection of database summaries S. Each

summary sD ∈ S can be used to deterministically produce the associated database D. The

databases produced are such that: (a) all of them conform to S, and (b) for each query in W,

its corresponding AQP in Q matches with the AQP obtained on at least one output database

instance.

In principle, we would like to have a single summary that represents the entire workload.

However, in order to handle the problem of conflicting projections (Section 1.3.4), we are forced

to take recourse to multiple summaries.

1.3.3 Filter Constraints (Chapter 4)

To model filter constraints, the data space of the target table is logically partitioned into a set

of Filter-Blocks. Each filter-block satisfies the condition that every data point in it satisfies the
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same subset of filter predicates. The row cardinality of each filter-block is represented using

a variable, and is then used to construct a linear feasibility problem. The resultant system

is usually highly under-determined and therefore, to reduce the complexity of solving it, our

proposed Region Partitioning technique partitions the data space into the minimum number of

filter-blocks.

Figure 1.3: Filter Constraints based Regeneration

To make the above concrete, consider the following two filter CCs on Std table.

c1 : |σ15≤Age<35∧6≤GPA<8(Std)|= 40000

c2 : |σ20≤Age<40∧5≤GPA<9(Std)|= 45000

For simplicity, Figure 1.3 shows only the 2D data space comprising the Age and GPA attributes

since no conditions exist on the other attributes. In this figure, the filter predicates are repre-

sented using regions delineated with colored solid-line boundaries. When Region Partitioning

is applied on this scenario, it produces four disjoint filter-blocks: b1, b2, b3, b4, whose domains

are depicted with dashed-line boundaries.

The corresponding LP constructed on these filter-blocks is shown in Figure 1.3(b). Here,

x1, x2, x3, x4 correspond to the count variables for filter-blocks b1, b2, b3, b4, respectively. A
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possible solution to the LP is: 〈x1 = 0, x2 = 5000, x3 = 40000, x4 = 5000〉. A table summary

corresponding to the example LP solution is shown in Figure 1.3(c) where a single point is

picked for each populated filter-block and is assigned multiplicity equal to the cardinality of

the filter-block.

The complete details of the above procedure, including the partitioning, proof of optimality,

summary construction mechanism and several optimizations are discussed in Chapter 4.

1.3.4 Projection Constraints (Chapter 5)

To model projection constraints, the key technical challenges faced are as follows:

Inter-Projection Subspace Dependencies. When a set of tuples b is subjected to multiple

projections, the data generation for projection subspaces may be interdependent. Given

a pair of PASs A1 and A2, sourced from two CCs, we have the inclusion property:

πA1∪A2(b) ⊆ πA1(b)× πA2(b)

That is, it may be possible that a tuple lying within the boundaries of πA1(b) and πA2(b),

may be outside the boundary of b itself. Therefore, the projections along different sub-

spaces cannot be dealt with independently.

Intra-Projection Subspace Dependencies. Consider the projection subspace spanned by a

set of attributes A. Dealing with projection requires computing union of groups of tuples.

For example, for groups b1 and b2, the direct expression for computing their projection

along A is:

|πA(b1 ∪ b2)|

However, even if b1 and b2 are disjoint in the original table, their projections onto A may

overlap. Therefore, unlike filters, here union does not translate to a simple summation.

The key design principles incorporated in Hydra to handle the above challenges are the

following:

Isolating Projections. To circumvent inter-projection subspace dependencies, we first “iso-

late” the projections. Specifically, the following set of steps are taken in this process: (discussed

in detail in Chapter 5)

A Symmetric Refinement strategy is adopted that refines an filter-block into a set of disjoint

Refined Blocks such that each resultant refined-block exhibits translation symmetry along each

applicable projection subspace. That is, for each domain point of a refined-block r along a

particular PAS, the projection of r along the remaining attributes is identical.
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For instance, consider b2 in Figure 1.3(a). Clearly, it is asymmetric along Age – specifically,

compare the spatial layout in the range 20 ≤ Age < 35 with that in 35 ≤ Age < 40. After

refinement, this block breaks into r2a and r2b as shown in Figure 1.4 – it is easy to see that

r2a and r2b are symmetric. This refinement allows for the values along different projection

subspaces to be generated independently.

The above refinement, however, does not scale when the projections applied on a region are

along partially overlapping attribute-sets. To eliminate such situations, we resort to a Workload

Decomposition strategy to split the workload into non-overlapping sub-workloads using a vertex

coloring-based strategy. As a consequence, for each such sub-workload, a separate summary

is produced. From a practical perspective, the multiplicity of summaries does not impose a

substantive overhead since each summary is very small. However, to maximize the number

of constraints that can share a common database, the number of sub-workloads generated is

minimized.

Figure 1.4: Symmetric Refinement Figure 1.5: Table Summary

Projection Subspace Division. This technique divides each projection subspace into re-

gions that allow modeling the unions into a summation of the cardinality of a subset of the

regions obtained. For instance, by using a naive projection subspace division strategy to divide

the subspace with respect to Age attribute from our running example, we can express |πAge(r2a∪
r2b∪r3)| (projection of c2 along Age) as the following summation of cardinalities of four projec-

tion regions: |(πAge(r2a)\πAge(r3))|+|(πAge(r2a)∩πAge(r3))|+|(πAge(r3)\πAge(r2a))|+|πAge(r2b)|.
Hydra’s strategy for projection subspace division gives the minimum number of such pro-

jection regions. These are called constituent projection blocks (CPBs). An LP variable is

constructed for each refined-block and CPB to express the CCs as a summation of LP vari-

ables.
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A sample table summary produced is shown in Figure 1.5. Each segment of the summary

corresponds to a populated refined-block. For example, the first refined-block’s tabulation can

be interpreted as “generate 5000 tuples, such that there are 5 distinct values of Age in the

interval [20,40), and 20 distinct value pairs of {Scholarship,GPA} such that 12 are from the

2D interval [20000,50000), [5,6), and the remaining 8 from the 2D interval [20000,50000),

[8,9).” For attributes that do not feature in any projection subspace, no associated distinct

cardinalities are maintained. The complete details of projection handling are discussed in

Chapter 5.

1.3.5 Join Constraints (Chapter 6)

To handle joins in the CCs, three additional steps are taken:

Denormalization. For each table T to be constructed, a corresponding view VT is synthe-

sized first. This view captures the denormalized equivalent of T (excluding the key columns).

Processing on views helps in generating correlations that are compatible with the various join

cardinalities in the input. The views constructed for our running example are as follows:

VReg(Course, Y ear, Score, Age, Scholarship,GPA), VStd(Age, Scholarship,GPA)

These views allow rewriting the join expression on a single view. For example, the first two

CCs from Figure 1.1(d) can now be rewritten as:

|πAge(σAge≥25∧Y ear=2021(VReg))|= 10, |σAge≥25∧Y ear=2021(VReg)|= 3000

Post-rewriting, the data space of each of these views is partitioned using the region partitioning

and symmetric refinement algorithms.

Referential Constraints. To obtain original tables back from their denormalized equiva-

lents, the views need to obey referential integrity. We know that referential integrity constraint

between a fact table F containing foreign key F.fk referencing dimension table D with primary

key D.pk is expressed as πF.fk(F ) ⊆ πD.pk(D). The equivalent expression of this constraint in

terms of the views is the following:

πB(VF ) ⊆ VD

where B is the set of columns in VD, and hence is borrowed in VF . Therefore we include addi-

tional constraints in the LP formulation that ensure these referential dependencies. Specifically,

these referential constraints ensure that for each interval of the borrowed columns, the number

of distinct values present in VF is at most equal to the number of distinct values present in VD.
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To add referential constraints, the regions of VF and VD need to be aligned. Therefore, as a

precursor, an Align Refinement stage may be required, to ensure that each refined-block in VD

is either contained or is disjoint with a refined-block in VF along the subspace spanned by B.

The output of this stage is the set of Aligned Refined Blocks (ARBs).

Referential constraints only ensure cardinality subsumption. For subset property, we also

need to further enforce value subsumption. This is done in the final stage of Key-Range Curation

as described next.

Key-Range Curation. This final stage is responsible for the curation of FK values in F .

Specifically, for each ARB a in VF , to construct its equivalent in F , a range of FK values is

assigned to it. This assignment is done using a range of PK values associated to a set of blocks

in VD, such that:

1. The chosen VD blocks are contained within the boundaries of a after projecting along B.

2. The tuples associated with the selected PK values have the desired number of distinct

values along the PAS prescribed by the projection applied on the a.

In this way, we get the summary for each table, which is used for dynamic data regeneration.

The complete details of join operator handling is discussed in Chapter 6.

1.3.6 Adding Robustness (Chapter 7)

The aforementioned suite of techniques ensure volumetric similarity on seen queries provided

by the client. Generalization to new queries may be a requirement at the vendor site as part of

the ongoing evaluation exercise. To address this expectation, the following design choices are

added in Hydra:

Optimization Problem. There can be numerous feasible solutions to the LP designed by

Hydra. Even though all these ensure volumetric similarity on seen queries, it is easily possible

that several of these solutions are far from the solution that is representative of the client

database. Hence, volumetric similarity for unseen queries can incur enormous errors. To address

this, we construct finer regions by additionally using metadata stats. Subsequently, an LP is

formulated, by adding an Objective Function that picks up a feasible solution that is close to

the estimated solution derived from the stats. This also helps ensure metadata compliance.

Intra-Region Tuple Distribution. Within each populated region obtained from the LP

solution, we try to obey the tuple distribution based on the information extracted from metadata

stats. At the finer granularity where volumes cannot be estimated any further, we resort to

uniform distribution.
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We evaluate the efficacy of these additional modules by comparing their volumetric similarity

with the basic Hydra on unseen queries. Our results indicate a substantive improvement –

specifically, the volumetric similarity on filter constraints of unseen queries was better by more

than 30 percent, as measured by the UMBRAE model-comparison metric [32]. Further, the

produced database also is metadata compliant. Finally, the produced data also has a more

realistic look. A sample set of rows produced by Hydra for a few columns of the TPC-DS table

Item is shown in Figure 1.6.

item sk color price rec start date
7125 Beige 9.91 1990-05-08
3847 Coral 4.13 1990-03-26
1618 Dark 4.56 1990-04-06
8450 Floral 2.46 1990-06-17
2836 Navy 27.33 1990-03-06
3086 Pink 63.66 1990-04-14
1827 Red 1.61 1990-03-08
3651 Violet 7.43 1990-03-24

Figure 1.6: Sample Output (Item Table)

The complete details of robustness addition are discussed in Chapter 7.

1.3.7 Prototype Implementation (Chapter 8)

The above mentioned modules are combined to produce an end-to-end data generation pipeline.

A pictorial view is presented in Figure 1.7 – in this picture, the green boxes represent the

various modules of Hydra. The key acronyms and notations used in the thesis are enumerated

in Tables 3.1 and Table 3.2, respectively.

Client Site. The information flow from the client to the vendor is as follows: At the client

site, Hydra fetches the schema information, and the query workload with its corresponding

AQPs obtained from the database engine. The statistical metadata from the database catalogs

is captured with the help of CODD [19] tool. All this information is then shipped to the vendor

site.

Vendor Site. Using the schema, views are constructed using the Denormalization module.

The query-workload is passed through a Workload Decomposition modules, which returns the

set of non-conflicting sub-workloads. The AQPs wrt each sub-workload is converted to equiv-

alent CCs using a Parser. Subsequently, the rest of the pipeline, comprising of Data Space

Partitioning, LP Formulation and Summary Construction, is executed independently for each

of these sub-workload CCs.
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Figure 1.7: Hydra Architecture

The Data Space Partitioning for a View and sub-workload begins with Region Partitioning

followed by Symmetric Refinement algorithm. This gives the set of refined-blocks. Further,

due to Align Refinement across Fact and Dimension tables, the refined-blocks are split and

give Align Refined Blocks (ARBs) in the output. The ARBs after being projected along the

applicable PASs, give the Projected Refined Blocks (PRBs). These PRBs and sub-workload are

then used by the Projection Subspace Division module to construct the set of CPBs.

Next, at the LP Formulation stage, an LP is constructed using variables representing the

cardinalities of ARBs and CPBs. Specifically, Filter Constraints and Projection Constraints are

modeled for each view. Subsequently, Referential Constraints are added between each pair of

Fact and Dimension table. Finally, based on the cardinality estimation module of the database

engine, an estimate of the size of various blocks is obtained. Using these estimates, an Objective

17



Function is added to the LP. This construction is then given as the input to the LP Solver. We

have used the popular Z3 solver [14] from Microsoft for this purpose.

From the solution produced by the LP solver, a comprehensive table summary is constructed

using the Summary Construction module. Specifically, it constructs View Summary and then

replaces borrowed attributes in the fact tables with the corresponding foreign key columns using

the Key Curation module.

The summary is used by the Tuple Generation module to synthesize the data. This compo-

nent resides inside the database engine, and needs to be explicitly incorporated in the engine

codebase by the vendor. As a proof of concept, we have implemented it for the PostgreSQL

engine by adding a new feature called datagen, which is included as a property for each relation

in the database. Whenever this feature is enabled for a relation, the scan operator for that rela-

tion is replaced with the dynamic generation operator. As a result, during query execution, the

executor does not fetch the data from the disk but is instead supplied by the Tuple Generator

in an on-demand manner, using the available relation summary.

The complete pipeline, the implementation detail and the visual interface are discussed in

Chapter 8.

1.3.8 Extensions (Chapter 9)

The techniques discussed in the thesis focus on ensuring volumetric similarity. In Chapter 9 we

go beyond volumetric similarity and discuss two other data characteristics – namely, Duplica-

tion Distribution and Presortedness, which are important for mimicking client data processing

environments. Specifically, we discuss their mathematical characterization, mechanism of ex-

traction and preliminary ideas on modeling them for data generation.

1.4 Summary

Synthetic data generation from a set of cardinality constraints has been strongly advocated

in the contemporary database testing literature. Hydra provides a comprehensive solution to

support SPJ constraints. Further, Hydra introduces the concept of dynamic data regenera-

tion using minuscule database summaries. These summaries are produced in a data-scale-free

manner and is hence extremely efficient and scalable. Hydra further provides a mechanism to

obtain reasonable accuracy on unseen constraints. The experimental evaluation on real-world

and synthetic benchmarks indicated that Hydra successfully produces generation summaries

with viable time and space overheads.
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Chapter 2

Related Work

Over the past few decades, a rich corpus of literature has developed on synthetic database

construction. There are two broad streams of research on the topic, one dealing with the ab

initio generation of new databases using standard mathematical distributions (e.g. [39, 28]), and

the other with regeneration of an arbitrary existing database. In the latter category, there are

two approaches, one of which uses only schematic and statistical information from the original

database (e.g. [61, 66]). The other uses both the original database and the query workload to

achieve statistical fidelity during evaluation (e.g [53, 17]) – our work on Hydra falls into this

class. In this section, we review recent literature on this spectrum of research categories.

2.1 Ab Initio Generation

The frameworks in this category deal with the ab initio generation of new databases using

standard mathematical distributions. For example, [39] was one of the early work in the area.

The focus here was to build parallel algorithms to generate data sets with different distributions

and dense unique sequences in linear time. Thereafter, a special purpose language called Data

Generation Language (DGL) was proposed in [28]. It is used in generating synthetic data

distributions by utilizing the concept of iterators. While the work supports a broad range of

dependencies between relations, the construction of dependent tables always requires access

to the referenced table, creating a bottleneck on the data generation speed. A graph based

generation tool was proposed in [41], that models dependencies in a graph and uses a depth-

first traversal to generate dependent tables.

Two subsequent tools that offer similar capabilities are MUDD [68] and PSDG [40]. They

generate all related data at the same time thereby providing parallelism in the data genera-

tion process. MUDD proposed algorithms to efficiently generate dense-unique-pseudo-random

19



sequences and derive nonuniform distributions. Further, it gives the concept of separating the

data generation from data distribution definition. This enables users to quickly change data

distributions to suit individual needs. Like MUDD, PSDG decouples data generation details

from data description. It generates a constant output for a given input file regardless of the de-

gree of parallelism. The data is described and constrained using an XML-based language called

Synthetic Data Description Language (SDDL). While SDDL includes constructs to express

intra-row, inter-row, and inter-table dependencies, it supports restrictive data distributions.

Further, even with the benefits of parallelism, due to the requirement of generating all the

referenced tables, the above techniques can be rendered inefficient, especially if the referenced

tables are large in size or if some table is not required to be generated during a testing exercise.

A faster way of generating references is recomputing them in the distributed setting. It

helps in getting rid of the I/O cost incurred to satisfy referential constraints across tables

that are present across different nodes. PDGF [62] was designed with this goal of achieving

scalability and decoupling. In PDGF, the user specifies two XML configuration files, one for the

data model and the other for the formatting instructions. The generation strategy is based on

the exploitation of determinism in pseudo random number generators (PRNG), which enables

regeneration of the same sequences, hence eliminating the scan overheads. The multi-layer

seeding strategy used in PDGF makes it possible to generate data with cyclic dependencies as

well. However, this induces high computation cost for generating the keys. Also, PDGF comes

with a set of fixed generators for different datatypes and with some basic distribution functions.

A scheduler is responsible for dividing the work among physical nodes and the worker threads

on each node. The work is divided between nodes and workers equally making it suitable for

homogeneous clusters. A similar generator is Myriad [16], which implements an efficient parallel

execution strategy leveraged by extensive use of PRNGs with random access support. With

these PRNGs, Myriad distributes the generation process across the compute nodes and ensures

that they can run independently from each other, without imposing any restrictions on the

data modeling language.

Finally, a rule-based probabilistic approach, based on an extension of Datalog was proposed

in [22], which is capable of generating data characterized by parameterized classical discrete

distributions.

A common setback in all these frameworks is that they use standard distributions to gen-

erate the data. And it is not always feasible to assign such distributions to real-world data,

especially over multivariate spaces. Further, the generated database tends to give empty results

over complex queries since the subtle correlations between attributes are often not captured.

Therefore, mimicking customer environments remains a challenge.
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2.2 Database-Dependent Regeneration

We now turn our attention to database-dependent regeneration techniques. DBSynth[61], an

extension to PDGF, builds data models from an existing database by extracting schema in-

formation and sampling. If sampling is permissible, histograms and dictionaries of text-valued

data are built. Also, if the textual data contains multiple words, then Markov chain gener-

ators are used. These help in analyzing the word combination frequencies and probabilities.

However, if sampling cannot be done, DBSynth falls back to random values. Finally, after the

model construction is complete, PDGF is invoked to generate the corresponding data.

Like DBSynth, RSGen[66] takes a metadata dump, including 1-D histograms, as the input,

and generates database tables along with a loading script as the output. It uses a bucket

based model at its core, which is able to generate trillions of records with minimum memory

footprint. However, the proposed technique works well only for queries with single attribute

range predicate.

UpSizeR [71] is a graph-based tool that uses attribute correlations extracted from an existing

database to generate an equivalent synthetic database. A derivative work, Rex [29] produces an

extrapolated database given an integer scaling factor and the original database, while maintain-

ing referential constraints and the distributions between the consecutive linked tables. UpSizeR

clusters the values in each FK, does co-clustering, then generates FK values per co-cluster.

In contrast to UpSizeR, Dscaler [82] replicates per-tuple correlation patterns for key at-

tributes using the concept of correlation database. This facilitates non-uniform scaling1 and

greater similarity. However, obtaining these per-tuple correlations themselves is typically hard.

Moreover, all these techniques only generate the key attributes, whereas the non-key values

are sampled from the original database using these key values. Hence, the approach becomes

impractical in Big Data and security-conscious environments. Finally, Dscaler fails to retain

volumetric similarity for some common query classes.

A different trajectory of Database-Dependent Regeneration has been followed by the ML

community. The techniques here were presented in a comprehensive study by Fan et al. [36].

They broadly classified the frameworks into statistical models and neural models as follows:

Statistical Models. The aim is to model the input data as a joint multivariate distribution

and generate synthetic data by sampling from this distribution. The dependence between

variates is captured using techniques such as copulas [51, 60], Bayesian networks [81],

Gibbs sampling [58], and Fourier decompositions [21]. Other than these, synopses-based

1In non-uniform scaling, individual tables are scaled by different factors.
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approaches such as wavelets and multi-dimensional sketches, build compact data sum-

maries which can be then used for estimating joint distributions [30, 77]. However, sta-

tistical models may have limitations on effectively balancing privacy and data utility [36].

Neural Models. The frameworks here use deep generative models to approximate the dis-

tribution of the original data. The techniques adopted are based on autoencoders [38],

variational autoencoders (VAE) [72], and more recently generative adversarial networks

(GANs) [31, 78, 59, 20, 33, 56].

The study performed thorough evaluation of the techniques and found that GAN are promising

for relational data synthesis.

Despite the appeal, applying these techniques for our usecases is not straightforward because

of the following issues: (a) They focus on single table synthesis. Therefore, evaluation of even

simple queries involving joins between multiple tables cannot be satisfactorily performed; (b)

Training a GAN requires original data which may itself not be provided by the client; (c)

These generators largely focus on development of ML models over the synthetic databases.

Establishing their utility for ensuring volumetric similarity is an area for future work.

Apart from the above, there is extensive work in the area of data privacy. The work in

this area (e.g. [35, 43, 50, 48, 49, 69, 76]) has largely focused on generating query answers

that do not expose features of the underlying private data, rather than generate the data

itself [37]. Although, there is some work in the area of privacy-preserving data publishing

(e.g. [15, 27, 34, 47]). Here, the focus is on sharing data utility in a way that preserves sensitive

information. Our work differs from this line of work as we assume no access to the client

database instance. This lack of client data access could stem from reasons including (a) Client

may not be comfortable in sharing the data; (b) There could be regulatory protocols such as

GDPR (General Data Protection Regulation [4]) – in fact, such constraints have gained much

traction in the recent times. For example, the recent work by Beedkar et al. [23] studies data

processing under such constraints; (c) Data transfer overheads from client to vendor, especially

in the current Big Data era.

2.3 Query-Dependent Regeneration

In more recent times, generation techniques driven by constraints on query outputs have been

analyzed. Here the aim is to generate a database given a workload of queries such that vol-

umetric similarity is achieved on these queries. A particularly potent effort in this class was

Reverse Query Processing (RQP) [24], which receives a query and a result as input, and re-

turns a minimal database instance that produces the same result for the query. An alternative
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fine-grained constraint formulation is to specify the row-cardinalities of the individual operator

outputs, and the techniques advocated in [53, 55, 17, 52, 37, 80] fall in this category. They can

be classified into two groups based on the nature of constraints.

Parameterized Constraints: Here the queries are parameterized with regard to the con-

stants in the query, and the generators (e.g., QAGen [25], MyBenchmark [55], Touch-

Stone [52]) additionally also provide parameter values for which the intermediate cardi-

nalities are matched.

Value Constraints: Here predicate constants are pre-specified in the input as part of the

workload. The generators (e.g., [17], [37], [80]) ensure that the intermediate cardinalities

are matched for these constants.

We already discussed examples of both type of constraints in the previous chapter. While

the parameterized constraints may be preferable from a privacy perspective, value constraints

generate data that is (a) more directly representative of the source environment, and as a

consequence (b) more robust to future queries outside of the original workload. Therefore, our

work is based on this category. We further discuss the various query-dependent regeneration

frameworks in greater detail.

2.3.1 Reverse Query Processing (RQP)

RQP [24] gets a query and a result as input and returns a possible database instance that could

have produced that result for that query. Specifically, the problem addressed is as follows:

“Given a SQL QueryQ, the Schema SD of a relational database (including integrity constraints),

and a Table R (called RTable), the goal of RQP is to find a database instance D such that:

R = Q(D), and D is compliant with SD and its integrity constraints.”

Generally, there are many different database instances that can be generated for a given Q

and R. Amongst them, RQP tries to generate a small database instance.

The overall architecture of RQP is shown in Figure 2.1. An input query is (reverse) processed

by the following components: (The description of the components is largely sourced from [24].)

Parser: The SQL query is parsed into a query tree. This parsing is carried out in exactly the

same way as in a traditional SQL processor. What makes RQP special is that that query

tree is translated into a reverse query tree TQ. In the query tree TQ, each operator of

the relational algebra is translated into a corresponding operator of the reverse relational

algebra1.

1In a strict mathematical sense, the reverse relational algebra is not an algebra and its operators are not
operators because they allow different outputs for the same input.
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Figure 2.1: Architecture of RQP [24]

Bottom-up Query Annotation: The second step is to propagate schema information (types,

attribute names, functional dependencies, and integrity constraints) to the operators of

the query tree. Furthermore, properties of the query (e.g., predicates) are propagated to

the operators of the reverse query tree. As a result, each operator of the query tree is

annotated with constraints that specify all necessary conditions of its result, to give T+
Q .

This, for instance, guarantees that a top-level operator of the reverse query tree does not

generate any data that violates one of the database integrity constraints.

Query Optimization: In the last step of compilation, the annotated query tree T+
Q is trans-

formed into an equivalent optimized reverse query tree T
′
Q that is expected to be more

efficient at run-time.

Top-down Data Instantiation: At run-time, the annotated reverse query tree is interpreted

using R as input. Just as in traditional query processing, there is a physical implemen-
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tation for each operator of the reverse relational algebra that is used for reverse query

execution. The result of this step is a valid database instance D. As part of this step, a

model checker is used in order to generate the data.

We would like to emphasize that RQP differs from the frameworks that focus on preserv-

ing volumetric similarity since RQP focuses on matching the final query result as opposed to

cardinalities at intermediate nodes in the query execution plan.

2.3.2 Query Aware Generation (QAGen)

The idea of using cardinalities from a query plan tree for data regeneration was first introduced

in QAGen [25, 53]. It deals with generating synthetic data for a single query plan only. The

general architecture of QAGen is shown in Figure 2.2. The various modules in the pipeline are

described next: (The modules’ description is largely sourced from [25].)

Figure 2.2: Architecture of QAGen [25]

Query Analyzer. First, the database schema M and the input query QP are taken as input

by the Query Analyzer. The output of this process is a knob-annotated query execution

plan. A knob can be regarded as a parameter of an operator that controls the output.

A basic knob that is offered by QAGen is the output cardinality constraint. This knob
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allows a user to control the output size of an operator. However, whether a knob is

applicable depends on the operator and its input characteristics.

Symbolic Query Processing (SQP). After parsing, the next phase is of SQP. The goal

here is to capture the user-defined constraints on the query into the target database. For

this, QAGen integrates the concept of symbolic execution from software engineering into

traditional query processing. Symbolic execution is a well known program verification

technique, which represents values of program variables with symbolic values instead of

concrete data and manipulates expressions based on those symbolic values. Borrowing this

concept, QAGen first constructs a symbolic database containing a set of symbols instead

of concrete data. Since the symbolic database provides an abstract representation for

concrete data, this allows controlling the output of each operator of the query. The input

query is executed by a Symbolic Query Engine just like in traditional query processing; i.e.,

each operator is implemented as an iterator, and the data flows from the base tables up to

the root of the query tree. Each operator manipulates the input symbolic data according

to the operator’s semantics and the user-defined constraints, and incrementally imposes

the constraints defined on the operators to the symbolic database. After this phase, the

symbolic database is then a query-aware database that captures all requirements defined

by the test case of the input query (but without concrete data).

Data Instantiation. This phase reads in tuples from the symbolic database that are prepared

by the SQP phase and subsequently, a Constraint Satisfaction Program (CSP) is invoked

to identify values for symbols that satisfy all the constraints, and instantiates the symbols.

The instantiated tuples are then inserted into the target database.

On the positive side, QAGen is capable of handling complex operators as they use a general

CSP, but the performance cost is huge since the number of CSP calls substantially increases

with the database size. Further, it requires operating on a symbolic database of matching size

to the original database, and processing of the entire database during the algorithm execution.

This makes it impractical for Big Data environments. Finally, as mentioned earlier, QAGen

supports only one query plan in the input.

2.3.3 MyBenchmark

This single query input limitation of QAGen was addressed in a follow-up tool called My-

Benchmark [54, 55], which creates a symbolic database on a per query basis and at the end

tries to heuristically merge the various databases into a small number of databases. Specifically,
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the problem addressed is as follows: “Given a database schema H, a set of annotated queries

Q = {Q1, Q2, . . . , Qn} (the operator(s) in Qi are annotated with cardinality constraint(s) Ci),

MyBenchmark generates m (m ≤ n) databases D1, D2, . . . , Dm and m sets of parameter values

P1, P2, . . . , Pm, such that (1) all databases Dj (1 ≤ j ≤ m) conform to H, and (2) the resulting

cardinalities Ci of executing Qi on one of the generated databases Dj, using the parameter

values Pj, approximately meet Ci (the degree of approximation defined is based on the relative

error between actual cardinalities and annotated cardinalities).”

If m = n, that essentially means MyBenchmark is the same as QAGen where one database

is generated per query. MyBenchmark aims to minimize m, the number of generated databases.

Figure 2.3: Architecture of MyBenchmark [55]

Figure 2.3 shows the architecture for MyBenchmark. The data flow through this pipeline, as

described in [55], is as follows: “To generatem databases for n annotated queriesQ1, Q2, . . . , Qn,

MyBenchmark first uses QAGen’s SQP engine as a black-box component to process each an-

notated query separately (without data instantiation) and generates n Symbolic Databases

D1, D2, . . . , Dn. Each symbolic database Di guarantees that Qi(Di) satisfies the constraints

annotated on Qi. Then, a Symbolic Database Integrator is used to integrate these databases.

The integration algorithms are designed to minimize the number of symbolic tuples with con-

tradicting constraints and the number of generated databases. Finally, the Data Instantiator

of QAGen is used to instantiate each integrated symbolic database with concrete values.”

This concept of constructing multiple databases for a single query workload is similar to

our Workload Decomposition module. Our module constructs different sub-workloads which

do not have overlapping projections, which also finally results in multiple database summaries.

However, we differ on the key practical issue that MyBenchmark generates a database on a per
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query basis to begin with, which results in enormous time and space overheads. In contrast,

our approach is not only always in the summary space, but also data-scale-free.

2.3.4 Touchstone

Touchstone [52, 75] targeted the scalability limitations of its predecessors and achieved fully

parallel data generation, linear scalability, and lean memory consumption for supporting the

generation of enormous query-aware test databases.

Figure 2.4: Architecture of Touchstone [52]

The input to Touchstone contains the database schema H, data characteristics of non-key

columns D, and parameterized cardinality constraints. The infrastructure of Touchstone is

divided into two major components, which are responsible for query instantiation and data

generation, respectively, as shown in Figure 2.4. The details of the pipeline is as follows: (The

pipeline description is largely borrowed from [52])

Touchstone builds a group of random column generators G = {G1, G2, . . . , Gn}, which de-

termine the data distributions of all non-key columns to be generated. A random column

generator Gi in G is capable of generating values for the specified column while meeting the

required data characteristics in expectation.
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Given the input workload characteristics W , Touchstone instantiates the parameterized

queries by adjusting the related column generators if necessary and choosing appropriate values

for the variable parameters in the filter and non-equi-join predicates. The instantiated queries

Q are output to the users for reference, while the queries Q and the adjusted column generators

G are fed into the data generation component.

Given instantiated queries Q and constraints over the equi-join operators, Touchstone de-

composes the query trees annotated with constraints into constraint chains, in order to decouple

the dependencies among columns, especially for PK-FK pairs. Data generation component gen-

erally deploys the data generators over a distributed platform. The random column generators

and constraint chains are distributed to all data generators for independent and parallel tuple

generation.

While TouchStone significantly improved the efficiency of data generation, it does not sup-

port projection based operators in the query. Further, equality constraints over filters involving

multiple columns are also not supported. Also, an important thing to note is that the techniques

adopted here do not translate to the value constraints case. For example, column generator

usage and parameter values adjustment exploit the flexibility of dealing with query parameters.

2.3.5 DataSynth

DataSynth [17, 18] was the first work which identified the declarative property of cardinality

constraints and its ability to specify data characteristics. Given a set of value cardinality

constraints as input, the paper proposed algorithms based on the LP solver and graphical

models to instantiate tables that satisfy those constraints.

DataSynth also constructs a denormalized table (variant) for each relation in the database

first. The core idea here is also to express the constraints using an LP, where each variable

represents the volume of a region of the data space. The regions are constructed using a grid-

partitioning approach. In this approach, the domain of each attribute is intervalized based

on the constants appearing in the CCs. This gives a grid structure which is aligned with the

interval boundaries for each attribute. For each cell in the grid, a variable is created that

represents the number of data rows present in that cell. For example, Figure 2.5 shows the

grid partitioning for the example constraints considered in the Introduction. Each rectangular

box (formed with dotted lines) forms a region in DataSynth and subsequently a variable in the

LP. Therefore, for this example, it results in 25 variables. The solution of the LP is used to

generate a denormalized table using a sampling based approach.

While DataSynth laid the foundation for Hydra, the latter has significantly extended the

solution on multiple facets:
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Figure 2.5: Grid Partitioning in DataSynth

Constraints Scope. The algorithm adopted in DataSynth handled constraints with filter and

join operators satisfactorily, however, the support for the projection operator has been

minimal, restricted to a few extreme cases. Specifically, proposed projection generator

catered to single-column tables. Here, due to the single-column restriction, there are by

definition no critical challenges of intra/inter projection subspace dependencies. Hydra

gives a comprehensive solution to handle SPJ constraints.

LP Complexity. By replacing the grid-partitioning approach with region-partitioning, Hydra

significantly reduces the complexity of the LP. For example, for the above example, grid

partitioning led to 25 variables, while region partitioning of Hydra (shown in Figure 1.3)

resulted in only four variables. This differences magnifies as the number of constraints

grow. As a case in point, an LP with more than a billion variables in DataSynth got

reduced to an LP with a few thousand variables in Hydra – in fact, in this case, the LP

solver crashes on the DataSynth formulation, but runs to completion in less than a minute

on the Hydra formulation.

Database Instantiation Overheads and Accuracy. In DataSynth, the sampling approach

and its subsequent processes require iterating on the entire database multiples times. This

is an computationally expensive, especially for Big Data systems. Further, the sampling

technique also induces errors in volumetric fidelity. Hydra replaces the sampling strategy

with a deterministic Align-Merge algorithm that not only eliminates the inaccuracies, but

also is extremely efficient, thanks to its data-scale-free nature.
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2.3.6 Linked Data Synthesis

Recently, a framework was proposed in [37] with the focus on generating key columns, such

that, the generated data obeys referential integrity. Specifically, the input is a relation R1 with

an unknown foreign key dependence on a relation R2, i.e., the FK column in R1 is missing,

and a set of CCs and Integrity Constraints (ICs). Further, for the ICs, they define a type of

Denial Constraints (DCs), called Foreign Key DCs, that applies to R1 and forbids tuples from

having the same FK value under specified conditions.

The solution operates in two phases as shown in Figure 2.6. We briefly describe these next.

Phase 1. The goal here to construct the view R1 ./ R2 based on the CCs. This view is

initialized with a copy of R1 without the FK column, along with an empty column per

non-key column in R2. The algorithm for generating the view is inspired from the grid

partitioning approach of DataSynth. Further, when the CCs do not have intersections

and disjunctions, an optimization is used, where the containment and disjointedness of

CCs are modeled as a Hasse diagram.

Phase 2. Here the generated view is used to construct the FK column so that the DCs are

satisfied. For this, the concept of conflict hypergraphs and hypergraph coloring is used.

Specifically, the tuples in R1 are taken as vertices and an edge between a pair of vertices

is added if the corresponding tuples will violate a DC if assigned the same foreign key.

Here an approximate greedy algorithm for coloring is used and therefore leads to some

artificial tuple addition in R2.

Using the techniques in this paper for our settings has the following concerns:

1. The work assumes that the tables without the key column are given as input. This may

not be acceptable to the clients due to privacy concerns.

2. Projection CCs are not considered here as well.

3. The focus is on satisfying constraints only on the foreign key table (R1). Therefore, as a

consequence of ensuring referential integrity, significant spurious tuple may be added to

the referenced table (R2).

4. The techniques have high computational overheads.

31



Figure 2.6: Linked Data Architecture [37]

2.3.7 Supervised Autoregressive Models (SAM)

We discussed several neural frameworks in Section 2.2. These frameworks used the original data

in the input to train their models. An exception to these models is the recent work by Yang et

al. [80], where a Supervised deep Autoregressive Model-based method for database generation

(SAM) is proposed. SAM trains the model of joint data distribution of the entire database

from a query workload, rather than the data directly. With an autoregressive model of the

joint data distribution, it is straightforward to generate a database instance of a single relation.

To address the challenges of multi-relation databases, the proposed approach includes inverse

probability weighting and scaling algorithms to obtain unbiased base relation samples from

full outer join samples, and Group-and-Merge algorithm to assign join keys to the generated

relations.

Figure 2.7 shows the workflow of SAM, consisting of two stages – learning and generation.

During the learning stage, batches of (query, cardinality) pairs are collected. From these,

SAM learns the joint data distribution of the original database using differentiable progressive

sampling. During generation, SAM first samples full outer join tuples from the training model.

Further, inverse probability weighting is used to produce samples for each base relation. Finally,

join keys are assigned using the Group-and-Merge algorithm.

While SAM advances ML based regeneration techniques, the proposed approach raises the

following concerns:

1. Since SAM is probabilistic in behaviour, it is likely to make errors in matching output
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Figure 2.7: SAM Architecture [80]

row cardinalities, especially wrt fine-grained equality predicates. This is not the case with

Hydra as it is deterministic in nature.

2. The framework’s accuracy with respect to volumetric similarity is predicated on training

the model with large query workloads.

3. Modeling has been done for the Select and Join operators, but support for projection

based operators has not yet been established.

2.4 Miscellaneous

Hydra focuses on mimicking the client environments at the vendor site to aid in performance

testing of the system subsequently. This falls under client-dependent testing approach, which is

the most focused testing approach. However, an alternative is randomized creation of databases

and queries - for instance, the optimizer testing approach by Waas and Galindo-Legaria [74]

employs stochastic generation of queries. Alternatively, learning-based techniques can be used

to detect anomalies during query execution, as implemented in SolarWinds [8].

Apart from performance testing, several techniques in the literature deal with functional

testing of the system. For example, SQLsmith [10] has been effective in finding the queries

that cause the DBMS process to crash. Similarly, general-purpose fuzzers such as AFL [1] are

routinely applied to DBMSs, and have found many bugs. RAGS uses a differential testing

based approach, where a bug is flagged if inconsistent outputs are obtained on evaluating

automatically generated queries over multiple DBMSs. SQLancer [9] strives to find logic bugs

in the DBMS that causes incorrect query results. It uses the following testing approaches: (a)

Pivoted Query Synthesis (PQS) [63], where the core idea to automatically generate queries for
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which it is expected that a specific, randomly selected row (called pivot row), is fetched – if it is

not fetched, a bug is flagged; (b) Non-optimizing Reference Engine Construction (NoREC) [64],

which aims to find optimization bugs by translating a query that is potentially optimized by

the DBMS to one for which hardly any optimizations are applicable, and comparing the results

– if there is a mismatch, a bug is flagged; (c) Ternary Logic Partitioning (TLP) [65], which

partitions the query into three, whose results are composed and compared to the original query

– a mismatch indicates a bug.
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Chapter 3

Problem Framework

In this chapter, we summarize the problem statement, the underlying assumptions, the output

delivered, and a tabulation of key notations used in the thesis.

3.1 Problem Statement

Given an SPJ query-workload W, with its corresponding set of AQPs Q, derived from an original

database with schema S and statistical metadata M, the objective is to generate a synthetic

database D such that it conforms to S and Q. That is, the AQPs obtained from the original

database match, wrt the cardinality annotations, the AQPs obtained on D.

3.2 Assumptions

We assume that W comprises of only PK-FK joins1. Further, we assume that the filters and

projections are applied only on non-key columns. These assumptions are common in prior work

as well as OLAP benchmarks.

For simplicity, we assume that Q is collectively feasible, that is, there exists at least one

legal database instance conforming to Q. In the regeneration usecase, this assumption holds

trivially since the constraints are produced from an original client database. The infeasibility

scenario is deferred to Section 3.7.

1By PK-FK joins, we mean that for each join node in the query plan tree, the participating intermediate
tables should possess PK-FK nature, where one table has join column with all distinct values, and the other
table has the join column with the subset property. In a nutshell, we want that queries can be mapped to
denormalized tables.
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3.3 Output

Given S, M, W and Q, Hydra outputs a collection of database summaries S. Each summary sD ∈
S can be used to deterministically produce the associated database D. The databases produced

are such that: (a) all of them conform to S, and (b) for each query in W, its corresponding

AQP in Q matches with the AQP obtained on at least one output database instance.

3.4 Notations

The main acronyms and key notations used in the thesis are summarized in Tables 3.1 and

Table 3.2, respectively. We provide a more detailed notation set in the respective chapters.

Table 3.1: Acronyms

Acronym Meaning
AQP Annotated Query Plan
CC Cardinality Constraint
PIC Projection-inclusive Constraint
SPJ Select Project Join
DNF Disjunctive Normal Form
PAS Projection Attribute Set
PRB Projected Refined Block
ARB Aligned Refined Block
CPB Constituent Projection Block
PSD Projection Subspace Division
TAS Target Attribute-Set

The mechanism for synthesizing data is explained progressively in the upcoming chapters.

Specifically, we begin by discussing the single table synthesis method, where initially we assume

only filter operators in the workload in Chapter 4, and subsequently include projection operator

in Chapter 5. The more general problem, including multiple table synthesis with join operator

in the workload, is discussed in Chapter 6.

We now discuss the simplified problem frameworks for Chapters 4 and 5.

3.5 Filter Constraints Problem

Here, we assume the AQPs are given for producing a single table T with the schema S. Further,

these AQPs are comprised of only filter predicates over T , as shown in Figure 3.1(a). Therefore,

beside the base table cardinality, each AQP can consist of a series of filters and their associated

cardinalities. Each filtered output can be represented as a CC of the form 〈f, l〉. This means
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Table 3.2: Notations

(a) Database Related

Symbol Meaning
S Database Schema
D Output Database
M Statistical Metadata
T Output Table
A Attribute
t Tuple
sD Summary of D
sT Summary of T
F Fact Table
D Dimension Table
VT View wrt T
B Borrowed Attribute-Set
S Sub-Table
A Attributes in a S

(b) Workload Related

Symbol Meaning
q Query
W Query Workload
Q Set of AQPs
c A CC
f Filter Predicate
A PAS
l Output row card. after filter
k Output row card. after projection

(c) Block Related

Symbol Meaning
b filter-

block
r refined-

block
a ARB
p CPB

(d) Relation/Function Related

Symbol Meaning
U(T ) Set of attributes wrt the input table
dom(.) Domain of the input parameter
R A relation btw two tuples
M A relation btw CCs and blocks
L A relation btw CPBs and blocks
H A relation btw ARBs wrt VF and VD
J A relation btw CPBs wrt VF and VD

that l tuples qualify after applying f filter predicate on the table T . For example, consider the

following filter constraint on Std (RollNo, Age, GPA, Scholarship):

〈f, 4000〉 | f = (Age ≥ 30 ∧ 4 ≤ GPA < 9)

The above constraint denotes that applying the f predicate on Std should produce 4000 rows in

the output. We show a visualization of this constraint wrt a sample Std Table in Figure 3.2. In

the figure, the purple rectangle depicts the filter predicate. We see that there are some points

instead the rectangle denoting the tuples in the table. Further, each tuple is annotated with a

number representing its cardinality. If we sum the cardinalities wrt all the tuples in the purple

rectangle, we indeed get 4000, which is the filter output.
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Figure 3.1: AQP with (a) Filter (b) Filter and Projection

A filter predicate f can be followed by another filter f ′ in the AQP. Then, the corresponding

filter CC would have f ∧ f ′ as the filter condition.

In Chapter 4, we simply assume a given set C of filter CCs in the input. Using C, Hydra

produces a table summary sT that can be used to deterministically produce the associated table

T . Further, T conforms to S and satisfies C.

Figure 3.2: Filter and Projection Visualization
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3.6 Projection Constraints Problem

Here as well, we assume that the AQPs are given for a single table T with the schema S. The

AQPs now include projection on top of the filter predicate result on T . Therefore, besides

base table cardinality, each AQP gives two CCs, one filter CC and one projection CC. This

pair of CCs is collectively called a Projection-inclusive Cardinality Constraint (PIC). A PIC

is represented using the quadruple 〈f,A, l, k〉, as a shorthand notation. Here, f represents

the filter predicate applied on T , A represents the projection attribute-set (PAS), l signifies

the row-cardinality of the filtered table, and k represents the row-cardinality after projection

on this filtered table. For example, consider the following PIC on Std(RollNo, Age, GPA,

Scholarship):

〈f,GPA, 4000,333〉 | f = (Age ≥ 30 ∧ 4 ≤ GPA < 9)

The above PIC denotes that applying the f predicate on Std should produce 4000 rows in the

output, which is further reduced to 3 rows after projecting on the GPA column. Let us revisit

Figure 3.2. We can see that the points in the rectangle had three kinds of shape – rectangle,

triangle and star. These three shapes denote the three distinct GPA values (4.3, 6 and 7)

present within the filter predicate boundary.

In Chapter 5, we simply assume a given workload Q of PICs in the input. Using Q, Hydra

outputs a collection of table summaries S. Each summary sT ∈ S can be used to determin-

istically produce the associated table T . The tables produced are such that: (a) all of them

conform to S, and (b) each PIC in Q is satisfied by at least one of them.

3.7 Workload Feasibility

Defining a set of necessary and sufficient conditions that ensure solution feasibility for various

types of input constraints has been looked at in the database literature. For instance, [46] deals

with schematic constraints on the participation cardinalities for the relationships between en-

tities in the ER model, and provides necessary and sufficient conditions to determine whether

database instances exist such that all entities and relationships are populated. However, giv-

ing a similar holistic solution in the statistical query-based constraints space, is still an open

problem, although restricted versions have been attempted. Specifically, feasibility of projec-

tion cardinality constraints has been discussed in [26, 70, 44]. A class of constraints, called

BT inequalities, were proposed in [26], which capture the necessary conditions to be satisfied

by the projection output cardinalities. However, this constraint set is not sufficient, making

it still possible that no actual database can satisfy these values. Subsequently, another class

of constraints, called NC (non-uniform cover) inequalities, was proposed in [70]. While this
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constraint set creates sufficient conditions for database construction, the limitation is that sat-

isfiability of these conditions is not guaranteed. Further, the feasibility space does not exhibit

a convex behavior, making it inexpressible as a set of linear constraints [44].

Although we assume a feasible workload as input to Hydra, if the vendor, while constructing

“what-if” scenarios, ends up giving an infeasible workload as input, the following two possibil-

ities may arise:

1. It may so happen that Workload Decomposition, while resolving conflicting projections,

may as a collateral benefit, also produce feasible sub-workloads. In this scenario, Hydra

produces one database per sub-workload.

2. Alternatively, in case this beneficial effect of decomposition does not happen, then the

LP constraints themselves become infeasible. Hence, the LP solver eventually flags this

infeasibility. We have explicitly verified this to be the case for the Z3 solver with a few

deliberately created infeasible constraint sets.
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Chapter 4

Regeneration using Filter Constraints

4.1 Introduction

This chapter discusses the mechanism for synthesizing a table that is compliant with a given

set of filter cardinality constraints.

4.1.1 Filter Cardinality Constraints

A filter cardinality constraint applicable on a synthetic table T is of the following form:

|σf (T )|= l

Here, f is a selection predicate and l is a non-negative integer equal to the number of rows

satisfying predicate f . We assume that each predicate is in disjunctive normal form (DNF).

As a shorthand notation, we represent the above filter CC using the pair 〈f, l〉. Also, for

brevity, we refer to filter CCs as CCs simply in the rest of this chapter.

As a sample instance, consider the following pair of CCs on a generated table Std (RollNo,

Age, GPA, Scholarship):

c1 : 〈f1, 40000〉 | f1 = (15 ≤ Age < 35 ∧ 6 ≤ GPA < 8)

c2 : 〈f2, 45000〉 | f2 = (20 ≤ Age < 40 ∧ 5 ≤ GPA < 9)

Here, c1 denotes that applying the f1 predicate on Std should produce 40000 rows in the output;

likewise, c2 denotes that 45000 rows qualify the f2 predicate.
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4.1.2 Technical Challenges

The key challenges in handling a set of filter constraints are as follows:

Overlapping Filters. For a given set of CCs, the filter predicates in these constraints may

intersect. A pair of filters f1 and f2 intersect if there is a point t in the domain space of the

table that satisfies both f1 and f2. Intersection among filters induces an interdependence

among the CCs that has to be accounted for while generating the data. For example, the

filters wrt c1 and c2 in the aforementioned example were intersecting. Therefore, the data

for them cannot be generated independently.

Curse of Dimensionality. The CCs that do not have a direct intersection, may indirectly

intersect due to the presence of additional dimensions in the table. For example, con-

sider the following two CCs: 〈Age < 25, 25000〉, 〈GPA < 8, 43000〉. If the data for the

table along the two dimensions Age and GPA is generated independently and simply

concatenated thereafter, then both the CCs are satisfied. However, if we consider the

both the dimensions together, then the 2-dimensional data points cannot be generated

independently for the two CCs. Therefore, as the number of dimensions being considered

increase, typically, this kind of dependence among the constraints become more profound.

4.1.3 Our Contributions

Hydra adopts a partitioning strategy that divides the data space into optimal (minimum) num-

ber of regions. This provides an efficient way to handle overlapping filters, as the input CCs

can be modelled using an LP with lower complexity. Further, a combination of dimensionality

reduction strategy and an align-merge strategy to recover the original space, help to overcome

the intersections in higher dimensions. Hence, these techniques provide Hydra the strength to

overcome the limitations of prior work in terms of (a) handling larger workloads, (b) providing

efficient end-to-end solution, (c) giving improved volumetric similarity.

Therefore, the key contributions of the ideas presented in this chapter are as follows:

Extended Workload Coverage: Hydra incorporates a novel LP formulation technique,

region-partitioning, that can encode volumetric constraints with an LP of low complex-

ity. When compared with the grid-partitioning approach used in DataSynth, region-

partitioning reduces the LP complexity by many orders of magnitude. For instance, an

LP with more than a billion variables in DataSynth is reduced to an LP with a few thou-

sand variables in Hydra– in fact, in this case, the LP solver crashes on the DataSynth

formulation, but runs to completion in less than a minute on the Hydra formulation. The
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beneficial outcome of the low LP complexity is that it facilitates the efficient handling of

much richer query workloads.

Efficiency: To synthesize the output table from its lower dimensional parts, Hydra replaces

the sampling-based approach proposed in DataSynth by an align-merge strategy. The

primary benefit of the latter is that it operates directly on the table summary, and is

therefore extremely efficient.

Accuracy: The aforementioned align-merge strategy, is deterministic in nature, and does not

suffer the probabilistic errors that affect the sampling approach, and therefore delivers

ideal fidelity with regard to volumetric similarity.

Enhanced Evaluation: We evaluate Hydra on workloads of 300-plus filter CCs constructed

from the complex TPC-DS benchmark and the real world JOB benchmark, and the results

show that it can efficiently regenerate data for such workloads at various data scales. This

makes our evaluation more comprehensive than prior techniques, which have largely been

evaluated on simpler and small-sized query workloads operating on modest databases.

For instance, DataSynth has been evaluated on simple TPC-H database environments

that resulted, with their formulation, in LPs with only a few thousand variables.

The entire end-to-end pipeline operates in the summary space, hence providing data-scale-

independence.

4.1.4 Organization

The remainder of this chapter is organized as follows: The problem framework is discussed in

Section 4.2. The key design principles in handling filter CCs are introduced in Section 4.3,

and then described in detail in Sections 4.4 through 4.6. The mechanism to handle LIKE filter

predicates is discussed in Section 4.7. The experimental evaluation is reported in Section 4.8.

Finally we conclude in Section 4.9.

4.2 Problem Framework

We summarize the basic problem statement, assumptions, the output delivered, and a tabula-

tion of the notations used in this chapter.

4.2.1 Problem Statement

Given a workload C of filter CCs and a table schema S, the objective of data generation is to

synthesize a table instance T such that it conforms to S and satisfies C.
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4.2.2 Assumptions

It is assumed that CCs consist of filters on only non-key attributes. Further, we assume the

predicates are in the DNF form. Finally, for simplicity, we assume that the CCs are collectively

feasible, that is, there exists at least one legal table instance satisfying all the constraints.

4.2.3 Output

Using C and S, Hydra produces a table summary sT that can be used to deterministically

produce the associated table T . Further, T conforms to S and satisfies C.

4.2.4 Notations

The main acronyms and key notations used in this chapter are summarized in Tables 4.1 and

Table 4.2, respectively.

Table 4.1: Acronyms

Acronym Meaning
CC Cardinality Constraint

DNF Disjunctive Normal Form

Table 4.2: Notations

(a) Database Related

Symbol Meaning
S Table Schema
T Output Table
A Attribute
t Tuple
sT Summary of T
S Sub-Table
A Attributes in a S
K Cardinality of A
Ω Domain of S

(b) Workload Related

Symbol Meaning
c A CC
f Filter Predicate
l Output row card. after filter
C Set of CCs

(c) Block Related

Symbol Meaning
b filter-block
F Partition (Set of filter-

blocks)
x variable for row cardinality

(d) Relation/Function Related

Symbol Meaning
dom(.) Domain of the input parameter
R A relation btw two tuples
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4.3 Design Principles

In this section, we give an overview of the core design principles of handling filter CCs, with the

Std table of the Introduction used as the running example to explain their impact. Subsequently,

in Sections 4.4 through 4.6, each principle is described in detail.

4.3.1 Region Partitioning

At its core, Hydra models the input CCs into an LP. Using the CCs, the data space of the table

is partitioned into regions using a novel region-partitioning algorithm. There is one variable

for each region, corresponding to the number of tuples chosen from the region. Each CC is

encoded as an LP constraint on these variables, and the solution of the LP is used in deciding

which tuples to include in the table.

Our region-partitioning strategy is in marked contrast to the grid-partitioning strategy used

in DataSynth. Grid-Partitioning first intervalizes the domain of each attribute based on the

constants appearing in the CCs, and divides the domain into a grid aligned with the interval

boundaries for each attribute. If the table has K attributes, and in the worst case an attribute

gets divided into ` intervals, then the data space is partitioned into a grid of O(`K) cells. For

each cell in the grid, a variable is created that represents the number of data rows present in

that cell. In contrast, our region-partitioning strategy divides the domain into only the number

of regions required to precisely write out each CC, and assigns one variable to each region. This

results in O(2Q) variables, where Q is the number of CCs – this typically leads to far fewer

variables than grid-partitioning.

To make the above concrete, consider the CCs c1 and c2 from our running example. Grid-

partitioning divides the domain of the table as shown in Figure 4.1a. With a variable assigned

to each grid cell, there is a total of 25 variables. In contrast, the region-partitioning strategy

partitions the space into 4 regions as shown in Figure 4.1b, resulting in a tally of only 4 variables.

The CCs, expressed in terms of LP constraints, are shown below in Figure 4.2a and 4.2b for

grid-partitioning and region-partitioning, respectively. In the former, variable xi denotes the

cardinality of cell i, while in the latter, variable xj denotes the cardinality of region bj.

The LP is are passed on to the solver, which provides one of the feasible solutions as the

output – we have used Z3 [14] to implement this functionality. With region-partitioning, the

LP is usually much simpler due to the smaller number of variables. Further, as the CCs get

more complex, the differences in complexity of the LPs produced by region-partitioning and

grid-partitioning become more pronounced.
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(a) Grid-Partitioning (b) Region-Partitioning

Figure 4.1: Grid-Partitioning vs Region-Partitioning

x12 + x13 = 40000

x8 + x9 + x13 + x14 + x18 + x19 = 45000

x1 + x2 + ...+ x25 = 50000

(a) Grid-Partitioning

x1 + x3 = 40000

x2 + x3 = 45000

x1 + x2 + x3 + x4 = 50000

(b) Region-Partitioning

Figure 4.2: LP Constraints

4.3.2 Dimensionality Reduction

Since the intersections among CCs tend to increase in higher dimensional space, the LP com-

plexity is also adversely affected due to exponential increase in the number of regions. To

address this, the table is first decomposed into a set of sub-tables to reduce the intersections

among CCs in lower dimensions. This effectively reduces the LP complexity. This optimization

was proposed in [17]. We summarize the algorithm here: Construct a “table-graph” by first

creating a node for each attribute, and then inserting an edge between a pair of nodes if the cor-

responding attributes appear together in one or more CCs. Further, additional edges are added

(if required) to make the table-graph to be chordal1, a property required to ensure acyclicity

in the subsequent processing. Now, the sub-tables are identified as the maximal cliques in the

table-graph.

For instance, the sub-tables of the table-graph in Figure 4.3a are AEC, BED and CED, as

shown in Figure 4.3b.

1A chordal graph is one in which all cycles of four or more vertices have a chord.
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(a) Table Graph (b) Sub-Tables

Figure 4.3: Table Decomposition

Once the sub-tables are identified, the region partitioning is executed on each sub-table.

Since the sub-tables can have common attributes, additional consistency constraints are added

in the LP to ensure the marginal distribution of tuples along these common columns are iden-

tical.

Since partitioning is carried out at a sub-table level, the LP solution, which is expressed

in terms of sub-table variables, needs to be mapped to equivalents in the original table space.

A sampling-based approach was proposed in [17] for this purpose – for example, say a table

(A,B,C) is split into a pair of sub-tables (A,B) and (B,C), the algorithm computes the

distributions Prob(A,B) and Prob(C|B). Then, each tuple is generated by first sampling a

point from the former distribution, and then sampling a point from the latter conditioned on

this outcome.

However, we have chosen not to take this approach since the computational overheads in-

curred are enormous, and the sampling process introduces errors in volumetric fidelity. Instead,

we have designed and implemented an alternative data-scale free, deterministic align-merge al-

gorithm, which produces an intermediate table summary in the output. This not only provides

data scalability but also eliminates the accuracy errors incurred by the sampling strategy.

4.3.3 Summary Based Computation

Hydra produces a table summary in its output. An example summary for Std table, is shown

in Figure 4.4.

The Tuple Generator module of Hydra resides in the database engine. It ensures that

whenever a query is fired, data is not fetched from the disk but instead gets generated on-

demand, using the table summary.
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Figure 4.4: Example Table Summary

4.4 LP Formulation

An LP for a table T is constructed as follows: For each sub-table S in T , every CC that is within

its scope is formulated as an LP constraint. Since sub-tables may share common attributes,

additional consistency constraints are added to the LP to ensure that the marginal distributions

along the common set of attributes are identical in the solutions for the sub-tables.

In this section, we first present the mathematical basis underlying our formulation of LP

constraints for a set of CCs applicable on a sub-table. We then present an algorithm that par-

titions the domain into the minimum number of regions required to capture each CC precisely,

resulting in an LP with the optimal number of variables. Finally, we discuss the formulation

of additional consistency constraints to ensure consistency across multiple sub-tables belonging

to T .

4.4.1 Mathematical Basis for LP Formulation

Let K denote the number of attributes in the given sub-table S, dom(Ai) the domain of the

ith attribute (Ai). So, dom(A1) × dom(A2) × · · · × dom(AK) represents the domain of the S.

We represent this domain using the shorthand notation Ω.

We are given a set of Q CCs that are applicable on S. For 1 ≤ j ≤ Q.

Simple LP Formulation Let us first consider a simple way of formulating an LP that

encodes all CCs. For each tuple t ∈ Ω, assign a variable xt that denotes the number of copies

of t in the sub-table S. Then, the LP formulation shown in Figure 4.5 ensures that a feasible

solution satisfies all CCs, including a constraint on the total size of S.

The problem with this formulation is that the number of variables in the resulting LP is as

large as the size of the universe Ω. Hence, it is infeasible to work directly with this formulation.
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(1) For each t ∈ Ω, xt ≥ 0

(2)

[∑
t∈Ω

xt

]
= |T |

(3) For each j, 1 ≤ j ≤ Q,

 ∑
t:σj(t)=true

xt

 = lj

Figure 4.5: Simple LP formulation

Reduced LP Formulation We can derive an LP with far fewer variables as follows: We

first note that in the simple formulation, variables corresponding to a pair of points t1, t2 ∈ Ω

that behave identically with respect to a constraint cj (i.e. σj(t1) = σj(t2)) can be combined

together as (xt1 + xt2), for the purposes of satisfying constraint cj. If this is true that with

respect to every constraint cj for j = 1 . . . Q, σj(t1) = σj(t2), then there is no need to treat t1

and t2 separately – instead, they can be combined into a single region, and the variables xt1 and

xt2 can be merged into a single variable (xt1 + xt2) in every equation, leading to fewer variables

in the LP. By repeating this variable merging process recursively until it is no further possible,

we arrive at a vastly reduced LP.

We hasten to add that the above LP construction process based on merging variables is

only for illustrating the concept – the actual algorithm employed in our system directly derives

the regions, as described in Section 4.4.2.

For constraint c and t ∈ Ω, let c(t) be an indicator variable:

c(t) =

{
true if t satisfies c

false otherwise

Definition 4.1 For a pair of points t1, t2 ∈ Ω and a set of constraints C, we say t1Rt2 if for

each c ∈ C, c(t1) = c(t2).

Observation 4.1 R is an equivalence relation on Ω.

Proof: It can be easily seen that R is reflexive and symmetric. For transitivity, suppose that

for t1, t2, t3 ∈ Ω, t1Rt2 and t2Rt3. Note that for each c ∈ C, it must be true that c(t1) = c(t2)

and c(t2) = c(t3). Therefore, it must be true that c(t1) = c(t3) for each c ∈ C, showing that

the relation is transitive. 2

49



A partition of Ω is a set of subsets of Ω such that every element t ∈ Ω is in exactly one of

these subsets. The individual sets in a partition are called filter-blocks.

Definition 4.2 A set of points b is said to be valid with respect to a set of constraints C if for

any two points t1, t2 ∈ b, t1Rt2. Given a set of constraints C, a partition F of Ω is said to be a

valid partition if for each filter-block b ∈ F, b is valid with respect to C.

In a valid partition of Ω with respect to C, any pair of points within the same filter-block

satisfy the same set of CCs. Once we obtain a valid partition F, the LP can be re-formulated as

shown in Figure 4.6. Instead of a variable for each point t ∈ Ω, there is now a single variable xb

for each filter-block b ∈ F representing the number of tuples of the sub-table that are contained

in b. Note that the tuples in a sub-table need not be unique, therefore xb may include duplicates

in its count.

(1) For each b ∈ F, xb ≥ 0

(2)

[∑
b∈F

xb

]
= |T |

(3) For each j, 1 ≤ j ≤ Q,

 ∑
b:σj(b)=true

xb

 = lj

Figure 4.6: Reduced LP formulation

The total number of variables in the reduced LP shown in Figure 4.6 is equal to the number

of filter-blocks in the partition F and is potentially much smaller than the number of variables

in the original LP, shown in Figure 4.5. Since we desire an LP with the smallest number of

variables, we look for a valid partition of Ω with the minimum number of filter-blocks. A valid

partition with respect to C is an optimal partition if it has the smallest number of filter-blocks

from among all valid partitions of Ω with respect to C.

Lemma 4.1 The quotient set of Ω by R is the (unique) optimal partition of Ω with respect to

C.

Proof: Let F1 denote the quotient set1 of Ω by R. By the definition of an equivalence relation,

for any filter-block b ∈ F1, all points in b are related to each other by R, and hence F1 is a valid

partition.

1The quotient set is the set of equivalence classes resulting from R on Ω.
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Suppose that F1 is not the unique optimal partition. Then, there must exist another valid

partition F2 such that F2 6= F1 and |F2|≤ |F1|. This implies that there exist two points t1, t2 ∈ Ω

such that t1 and t2 are in different filter-blocks in F1, but in the same filter-block in F2. Since

t1 and t2 belong to different filter-blocks in F1, it must be true that t1 and t2 are not related

by R. But, in F2 points t1 and t2 belong to the same filter-block, which implies that F2 cannot

be a valid partition, a contradiction. 2

4.4.2 Deriving the Optimal Partition

We now present an algorithm to derive the optimal partition of Ω with respect to C. Each

constraint c ∈ C is in DNF, and is expressed as the union of many smaller “sub-constraints”.

Each sub-constraint is the conjunction of many per-attribute constraints, and each per-attribute

constraint is a constraint on the values that the attribute is permitted to take. For example,

the following constraint on attributes A1 and A2:

((A1 ≤ 20) ∧ (A2 > 30)) ∨ (A1 > 50)

is divided into the basic sub-constraints:

(A1 ≤ 20) ∧ (A2 > 30) and (A1 > 50)

Algorithm 1 (Optimal Partition) takes a set of DNF constraints as input, and returns a

partition with the smallest number of regions with respect to this set. Internally, it invokes

Algorithm 2 (Valid Partition) that takes a set of sub-constraints as input and returns a valid

partition of the domain with respect to this set.

Algorithm 1: Optimal Partition(Ω,C)

Input: Universe Ω, set of DNF constraints C
Output: An optimal partition F∗ of Ω subject to C

1 Generate the set of sub-constraints C′ resulting from the constraints in C;
2 Construct a valid partition F′ of Ω subject to C′ using Valid-Partition(Ω,C′)

(Algorithm 2);
3 For each filter-block b ∈ F′, compute the label `(b), equal to the set of all constraints in

C that b satisfies. Let L denote the set of all distinct labels from {`(b)|b ∈ F′};
4 Coarsen partition F′ into F∗ as follows: For each label ` ∈ L, merge all filter-blocks in

F′ whose labels equal ` into a single filter-block;
5 Return F∗;

Lemma 4.2 Given a set of DNF constraints C, Algorithm 1 returns an optimal partition of Ω

with respect to C.
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Proof: As in the algorithm, let C′ denote the set of sub-constraints resulting from constraints

in C. From Lemma 4.3, we know that F′ is a valid partition with respect to C′. Consider any

filter-block b ∈ F′. Since b is valid with respect to C′, and each constraint in C′ is stricter than

a corresponding constraint in C, b is valid with respect to C. Hence, F′ is a valid partition with

respect to C.

Next, consider that each filter-block b∗ in F∗ was obtained by merging filter-blocks in F′

that have the same label. For any pair of points t1, t2 in b∗, it is true they satisfy the same set

of constraints in C, showing that F∗ is a valid partition wrt C. Also, any two filter-blocks in

F∗ have distinct labels (if they had the same label, they would have been merged). Therefore,

we conclude using arguments similar to Lemma 4.1 that F∗ is an optimal partition of Ω with

respect to C. 2

Deriving a Valid Partition for a Set of Sub-Constraints: We now present an algorithm

for deriving a valid partition with a small number of filter-blocks, for a set of sub-constraints

C.

Definition 4.3 For a sub-constraint c and dimension i, let ci denote the restriction (projection)

of c to dimension i. Further, let ci1 =
∧
j=1...i c

j denote the restriction of c to dimensions

1, 2, . . . , i. For instance, if c = (A1 ≥ 1) ∧ (A2 ≥ 4) ∧ (A2 ≤ 5) ∧ (A3 > 6), then c2 = (A2 ≥
4) ∧ (A2 ≤ 5), and c2

1 = (A1 ≥ 1) ∧ (A2 ≥ 4) ∧ (A2 ≤ 5). For convenience, if c does not have a

constraint along dimension i, then ci is defined to be “true”.

Our algorithm, described in Algorithm 2, proceeds iteratively, one dimension at a time.

Before processing dimension i, it has a partition of Ω that is a valid partition subject to

constraints along dimensions 1 till (i − 1). In processing dimension i, it refines the current

partition as follows: For each filter-block b in the current partition, it appropriately divides the

filter-block along dimension i if there is a constraint c ∈ C such that there are some points in

b that satisfy constraint ci, and some that do not.

Definition 4.4 A constraint c is said to split an filter-block b ⊆ Ω if there exist a pair of points

t1, t2 ∈ b such that c(t1) = true and c(t2) = false. If c splits b, then refining b by c partitions b

into two subsets b+(c) = {t ∈ b|c(t) = true} and b−(c) = {t ∈ b|c(t) = false}.

Lemma 4.3 Given a set of sub-constraints C, Algorithm 2 returns a valid partition of Ω with

respect to C.
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Algorithm 2: Valid-Partition(Ω,C)

Input: Universe Ω, set of sub-constraints C
Output: A valid partition F of Ω subject to set of sub-constraints C

1 F0 = {Ω} // A partition with one set, Ω.
2 for i from 1 to K do
3 Z ← Fi−1;
4 foreach c ∈ C do
5 Z ′ ← ∅;
6 foreach block b ∈ Z do
7 if ci splits b then
8 Let b+ and b− result from refining b with ci;
9 Add b+ and b− to Z ′;

10 else
11 Add b to Z ′;

12 Z ← Z ′;

13 Fi ← Z;

14 Return FK ;

Proof: For 1 ≤ i ≤ K, let Ci
1 = {ci1|c ∈ C}. We show by induction on i that after the ith

iteration of the outermost for loop in the algorithm, Fi contains a valid partition of Ω with

respect to Ci
1. Since CK

1 = C, it follows that after K iterations, FK contains a valid partition

of Ω with respect to C. We consider i = 0 as the base case, and the set C0
1 as a set of “always

true” constraints. Hence, F0, which consists of only one element, Ω, is a valid partition with

respect to C0
1.

For the inductive step, suppose that for i > 0, Fi−1 is a valid partition of Ω with respect

to Ci−1
1 . For each filter-block b ∈ Fi−1, two cases are possible: (1) b is not split by ci, for any

c ∈ C. Then b is valid with respect to Ci
1, and will be retained in Fi. (2) b is split by one more

constraints ci. The algorithm iterates through all such constraints that split b, and partitions

filter-block b such that every resulting filter-block is valid with respect to each ci, c ∈ C.

We next note that Fi is indeed a partition of Ω (i.e. the union of domain of all filter-blocks

equals Ω). To see this observe that each filter-block b ∈ Fi−1 is either present in Fi or has been

refined and all its constituent filter-blocks (whose union equals b) are in Fi. Thus, Fi is a valid

partition with respect to Ci
1. This proves the inductive step. 2
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4.4.3 Consistency Constraints

Since different sub-tables can have common attribute(s), additional constraints need to be added

to ensure that their distributions for the common attribute(s) are the same. In order to do so,

we may need to further refine the partition generated from the above procedure. Specifically,

consider a pair of sub-tables S1 and S2 with attribute sets A1 and A2 respectively, such that

A1∩A2 6= ∅. Let Ω1 =
∏

i∈A1
dom(Ai), and Ω2 =

∏
j∈A2

dom(Aj) be the corresponding domains

for S1 and S2 respectively, and Ω1,2 =
∏

i∈A1∩A2
dom(Ai). Let the partitions obtained on Ω1

and Ω2 be F1 and F2, respectively. In order to keep F1 and F2 consistent with each other, we

need to ensure that their region boundaries are aligned with each other, and this is achieved

by refining F1 and F2 so that they have common boundaries along dimensions A1 ∩ A2. We

consider the union of the “split points” of F1 and F2 along dimensions A1 ∩A2 and further for

each filter-block in F1 (and F2), we refine this filter-block until it no longer crosses such a split

point. Finally, we add LP constraints that equate distributions of the common attributes in F1

and F2.

4.5 Table Summary Construction

This component takes the LP solution for each table as the input and generates the table

summary, which as mentioned previously, can be used for dynamically generating data for

query execution, or can optionally be used to generate the materialized table.

Recall that a variable in the LP represents an underlying filter-block in a sub-table’s par-

tition, and its assigned value is the number of rows present in that filter-block– this value is

hereafter referred to generically as NumTuples. The collection of NumTuples values repre-

sent the sub-table solutions, and these solutions are integrated to obtain the solution for the

complete table. This process can be enumerated in two steps: (a) Constructing a solution for

complete tables, (b) Instantiating table summaries. Each of these are detailed next.

4.5.1 Constructing Solution for the Table

For integrating the sub-table solutions to obtain the collective solution for the complete table,

we first order the sub-tables. Then, we iteratively build the table-solution by aligning and

merging the next sub-table solution in the given order. Let S denote the input list of sub-

table solutions, and tableSol be the final table solution that we wish to compute. Algorithm 3

describes the high-level process for constructing tableSol from S, and its ordering, aligning and

merging procedures are described in the remainder of this sub-section.
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Algorithm 3: Table Solution Construction

1 S← OrderSubTables(S);
2 tableSol← ∅;
3 foreach S ∈ S do
4 tableSol, S ← Align(tableSol, S) ;
5 tableSol←Merge(tableSol, S);

4.5.1.1 Sub-Table Ordering

Ordering is implemented through a greedy iterative algorithm where we can start with any

sub-table as the first choice. Subsequently, at iteration i, let the set of visited sub-tables until

now be S. A sub-table S from outside this set can be chosen to be the next in the ordering

only if it satisfies the following condition: On removing the common vertices between S and S
in the (chordal) table-graph, there should not exist any path between the remaining vertices of

S and the remaining vertices of S.

For instance, in the example of Figure 4.3, there are three sub-tables: AEC, ECD and BED.

Here, if we start with sub-table AEC as the first choice in the ordering sequence, then BED

cannot be the next selection – this is because even after removing the common attribute E

between BED and AEC, the edge DC continues to connect the two components. The sub-table

ECD, on the other hand, satisfies the required condition, and is chosen to be the second in the

order. After ECD is chosen, then BED follows as the last sub-table in the sequence.

4.5.1.2 Aligning

After obtaining the sub-table merge order as per above, in every iteration we merge the next

sub-table solution (S) in the sequence to the current table-solution (tableSol), after a process

of alignment. The alignment algorithm is a two step exercise, as shown in the example of

Figure 4.7:

Solution Sorting: First, the tableSol and S solutions are each sorted on their common set of

attributes to facilitate direct comparison of their matching ranges. For instance, the solu-

tions (Age,GPA) and (Age, Scholarship) in Figure 4.7a are each sorted on the intervals

enumerated in the common attribute Age.

Row Splitting: Our addition of consistency constraints during the LP formulation ensured

that the distribution of tuples along the common set of attributes is the same in the various

sub-tables. Therefore it easy to see that the sum of NumTuples values in any interval

of the common attributes is the same for the sub-table solutions under alignment. For
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(a) Sub-table Solution

(b) Table Alignment

(c) Merged Table Solution

Figure 4.7: Align and Merge Example

example, in Figure 4.7a, the total number of tuples with Age = [15, 20) is 5000 in both the

(Age,GPA) and (Age, Scholarship) solutions. Likewise, the other entries in column Age

also have matching total number of tuples across the solutions. The align step splits the

rows in these solutions such that the corresponding rows in both solutions have the same

number of tuples. The sub-table solutions of Figure 4.7a are shown in Figure 4.7b after

undergoing the alignment process, with both solutions now having identical NumTuples
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in the corresponding rows.

4.5.1.3 Merging

This is the last step in the construction of the table solution. Here we simply merge the two

solutions obtained after alignment through a “position” based join, where the physically cor-

responding rows in each solution are combined, with the common attributes being represented

once. For example, the aligned solutions of Figure 4.7b are merge-joined using the positions

(or row identifiers) to deliver the final table solution of Figure 4.7c.

As discussed earlier, DataSynth adopted a sampling algorithm for constructing the table solu-

tions post LP solving. In marked contrast, Hydra deterministically generates the table solutions,

facilitating us to operate purely in the summary space. There are two tangible benefits of this

deterministic strategy: (a) elimination of the time and space overheads due to sampling, and

(b) elimination of sampling-based errors in satisfying CCs.

4.5.2 Instantiating Table Summaries

As shown in Figure 4.7c, each row in the table solution is comprised of a series of intervals

(across various attributes) and the number of tuples in the region represented by these intervals.

We now need to decide as to how these tuples are distributed within the attribute intervals.

Our current solution is very simple: Assign the entire cardinality to the left boundaries of the

intervals. For example, the first row in Figure 4.7c would result in generation of 3000 tuples all

having Age = 15, GPA = 8, Scholarship = 4K values.

The schema of the summary sT of a table T has all the non-key columns of T and additionally

has the NumTuples entry denoting the number of rows with that value combination. A sample

table summary was previously shown in Figure 4.4.

Like before, DataSynth again iterates over the complete instantiated tables to construct

the corresponding materialized tables. Obviously, this leads to considerable time and space

overheads in contrast to our data-scale independent summary based approach.

4.6 Tuple Generation

The Tuple Generator component resides inside the database engine, and needs to be explicitly

incorporated in the engine codebase by the vendor. Whenever this feature is enabled for a

table, the scan operator for that table is replaced with the dynamic generation operator. As a

result, during query execution, the executor does not fetch the data from the disk but is instead

supplied by the Tuple Generator in an on-demand manner, using the available table summary.
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Each row in the table summary has a value combination and an associated NumTuples

entry. We consider the PK values to be the row numbers of the table. Therefore, to get the

ith tuple of a table T , the PK is chosen as i and the rest of the attributes come from the table

summary. We iterate over the rows of sT and take the cumulative sum of the NumTuples

entries until the sum exceeds i. Say the summation crosses the value i in jth row of s(T ).

Then the rest of the values of the ith tuple are assigned to be precisely the same as those

present in the jth row of sT . For example, the 5100th row of table Std in Figure 4.4, would be

〈5100, 20, 6, 8K〉.
Note that this form of tuple generation is expected to be efficient since the attribute value

assignments are deterministic and independent, and these expectations are confirmed in the

experiments shown in the following section.

4.7 Like Predicates

LIKE predicate constants are typically expressed as regular expressions. There are two wild-

cards often used in conjunction with the LIKE operator:

• The percent sign (%) represents an arbitrary number, including zero, characters.

• The underscore sign ( ) represents a single character.

To handle LIKE predicates, we begin by collecting all the predicate constants that occur

with the LIKE operator. This collection is segregated on the basis of the attribute on which

they are applied. Depending on the number of expressions associated with an attribute, the

handling mechanisms are classified as follows.

Single LIKE Predicate. Consider an attribute that has only one LIKE predicate applied on

it in the entire workload. We take the regular expression and generate any valid representative

string that satisfies the regular expression, and with that, we convert the LIKE predicate into

an equality filter predicate.

For example, consider the following CC on an attribute A from table T :

|σA∼‘ a %’(T )|= 4

Here the ∼ symbol represents the LIKE predicate.

The LIKE predicate is applied on A, and the regular expression is ‘ a %’. ‘aaa’ is a valid

representative string that satisfies the regular expression. Therefore, the transformed CC is:

|σA=‘aaa’(T )|= 4
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Now, this modified CC can be handled in the same way in which other equality filter

predicate CCs are handled with the existing setup.

Multiple LIKE Predicates. Now, consider an attribute having multiple LIKE predicates

applied upon it in the workload. The data generation mechanism in such cases needs to be

aware of any possible intersections among the different predicates. To make the above concrete,

consider the following three CCs:

|σA∼’%b%’(T )|= 8, |σA∼’%bc%’(T )|= 4, |σA∼’%c%’(T )|= 7

Note that here we cannot transform the CCs in the similar way with an equality represen-

tative string. This is because regular expressions corresponding to different CCs may have an

intersection. For instance, a tuple ‘bc’ would satisfy both ‘%b%’ and ‘%bc%’ regular expres-

sions. Hence, direct transformation can cause infeasible constraint-set. Therefore, we need to

do partitioning of data space into blocks such that that regular expressions attached to any

two blocks do not intersect. Once, the partitioning is done, the input regular expressions in

the CCs are transformed into disjunctive equality predicates. We discuss each of these steps in

detail next.

4.7.1 Partioning using Regular Expressions

To do the partitioning, we first construct a Venn diagram that captures intersections of the

regular expressions. For example, the Venn diagram for three regular expressions from our

running example is shown in Figure 4.8.

Figure 4.8: Venn diagram showing all disjoint spaces
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The diagram features intersections and complements of regular expressions. To perform

intersection and complement on regular expression strings, we use concepts from automata

theory. First, we convert each regular expression to a DFA. This is done by following the

sequence: Regular Expression → Epsilon-NFA → NFA → DFA. Note that DFAs are

closed under intersection and complement. Therefore, once we have equivalent DFAs for the

regular expressions, we can perform these operations on the DFAs easily.

From the Venn diagram in Figure 4.8 we can see that there are seven disjoint regions.

Some of these regions can be empty, that is their corresponding final DFA results in NULL.

For example, regions 2, 4, 6 in the Venn diagram shown above correspond to empty regions.

For each of the non-empty regions, we generate a representative string. For example, the

representative strings for the populated regions in our running example are as follows:

1: ‘b’, 3: ‘c’, 5: ‘cb’, 7: ‘bc’

Optimization. The intersection of two DFAs can result in a large number of states in the

resultant DFA. This can make the subsequent intersection computation complex. Hence as an

optimization measure, we minimize the resultant DFA after each individual intersection and

then proceed with subsequent intersections. Specifically, once we get a NULL for an intersection,

its subsequent intersections with other regular expressions are avoided.

4.7.2 Predicate Transformation

After obtaining representative strings for each populated region of the Venn diagram, we rewrite

each input regular expressions in the CCs as a disjunction of equality predicates. Specifically, for

a regular expression, the disjunctive equality predicates are with respect to the representative

strings associated with its constituent regions of the Venn diagrams. We show the transformed

CCs for our running example in Table 4.3.

Original CC Transformed CC
|σA∼′%b%′(T )|= 8 |σA∈{′b′,′bc′,′cb′}(T )|= 8
|σA∼′%bc%′(T )|= 4 |σA∈{′bc′}(T )|= 4
|σA∼′%c%′(T )|= 7 |σA∈{′c′,′bc′,′cb′}(T )|= 7

Table 4.3: Transformation of Regular Expression CCs

Once this transformation is done, the CCs can be handled like any CC having disjunction

with equality predicates.
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4.8 Experimental Evaluation

We have implemented the Hydra design, described in the previous sections, in a Java tool.

Z3 [14] solver is leveraged to compute solutions for the LP formulations. In this section,

we evaluate Hydra’s empirical performance, using our implementation of DataSynth as the

comparative yardstick in the analysis. For a fair comparison of Hydra’s performance against

DataSynth, we extended the implementation of DataSynth to also handle constraints in DNF.

Database Environment. The TPC-DS [12] decision-support benchmark database, with a

default size of 100GB, is used as the baseline in our experiments. The database is hosted on a

PostgreSQL v9.6 engine [7] with the hardware platform being a vanilla HP Z440 workstation.

Workload Construction. A complex query workload, WLc, featuring 351 filter CCs was

created by customizing the 99 queries of the benchmark. The constructed CCs were rewritten

as a filter predicate on denormalized tables. Hence, in the output, denormalized tables were

constructed. This was done to stress test the system by (a) including more CCs per table; (b)

dealing with high dimensional tables. The distribution of the cardinalities for these CCs are

shown in Figure 4.9, with the cardinalities measured on a log-scale. The figure clearly indicates

that a wide range of cardinalities are present in the constraints, going from a few tuples to

almost a billion.

Figure 4.9: Distribution of Cardinality in CCs (WL c)

The above constraints result in a large number of geometrically overlapping regions. Hydra,

due to its region-partitioning approach, comfortably handles this scenario. In marked contrast,

DataSynth, due to its grid-partitioning construction, generates a very large number of LP

variables (in the several billion) from the constraints, overwhelming the solver’s capabilities.

We therefore also created an alternative simplified query workload, called WLs, with 311 CCs,
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wherein the variables created by DataSynth were less than a million, and therefore well within

the solver’s processing power.

4.8.1 Constraint Accuracy

Figure 4.10: Quality of Volumetric Similarity (WL s)

We begin by investigating how closely the volumetric similarity, with regard to operator

output cardinalities, is achieved between the client and vendor sites for the WLs workload by

the Hydra and DataSynth regenerators. This behavior is captured in Figure 4.10, which plots

the percentage of CCs that are within a given error percentage of volumetric similarity. From

the plot it is evident that Hydra satisfies all the CCs with no error. This is in contrast to

DataSynth, which satisfies around 80 percent of the CCs with minor error, but then incurs high

error to achieve complete coverage of the remaining CCs.

As a final observation, it is interesting to note that DataSynth has to contend with both

negative (volumes less than desired) and positive (volume greater than desired) errors, due to

its sampling strategy – in fact, about one-third of the CCs suffered negative errors. From a

practical standpoint, it is especially undesirable to have negative error because these do not

induce required stress on the data processing elements in the engine.

4.8.2 Scalability with Workload Complexity

We now turn our attention to evaluating the complexity of the underlying LP that is formulated

by Hydra and DataSynth. Since LP complexity is essentially proportional to the number of

variables in the problem, we compare this number for the two techniques.

The number of LP variables for a representative set of TPC-DS tables, including the major

fact and dimension tables (catalog sales, store sales, item) is captured, on a log-scale, in Fig-

62



ure 4.11 for the WLc complex workload. We observe here that the LPs formulated using the

region-partitioning strategy in Hydra generate several orders of magnitude fewer variables than

the corresponding LPs derived from the grid-partitioning in DataSynth. As a case in point,

consider the catalog sales table – the number of variables created by DataSynth was almost 5.5

million, which is reduced to as low as 1620 by Hydra. Even more dramatic is the change for

item table, where the number of variables is reduced from an enormous 1011 to around 3700.

Figure 4.11: Number of variables in the LP (WLc)

From an absolute perspective also, the large number of variables created by DataSynth is a

critical problem since, as mentioned previously, the LP solver crashed in handling these cases.

In marked contrast, the few thousands of LP variables generated by Hydra were easily solvable

in less than a minute. Moreover, even when we switched to the simple workload, WLs, the LP

solution time for DataSynth was almost an hour, whereas Hydra completed in a few seconds as

shown in Figure 4.12.

Complex Workload (WLc) Simple Workload (WLs)
DataSynth Hydra DataSynth Hydra

crash 58 sec 50 min 13 sec

Figure 4.12: LP Processing Time
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4.8.3 Scalability with Materialized Data Size

This experiment compares the data instantiation times, post LP solution, of DataSynth and

Hydra on the WLs workload. While Hydra, in principle, due to its summary-based approach,

does not have to instantiate the data immediately, we assume in this experiment that the

vendor requires complete materialization.

The experimental results are shown in Figure 4.13, where we also present, for comparative

purposes, the performance with 10 GB and 1000 GB databases, apart from the default 100 GB

database. We see here that there is a huge reduction in the materialization time of Hydra at all

scales. Further, even in absolute terms, Hydra is able to output a 100 GB database in around

11 minutes, whereas DataSynth takes 42 hours to complete the same task.

The marked difference in the efficiency of the two techniques is attributed to the fact that

DataSynth instantiates complete tables through sampling, subsequently performs several passes

on these instantiations to ensure referential integrity, and to derive tables from them. Hydra

on the other hand, after LP-solving, constructs the tables summaries in just a few seconds, and

then instantiates the materialized data directly from it.

Size (in GB) DataSynth Hydra
10 4 hours 2 min
100 42 hours 11 min
1000 > 1 week 1.6 hours

Figure 4.13: Data Materialization Time

4.8.4 Scalability to Big Data Volumes

In our next experiment, we validated the ability of Hydra, thanks to its summary-based tech-

nique, to scale to Big Data volumes. To demonstrate this feature, we modeled an exabyte-sized

(1018 bytes) data scenario as follows: We used CODD, which is capable of modeling arbitrary

metadata scenarios, to obtain the optimizer-chosen plans at the exabyte database scale for all

the workload queries. To get AQPs for this database, we executed the obtained plans on the 100

GB instance and scaled the intermediate row counts with the appropriate scale factor. Hydra

was able to formulate and solve the LPs (one per table), and generate the table summaries

in less than 2 minutes. Once the summary is generated, the user can begin to submit the

workload queries since the data required for the execution can be produced on-the-fly by the

Tuple Generator.
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4.8.5 Dynamism in Data Generation

Our next experiment evaluates Hydra’s ability to produce tuples on-the-fly instead of first

materializing them, and then reading from the disk. To verify whether dynamic generation can

indeed produce data at rates that are practical for supporting query execution, we compared

the total time that Hydra’s tuple generator took to construct and supply tuples to the executor,

while running simple aggregate queries, as compared to the standard sequential scan from the

disk.

Rel. Name Size Row count Scan time (secs)
(in GB) (in millions) Disk Dynamic

store returns 3 29 16 8
web sales 10 72 43 25
inventory 19 399 107 74

catalog sales 20 144 46 48
store sales 34 288 168 87

Figure 4.14: Data Supply Times

The results of this experiment are shown in Figure 4.14 for the five biggest tables in the

100 GB database instance. We see here that the tuple generator is not only competitive with a

materialized solution, but is in fact typically faster. Therefore, using dynamic generation can

prove to be a good option since it can help to eliminate the large time and space overheads

incurred in: (1) dumping generated data on the disk, and (2) loading the data on the engine

under test.

4.8.6 Performance on JOB Benchmark

A legitimate concern with regard to the above encouraging results for Hydra is that they may

be an artifact of the TPC-DS database, and perhaps might under-perform on other datasets.

To address this concern, we consider in our final experiment, a schematically highly different

database, namely the JOB benchmark [45, 5], which is based on the IMDB real-world dataset.

Here, we created a workload of 523 CCs, whose cardinality distribution is again highly varied

as seen in Figure 4.15.

We found that Hydra efficiently solved this workload as well, with the number of variables

in each table being typically in the few thousands, and never exceeding a hundred thousand,

as shown quantitatively in Figure 4.16. The overall table summaries were quickly generated in

around 20 seconds while ensuring high fidelity.

65



Figure 4.15: Cardinality distribution of CCs in JOB

Figure 4.16: Number of Variables for JOB

4.9 Conclusion

In this chapter we discussed the mechanism for regenerating synthetic table using filter con-

straints. Specifically, by reworking the basic LP problem formulation into a region-based vari-

able assignment, Hydra improves on the state-of-the-art DataSynth’s performance by orders

of magnitude with regard to problem complexity, data materialization time, and scalability

to large volumes. Secondly, by using a deterministic alignment technique for database con-

sistency, it provides far better accuracy in meeting volumetric constraints as compared to the

probabilistic approach employed in DataSynth. Finally, its summary-based framework organi-

cally supports the dynamic regeneration of streaming data sources, an essential prerequisite for

efficiently testing contemporary deployments.
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Chapter 5

Regeneration using Projection

Constraints

5.1 Introduction

This chapter discusses the mechanism for synthesizing a table using AQPs including projection

operator. Our motivation for modeling Projection stems from its core appearance in the Dis-

tinct, Group By, and Union SQL constructs – as a case in point, among the 22 queries in

the TPC-H benchmark [11], as many as 16 feature the projection operation.

5.1.1 Projection-inclusive Constraints

We represent an AQP including a filter and projection on a table, using a projection-

inclusive cardinality constraint (PIC). To express a PIC c on a table T , we use the quadruple

c : 〈f ,A, l,k〉, as a shorthand notation. Here, f represents the filter predicate applied on T ,

A represents the projection attribute-set (PAS), l signifies the row-cardinality of the filtered

table, and k represents the row-cardinality after projection on this filtered table.

Our focus here is on the duplicate-eliminating version of projection where only the distinct

rows are retained in the projected output (the alternative duplicate-preserving option does

not alter the filter output’s row-cardinality, and is therefore trivially handled by the existing

frameworks). In the context of volumetric similarity, Group By and Union clause behaves same

as Distinct SQL operation. Distinct is expressed as duplicate eliminating projection relational

algebra operation and therefore we have used projection as an umbrella term to include Group

By and Union as well.

As a sample instance, consider the following set of PICs on Std (RollNo, Age, GPA,
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Scholarship):

c1 : 〈f1, GPA, 30000,555〉 | f1 = (Age < 30) ∧ (5 ≤ GPA < 8)

c2 : 〈f2, GPA, 4000,333〉 | f2 = (Age ≥ 30) ∧ (4 ≤ GPA < 9)

c3 : 〈f3, Age, 48000,999〉 | f3 = (Age ≥ 15)

Here, PIC c1 denotes that applying the f1 predicate on Std should produce 30000 rows in the

output, which is further reduced to 5 rows after projecting on the GPA column; the other PICs

can be interpreted analogously.

5.1.2 Technical Challenges

There are two primary challenges to modeling PICs within the table generation process, related

to handling dependencies within and across the data subspaces identified by these constraints,

as described below.

Intra-Projection Subspace Dependencies. Consider the projection subspace spanned by

a set of attributes A. Dealing with projection requires computing union of groups of

tuples. For example, for two tuples/group of tuples b1 and b2, the direct expression for

computing projection along A is:

|πA(b1 ∪ b2)|

However, even if b1 and b2 are disjoint in the original table, their projections onto A may

overlap. Therefore, to handle PICs, explicitly computing the cardinality of the union of

a group of tuples post-projection is required. Using the fact that projection distributes

over union [67], we can rewrite the above expression as:

|πA(b1) ∪ πA(b2)|

but even here the union does not translate to a simple summation. For instance, consider

the following two sample rows from the Std table:

t1 : (RollNo = 10001, GPA = 7, Age = 25, Scholarship = 20K), and

t2 : (RollNo = 10002, GPA = 7, Age = 20, Scholarship = 30K).

Both rows satisfy the filter f1, but the union of their projections along GPA yields a

single outcome – namely, GPA = 7.

Inter-Projection Subspace Dependencies. When a set of tuples b is subjected to multiple

projections, the data generation for projection subspaces may be interdependent. Given

68



a pair of PASs A1 and A2, sourced from two PICs, we have the inclusion property:

πA1∪A2(b) ⊆ πA1(b)× πA2(b)

For instance, consider a group of tuples b, from the table Std, satisfying the following

disjunctive filter condition:

b = {t ∈ Std | (t.Age ≥ 30 ∧ t.GPA ≥ 9) ∨

(15 ≤ t.Age < 30 ∧ t.GPA ≥ 8)}

Here, a tuple with GPA = 8.5 and Age = 35 can belong to both πGPA(b) and πAge(b),

but lies outside b’s boundary.

Moreover, A1 and A2 may themselves intersect. Therefore, in general, expressing a set

of PICs with an LP, while ensuring a physically constructible solution, is often infeasible

– this is because the set of constructible solutions does not form a convex polytope [44].

Hence, alternative methods are needed to address this issue.

5.1.3 Our Contributions

In this chapter, we present the strategy that addresses the above challenges and extends the

current scope of data generation to include projection in its ambit. The key design principles

are: (a) Projection Subspace Division, which divides each projection subspace into regions that

allow modeling the unions, thereby ensuring that the intra-subspace dependencies are resolved;

and (b) Isolating Projections, for independent processing of each projection subspace, thereby

tackling the inter-projection subspace challenge.

Additionally, the concept of dynamic data regeneration is leveraged to constructs an En-

riched Table Summary, that ensures data can be generated on-demand during query processing

while satisfying the input PICs. Therefore, no materialized table is required in the entire test-

ing pipeline. Further, the time and space overheads incurred in constructing the summary is

independent of the size of the table to be constructed and, in our evaluations, requires only a

few 100 KBs of storage.

A detailed evaluation on multiple workloads of PICs, covering both real-world datasets

(IMDB, Census), and synthetic benchmarks (TPC-DS) has been conducted. The results demon-

strates that Hydra accurately and efficiently models Projection outcomes. As a case in point,

for a workload of PICs, comprising over a hundred PICs in total, Hydra generated data that

satisfied all the PICs, with perfect accuracy. Moreover, the entire summary production pipeline
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completed within viable time and space overheads.

Note: If we want to add cardinality constraint on a group (output of Group By), that can

be easily done by applying a filter on the group key. For instance, consider the following

constraint: for the group with column-set A having value a, the total number of rows is equal

to γ. This constraint on the group can be modeled as: |σA=a(T )|= γ. This is the standard

filter constraint considered in the previous chapter. Therefore, using the techniques described

for filter constraints, these cardinality constraints per group can also be handled.

5.1.4 Organization

The remainder of this chapter is organized as follows: The problem framework is discussed

in Section 5.2. Further, the key design principles of the proposed solution are introduced in

Section 5.3, and then described in detail in Sections 5.4 through 5.7. The end-to-end implemen-

tation pipeline is presented in Section 5.8 with the critique in Section 5.9. The experimental

evaluation is reported in Section 5.10. Finally, we conclude this chapter in Section 5.11.

5.2 Problem Framework

In this section, we summarize the basic problem statement, the underlying assumptions, the

output delivered, and a tabulation of the notations used in this chapter.

5.2.1 Problem Statement

Given an input table schema S and a workload Q of PICs, the objective of data generation is

to construct a table T , such that it conforms to S and satisfies Q.

5.2.2 Assumptions

We assume that each PIC in Q is of the form described in the Introduction. Further, for

simplicity, we assume that Q is collectively feasible, that is, there exists at least one legal

database instance satisfying all the constraints. Finally, for brevity, we present the ideas using

tables with columns having float data type; the extension to other data types is straightforward.

5.2.3 Output

Given S and Q, Hydra outputs a collection of table summaries S. Each summary sT ∈ S can be

used to deterministically produce the associated table T . The tables produced are such that:

(a) all of them conform to S, and (b) each input PIC in Q is satisfied by at least one of them.
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5.2.4 Notations

The main acronyms and key notations used in the rest of this chapter are summarized in

Tables 5.1 and 5.2, respectively.

Table 5.1: Acronyms

Acronym Meaning
PAS Projection Attribute Set
PIC Projection-inclusive Constraint
PRB Projected Refined Block
CPB Constituent Projection Block
PSD Projection Subspace Division

5.3 Design Principles

In this section we overview the core Hydra design principles, with the Std table of the Intro-

duction used as the running example to explain their impact. Subsequently, in Sections 5.4

through 5.7, each principle is described in detail. To set the stage, here are some basic defini-

tions underlying our work.

Definition 5.1 A block is a bag of points (i.e. tuples) in the data space D(T ) of the synthetic

table T .

Definition 5.2 A projection block is a subset of points from DA(T ), where DA(T ) represents

the data subspace of the synthetic table T spanned by a given PAS A.

Since this chapter focuses deals with a single table, we denote D(T ) and DA(T ) as simply D
and DA, respectively.

5.3.1 Region Partitioning

To model the filter predicates associated with Q, the data space D is logically partitioned into

a set of blocks. For this, we leverage the region partitioning technique from Chapter 4, which

partitions the data space into the minimum number of blocks.

Each resultant block is referred to as a filter-block. The algorithm outputs the domain of

each filter-block, which forms its logical condition. The domain of an filter-block b is denoted

as dom(b).

Consider the three filter predicates, f1, f2, f3 on Std from Section 5.1.1.
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Table 5.2: Notations

(a) Database Related

Symbol Meaning
S Table Schema
T Output Table
t Tuple
sT Summary of T
D Data space of T
DA Data subspace spanned by A

(b) Workload Related

Symbol Meaning
Q Set of PICs
c A PIC
f Filter Predicate
A PAS
l Output row card. after filter
k Output row card. after projection
Qc A compatible PICs Workload
β Number of PASs across Qc

(c) Block Related

Symbol Meaning
b filter-block
r refined-block
R Set of refined-blocks
r PRB wrt r and a PAS

RA
Set of PRBs for A

m Cardinality of RA

p CPB
PA Set of CPBs for A
xr variable for |r|
yp variable for |p|

(d) Relation/Function Related

Symbol Meaning
U(T ) Set of attributes in T
dom(.) Domain of the input parameter
M A relation btw PICs and refined-

blocks
LA A relation btw CPBs and PRBs

For simplicity, Figure 5.1 shows only the 2D data space comprising the Age and GPA at-

tributes since no conditions exist on the other attributes. In this figure, the filter predicates

are represented using regions delineated with colored solid-line boundaries. When region parti-

tioning is applied on this scenario, it produces the four disjoint filter-blocks: b1, b2, b3, b4 whose

domains are depicted with dashed-line boundaries.

5.3.2 Isolating Projections

To circumvent inter-projection subspace dependencies, we first “isolate” the projections. Specif-

ically, the following set of steps are taken in this process.

A symmetric refinement strategy is adopted that refines an filter-block into a set of disjoint

refined-blocks such that each resultant refined-block exhibits translation symmetry along each

applicable projection subspace. That is, for each domain point of a refined-block r along a

particular PAS, the projection of r along the remaining attributes is identical.
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Figure 5.1: Region Partitioning

For instance, consider filter-block b4 in Figure 5.1. Clearly, it is asymmetric along the PAS

Age – specifically, compare the spatial layout in the range 15 ≤ Age < 30 with that in Age ≥ 30.

After refinement, this block breaks into r4a and r4b as shown in Figure 5.2(a) – it is easy to

see that r4a and r4b are symmetric. (The other filter-blocks (b1, b2, b3) happen to be already

symmetric, and are shown as r1, r2 and r3, respectively, in Figure 5.2(a)). This refinement

allows for the values along different projection subspaces to be generated independently. That

is, dom(r) = dom(πGPA(r))× dom(πAge(r)), for each refined-block r.

The above refinement, however, does not scale when the projections applied on an filter-block

are along partially overlapping PASs, i.e. when different PASs share some attribute(s). There-

fore, to eliminate such situations, we resort to decomposing the workload into non-overlapping

sub-workloads using a vertex coloring-based strategy. As a consequence, for each such sub-

workload, a separate summary is produced at the conclusion of the LP solution process. From

a practical perspective, the multiplicity of summaries does not impose a substantive overhead

since each summary is very small. However, to maximize the number of constraints that can

share a common database, the number of sub-workloads required to eliminate all conflicts is

minimized.
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Figure 5.2: Symmetric Refinement and PSD

5.3.3 Projection Subspace Division

To deal with intra-projection subspace dependencies, the domain of each PAS is logically divided

into a set of projection blocks, called constituent-projection-blocks (CPBs). This construction

ensures that each projection cardinality is expressible as a summation over the cardinalities

of these CPBs. Further, we ensure that the minimum number of CPBs is produced, aiding in

efficient LP formulations.

For our example scenario, Hydra divides the data subspace associated with the GPA di-

mension into 4 CPBs: pGPA1 , pGPA2 , pGPA3 , pGPA4 , and the Age dimension subspace into 6 CPBs:

pAge1 , pAge2 , ..., pAge6 , as shown in Figure 5.2(a). Each CPB has a semantic meaning associated

with it. For example, pGPA1 semantically represents the GPA values present in both r1 and r2.
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Further, the CPBs need not be mutually disjoint, as in the case of pGPA3 and pGPA4 . Finally,

Figure 5.2(a) also shows the unique tuples enumerated by the sample output table shown in

Figure 5.2(b), and the CPB (s) to which each of these tuples belongs.

5.3.4 Constraints Formulation

The LP solving procedure is constructed using variables representing the row cardinalities of

refined-blocks and CPBs. For instance, if xi represents the cardinality of refined-block ri, and

yGPAi and yAgei represent the cardinalities of CPBs pGPAi and pAgei , respectively, then PICs are

expressed by linear equations as follows:

c1 : x1 + x2 = 30000, yGPA1 + yGPA2 + yGPA3 = 5

c2 : x3 = 4000, yGPA4 = 3

c3 : x2 + x3 + x4a + x4b = 48000,

yAge1 + yAge2 + yAge3 + yAge4 + yAge5 + yAge6 = 9

Finally, additional sanity constraints are added to the LP to ensure data constructibility.

For example, the distinct row-cardinality of the projection of a refined-block is upper-bounded

by the refined-block’s native cardinality.

A sample solution to the above LP is shown below:

x1 = 30000, x2 = 0, x3 = 4000, x4a = 0, x4b = 14000

yGPA1 = 0, yGPA2 = 5, yGPA3 = 0, yGPA4 = 3, yAge1 = 0

yAge2 = 5, yAge3 = 0, yAge4 = 0, yAge5 = 0, yAge6 = 4

5.3.5 Enriched Database Summary

To construct the final summary, the domain of each PAS is divided into a set of intervals and

then the CPBs are assigned these intervals. A sample summary for the Std table with respect

to the aforementioned LP solution is shown in Figure 5.3, after incorporating an additional

attribute Scholarship to illustrate a multi-dimensional projection.

Each segment of the summary corresponds to a populated refined-block. Specifically, the

figure shows the tabulation for the r1, r3 and r4b refined-blocks. Each tabulation comprises of a

column for each PAS acting on the refined-block, and an additional last column indicating the

total number of tuples present in the refined-block. In each PAS column, the information for
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generating data of the associated projection subspace is present. Specifically, we maintain the

intervals in the projection subspace along with their distinct counts. As a case in point, the first

tabulation, corresponding to r1, is interpreted as “generate 30000 tuples, such that there are 5

distinct values of GPA in the interval [5,8), and 20 distinct value pairs of {Age, Scholarship}
of which 12 are from the 2D interval [1,15), [8K,20K), and the remaining 8 from the 2D

interval [1,15), [25K,35K).”

Figure 5.3: Table Summary Featuring Projection

For attributes that do not feature in any projection subspace, no associated distinct car-

dinality is maintained – an example is Scholarship in r3. Lastly, the primary-key column

(RollNo in the example) is omitted from the summary and is assumed to be a sequence of

distinct natural numbers during on-demand tuple generation. Further, note that the intervals

present in a summary may not be continuous. For instance, the {GPA, Scholarship} points

in r4b are sourced from two separate intervals: [1,4) and [9,10) for GPA column. From a

generation perspective, however, data can be constructed from either or both the sub-intervals.

Finally, we observe that this summary is significantly different from the pure filter case. The

key difference lies in that earlier we neither maintained intervals nor distinct value counts. Also,

since only filter-blocks were maintained, which being inherently disjoint have no dependency

among them. Here, we need to handle the dependencies enforced due to common CPBs being

shared between refined-blocks.

This summary is used for deterministic tuple instantiation method, which ensures that

despite the tuples being generated independently for various CPBs across all refined-blocks,

the row-cardinalities match the requirement.

In the following sections, we present the internal details of each of the aforementioned concepts.
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5.4 Isolating Projections

To facilitate independent processing of projection sub-spaces, we refine the filter-blocks so that

the resultant blocks become symmetric. The symmetry is formally defined as follows:

Definition 5.3 A block r in the data space of a table T with set of dimensions U(T ) is sym-

metric along a PAS A iff

dom(r) = dom(πA(r))× dom(πU(T )\A(r))

where dom(.) returns the domain of the input block.

Likewise r is symmetric along PASs A1,A2, ...,Aα iff

dom(r) = dom(πA1(r))× dom(πA2(r))× ...× dom(πAα(r))× dom(πU(T )\(A1∪A2∪...∪Aα)(r))

The Cartesian product implies that for a symmetric block, the data can be independently

generated for each PAS considered. Therefore, Symmetric Refinement module refines each

filter-block into a set of symmetric blocks along the PASs acting on it. Hence, post-refinement,

the different projection spaces can be processed independently. The refinement algorithm is

discussed in Section 5.4.1.

Impact of Overlapping Projection Subspaces. When partially overlapping PASs, say

A1 and A2, are applied on an filter-block b, symmetric refinement becomes computationally

challenging. This is because A1,A2 have to be made conditionally independent for b, requiring

refinement such that each resulting block is symmetric along A1 and A2 for each domain point

in dom(A1 ∩ A2). This is easily done by enumeration for small cardinality domains, but does

not scale in general. Hence, in Hydra we bypass such overlapping projection operations by

ensuring, as described in Section 5.4.2, that the input workload is initially itself decomposed

such that there are no projection subspace overlaps in the resulting sub-workloads.

5.4.1 Symmetric Refinement

The refinement for each filter-block is done independently. Given an filter-block b and its

associated PASs, this module refines b into a group of refined-blocks, such that each refined-

block is symmetric along the input PASs.

Let us first understand the refinement procedure for an filter-block along a single PAS. Here,

given a block b, and a PAS A, the refinement of b along A is carried out as follows:

1. Let I be the subset of all interval-combinations in dom(A) that are present in b. The

interval boundaries along an attribute are computed using the constants that appear in
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the filter predicates of the input PICs. For some interval-combination I ∈ I, let bI denote

the part of b whose projection along A is I.

2. For each interval combination I ∈ I, the projection of bI along U(T )\A is computed, and

denoted as π(bI).

3. A hashmap is created with keys as π(bI) and value as I. Hence, the parts of b where

the projection of b along U(T ) \ A do not alter with changing values of A are clubbed

together into a single hash entry. This construction provides independence between A
and the U(T ) \ A subspaces.

4. Each entry e in the hashmap corresponds to an refined-block, constructed by taking the

region stored as key in e for the U(T ) \ A attribute-set, and a union of regions stored as

value in e for the A attribute-set.

Interestingly, the above refinement strategy also ensures that the number of resultant blocks is

kept to a minimum. The domain of b along A be denoted as dom(πA(b)). Further, let E be a

relation associated with the points in dom(πA(b)). For a pair of points t1, t2 ∈ dom(πA(b)), we

say t1Et2 iff the projection t1 and t2 along the rest of the attributes i.e. U(T )\A is identical. It

is easy to verify that E forms an equivalence relation. For an equivalence relation, the quotient

set of the relation gives the minimum partition.

Lemma 5.1 The Symmetric Refinement algorithm returns the quotient set of dom(πA(b)) by

E.

The proof follows from the fact that Symmetric Refinement algorithm uses a hashmap,

which enables grouping of points in dom(πA(b)) together such that their projection on U(T )\A
are identical. Hence, for a PAS, the symmetric refinement algorithm produces the quotient set

of E, and hence returns the refinement with minimum number of blocks.

Extension to Multiple PAS

We now move on to the multiple PAS scenario. Let there be α PASs (A1,A2, ...,Aα) ap-

plicable on b across all PICs. This implies that there are α + 1 projection subspaces –

πA1(b), πA2(b), ..., πAα(b), and πU(T )\(A1∪A2∪...∪Aα)(b). It is easy to see that the block becomes

symmetric when refined along any α of these α + 1 subspaces.

The refinement is done iteratively, where the output of refinement along one subspace is fed

into the next in the sequence. Since any sequence among the chosen α subspaces results in a

symmetric block, there are a total of
(
α+1
α

)
α! ways to do the refinement. The specific choice that
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we make from this large set of options is important because it has an impact on the number

of variables in the LP, and hence the computational complexity and scalability of the solution

procedure. In particular, the number of CPBs created depends on the geometry of the refined-

blocks, and usually more overlaps of refined-blocks along a PAS results in more CPBs. More

precisely, if we refine a block along a subspace, the overlaps in that space remain unaffected, but

the overlaps along the remaining subspaces may increase. Therefore, to minimize this collateral

impact, we adopt the following greedy heuristic in Hydra: The subspace having the maximum

filter-block overlaps with b is chosen as the next subspace to be refined in the iterative sequence.

Mapping refined-blocks to PICs

The set of refined-blocks, denoted by R, are connected with the set of PICs using the following

relation:

Definition 5.4 An refined-block r ∈ R is related by relation M to a PIC c containing filter

predicate f , iff dom(r) satisfies f . That is,

rMc⇔ t satisfies f, ∀t ∈ dom(r)

For a PIC c, the associated filter predicate’s output cardinality l can be expressed as the union

of a group of refined-blocks related to c by M , as follows:

|
⋃
r:rMc

r| =
∑
r:rMc

|r|= l

Since all the refined-blocks are mutually disjoint, the union could be replaced with summation

in the above equation.

5.4.2 Workload Decomposition

As discussed previously, symmetric refinement is performed when distinct PASs applicable on

an filter-block are non-overlapping. This holds true when, for each domain point t, the distinct

PASs across various PICs that are applicable on t, are mutually disjoint. For any given collection

of sets (PASs) to be mutually disjoint, it is equivalent to say that they are pairwise disjoint.

This leads us to defining the concept of an conflicting pair of PICs.

Definition 5.5 A pair of PICs (c1 : 〈f1,A1, l1, k1〉, c2 : 〈f2,A2, l2, k2〉) conflict iff:

• their PASs partially intersect, i.e.,

A1 ∩ A2 6= ∅,A1 6= A2, and
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• f1 and f2 overlap, i.e., there exists a point t in the domain space of T such that t satisfies

f1 and f2.

For example, consider the following pair of constraints, c4 and c5, on the Std table:

c4 :〈GPA ≤ 8 ∧ Scholarship ≥ 40K, (Age, Scholarship), 500, 20〉

c5 :〈Age ≥ 10 ∧ Scholarship ≤ 4K, (GPA, Scholarship), 2000, 6〉

We see that the filters in the two constraints overlap, and the corresponding PASs also partially

intersect.

In the Workload Decomposition module, the input workload is split such that there are

no conflicting pairs of PICs in the resulting sub-workloads. We refer to a workload with no

conflicting pairs as a compatible workload, and denote it using Qc.

Given Q, the set of conflicting pairs is computed first. Subsequently, we construct the set

of compatible sub-workloads that cover the entire workload. Additionally, we aim towards

minimizing the number of sub-workloads. This minimization is desirable to facilitate common

platform for workload performance evaluation. Since the minimization is NP-complete (reduc-

tion from vertex coloring), we adopt a heuristic based on greedy vertex coloring. The algorithm

iterates over the PICs, and in each iteration, the PIC c with minimum conflicts in the set is

picked and assigned to a compatible sub-workload Qc. If multiple compatible options are avail-

able, an assignment that minimizes the skew in the sub-workload sizes is made. On the other

hand, if no such assignment is possible, a new sub-workload is constructed, and initialized with

c. Note that a single query always produces at most one PIC and hence is always free from

conflicts.

In the worst case, the above algorithm can create one sub-workload per query. However, it is

our experience that in practice, a small number of sub-workloads is usually sufficient. Further,

we hasten to add that even if the worst case materializes, the overheads incurred would be

marginal as only a single small summarized table is stored per sub-workload.

5.5 Projection Subspace Division

We now turn our attention to handling intra-projection subspace dependencies. The projection

output cardinality with respect to a PIC c can be expressed using the relation M as follows:

|
⋃
r:rMc

πA(r)| = k
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We use the shorthand r to represent the projection of a refined-block r on A, i.e. r = πA(r),

and this projection block is referred to as a projected-refined-block (PRB). The set of all PRBs

for a PAS A is shown as RA
. Further, for brevity, we overload the same relation M to establish

an association between PRB r and a constraint c. That is, rMc⇔ rMc. Hence we can rewrite

the above equation as:

|
⋃
r:rMc

r| = k

The union here cannot be replaced with summation because unlike refined-blocks, the PRBs

need not be disjoint. Therefore, to express the constraint as a linear equation, the projection

subspace DA needs to be divided into a set of CPBs. The set of CPBs corresponding to a PAS

A is denoted using PA. Each element p ∈ PA logically represents a subset of DA. Further, a

relation LA is provided that connects the elements of PA with elements of RA
. We first define

the notion of what constitutes a valid division, and then go on to presenting an algorithm that

provides the (unique) optimal division.

5.5.1 Valid Division

A valid division is defined as follows:

Definition 5.6 Given Qc,RA
and M , a division (PA, LA), with respect to a projection data

subspace DA, is called a valid division if it satisfies the following two requirements:

Condition 1. Each PRB r ∈ RA
is expressible as a union of a group of elements from PA,

determined by relation LA, as shown below:

r =
⋃

p:pLAr

p, ∀ r ∈ RA
(5.1)

Condition 2. All elements in PA that are related to a constraint c ∈ Qc through the composite

relation

M ◦ LA = {(p, c)|∃r ∈ RA
: rMc ∧ pLAr}

that is, all elements of the set {p : (p, c) ∈ M ◦ LA}, should be mutually disjoint for all

c ∈ Qc.

Condition 1 is needed to associate an PRB with its constituent CPBs. This is required during

data generation in order to populate appropriate refined-blocks based on the cardinalities of

CPBs obtained from the LP solution. Condition 2 enforces that each constraint is comprised

of disjoint constituent CPBs, thereby enabling expression of constraints as linear equations.
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For ease of presentation, we drop A, which can be assumed implicitly, from the superscript

in the rest of this section.

We now give a bound on the number of CPBs required. Each element p of P maps to a

collection of sets from R using relation L. If there are m elements in R, then p has one of the

total 2m − 1 possible mappings.

Lemma 5.2 If a pair of CPBs in P, p1 and p2, map to identical sets in R, they can be combined

into a single element p1 ∪ p2, without violating either condition.

Proof: We are given that p1 and p2 ∈ P are such that p1Lr ⇔ p2Lr for r ∈ R. We need to

prove that replacing p1 and p2 with p1,2 = p1∪p2 in P does not violate any of the two conditions.

• Condition 1: It is required that each r ∈ R is expressible as union of related elements

of P through L.

If (p1, r) /∈ L, then (p2, r) /∈ L (and vice versa). Hence, the expression for r remains

unaltered.

If (p1, r) ∈ L, then (p2, r) ∈ L (and vice versa). Let ρ = {p ∈ P \ {p1, p2} : pLr}. Then,

r = p1 ∪ p2

⋃
p∈ρ p. After replacing p1 and p2 with p1,2, the expression would become

r = p1,2

⋃
p∈ρ p.

• Condition 2: Let c be any PIC in Qc such that (p1, c) ∈M ◦LA (and (p2, c) ∈M ◦LA).

It is easy to see that (from Condition 2) p1 will be disjoint with all the other elements of

P that are related to c through M ◦ LA. That is,

p1 ∩ p′ = ∅,∀p′ ∈ P \ {p1} : (p, c) ∈M ◦ LA

Likewise, p2 will also be disjoint with all the other elements of P that are related to c.

Therefore, on replacing p1 and p2 with their union p1,2, p1,2 will continue to remain disjoint

with all the other elements of P that are related to c.

2

From Lemma 5.2, we know that at most one CPB is needed for each mapping. Therefore,

2m − 1 is the upper bound on the number of CPBs required for an R of length m.

From this observation, let us first look at an extreme construction of (P, L) with |P|= 2m−1,

where there is a single element p ∈ P for each possible mapping.
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Powerset Division

Consider a set P having 2m − 1 elements with a mapping relation L such that each element p

in P maps to one of the non-empty subsets of R. Further, p’s content is defined as follows:

p =
⋂

r:(p,r)∈L

r \
⋃

r′:(p,r′)/∈L

r′ (5.2)

That is, p includes the data points that are present in all the PRBs that are related to p and

absent from each of the remaining PRBs.

P satisfies the two conditions for valid division. This is because:

1. Each element r ∈ R can be expressed as a union of a subset of elements in P, as shown

below:

r =
⋃
p:pLr

p

2. All the elements in P are mutually disjoint.

Consider the projection subspace of GPA in our running example. RGPA
= {r1, r2, r3}. Since

there are three PRBs, seven possible mappings exist. Figure 5.4 illustrates these seven map-

pings. Powerset Division (Pow-PSD) creates seven CPBs, one CPB corresponding to each map-

ping. Hence, the seven resulting CPBs in PGPA are as follows:

r1 \ (r2 ∪ r3), (r1 ∩ r2) \ r3, (r1 ∩ r3) \ r2, r1 ∩ r2 ∩ r3,

r2 \ (r1 ∪ r3), r2 ∩ r3 \ r1, r3 \ (r1 ∪ r2)

Figure 5.4: Partitioning in Projected Space
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5.5.2 Optimal Division

The number of CPBs in P determine the number of variables in the LP. Therefore, reducing

the size of P helps in reducing the complexity of LP, thereby providing workload scalability and

computational efficiency. Hence, we define an optimal division as a valid division that has the

minimum number of CPBs.

Definition 5.7 A valid division (P, L) is called an optimal division iff there does not exist any

other valid division (P′, L′) such that |P′|< |P|. We represent the optimal division by (P∗, L∗).

We now shift our focus towards identifying the optimal division. As a first step, let us define

some general characteristics of the set P and the corresponding relation L.

If a CPB p is related to a PRB r, then p is a subset of r. That is,

pLr =⇒ p ⊆ r (5.3)

Alternatively, a second possibility is of disjointedness. Let p1, p2 be such that (p1, c), (p2, c) ∈
M ◦ L for some c ∈ Qc. Further, let R(p1),R(p2) represent the set of PRBs that are related to

p1 and p2, respectively, through L. Using Condition 2 and Equation 5.3, we can say that

p1 ∩ r = ∅, where r ∈ R(p2) \ R(p1)

p2 ∩ r = ∅, where r ∈ R(p1) \ R(p2) (5.4)

Therefore, CPBs may have a disjoint relation with a PRB.

Finally, a third possibility is when a CPB does not have a relation with a PRB, which allows

room for constructing CPBs that overlap.

Our division algorithm distinguishes these three possibilities using a vector vp corresponding

to each CPB p in P. The vector is of length m, where each element is associated with an element

of R. Further, the element associated with r ∈ R is denoted by vp(r). Specifically, element vp(r)

is set to 1 iff pLr. Using Equation 5.4, the elements in vp corresponding to the sets R(p′)\R(p)

for all p′ such that (p, c), (p′, c) ∈ M ◦ L for some c ∈ Qc, are represented as 0, denoting the

absence of values from these sets. The remaining elements of vp are set as ‘×’ denoting a don’t

care state, i.e. p and r may or may not have an intersection.

Finally, using the vector vp, p can be expressed as:

p =
⋂

r:vp(r)=1

r \
⋃

r′:vp(r′)=0

r′ (5.5)
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Let V represent the set of all possible vectors. Further, let Q denote the collection of CPBs,

where there is a projection-block p associated with each vector vp ∈ V. Therefore, P∗ ⊆ Q.

Let the subset of V corresponding to the elements in P∗ be denoted as V∗. Each position in

vector vp can have one of the three possibilities among 0, 1,×, and at least one position needs to

mandatorily be 1. Therefore, Q comprises 3m−2m elements. Note that Q forms a partial-order

with respect to the subset relation, and can therefore be represented by a Hasse Diagram. As

an exemplar, the Hasse Diagram for an m = 3 case is shown in Figure 5.5 (for simplicity, the

elements of V are shown instead of Q).

Figure 5.5: Hasse Diagram

We hasten to add that to compute P∗, it is not necessary to iterate on all the elements of

Q. Instead, the division begins with the top nodes of the Hasse diagram and recursively splits

a block only if required to satisfy the two conditions.

The detailed mechanics of the division algorithm, called Opt-PSD, with pseudocode as shown

in Algorithm 4, are described next.

5.5.3 Opt-PSD Algorithm

We begin our computation of the projection subspace division by creating a Division Graph

(DG). In this graph, a vertex is created corresponding to each element of R. Then, an edge

is added between vertices corresponding to r1 and r2 if there exists a constraint c such that

r1Mc and r2Mc, (i.e. both the PRBs are related to a common constraint c), and the domains

of r1 and r2 intersect. The resultant graph G is given as input to Algorithm 4, which returns

the set of vectors V∗ in the output. Leveraging the vectors, the contents of the CPBs are

computed using Equation 5.5. Then, the L∗ relation is populated with the expression: (p, r) ∈
L∗, if vp(r) = 1, vp ∈ V∗
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The rest of the algorithm proceeds as follows:

• We iterate over the vertices of G. In the iteration for a PRB r, a vector is initialized

with ‘×’ for all the positions except that corresponding to r, which is set to 1 (Line 3 of

Algorithm 4). These initial vectors represent the top nodes of the Hasse Diagram. They

are recursively further split in the while loop (Line 5), using a running list of vectors

called toBeSplit.

• In each iteration of the while loop, an element vp from toBeSplit is popped and split

using a pivot vertex; the resultant elements are re-inserted in the list. A pivot PRB is

distinguished as one which is included in vp and co-occurs in a constraint c with another

PRB (target) whose current assignment in the vector is ×. To compute the pivot vertex in

G, the getP ivot function is used, which selects the pivot based on the following conditions:

(a) vp(pivot) = 1, and (b) There exists a PRB r such that there is an edge between the

vertices corresponding to pivot and r. Further, the value for r in the vector v is ×.

• The collection of all PRBs that satisfy condition (b) is denoted as the targets set cor-

responding to pivot, and is returned by the getP ivot function. Now, vp is split using

the Split function, which computes a powerset enumeration of the vector positions corre-

sponding to PRBs in targets. This function also ensures that no redundant elements are

added in the result set.

The correctness of Opt-PSD algorithm follows from the following:

• it starts from the top nodes of the Hasse diagram and recursively refines them. Therefore,

it continues to cover all the elements of R.

• the PRBs that are related to a common constraint are split by restricted powerset enu-

meration ensuring that they are mutually disjoint.

Hence, the algorithm does restricted enumeration depending on vertex’s neighbours, or in

other words it takes into account which PRBs co-appear in a constraint.

Example Division

Consider the projection subspace of GPA in Example 1. RGPA
= {r1, r2, r3}. Let us see

how the CPBs for projection subspace of GPA are created by Opt-PSD. The input DG for the

example is shown in Figure 5.6.

Initialization: toBeSplit = ∅,V∗ = ∅
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Algorithm 4: Optimal Projection Subspace Division

Input: Division Graph G
Output: Optimal Vectors-set V∗

1 toBeSplit← ∅;
2 visited← ∅;
3 for r in R do
4 visited← visited ∪ r vp init← {×}m, vp init(r)← 1;
5 toBeSplit← {vp init};
6 while toBeSplit 6= ∅ do
7 vp ← toBeSplit.pop();
8 pivot, targets← getP ivot(G, vp);
9 if pivot exists then

10 toBeSplit← toBeSplit ∪ Split(vp, pivot, targets, visited);
11 else
12 V∗ ← V∗ ∪ {vp};

13 return V∗;

Figure 5.6: Example Division Graph

Iteration 1: r1 is picked, vp init = 〈1 × ×〉 is added to toBeSplit, toBeSplit = {〈1 × ×〉}.
After popping, vp = 〈1 × ×〉, getP ivot returns pivot = 1, targets = {2} as vertex 1 is

connected to vertex 2. The split function splits vp by a restricted powerset enumeration

on targets. {〈11×〉, 〈10×〉} is added to toBeSplit, toBeSplit = {〈11×〉, 〈10×〉}. Both

the elements in toBeSplit are popped one by one and are added to V∗ as they have no

pivot. toBeSplit = ∅,V∗ = {〈11×〉, 〈10×〉}.

Iteration 2: r2 is picked and the corresponding vp = 〈×1×〉 is added to toBeSplit,

toBeSplit = {〈×1×〉}. After popping, vp = 〈×1×〉 which return pivot = 2, targets = {1}
as vertex 2 is only connected to vertex 1. On splitting, {〈01×〉, 〈11×〉} are added to

toBeSplit. Both the elements are popped and 〈01×〉 is added to V∗ as it does not have

a pivot. 〈11×〉, being already present in V∗, is not inserted again. toBeSplit = ∅,V∗ =

{〈11×〉, 〈10×〉, 〈01×〉}.

Iteration 3: r3 is picked with 〈× × 1〉 and added to toBeSplit. After popping, vp = 〈× × 1〉,
no pivot is found by getP ivot as vertex 3 is not connected to any other vertex. vp is added

to V∗.
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1 Function Split(vp, pivot, targets, visited):
2 splitSet← ∅;
3 for r ∈ targets do
4 if r ∈ visited then
5 vp(r)← 0;
6 remove r from targets;

7 if targets = ∅ then
8 return vp;

9 powerset← generate powerset enumeration of targets;
10 for s ∈ powerset do
11 new vp ← vp;
12 new vp(r)← 1,∀r ∈ s;
13 new vp(r)← 0,∀r ∈ targets \ s;
14 splitSet← splitSet ∪ new vp(r);

15 return splitSet;

Finally, V∗ = {〈11×〉, 〈10×〉, 〈01×〉, 〈× × 1〉} (highlighted in Figure 5.5). Using Equation

5.5, it yielded in 4 CPBs for GPA, P∗ = {p1, p2, p3, p4} (as discussed in Section 5.3) and

L∗ = {(p1, r1), (p1, r2), (p2, r1), (p3, r2), (p4, r3)}.

The degree of the DG has a proportional impact on the number of CPBs constructed. To see

this behavior, the number of CPBs for Opt-PSD for a few general DGs are shown in Table 5.3.

Table 5.3: No. of CPBs in Opt-PSD

Division Graph No. of CPBs

Empty Graph (Km) m
Path Graph (Pm) 1

2
m(m+ 1)

Cycle Graph (Cm) m2 −m+ 1
Star (K1,m−1) 2m−1 +m− 1

Complete Graph (Km) 2m − 1

Proof of Optimality

We now prove that Opt-PSD produces the optimal division. For a CPB p ∈ P, consider the set

of points given as:
[⋂

r:vp(r)=1 r \
⋃
r′:vp(r′)=0,× r

′
]
. This is a subset of p and cannot overlap with

any p′ ∈ P \ {p}. This restriction leads to the following lemma:

Lemma 5.3 Given (P, L) returned by Opt-PSD, ∀p ∈ P, there exists a point t ∈ p such that

t /∈ p′,∀p′ ∈ P \ {p}.
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We use this observation to prove that Opt-PSD returns an optimal division, and further, that

this optimal division is unique.

Lemma 5.4 Opt-PSD returns the unique optimal division.

Proof: We give a brief sketch of the proof here.

Let (P, L) be the division provided by Opt-PSD, and let there be another division (P′, L′)
such that |P′|≤ P.

=⇒ ∃t1 ∈ p1, t2 ∈ p2(6= p1) for some p1, p2 ∈ P, where p1Lr1, p2Lr2,

r1, r2 ∈ R, such that t1, t2 ∈ p′, p′L′r1, p
′L′r2 for some p′ ∈ P′.

Case (1) r1 = r2 = r: Since p1Lr and p2Lr,

=⇒ ∃c such that rMc, r′Mc, for some r′ ∈ R and

(p1, r
′) ∈ L, (p2, r

′) /∈ L (wlog) (using Lemma 5.2)

=⇒ t2 /∈ r′, otherwise there would exist p3 ∈ P such that t2 ∈ p3;

p2 ∩ p3 6= ∅ and p3Lr
′ would imply Condition 2 violation.

=⇒ ∃p′′ ∈ P′ such that p′′L′r′, t1 ∈ p′′ and t2 /∈ p′′.

Since, p′ ∩ p′′ 6= ∅ and (p′, c), (p′′, c) ∈M ◦ L′

Hence, contradiction (Condition 2 violation).

Case (2) r1 6= r2:

(2a): t1 ∈ p1 \ p2 (or t2 ∈ p2 \ p1, wlog)

Since, t1 ∈ p1, p1Lr2, therefore t1 ∈ r2

=⇒ ∃p3 ∈ P such that t1 ∈ p3 and p3Lr2

p2, p3, p
′ are such that t1 ∈ p3, t2 ∈ p2, t1, t2 ∈ p′, p2Lr2, p3Lr2, p

′L′r2.

This is not possible using result of Case (1). Contradiction.

(2b): t1, t2 ∈ p1 ∩ p2

p1, p2 has at least one point each that is absent in all the other CPBs (using Lemma 5.3).

Therefore, if t1, t2, which are present in p1 ∩ p2 are merged in P′, then |P′|> |P|. Contradiction.

Hence, Opt-PSD gives the optimal division. 2

5.6 Constraints Formulation

As just discussed, Projection subspace division outputs a set of CPBs and a mapping function

L. These form the input to the Constraints Formulation module, whose objective is to construct
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an LP that captures the projection constraints while ensuring that the solution corresponds to

a physically constructible database.

Condition 1 of valid division ensures that each PRB r ∈ RA
is completely covered by a

set of CPBs. While Condition 2 ensures that all CPBs related to some c ∈ Qc are mutually

disjoint. As a consequence, a constraint c 〈f,A, l, k〉 can now be expressed as a summation of

cardinalities of CPBs related to c through M ◦ LA.

|πA(σf (T ))|=
∑

p:(p,c)∈M◦LA

|p| (5.6)

Further, since each r ∈ RA
is related to at least one c ∈ Qc through M ◦ LA, the CPBs

associated with r ∈ RA
through LA are also disjoint. Hence, the cardinality of r ∈ RA

can be

represented as a summation of the cardinalities of related CPBs.

|r|=
∑
p:pLAr

|p| (5.7)

The LP construction uses the above facts while constructing constraints. Specifically, the

LP variables that are constructed, and their interpretations, are as follows:

xr: total tuple cardinality in r ∈ R, i.e. |r|
yp: (distinct) tuple cardinality in p ∈ PA, i.e. |p| for PAS A.

Given this framework, there are two classes of constraints, Explicit Constraints and Sanity

Constraints, that constitute the input to the LP and are discussed in the remainder of this

section.

5.6.1 Explicit Constraints

These are the LP constraints that are directly derived from the projection constraints. For each

projection constraint, c : 〈f,A, l, k〉, the following pair of constraints are added:

(a) Total Row Cardinality Constraint ∑
r:rMc

xr = l (5.8)

(b) Distinct Row Cardinality Constraint (using Equation 5.6)∑
p:(p,c)∈M◦LA

yp = k (5.9)
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5.6.2 Sanity Constraints

These are the additional constraints necessary to ensure that the LP solution can be used for

constructing a physical database instance. Here, there are three types of constraints:

Type 1: These constraints ensure that the row cardinality for each refined-block and CPB are

non-negative in the LP solution. That is,

xr ≥ 0,∀r ∈ R, and yp ≥ 0,∀p ∈ PA, for all PAS A (5.10)

Type 2: These constraints ensure that the total number of tuples for each refined-block is

greater than or equal to the number of distinct tuples along each applicable PAS for that

block. Using Equation 5.7, these constraints, for each refined-block r and each of its

associated PAS A, are expressed as follows:∑
p:pLAr

yp ≤ xr (5.11)

where r = πA(r).

Type 3: Even after satisfying the above sanity constraints, we can still have a situation where

the total number of tuples for a refined-block may be positive while the number of distinct

tuples along some projection subspace remains zero. To avoid this scenario, we add the

following constraint for each refined-block r and each of its associated PAS A:

xr ≤ |T |
∑
p:pLAr

yp (5.12)

In the above, r = πA(r) and |T | is the cardinality of T , which is an upper-bound on xr.

We assume that |T | is given as an input PIC with no filter predicate.

We had already seen, in Section 5.3, the explicit constraints for our running example. The

associated sanity constraints are shown in the box below:
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Type 1 x1, x2, x3, x4a, x4b ≥ 0

yGPA1 , yGPA2 , yGPA3 , yGPA4 ≥ 0

yAge1 , yAge2 , yAge3 , yAge4 , yAge5 , yAge6 ≥ 0

Type 2,3 yGPA1 + yGPA2 ≤ x1 ≤ |T |(yGPA1 + yGPA2 )

yGPA1 + yGPA3 ≤ x2 ≤ |T |(yGPA1 + yGPA3 )

yGPA4 ≤ x3 ≤ |T |yGPA4

yAge1 + yAge3 ≤ x2 ≤ |T |(yAge1 + yAge3 )

yAge2 + yAge6 ≤ x3 ≤ |T |(yAge2 + yAge6 )

yAge3 + yAge4 ≤ x4a ≤ |T |(yAge3 + yAge4 )

yAge2 + yAge5 ≤ x4b ≤ |T |(yAge2 + yAge5 )

5.6.3 Sufficiency for Data Generation

For a refined-block and an associated PAS, the above sanity constraints ensure that any LP

solution can always be used to generate data that conforms to it. Now, since refined-block is

symmetric in nature, data across different PASs can be generated independently and concate-

nated together. Therefore, the constructed LP is sufficient for data generation.

5.7 Data Generation

The LP solution gives the following information:

1. A list of refined-blocks with their corresponding row cardinalities, and

2. For each refined-block and its associated PASs, a list of CPBs with their associated

(distinct) row cardinalities.

Thus far, we have only associated statistical significance to each CPBs, specifying the presence

or absence of their tuples in refined-blocks. Now, we drill down to assign intervals for each CPB,

thereby producing the summary tabulation for all refined-blocks. The CPBs along each PAS are

assigned intervals independently since each refined-block is symmetric along its associated PASs.

The final summary that is produced can be used for either on-demand tuple generation, or for

generating a complete materialized database instance. We discuss the summary construction

and tuple generation procedures here.
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5.7.1 Summary Construction

The summary construction module compactly stores information needed for efficient tuple gen-

eration. Each projection subspace is dealt with independently thanks to the projection isolation

techniques. Consider the projection subspace corresponding to PAS A – here, the first step is

to assign an interval to each CPB p ∈ PA. A challenge in this assignment is that the domains

of different CPBs may intersect. For instance, the domains of CPBs pAge2 and pAge6 intersect

in Std. However, since CPBs related to a common projection constraint should not intersect,

we assign disjoint intervals to these CPBs to ensure Condition 2. Hence, pAge2 and pAge6 are

allocated disjoint intervals for PAS Age as (pAge2 , c3), (pAge6 , c3) ∈M ◦LAge. On the other hand,

in the case of PAS GPA, pGPA2 and pGPA4 are not related to any c in Qc, and therefore their

data generation intervals can overlap.

As per above, a feasible interval assignment for Std is:

pGPA2 ← [5, 8) pAge2 ← [30, 37)

pGPA4 ← [4, 9) pAge6 ← [37, 50)

The summary is maintained refined-block-wise, with the template structure shown in Fig-

ure 5.7. We see here that all the CPBs associated with the block, along with their distinct tuple

cardinalities, are represented in the summary. Using α to denote the total number of associated

PASs, a refined-block can be represented in α+1 components, with each component associated

with a PAS having a distinct row-cardinality. For the attribute-set on which no projection is

applied for the refined-block, shown as Aleft, the domain of the projection block is kept as is

and no distinct tuple count is maintained. Lastly, each refined-block has an associated total

cardinality. A populated instance of the template, and its interpretation, was discussed earlier

in Section 5.3.5.

A1 A2 ... Aα Aleft

refined-block
Card.

CPB-1: card., CPB-1: card., ... CPB-1: card.,
PBCPB-2: card., CPB-2: card., ... CPB-2: card.,

... ... ... ...

Figure 5.7: Sample refined-block in Summary

5.7.2 Tuple Generation

Using the information in the summary, the tuples of the table are instantiated. Specifically,

the algorithm iterates over each refined-block and generates the number of rows specified in
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the associated total cardinality value. For a refined-block and an associated PAS A, each

CPB is picked and the corresponding partial tuples are generated. This gives a collection of

partial tuples for A which may be less than the total cardinality. To make up the shortfall

without altering the number of distinct values, we repeat the generated partial tuples until the

total cardinality is reached. For the Aleft component, which only has a single interval, any

partial-tuple within its boundaries can be picked for repetition. Finally, partial-tuples across

all projection spaces of the refined-block are concatenated to construct its output tuples.

Inter-Block Dependencies. We have to ensure that the partial-tuples associated with a

CPB are identical for each of the associated refined-blocks. To do so, we employ a deterministic

algorithm that takes an interval and a cardinality as input, and produces a series of distinct

points, equal to the cardinality, from the interval – this series is used in all the associated

refined-blocks. As a case in point, for the sample summary in Figure 5.3, the partial tuples

generated for the CPB with interval [30, 37) and distinct row cardinality 5 are identical in both

r3 and r4b.

5.8 Pipeline

The extension of the end-to-end Hydra pipeline, to incorporate Projection, is shown in Fig-

ure 5.8. The new/updated modules that differ from previous chapter are shown in green color.

Hydra takes a set Q of PICs over a single table T as input. Let β be the total number of PASs

across all the constraints, as indicated in Figure 5.8. From the constraints, Hydra produces data

for T . This is carried out by a sequence of core components, namely Workload Decomposition,

LP Formulation, and Data Generation modules. Workload Decomposition splits Q into

a set of compatible sub-workloads. Subsequently, the rest of the pipeline, comprising of LP

Formulation and Data Generation, is executed independently for each of these sub-workloads.

The LP Formulation for a sub-workload Qc begins with Region Partitioning followed by

Symmetric Refinement algorithm. This gives the set of refined-blocks. For each PAS across

all PICs, the PRBs are computed using the refined-blocks. These PRBs and Qc are then

used by the Projection Subspace Division module to construct the set of CPBs. Next, at

the Constraints Formulation stage, an LP is constructed using variables representing the

cardinalities of refined-blocks and CPBs. This construction is then given as the input to the

LP Solver. From the solution produced by the LP solver, a comprehensive table summary is

constructed using the Summary Construction module. This summary is used by the Tuple

Generation module to synthesize the data. It can generate tuples on-demand during query

processing, thereby eschewing the need for data materialization. Alternatively, if the user
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Figure 5.8: Projection Solution Pipeline

desires a materialized database instance, it can be generated from the summary and stored

persistently.

5.9 Discussion

Having presented the mechanics of handling projections, we now take a step back and critique

the approach on relevant aspects.

5.9.1 Solution Guarantees

The input workload feasibility is true by definition since the PICs have been derived from an

existing setup. In such scenarios, Hydra ensures, thanks to the explicit LP constraints, that the

generated data satisfies the PICs with 100% accuracy. Further, the sanity constraints ensure

the LP solution is always constructible. This leads us to the following lemma:

Lemma 5.5 For a feasible and compatible set of PICs, Hydra always produces an instance of

the table that satisfies all the constraints.

Given an initially feasible workload, workload-decomposition can always produce sub-workloads
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that are both feasible and compatible. Therefore, for any initially feasible workload, the data

produced by Hydra can cover all the input constraints. We formally prove Lemma 5.5 next.

Proof of Lemma 5.5

We briefly discuss the proof for Lemma 5.5, which is split into two parts: (a) The LP constructed

for a feasible compatible workload Qc is always satisfiable; (b) Given any LP solution, data can

be always be constructed from it, and this data will satisfy Qc.

Part (a): Given workload feasibility, there exists at least one instance T of the table that

satisfies Qc. Further, due to compatibility, Qc is modeled in a single LP. Say T does not satisfy

this LP. This implies T does not satisfy at least one of the Explicit or Sanity constraints. If T

violates an Explicit constraint, then it does not satisfy at least one input PIC. This is because

each input PIC is modeled using two Explicit constraints that ensure the data satisfies the PIC.

Further, there cannot be a physical table that violates any Sanity constraint due to its inherent

nature. Hence, T satisfies all the Sanity constraints as well. Therefore, by contradiction,

we can conclude that T satisfies the LP – in fact, the LP gives the necessary conditions for

data generation adhering to the workload. This implies that for feasible workloads, the LP is

satisfiable.

Part (b): For a particular PAS A, the Sanity constraints ensure that for each populated

refined-block, the total tuple count in the refined-block is at least the number of distinct rows

along A, and the distinct row count is positive. Hence, the data along each projection subspace

is generated easily. Further, since refined-block is symmetric in nature, data across its different

projection subspaces can be generated independently and concatenated. Therefore, any LP

solution is sufficient for data generation. Since, each PIC is modeled in the LP using the

Explicit constraints, the generated data is compliant with Qc.

5.9.2 Solution Complexity

Computationally, the bottleneck of the pipeline lies in the LP solver. The LP complexity is

primarily governed by the number of CPBs created, which is determined by the overlaps between

the blocks intra-projection subspaces. The extent of overlaps is reflected by the outdegree of

vertices in the Division Graph G introduced in Section 5.5. For adversarial cases, the number

of CPBs can be as high as the number of connected induced subgraphs of G, which can go up

to 2m. Here, m is the number of refined-blocks that are subjected to projection along a PAS A.
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Connection to Connected Induced Subgraph Problem

Assuming the domain of all the blocks are identical, then the number of CPBs is identical to

the number of connected induced subgraphs in G. This can be proved by a straightforward

bijection argument. That is, each induced connected subgraph has a corresponding CPBs in

the solution and vice versa.

Further, m itself is O(2|Q
c|). However, these worst-case exponential scenarios are relatively rare

in practice, and our experience is that the count is usually well within the solver’s computational

limits. We quantitatively assess this aspect in our experimental evaluation (Section 5.10).

Lastly, the decision version of the general data generation problem is NEXP-complete, as

shown in [17].

5.10 Experimental Evaluation

In this section, we evaluate the empirical performance of a Java-based implementation of Hydra.

Z3 solver [14] is invoked by the tool to compute the solutions for the LP formulations. Our

experiments cover the accuracy, time and space overheads and scalability aspects of Hydra, and

are conducted using the PostgreSQL v9.6 engine [7] on a vanilla HP Z440 workstation.

Workload Construction. In presenting the experimental results, we initially focus on fully

compatible workloads. Subsequently, in Section 5.10.5, we discuss the corresponding perfor-

mance for workloads featuring conflicts. A variety of real world and synthetic benchmarks

were used in designing the workloads. For representative large fact tables from each of the

benchmarks, a workload of compatible PICs was derived by executing a set of queries. The

denormalized versions of these tables were considered for constructing PICs. The details of the

compatible workloads are as follows:

TPC-DS Suite: This suite comprises of four workloads, corresponding to the four TPC-DS

tables [12] subject to the maximum number of projection operations in the benchmark –

namely, store sales (SS), catalog sales (CS), web sales (WS), and inventory

(INV).

Census Workload: Here, the Census dataset framework used in [37] is extended to addition-

ally feature projections apart from the extant filter cardinality constraints. In particular,

a single workload was constructed on the persons (P ) table.

IMDB Suite: This suite is designed from the JOB [45, 5] benchmark based on the IMDB

dataset. It comprises of three workloads, corresponding to the three tables subject to the
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maximum projection operations – namely, movie keyword (MK), cast info (CI),

and movie companies (MC).

The complexity of these various workloads is quantitatively characterized in Table 5.4. Note

that they feature a substantial degree of both inter-projection complexity (up to 10 projection

subspaces and 6 dimension subspaces) and intra-projection complexity (maximum degree of the

Division Graph vertices goes as high as 72).

Table 5.4: Workload Complexity

Dataset Table # # PAS Length Vertex Degree
PICs PASs Avg. Max. Avg. Max.

TPC-DS

SS 16 8 1.4 5 3.95 10
CS 15 10 2.2 5 4.74 15
WS 16 8 2 6 5.7 16
INV 6 3 1.5 4 0.92 4

Census P 220 3 1.67 2 1.33 72

IMDB

MK 16 4 1.25 2 5.68 14
CI 14 3 2.67 3 3.7 17
MC 19 4 1.5 2 3.75 15

We compare Hydra against the DataSynth framework that supports value cardinality con-

straints. For DataSynth, projection constraints need to be restricted to single attribute tables.

5.10.1 Constraint Accuracy

When Hydra was run on the aforementioned workloads, the generated data satisfied all the

constraints with 100% accuracy. To appreciate the complexity present in these successfully

modeled constraints, we present a representative sample constraint applied on the denormalized

relation of store sales from TPC-DS below:

c : 〈f ,A,31921358,15061〉

f : d year = 2002 ∧
(i category ∈ (‘Jewelry’,‘Women’) ∧ i class ∈ (‘mens watch’,‘dresses’)) ∨
(i category ∈ (‘Men’,‘Sports’) ∧ i class ∈ (‘sports-apparel’,‘sailing’)) and

A : {i category, i brand, s store name, s company name, d moy}.

Note that there are several attributes in the projection set, and both conjunctive and disjunctive

predicates in the filter condition.
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Turning our attention to DataSynth, we also generated a customized workload from the

TPC-DS benchmark, comprising of only single attribute projection and filter constraints to

suit DataSynth’s restricted environment. For a single attribute case, there is only one pro-

jection subspace possible. Further, two distinct tuples cannot overlap in projection subspace

either. Therefore, the inter projection subspace and intra projection subspace challenges do not

surface. For this simplified scenario, we found several cases, where the LP solution obtained

from DataSynth was inconstructible. An example illustration showcasing this fundamental

problem is shown below:

Consider a toy example with the following pair of projection-inclusive constraints (PICs) on

the item table from TPC-DS:

PIC 1 : 〈4 ≤ i class id < 12, i class id, 6876, 8〉

PIC 2 : 〈8 ≤ i class id < 16, i class id, 4490, 8〉

DataSynth’s algorithm divided the domain of i class id attribute into five intervals and

further assigns total row cardinality and distinct row cardinality to each of these intervals. The

obtained boundaries and the two cardinalities for each interval is tabulated in the table below.

We can see from the table that for intervals I1 and I2, the total row cardinality is positive, while

the distinct row cardinality is 0. Since to populate an interval, at least one (distinct) tuple is

necessary, therefore, this solution can not produce a valid instantiated table.

For this scenario, DataSynth produced the following interval-based solution:

Table 5.5: LP Solution from DataSynth

Interval Range Total, Distinct Row Card.
I1 i class id < 4 11124,0
I2 4 ≤ i class id < 8 2386,0
I3 8 ≤ i class id < 12 4490,8
I4 12 ≤ i class id < 16 0, 0
I5 i class id > 16 0,0

Having established the shortcomings of the prior work, we restrict our attention to Hydra

in the rest of this section.

5.10.2 Generated Data

We now show a concrete example of how the data generated by Hydra satisfies the input PICs.

Consider the following PIC from the Census workload on the Persons table:

〈18 ≤ Age ≤ 85 ∧Relationship = ‘Spouse’ ∧ PUMA = 822, (Age, Sex), 205, 4〉
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A snippet of the generated table is shown in Table 5.6. Here, the first four rows in the (Age, Sex)

columns are repeated in round-robin fashion, while the remaining attributes have a fixed con-

stant value, for producing the first 205 rows. Then, the subsequent rows (206th row onwards)

in the table are assigned values that do not satisfy the above constraint.

Table 5.6: Sample Rows produced for persons Table

Age Sex Relationship PUMA Tenure
18 M Spouse 822 Rented
25 F Spouse 822 Rented
36 M ... ... . . .
68 M ... ... . . .

Repeated in Round Robin Spouse 822 Rented
(Row # 206) 76 F Parent 100 Owned

... ... ... ... ...

5.10.3 Time and Space Overheads

Having established the accuracy credentials of Hydra, we now turn our attention to the asso-

ciated computational and resource overheads. To begin with, the summary construction times

and sizes for various summary tables are reported in Table 5.7. We see here that the time to

produce the summary is in a few tens of minutes. From a deployment perspective, these times

appear acceptable since database testing is usually an offline activity. Moreover, the summary

sizes are minuscule, just a few 100s of kilobytes at most.

Drilling down into the summary production time, we find that virtually all of it is consumed

in the LP solving stage. In fact, the collective time spent by the other stages was less than

ten seconds in all the cases. These results highlight the need for minimizing the number of LP

variables, since the solving time is largely predicated on this number. To obtain a quantitative

understanding, we report the sizes of the intermediate results at various pipeline stages in

Table 5.8 – specifically, the table shows the number of filter-blocks, refined-blocks, and CPBs

created by Hydra. We see here that there is huge jump in the number of regions from the

initial filter-block to the final CPBs, testifying that Qc has considerable overlap among its

constraints, and therefore represents a “tough-nut” scenario wrt projection. An exception to

this observation is the persons table from Census dataset, where even though the maximum

degree for a vertex in the Division graph was 72 (Table 5.4), the overlaps between PICs are

limited as also indicated by the average degree which is less than 2.

We also show the improvement of Opt-PSD over Pow-PSD by additionally reporting the

number of CPBs in case of Pow-PSD. Lastly, the speedup achieved by Opt-PSD over Pow-PSD
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Table 5.7: Overheads

Table
Summary

Time Size
SS 21 min 58 kB
CS 32 min 117 kB
WS 15 min 64 kB
INV 2 s 13 kB
MK 2 min 15.5 kB
CI 41 s 13.6 kB
MC 3.6 min 27.7 kB
P 30 min 416 kB

Table 5.8: Block Profiles

Table
Cardinality of

filter-blocks refined-blocks CPBs
SS 74 88 132662
CS 139 141 165936
WS 119 132 73929
INV 11 16 41
MK 30 32 30083
CI 278 301 14386
MC 187 203 42835
P 1193 1529 7170

is shown in the last column of the table. Typically, for larger inputs, the speedup achieved is

also high. As a case in point, for store sales table, Opt-PSD completed 70 times faster than

Pow-PSD. In absolute terms also, while Pow-PSD took days to produce the summary, Opt-PSD

completed the process in a few minutes.

Table 5.9: No. of Blocks and Comparison against Pow-PSD

Table # Filter-Blocks #RBs
#PRBs

Opt-PSD
#PRBs

Pow-PSD
Multiplicative

Speed-up
SS 74 88 132662 524404 70
CS 139 141 165936 524336 16

The summarized table can be used to generate tuples either in-memory during query pro-

cessing, or to produce materialized instances. The time to generate the tuples from the summary

in-memory is reported in Table 5.10, and we see that even a huge table such as SS, having close

to 3 billion records, is generated within a few minutes.

Table 5.10: Tuple Generation Time

Table # Rows
Tuple Gen.

Time
Table # Rows

Tuple Gen.
Time

SS 2.9 bn 4 min WS 0.72 bn 8 seconds
CS 1.4 bn 1.5 min INV 0.78 bn 9 seconds

5.10.4 Scalability Profile

We now provide quantitative observations with regard to data and workload scale.
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Data Scale The time and space overheads incurred to produce table summaries are intrinsi-

cally data-scale-free, i.e., they do not depend on the generated size. We explicitly verified this

property by running Hydra over 10 GB, 100 GB and 1 TB versions of TPC-DS.

Workload Scale The time and space requirements with increasing number of PICs is shown

in Figures 5.9(a) and 5.9(b), respectively, for the Census workload. The figures highlight that

the memory consumption is relatively stable and manageable (few GB) across the spectrum,

but that time scalability can be a limitation for workloads beyond a certain complexity (Fig-

ure 5.9(a) is on a log scale).

Figure 5.9: (a) Execution Time (b) Memory Usage

5.10.5 Workload Decomposition

We now turn our attention to conflicting workloads, which require the pre-processing step

of workload decomposition. To model this scenario, we added conflicting PICs to the TPC-

DS workload suite, with the final workloads having the following PIC distributions: SS (52

PICs), CS (28 PICs), WS (29 PICs), and INV (8 PICs). In particular, we have evaluated the

Hydra results on Q for two decomposition strategies: (a) Instance-based Decomposition, and

(b) Template-based Decomposition, which are discussed below.

5.10.5.1 Instance-based Decomposition (ID)

Here the decomposition algorithm uses Definition 5.5 of a conflicting pair, and for this frame-

work, the number of workloads obtained for the four tables are shown in Table 5.11. We observe

that despite using an approximate vertex coloring algorithm (Section 5.4.2), a partitioning of

Q into at most 6 sub-workloads sufficed for ensuring internal compatibility. Interestingly, the

aggregate summary generation times are extremely small, completing in just a few seconds,

and much lower than the corresponding numbers for Qc in Table 5.7. At first glance, this might
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appear surprising given that Q is more complex in nature – the reason is that due to workload

decomposition, an array of databases is produced for Q with low individual production com-

plexity, whereas a single unified database is produced for Qc. From a testing perspective, it is

preferable to generate the minimum number of databases, and therefore we would always strive

to have as little decomposition as possible.

Table 5.11: Workload Decomposition - ID

Table
Sub-Workload

Sizes
Aggregate

Summary Time
Aggregate

Summary Size
SS 13,11,8,7,7,6 14 s 135 kB
CS 14,5,5,4 12 s 69 kB
WS 12,10,7 7 s 58 kB
INV 6,2 3 s 16 kB

5.10.5.2 Template-based Decomposition (TD)

Here, the decomposition algorithm assumes conflicting pairs are defined at a template level.

That is, two constraints conflict if their PASs partially intersect. The reason we consider TD

is to remove any coincidental performance benefit that may have been obtained thanks to the

specific filter predicate constants present in the original workload. Table 5.12 shows the number

of workloads obtained for the four tables with this artificially expanded definition of conflict.

We observe that even here, just 8 sub-workloads are sufficient for producing compatibility.

Finally, again thanks to decomposition, both the summary generation times and the summary

sizes are extremely small.

Table 5.12: Workload Decomposition - TD

Table
Sub-Workload

Sizes
Aggregate

Summary Time
Aggregate

Summary Size
SS 10,10,8,8,5,5,4,3 70 s 109 kB
CS 9,7,4,4,4 14 s 117 kB
WS 9,9,6,5 7 s 41 kB
INV 6,2 2 s 16 kB

Finally, we also verified the quality of the approximation algorithm for decomposition. That

is, how far is the obtained number of sub-workloads from the actual minimum count. To assess

this, we implemented the exponential algorithm that computes the true minimum number of

sub-workloads and in the cases where this exhaustive algorithm could be evaluated, we found

that the approximation algorithm returned the same count as the optimal.
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5.11 Conclusion

In this chapter, the scope of the supported constraints in Hydra were expanded to include the

general Projection operator. The primary challenges in this effort were tackling dependencies

within a projection subspace and across different projection subspaces. By using a combination

of workload decomposition and symmetric refinement, dependencies across various projection

subspaces were handled. Within a projection subspace, union was converted to summation via

division of the space. Further, an optimal division strategy was presented to construct efficient

LP formulations of the constraints. The experimental evaluation on real-world and synthetic

benchmarks indicated that Hydra successfully produces generation summaries within viable

time and space overheads.

104



Chapter 6

Regeneration using Join Constraints

6.1 Introduction

So far the regeneration algorithms discussed were restricted to constraints on a single table.

In presence of multiple tables, join constitutes an important primitive operation. Ensuring

volumetric similarity for queries involving multiple tables is dependent critically on modeling

joins. To understand the underlying concepts let us revisit the university database schema from

the Introduction chapter.

Register (Rid, RollNo, Course, Year, Score)

Student(RollNo, Age, Scholarship, GPA)

Here, Register.Rid and Student.RollNo are the primary key columns of Register and

Student tables respectively. Further, Register.RollNo is a foreign key column referencing

Student.RollNo.

Now, consider the following queries featuring joins: (For ease of exposition, we use the same

constants in the queries.)

1. Select Distinct GPA From Register Reg, Student Std

Where Reg.RollNo = Std.RollNo and GPA < 6 and Age < 20;

2. Select Distinct GPA From Register Reg, Student Std

Where Reg.RollNo = Std.RollNo and (GPA < 6 or Age >= 20);

The client AQPs obtained for the above two queries are shown in Figure 6.1. As we know,

the aim is to generate a synthetic database that preserves volumetric similarity. That is, the

AQPs obtained on the synthetic database match the client AQPs.
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Figure 6.1: Example AQPs

In the previous two chapters, we encoded each AQP in a single CC/PIC. In presence of

joins, each AQP gives multiple CCs. Specifically, we construct a CC for each edge in the AQPs.

A CC comprising of SPJ operators is represented as:

|πA(σf (T1 ./ T2 ./ ...TN))|= k

where k is the number of rows that are output after applying the complete relational expression,

i.e., the output cardinality, A represents the set of attributes on which projection is applied

(PAS), and f represents the filter conditions on the inner join of relations T1, T2, ..., TN . Further,

the joins are restricted to PK-FK joins.

For the AQPs shown in Figure 6.1, following set of CCs are obtained:

c1 : |πGPA(σAge<20∧GPA<6(Reg ./ Std))|= 2 c2 : |πGPA(σAge≥20∨GPA<6(Reg ./ Std))|= 5

c3 : |σAge<20∧GPA<6(Reg ./ Std)|= 15000 c4 : |σAge≥20∨GPA<6(Reg ./ Std)|= 250000

c5 : |σAge<20∧GPA<6(Std))|= 2000 c6 : |σAge≥20∨GPA<6(Std))|= 42000

c7 : |Reg|= 370000 c8 : |Std|= 50000

In the above we can see that the c1, c2, c3, c4 CCs feature the join operator. Among these, c1
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and c2 additionally feature the projection operator. To ensure matching AQPs at the vendor,

the synthetic data needs to satisfy all the CCs.

6.1.1 Challenge

Filter predicates considered so far specify the constants/value-ranges that are permissible for

the constrained columns. In other words, these were of the type 〈col op val〉. In contrast,

modeling join predicates require constructing dependence with respect to the join columns

such that the generated tables obey the required join output cardinality across all constraints.

For instance consider the queries wrt Figure 6.1. The filter predicates directly operate on the

domain of GPA and Age columns, whereas the join predicates equate RollNo column across

the two tables. Hence, these columns need to possess a relation that can lead to the desired

output cardinality.

6.1.2 Background

A way to deal with join operators was proposed in DataSynth[17], where they first constructed

a view for each table in the database, and at the end, extracted the original table. Specifically,

the view VT for a table T comprises of all the non-key attributes of T and the tables on which

it depends through referential constraints. These views allow rewriting the join expression on

a single view. Using these views, filters on each view can be handled independently using

the single table algorithm. However, the challenge then lies in extracting the original tables

from the views. This is because these views need to obey referential integrity. For DataSynth,

due to the absence of projection operation in its input, adding some spurious tuples in the

referenced table was sufficient to ensure referential integrity. However, this volume discrepancy

magnifies in presence of projection because each value-combination with respect to the borrowed

columns needs to be represented in the referenced table. Therefore, the LP formulation and the

subsequent data generation from the solution need to explicitly model referential constraints.

6.1.3 Our Contributions

In this work, we provide a comprehensive solution to handle the join constraints. Specifically, we

update the aforementioned views to be equivalent to the denormalized versions of the original

tables (excluding key columns). Specifically, for each borrowed column in the view, we maintain

the path from the source to the destination table in the join graph through which the column is

borrowed. This allows for multiple copies of a borrowed column in the view if there are multiple

join paths possible between the tables involved. Hence, this helps to handle DAG join graphs

instead of the tree-join graphs that DataSynth handled.
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Further, a marked contrast is in the way we model join conditions in the solution pipeline.

We construct a unified LP for the linked (through referential constraints) tables. This LP

models the referential constraints to ensure that the number of distinct value-combinations

generated, with respect to the borrowed columns, in various intervals of the Foreign-Key table

(referencing) view is upper bounded by the corresponding interval in the (referenced) Primary-

Key table. Further, our Key Curation module ensures that the key values picked are such

that the corresponding tuples in the dimension table have the prescribed number of distinct

value-combinations for borrowed columns.

Additionally, the feature of dynamic database regeneration is preserved. Therefore, no ma-

terialized table is required in the entire testing pipeline. Further, the time and space overheads

incurred in constructing the summary are independent of the size of the table to be constructed.

A detailed evaluation on workloads derived from TPC-DS and JOB benchmarks has been

conducted. The results demonstrate that the proposed solution accurately and efficiently models

the SPJ CCs. As a case in point, for TPC-DS based workload of over 100+ queries, leading to

∼500 CCs, the generated data satisfied all the CCs with perfect accuracy. Moreover, the entire

summary production pipeline completed within viable time and space overheads.

6.1.4 Organization

The rest of the chapter is organized as follows: we discuss the problem framework in Section 6.2.

The overview of the design principles of the proposed technique is presented in Section 6.3 and

further described in detail in Sections 6.4-6.8. Further, an optimized solution to handle Select-

Join workloads is given in Section 6.9. The experimental evaluation is presented in Section 6.10

and finally, we conclude in Section 6.11.

6.2 Problem Framework

In this section, we summarize the problem statement, the underlying assumptions, the output

delivered, and a tabulation of the notations used in this chapter.

6.2.1 Problem Statement

Given an SPJ query-workload W, with its corresponding set of AQPs Q, derived from an original

database with schema S and statistical metadata M, the objective is to generate a synthetic

database D such that it conforms to S and Q. That is, the AQPs obtained from the original

database match, wrt the cardinality annotations, the AQPs obtained on D.
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6.2.2 Assumptions

We assume that W comprises of only PK-FK joins such that each query can be mapped to

denormalized tables as discussed in Chapter 3. Further, we assume that the filters and projec-

tions are applied only on non-key columns. These assumptions are common in prior work as

well as OLAP benchmarks.

Again, we assume that Q is collectively feasible. Finally, for brevity, we present the ideas

using tables with columns having float data type; the extension to other data types is straight-

forward.

6.2.3 Output

Given S, M, W and Q, Hydra outputs a collection of database summaries S. Each summary sD ∈
S can be used to deterministically produce the associated database D. The databases produced

are such that: (a) all of them conform to S, and (b) for each query in W, its corresponding

AQP in Q matches with the AQP obtained on at least one output database instance.

6.2.4 Notations

The main acronyms and key notations used in this chapter are summarized in Tables 6.1 and

Table 6.2, respectively.

Table 6.1: Acronyms

Acronym Meaning
AQP Annotated Query Plan
CC Cardinality Constraint
SPJ Select Project Join
PAS Projection Attribute Set
ARB Aligned Refined Block
CPB Constituent Projection Block
PSD Projection Subspace Division

NoPB No Projection on a Subset of Borrowed Columns
PB Projection on a Subset of Borrowed Columns

6.3 Design Principles

The solution pipeline is illustrated in Figure 6.2. The green boxes illustrate the modules

added/updated to handle joins. We briefly discuss each of the core modules in this section. For

ease of exposition, we use the fact and dimension table terminology from data warehousing to
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Table 6.2: Notations

(a) Database Related

Symbol Meaning
S Database Schema
GS Schema Graph
D Output Database
T Output Table
sD Summary of D
F Fact Table
D Dimension Table
VT View wrt T
B Borrowed Attribute-Set

(b) Workload Related

Symbol Meaning
q Query
W Query Workload
Q Set of AQPs
c A c
f Filter Predicate
A PAS
l Output row card. after filter
k Output row card. after projection

(c) Block Related

Symbol Meaning
rT refined-block

wrt VT
aT ARB wrt VT
pT CPB wrt VT

x(aT ) variable for |aT |
y(pT ) variable for |pT |

(d) Relation/Function Related

Symbol Meaning
U(T ) Set of attributes in T
dom(.) Domain of the input parameter
M A relation btw CCs and ARBs
L A relation btw CPBs and ARBs
H A relation btw ARBs wrt VF and VD
J A relation btw CPBs wrt VF and VD

refer to the tables having FK and the corresponding PK, respectively. Further, the notations

F and D are used to denote a fact table and dimension table, respectively.

6.3.1 Denormalization

Inspired from DataSynth, we also construct views, where the view VT for a table T is its

denormalized equivalent (excluding key columns). Each column in a view is stored as a structure

comprising of two fields: {Column Name, Column Path}. The Column Path is stored as an array

of the foreign key columns involved in the query. Each view is associated with a view name

and an array of the column structures. To populate this array, first a schema graph GS is

constructed. Here, a vertex is made corresponding to each table in the database. For each

PK-FK dependency, a directed edge is added from the FK table to PK table. The edge is

annotated with the participating columns of both the relations. Note that, since two relations

can have multiple PK-FK dependencies, there can be multiple directed edges between tables.

We assume GS to be a DAG, which is common in real-world databases and is reflected in the

benchmarks too.

Once GS is constructed, we traverse it in reverse topological order. For each edge
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Figure 6.2: Join Solution Pipeline

(F.fk,D.pk) in the order, the columns in view VD are added to VF . For each such column

A, the Column Path of VD.A, prepended with F.fk, is inserted as the Column Path for VF .A.

The join expression in a CC c, consists of series of PK-FK columns that participate in the

joins in the subtree rooted at the AQP node corresponding to c. It is easy to see that this

PK-FK column series can be uniquely mapped to a path in GS. The view VT corresponding to

the source vertex in this path will have columns from all the tables included in the path. Also,

it is easy to see that the filter and projection operation on a join expression can be equivalently

written on VT . Hence, in this way, each CC can be written as a filter and projection operation

on a single view.

For our running example, the Views that are constructed are as follows:

VReg(Age, Scholarship,GPA,Course, Y ear, Score), VStd(Age, Scholarship,GPA)

Further, the aforementioned CCs from our running example, can be rewritten on the views

VReg and VStd as follows:

c1 : |πGPA(σAge<20∧GPA<6(VReg))|= 2 c2 : |πGPA(σAge≥20∨GPA<6(VReg))|= 4

c3 : |σAge<20∧GPA<6(VReg)|= 15000 c4 : |σAge≥20∨GPA<6(VReg)|= 250000
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c5 : |σAge<20∧GPA<6(VStd))|= 2000 c6 : |σAge≥20∨GPA<6(VStd))|= 42000

c7 : |VReg|= 370000 c8 : |VStd|= 50000

As described earlier, referential integrity has to be ensured in the data that is generated.

Let us first describe referential integrity in the view semantics.

Theorem 6.1 Two tables F and D, with F having an FK column referencing table D, satisfy

a referential integrity dependency, iff the corresponding views VF and VD obey the following

condition:

πB(VF ) ⊆ πB(VD)

where B is the set of columns in VD borrowed by VF .

6.3.2 Workload Decomposition

In the previous chapter, a pair of constraints were defined to be overlapping if their PASs

partially intersect and their filters overlap. To handle this, we had an additional workload

decomposition module that splits the input workload into sub-workloads such that each of

them is free from these overlapping projection conflicts.

We have extended this case of overlapping projections to include the projection conflicts

that surface in the presence of joins. For example, a pair of queries q1, q2 on a dimension

table D, with PASs A1 and A2 respectively, induce a conflict if (a) the PASs A1,A2 ⊆ D, and

partially overlap with each other, and (b) the filters in q1 and q2 intersect. We discuss the

details of all the conflicts in Section 6.4. These conflicts are additionally used by the workload

decomposition module to do the workload split.

6.3.3 Data Space Partitioning

Region Partitioning and Symmetric Refinement. To model the filter predicates associ-

ated with the input workload, the data space of each view is logically partitioned into a set of

blocks. Each block satisfies the condition that every data point in it satisfies the same subset of

filter predicates. To do this partitioning, we leverage the region partitioning technique discussed

in Chapter 4, which partitions the data space into the minimum number of filter-blocks.

To handle various projection subspaces (corresponding to the different PASs in the input

queries) independently, a Symmetric Refinement strategy is adopted (discussed in Chapter 5).

Specifically, it refines an filter-block into a set of disjoint refined blocks such that each resultant

refined-block exhibits translation symmetry along each applicable projection subspace.
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Figure 6.3: Partitioning of Reg and Std Views

To make the above concrete, the partitioning of data space of VReg is shown in Figure 6.3(a).

For ease of presentation, we show only the two dimensions that participate in the example

queries. In this figure, the filter predicates are represented using regions delineated with colored

solid-line boundaries. When region partitioning is applied on this scenario, it produces the three

disjoint filter-blocks: rReg1 , rReg2 , rReg3 , whose domains are depicted with dashed-line boundaries.

For our running example, the resultant blocks are already symmetric. The partitioning with

respect to VStd is also shown in Figure 6.3(b). Here, we have additionally added a constraint

shown by blue solid-line to add complexity in the example.

Align Refinement. To obtain the original tables from their denormalized equivalents, the

views need to obey referential integrity. As discussed in Theorem 6.1, the referential integrity

constraint between fact table view VF and dimension table view VD is expressed as follows:

πB(VF ) ⊆ πB(VD)

To add referential constraints, for a CC c with PAS A (where A ⊆ B) applicable on VReg, its

constituent refined-blocks need to be aligned with each other along A. By align we mean that

the domain of refined-blocks along A are either identical or disjoint. The blocks obtained after

refinement are called Aligned Refined Blocks (ARBs). For example, rReg2 in Figure 6.3(a) is

split into aReg2a and aReg2b to ensure alignment with aReg1 , as shown in Figure 6.4(a). (The other

refined-blocks happen to be already aligned, so their equivalent ARBs are unaltered).
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Figure 6.4: Align Refinement

Further, we also need to ensure that each refined-block in VD is either completely contained

or disjoint from the domain of each ARB in VF . Therefore, we also do a refinement of refined-

blocks in VD as part of this module and produce ARBs that ensure alignment with VF . For

example, rStd2 and rStd3 in Figure 6.3(b) are split into aStd2a , a
Std
2b and aStd3a , a

Std
3b respectively, as

shown in Figure 6.4(b). We discuss the details of this module in Section 6.5.

Projection Subspace Division. This technique divides each projection subspace into a set

of constituent projection blocks (CPBs), as discussed in Chapter 5. For our running example,

the CPBs obtained for VReg are as follows:

pReg1 = πGPA(aReg1 ) ∩ πGPA(aReg2b ), pReg2 = πGPA(aReg1 ) \ πGPA(aReg2b )

pReg3 = πGPA(aReg2b ) \ πGPA(aReg1 ), pReg4 = πGPA(aReg2a )

Further, the CPBs obtained for VStd are as follows:

pStd1 = πGPA(aStd1 ) ∩ πGPA(aStd3b ), pStd2 = πGPA(aStd1 ) \ πGPA(aStd3b )

pStd3 = πGPA(aStd1 ) ∩ πGPA(aStd2b ), pStd4 = πGPA(aStd1 ) \ πGPA(aStd2b )

pStd5 = πGPA(aStd3b ) \ πGPA(aStd1 ), pStd6 = πGPA(aStd2b ) \ πGPA(aStd1 )

pStd7 = πGPA(aStd2a ), pStd8 = πGPA(aStd3a )
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6.3.4 LP Formulation

After the above processing is completed for each view, we formulate a unified LP for the linked

(through referential constraints) tables. The LP is constructed using variables representing the

cardinalities of ARBs and CPBs. Specifically, Filter Constraints and Projection Constraints

are modeled for each view in the same way as proposed in the previous chapter. For modeling

Referential Constraints we also do a Block Mapping where the ARBs and CPBs of VF are

mapped to those of VD. The referential constraints ensure that for each block in VF the number

of distinct values along borrowed columns is upper bounded by the number of distinct values

in the corresponding blocks in VD. Once this is ensured, the exact subset property is ensured

in the final Key Curation stage.

6.3.5 Summary Construction

Using the LP solution, we first build a summary data structure for each view that contains all

the relevant information for extracting the corresponding base relation. Specifically, from the

view summary the base relation summary is obtained by replacing the borrowed columns with

the appropriate FK column. The process to do this is described next.

Key Range Curation. This final stage is responsible for the curation of FK values in F .

Specifically, for each ARB aF in VF , to construct its equivalent in F , a range of FK values is

assigned to it. This assignment is done using a range of PK values associated to a set of blocks

in VD, such that:

1. The chosen VD blocks are contained within the boundaries of aF after projecting along B.

2. The tuples associated with the selected PK values have the desired number of distinct

values along the PAS prescribed by the projection applied on aF .

In this way, we get the summary for each table, which is used for dynamic data regeneration. A

sample summary is shown in Figure 6.5. To appreciate the summary in entirety, we also show

the other columns in the Std table schema. Therefore, we can see that the distinct row counts

along different projection subspaces are represented similar to the discussion in the previous

chapter. Additionally, we show the FK column in Reg table summary having the range of

RollNo values to be included.

6.4 Workload Decomposition

As discussed in the previous section, the case of conflicting projection constraints is handled

by splitting the workload into sub-workloads such that each sub-workload is free from such
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Figure 6.5: Sample Summary

conflicts. In addition to the characterization of such overlapping projections in case of single

table queries (mentioned in Chapter 5), we have extended the class of overlapping projections to

include the cases that appear in presence of joins. These additional cases of projection conflicts

can be categorized based on the nature of referential dependencies as follows:

1F : 1D1F : 1D1F : 1D. Assume a pair of queries q1 and q2 having common fact (F ) and dimension (D)

tables, and the PASs applicable are A1 and A2 respectively, where A1 6= A2. Further, the filter

conditions in the queries intersect. In this case, q1 and q2 are conflicting if A1,A2 ⊆ D. The

conflict arises because there is an implied projection dependency between F and D with respect

to A1 ∪ A2 as well. Therefore, F is subjected to projection constraints along A1 ∪ A2,A1 and

A2, which are overlapping.

multi-F : 1Dmulti-F : 1Dmulti-F : 1D. Assume a pair of queries q1, q2 with PASs A1 and A2. Further, both the queries

involve a dimension table D such that the filters along D in the queries are overlapping. Now, if

A1,A2 ⊆ D and partially overlap with each other, then it is a straightforward case of overlapping

constraints on D. Therefore, q1 and q2 form a conflicting pair of queries.

1F : multi-D1F : multi-D1F : multi-D. Assume a query q involving fact table F and dimension tables D1 and D2.

Further, the PAS A applied on q is such that A ⊆ D1 ∪ D2 and A * D1,A * D1. To ensure

referential integrity, projection constraints on F along A ∩D1 and A ∩D2 are required. Both

these constraints conflict with the preexisting projection constraint along A.
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The conflicts in the 1F : 1D and multi-F : 1D category can be handled by splitting the

workload into sub-workloads. Specifically, we construct a graph with each query being a vertex

and adding an edge between two queries if there is conflict between them. Now, if we run vertex

coloring algorithm on the graph, the subset of queries having the same color assigned form a

sub-workload.

Unlike the previous two conflicts which were inter-query, the third case of 1F : 1D type

conflict is intra-query. A workaround to handle these queries is to generate all distinct tuples

along A ∩ D1 for filter compliant region of the dataspace in D1, and along A ∩ D2 in D2.

Subsequently, for F , the requisite number of distinct rows along A are generated by curating

FKs from D1, D2. This is always possible since the distinct row cardinality along A in F can at

most be the product of the distinct cardinality along A∩D1 in D1 and the distinct cardinality

along A ∩D2 in D2. Due to the distinct rows generation in D1 and D2, any other query with

overlapping filters on D1 (or D2) will lead to a conflict. Again, we use workload decomposition

to take care of these conflicts.

6.5 Align Refinement

To apply referential constraints on the various blocks of the fact table and dimension table

views, we need to ensure that the blocks are well aligned. We next discuss the alignment

process separately for the fact and dimension tables.

6.5.1 Fact Table Refinement

We know that the CPBs related to the same CC c need to be assigned disjointed set of values,

even if their domains overlap. Therefore, for solution tractability, as a first step, we ensure that

for the CPBs that are related to the same constraint c featuring PAS A, have either identical

or disjointed domains. This helps to divide the domain of A, for a constraint c, into a set of

intervals such that each constituent CPB is associated with an interval.

This CPB to interval mapping is done by ensuring that any two refined-blocks related to

the same CC with PAS A are aligned with each other along A. That is, they are either identical

or disjoint with each other along the subspace spanned by A. Specifically, two blocks rF1 , r
F
2

are considered aligned with each other if either dom(πA(rF1 )) = dom(πA(rF2 )) or dom(πA(rF1 ))∩
dom(πA(rF2 )) = ∅.

The Align Refinement module for a fact table view VF takes the refined-blocks for the view

as input and refines them such that the resultant blocks are mutually aligned. A block in VF

obtained after refinement is called an Aligned Refined Block (ARB) and is denoted as aF . In

Figure 6.3(a), we saw rReg1 and rReg2 participate in a common constraint comprising of projection
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along GPA, and are not aligned along GPA. As a result, rReg2 is split in aReg2a and aReg2b , as shown

in Figure 6.4(a) after which alignment is preserved. Further we can see that the red constraint

is associated with a single interval I1 : GPA ≤ 6 and the green constraint is associated with

two intervals I1 : GPA ≤ 6 and I2 : GPA ≥ 6.

The algorithm for performing this refinement iterates over each pair of refined-blocks (rF1 , r
F
2 )

related to the same CC with PAS A, and outputs four (if non-empty domains) blocks, the

domains of which are represented as follows:

dom(πU(F )\A(rF1 ))× (dom(πA(rF1 )) \ dom(πA(rF2 ))),

dom(πU(F )\A(rF2 ))× (dom(πA(rF2 )) \ dom(πA(rF1 ))),

dom(πU(F )\A(rF1 ))× (dom(πA(rF1 )) ∩ dom(πA(rF2 ))),

dom(πU(F )\A(rF2 ))× (dom(πA(rF1 )) ∩ dom(πA(rF2 )))

6.5.2 Dimension Table Refinement

Each ARB aF along fact table view has to be given values for the borrowed columns that appear

in the dimension table and are within its domain boundary. For this, we do a refinement of

the refined-blocks in dimension table as well so that each resultant block is either completely

contained in the domain of a block aF (along B) or is disjoint from it.

The Align Refinement module for a dimension table view VD takes the refined-blocks for the

view as input and refines them such that the resultant blocks are mutually aligned. A block in

VD obtained after refinement is also called an aligned refined block (ARB) and is denoted as

aD. In Figure 6.3(b), the refined-blocks rStd2 and rStd3 partially overlap with the blocks aReg2a and

aReg2b (from Figure 6.4(a)) along the 2-D space (GPA,Age). Therefore, we split these blocks

into aStd2a , aStd2b , aStd3a , and aStd3b ARBs, as shown in Figure 6.4(b).

The algorithm for performing this refinement iterates over each refined-block rD one by one.

For an rD, each ARB aF in VF is compared along B, and if dom(πB(aF )), dom(rD) partially

overlap, then rD is broken into two blocks, the domains of which are represented as follows:

dom(rD) \ dom(πB(aF )), dom(rD) ∩ dom(πB(aF ))

6.6 Block Mappings

To ensure referential integrity, we need to establish a mapping between the ARBs and CPBs

in VF and VD. We define these mappings first.
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6.6.1 Aligned Refined Blocks Mapping

An ARB aF is related to an ARB aD by a relation H iff the domain of aD is contained into

domain of aF along the borrowed columns B. That is:

(aF , aD) ∈ H ⇐⇒ dom(aD) ⊆ dom(πB(aF ))

For our running example, the ARB mapping is given as follows:

H = {(aReg1 , aStd1 ), (aReg2b , aStd2b ), (aReg2b , aStd3b ), (aReg2a , aStd2a ), (aReg2a , aStd3a ), (aReg3 , aStd4 )}

6.6.2 Constituent Projection Blocks Mapping

A CPB pF is related to a CPB pD by a relation J iff for each ARB aF associated with pF , there

is an ARB aD associated with pD, such that, the domain of aD is contained in the domain of

aF . That is:

(pF , pD) ∈ J ⇐⇒ ∀aF s.t. pFLaF ,∃aDs.t. (pDLaD) ∧ (aFHaD)

Essentially all the CPBs in D that are related to a CPB pF through J together form its domain.

For our running example, the CPB mapping is given as follows:

J = {(pReg1 , pStd1 ), (pReg1 , pStd3 ), (pReg2 , pStd1 ), (pReg2 , pStd2 ), (pReg2 , pStd3 ), (pReg2 , pStd4 ),

(pReg3 , pStd1 ), (pReg3 , pStd3 ), (pReg3 , pStd5 ), (pReg3 , pStd6 ), (pReg4 , pStd7 ), (pReg4 , pStd8 )}

6.7 Referential Constraints

The referential constraints are imposed on the ARBs and CPBs depending on the nature of

projections applied. Therefore, we first classify ARBs into two main categories:

No Projection on a Subset of Borrowed Columns (NoPB) If an ARB aF in VF is ei-

ther not subjected to a projection constraint, or the projection is along PAS A such that

A * B, then aF is included in the NoPB category. For example, aReg3 is not subjected to

any projection along the borrowed columns. Therefore, it belongs to the NoPB category.

Projection on a Subset of Borrowed Columns (PB) If an ARB aF in VF is subjected to

a projection constraint with PAS A such that A ⊆ B, then we call aF to be in the PB

category. For example, aReg1 , aReg2a , aReg2b are all subjected to projection constraint along
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GPA borrowed column. Therefore, these ARBs belong to the PB category.

6.7.1 NoPB Blocks

If there is a projection constraint applied on a block aF along a PAS A, which is not a proper

subset of B, then this means that there is at least one attribute in A that was present in the

original schema of the fact table F itself. In this case, we replace the PAS from A to A∩U(F ),

where U(F ) are the set of attributes in F . By ensuring distinctness for a subset of A, we

automatically get distinctness for A as well.

After the above pre-processing, each block aF in the NoPB category has no projection

constraint along any attribute of B. Therefore, we can generate any single value along B that

lies in the domain boundary of the block. In other words, we can pick any value from the

ARBs in VD that are related to aF by relation H. To do this, we need to ensure that if aF is

populated then at least one related ARB aD is also populated. This is ensured by the following

constraint:

|aF |≤ |F |
∑

aD:(aF ,aD)∈H

|aD| (6.1)

Here |F | is a trivial upper bound on aF .

6.7.2 PB Blocks

Consider a block aF on which a constraint with PAS A, such that A ⊆ B, is applied. The

distinct cardinality relationship has to be ensured at two levels for aF – (a) Constituent CPBs

level, and (b) Constraint level, stemming from the interdependence of the ARBs. Specifically,

the following constraints are applied:

CPB Bound. For a CPB pF , its cardinality is upper bounded the summation of the CPBs in

D that form its domain. That is:

|pF |≤
∑

pD:(pF ,pD)∈J

|pD| (6.2)

Constraint Interval Bound. For each interval I obtained wrt a CC c (after Align Refine-

ment), the sum of the cardinalities of the CPBs wrt VF that are associated with c, and

have domain as I, is upper bounded by the sum of the cardinalities of the CPBs wrt VD,

which are related to any of the aforementioned CPB wrt VF , using J . That is,∑
pF :dom(pF )=I∧(pF ,c)∈MoL

|pF |≤
∑

pD:(pF ,pD)∈J∧dom(pF )=I∧(pF ,c)∈MoL

|pD| (6.3)
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6.7.3 LP Constraints

The LP has variables with respect to each ARB and CPB in both the fact table and dimension

table views. Specifically, for a CPB p, we have a corresponding variable y(p) denoting |p|, and

for each ARB a, we have a corresponding variable x(a) denoting |a|. Therefore, replacing these

cardinality expressions (in Equations 6.1, 6.2, and 6.3) with the corresponding variables, we

get the referential constraints. The filter and projection constraints are modeled as discussed

in the previous chapters.

For our running example, following are the LP constraints for the two example AQPs:

Filter Constraints

x(aReg1 ) = 15000

x(aReg1 ) + x(aReg2a ) + x(aReg2b ) = 250000

x(aReg1 ) + x(aReg2a ) + x(aReg2b ) + x(aReg3 ) = 370000

x(aStd1 ) = 2000

x(aStd1 ) + x(aStd2a ) + x(aStd2b ) + x(aStd3a ) + x(aStd3b ) = 42000

x(aStd1 ) + x(aStd2a ) + x(aStd2b ) + x(aStd3a ) + x(aStd3b ) + x(aStd4 ) = 50000

Projection Constraints

y(pReg1 ) + y(pReg2 ) = 2

y(pReg1 ) + y(pReg2 ) + y(pReg3 ) + y(pReg4 ) = 5

Referential Constraints

[NoPB]

x(aReg3 ) ≤ 370000x(aStd4 )

[PB - CPB Bound]

y(pReg1 ) ≤ y(pStd1 ) + y(pStd3 )

y(pReg2 ) ≤ y(pStd1 ) + y(pStd2 ) + y(pStd3 ) + y(pStd4 )

y(pReg3 ) ≤ y(pStd1 ) + y(pStd3 ) + y(pStd5 ) + y(pStd6 )

y(pReg4 ) ≤ y(pStd7 ) + y(pStd8 )
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[PB - Constraint Interval Bound]

y(pReg1 ) + y(pReg2 ) + y(pReg3 ) ≤ y(pStd1 ) + y(pStd2 ) + y(pStd3 ) + y(pStd4 ) + y(pStd5 ) + y(pStd6 )

y(pReg4 ) ≤ y(pStd7 ) + y(pStd8 )

In addition to these constraints, we also add the sanity constraints as discussed in the

previous chapters. One possible solution to the LP is as follows:

[Reg ARBs]:

x(aReg1 ) = 15000, x(aReg2a ) = 120000, x(aReg2b ) = 115000, x(aReg3 ) = 120000

[Std ARBs]:

x(aStd1 ) = 2000, x(aStd2a ) = 10000, x(aStd2b ) = 10000,

x(aStd3a ) = 10000, x(aStd3b ) = 10000, x(aStd4 ) = 8000

[Reg CPBs]:

y(pReg1 ) = 2, y(pReg2 ) = 0, y(pReg3 ) = 1, y(pReg4 ) = 2

[Std CPBs]:

y(pStd1 ) = 2, y(pStd2 ) = 0, y(pStd3 ) = 4, y(pStd4 ) = 0,

y(pStd5 ) = 0, y(pStd6 ) = 0, y(pStd7 ) = 3, y(pStd8 ) = 4

6.8 Data Generation

From the LP solution, we get the following information for each view:

1. The cardinality for each ARB in the view.

2. The cardinality for each CPB in the view.

In this section we discuss how the database summary is constructed using this information and

subsequently tuples are generated from it.

6.8.1 View Summary Construction

To begin with we first construct the view summaries independently using the same technique

as discussed in Chapter 5. To summarize, we first assign domain intervals to each CPB. Recall
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that two CPBs that are associated with a same constraint need to be disjoint even if there

domains are overlapping. Therefore, during the domain interval assignment, we break the

domain into disjoint intervals and assigned them to these CPBs. After this assignment, we

have view summaries ready. In these summaries, we omit the domain assignment to the CPBs

of the ARBs in VF that belong to PB category. As a next step, we need to extract relation

summaries back from the views. Specifically, we need to replace the borrowed columns in the

views with the appropriate FK column.

6.8.2 Key Curation

A number of CPBs in VF map to a CPB in VD using the relation J . Since these CPBs may

require disjoint domain intervals assigned to them, we further split the domain interval assigned

to a CPB in the VD based on the CPBs in VF related to it. Specifically, we do the following:

1. We construct a graph GD
p for each CPB pD in VD. Construct a vertex for each CPB pF

such that (pF , pD) ∈ J . An edge is added between two vertices if the corresponding CPBs

are not related to a common constraint through MoL. In other words, these CPBs need

not be disjoint and can therefore can be assigned the same values.

2. Extract maximal cliques from the graph. Number of maximal cliques correspond to the

number of sub-domains in which the domain of pD is to be broken. Let the cardinality

share of pD from the sub-domain s be expressed using the variable ypD(s).

3. Each vertex in the graph can be a part of multiple maximal cliques. This means, the

corresponding CPB pF can be assigned values from multiple sub-domains. Let the share

of pF from a sub-domain s in the graph GD
p be expressed using variable ypF (pD, s).

4. Now, we compute the values for all the variables ypD(s), ypF (pD, s) across all the graphs

and maximal cliques such that:

• Summation of the share of a dimension table CPB pD across all its sub-domains

(maximal cliques) is equal to its total cardinality. That is:∑
s

ypD(s) = ypD

.

• Summation of the share of a fact table CPB pF across all the sub-domains (maximal
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cliques) in various graphs is equal to its total cardinality. That is:∑
(pD,s)

ypF (pD, s) = ypF

• The cardinality share of a vertex is upper bounded by the cardinality share of the

graph itself. That is:

ypF (pD, s) ≤ ypD(s)

We use the above information to break the domain of pD into sub-domains and its associated

cardinality divided wrt each sub-domain.

For our running example, considering only populated blocks, the domains of the CPBs of

VStd are as follows:

pStd1 : [3, 6), pStd3 : [0, 3), pStd7 : [8, 10), pStd8 : [6, 8)

Among these, the graphs corresponding to both pStd1 and pStd3 have two cliques corresponding

to the singleton vertices pReg1 and pReg3 . Therefore the domains of pStd1 and pStd3 are split into

two sub-domains and the cardinality is also split. We show one possible split as follows:

pStd1 (Split 1) : [3, 5),Card.: 2 pStd1 (Split 2) : [5, 6),Card.: 0

pStd3 (Split 1) : [0, 2),Card.: 1 pStd3 (Split 2) : [2, 3),Card.: 3

Using these domain splits, we now show the domain assignments done to each of the popu-

lated CPBs of VReg:

pReg1 (Split 1) : [3, 5),Card.: 1 pReg1 (Split 2) : [0, 2),Card.: 1

pReg3 (Split 1) : [5, 6),Card.: 0 pReg3 (Split 2) : [2, 3),Card.: 1

pReg4 (Split 1) : [8, 10),Card.: 2 pReg4 (Split 2) : [6, 8),Card.: 0

Next, we need to populate the FK column for each ARB in VF . We do this depending on

the nature of ARB.

NoPB

If an ARB aF is in the NoPB category, then we first pick any ARB aD such that (aF , aD) ∈ H.

In the summary of D, we compute the cumulative ARB cardinality from the beginning till aD.

This gives the number of tuples generated before aD is generated. Let this value be γ. Since
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PK values are generated from 0, the tuple with PK value γ will be the first tuple in aD. Since

any PK value in aD is a valid value for the FK column wrt aF , we assign the FK value γ to the

entire aF block.

PB

Now we consider the case where an ARB aF is in the PB category. Each of its constituent

CPBs are to be assigned FK value ranges. For a CPB pF , we take its share with respect to each

(pD, s) combination. We then iterate on the ARBs in VF that are related to aF using H and get

a target ARB that constitutes the CPB pD. There we identify the fraction of pD that features

s. Now, we identify the number of tuples generated before this point. This is by adding the

total ARB cardinality before the target ARB and then adding the total distinct cardinality for

the CPBs before the specific pD CPB. Further, the subdomain cardinalities before the specific

s are also added. This gives the first FK value that we need. Say this is fk-val. Then the range

assigned is [fk-val, fk-val+ ypF (pD, s).

In this way, for a particular fact table, a sample template for an ARB summary is shown in

Figure 6.6. There is total cardinality of the ARB, and for every PAS acting on it, all the CPBs

associated with different projection subspaces and their distinct cardinalities are maintained.

Further, for the attributes not involved in any projections (Aleft), only the domain is stored

without any distinct cardinality. What is different here from the no-join case, is that we now

also store the value ranges for each Foreign Key column. Each range is wrt to a CPB and its

corresponding CPB in dimension table.

A1 A2 ... Aα Aleft fk
ARB
Card.

CPB-1: card., CPB-1: card., ... CPB-1: card.,
PB

Key
Ranges

CPB-2: card., CPB-2: card., ... CPB-2: card.,
... ... ... ...

Figure 6.6: Sample ARB Summary

A sample database summary for our running example was already shown in Figure 6.5.

6.8.3 Tuple Generation

The tuples are generated similar to how we discussed in Chapter 5. Additionally, for FK

columns, we use the value ranges present in the summary and do a round robin on them until

the entire ARB is instantiated.
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6.9 Handling Select-Join Workload

If the input workload features only select and join operators, i.e. no projection operation, then

certain optimizations become feasible. Specifically, following modifications are done:

One LP per View. In the existing solution, we had added referential constraints. These

constraints required a unified LP for all the linked tables. In a pure SJ workload, we

construct one LP per view and therefore, no referential constraints are added.

Ensuring Referential Integrity. Due to this independent solving of views, the views need

not obey referential integrity. To address this concern, post LP processing, we add some

spurious tuples to the view summaries – this leads to minor additive errors in satisfying

volumetric similarity.

Additionally, note that since there are no projections, there are no conflicts in a workload.

Therefore, we create a single database summary in the output for the entire workload.

6.9.1 View Summary Construction

Recall the way table summaries were constructed in the pure filter case discussed in Chapter 4.

In the same way, we first get sub-view solutions from the LP solver and perform the Align-

Merge algorithm. At this point, each view solution is comprised of a series of intervals (across

various attributes) and the number of tuples in the region represented by these intervals. Next,

we assign the entire cardinality to the left boundaries of the intervals.

6.9.2 Making View Summaries Consistent

Since the solution for each view is obtained independently, there could be inconsistencies across

them. To address this problem, we first carry out a topological sort on the schema graph GS

and then iteratively make the current view consistent with its predecessors. To make a pair of

views VF and VD consistent with each other, where VF is dependent on VD, we iterate over the

rows in the view solution of VF and look for the value combination that each row has for the

attributes borrowed from VD. If that value combination is not present in the solution of VD,

we add a new row in its solution with the corresponding NumTuples attribute set to 1. This

results in an additive error in the total number of tuples in the view as compared to the original

AQP at the client. But we hasten to add that the error is a fixed number of rows, determined

by the nature of the constraints and the LP solution, and not by the data scale. Therefore,

at Big Data volumes, the discrepancy can be expected to be minuscule, and our experiments

empirically confirm this expectation.
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This technique is similar to DataSynth. However, since the latter operates on complete

database instantiations, and not just summaries, the time and space overheads incurred for

making the views consistent can be large. Moreover, the additive error in this case is amplified

due to the inherent sampling errors. Our experiments also capture this distinction between the

errors incurred due to referential constraints in Hydra and DataSynth.

6.9.3 Key Curation

The non-key columns and PK are generated in the same way as discussed in Chapter 4. To

instantiate foreign key values for a table F , its corresponding borrowed columns in VF are

considered. We iterate over the value combinations for this column-set in each row of the

view summary. For an iteration, let the value combination be v. Now, we iterate over the view

solution of the corresponding dimension table view VD and find where v is present. We compute

the cumulative sum of the cardinality entries till v is reached. This sum provides the fk-value

to be inserted against v in F .

Again, DataSynth iterates over the complete instantiated (consistent) views to construct

the corresponding materialized relations. This leads to considerable time and space overheads

in contrast to our data-scale independent summary based approach.

6.10 Experimental Evaluation

In this section, we evaluate the empirical performance of a Java based implementation of our

proposed solution. The Z3 solver [14] is invoked to compute the solutions for the LP formu-

lations. Our experiments cover the accuracy, time and space overheads aspects of our work.

The experiments were conducted using the PostgreSQL v9.6 engine [7] on a vanilla HP Z440

workstation.

Workload Construction. We designed a workload of 145 SQL queries derived from the

TPC-DS decision support benchmark such that they satisfy the underlying assumptions. These

queries covered four fact tables and their corresponding dimension tables. These fact tables

were – store sales (ss), catalog sales (cs), web sales (ws), inventory (inv). The

distribution of queries among these four tables were: ss (73 Queries), cs (33 Queries), ws (32

Queries), inv (7 Queries). We have shown the snapshot of a fraction of the schema graph in

Figure 6.7. We can see the four fact tables with their dimension tables in the figure.

These 145 queries led to a tally of 540 CCs. The constraints had PAS of upto length ten.

The join distribution in these CCs is shown in Figure 6.8. As we can see from the figure, the

number of joins ranges from 1 to 4.

We show a sample SQL query from our input workload below. The corresponding AQP is
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Figure 6.7: Schema Graph

Figure 6.8: Distribution of Joins

also shown in Figure 6.9.

Sample SQL Query.

Select Distinct i item id

From store sales SS, date dim D, item I, customer demographics CD, promotion P

Where ss sold date sk = d date sk and ss item sk = i item sk

and cd demo sk = ss cdemo sk and p promo sk = ss promo sk

and d year = 2001 and cd gender = ‘M’ and cd marital status = ‘M’
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and cd education status = ‘4 yr Degree’ and p channel email = ‘N’ ;

Figure 6.9: AQP of Sample Query

6.10.1 Workload Decomposition

We decompose the input workload into fifteen sub-workloads such that all the conflicts discussed

are resolved. The complexity of these sub-workloads is quantitatively characterized in Table 6.3.

6.10.2 Constraint Accuracy

We ran our framework on the workloads mentioned before and the generated data satisfied

all the constraints with 100% accuracy. This is because – (a) additional constraints were

included in the LP to ensure distinct cardinality relationships between fact tables and their

corresponding dimension tables; (b) key curation ensured the explicit subset requirement, hence

ensuring referential integrity.

6.10.3 Time and Space Overheads

We now turn our attention to the computational and resource overheads. The summary produc-

tion times and sizes corresponding to all the sub-workloads are shown in Table 6.4. We see here
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Table 6.3: Workload Characteristics (TPC-DS)

Workload No. #Queries #CCs Max PAS Length Max joins
1 13 56 2 5
2 10 45 4 5
3 8 33 10 4
4 8 26 3 4
5 11 44 5 4
6 10 38 2 5
7 9 22 3 3
8 10 32 4 3
9 10 47 4 5
10 9 41 6 5
11 8 30 2 5
12 7 20 2 4
13 8 27 6 5
14 14 39 2 4
15 10 40 5 5

that the end-to-end time for summary production for each sub-workload is less than a minute

except for sub-workload 9 which is a couple of minutes. From a deployment perspective, these

times appear acceptable since database generation is usually an offline activity. Moreover, the

summary sizes, as shown in the table, are minuscule, within a few MBs. As mentioned earlier,

these are independent of the data-scale of the original database.

To obtain a quantitative understanding, we report the sizes of the intermediate results at

various pipeline stages also in Table 6.4 – specifically, the number of ARBs and CPBs created

by Hydra are presented. The number of variables are simply the summation of these two

quantities.

6.10.4 Performance of JOB Benchmark

We also evaluated the proposed solution on a workload of 35 SQL queries derived from the

JOB benchmark [45, 5] based on IMDB dataset. This workload covered the three promi-

nent fact tables – namely, movie keyword (11 Queries), cast info (14 Queries), and

movie companies (10 Queries), and their associated dimension tables. The number of joins

in these queries range from 2 to 4. The workload led to a tally of 161 CCs.

The workload was split into 6 sub-workloads. The characteristics of these sub-workloads

are shown in Table 6.5.

In this case as well, Hydra ensured 100% volumetric similarity. The computational and
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Table 6.4: Overheads and Block Profile (TPC-DS)

Workload #ARBs #CPBs #Variables
Summary

Time (s) Space (MBs)
1 89 583 672 21 1.1
2 81 162 243 11 0.6
3 39 27 66 8 4.8
4 40 76 116 4 3.8
5 120 6485 6605 81 5.2
6 53 69 122 6 0.2
7 38 137 175 5 0.7
8 48 66 114 6 8.2
9 98 8356 8634 121 3.3
10 65 122 187 9 0.9
11 46 29 75 6 0.04
12 24 70 94 3 4.3
13 36 78 114 4 0.15
14 75 1473 1548 110 1.7
15 58 243 301 11 5.4

Table 6.5: Workload Characteristics (IMDB)

Workload No. #Queries #CCs Max PAS Length Max joins
1 5 27 3 3
2 6 33 3 4
3 7 30 2 3
4 6 24 3 3
5 6 28 2 3
6 5 19 2 3

resource overheads are tabulated in Table 6.6. We see that the time is at most a couple of

minutes and the summary sizes are also typically within a few MBs.

6.10.5 Select-Join Workload

To showcase improvements in handling pure SJ workload, we also made another SJ-workload

having 311 CCs derived from the TPC-DS benchmark. We compared Hydra against DataSynth

for this workload. As mentioned earlier, in the SJ case, only a single database summary is

produced because of the absence of conflicts that are induced by the projection operator.

We begin by investigating how closely the volumetric similarity, with regard to operator

output cardinalities is achieved by the Hydra and DataSynth regenerators. This behavior is

captured in Figure 6.10, which plots the percentage of CCs that are within a given relative error
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Table 6.6: Time and Space Overheads (IMDB)

Workload #Variables
Summary

Time (s) Space (MBs)
1 94 1 0.4
2 66 1 0.3
3 1321 7 2.5
4 198 84 0.2
5 142 10 20
6 30 1 9.1

of volumetric similarity. From the plot it is evident that Hydra satisfies around 90 percent of

the CCs with virtually no error, and the remaining CCs are also satisfied within a relative error

of less than 10%. This is in contrast to DataSynth, which accurately satisfies around 80 percent

of the CCs, but then incurs as much as 60% relative error to achieve complete coverage of the

remaining CCs.

Figure 6.10: Quality of Volumetric Similarity

There are two reasons for the error-prone behavior of DataSynth: (1) the probabilistic

sampling technique, and (2) the maintenance of referential integrity. While Hydra also is

forced to insert additional tuples to maintain referential integrity, the number is substantially

smaller than those injected by DataSynth. This is because the integrity errors are amplified by

the impact of the sampling errors. This effect is quantified in Figure 6.11, where the number

of extra tuples inserted is plotted on a log-scale for representative TPC-DS tables. We see here

that Hydra is often an order-of-magnitude smaller with regard to the addition of these extra
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Figure 6.11: Extra Tuples for Referential Integrity

Figure 6.12: Distribution of Absolute Errors

tuples as compared to DataSynth. Recall that integrity errors in Hydra are independent of the

data scale. Figure 6.12 shows the distribution of absolute volumetric errors for the constraints

set at different database scales. We can see that this distribution is very similar for the three

different scales. Hence, in the relative sense, the errors become minuscule as the data is scaled

to large volumes.
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6.11 Conclusion

Our work expands the scope of supported constraints to collectively include Select, Project

and Join operators. The main challenge in handling joins in the CCs was to ensure referential

integrity among tables. Our solution constructed a unified LP for the linked tables and added

referential constraints that address the aforementioned challenge. Techniques of Align Refine-

ment and Block Mapping aid in the process of adding these constraints. The experimental

evaluation on workloads derived from TPC-DS and JOB benchmarks indicated that our so-

lution accurately models the SPJ CCs and produces generation summaries within viable time

and space overheads.
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Chapter 7

Adding Robustness

7.1 Introduction

The applicability of the solution discussed so far is restricted to handling volumetric similarity

on seen queries. Generalization to new queries can be a desirable requirement at the vendor site

as part of the ongoing evaluation exercise. However, the Hydra design described thus far does

not reflect this robustness objective because of (a) treating all candidate databases equally, (b)

inserting an artificial skew in the database, (c) generating data that does not comply with the

metadata statistics.

In this chapter, we extend Hydra to address these robustness-related limitations while retain-

ing its desirable features of similarity, scalability and efficiency. As an initial effort, we describe

the solution wrt a select-join input workload. Extending the ideas to include projection is an

area of future work.

7.1.1 Limitations of Basic Hydra

In order to understand the limitations of the solution discussed thus far, we begin by briefly

discussing the solution pipeline. Since, we are restricting to select-join workload, we omit the

details of projection here. Hydra first constructs a denormalized version (without key columns)

of each table, called a view. To generate a view, its data space is partitioned into a set of

disjoint blocks determined by the filter predicates in the CCs. Further, a variable is created for

each block, representing its row cardinality in the synthetic database. Next, a linear feasibility

problem is constructed, where each CC is expressed as a linear equation in these variables.

After solving the problem, a unique tuple within the block-boundaries is picked and replicated

as per the block-cardinality obtained from the solution.
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Example: Consider the following two CCs from Chapter 4 wrt the table Std.

c1 : 〈f1, 40000〉 | f1 = (15 ≤ Age < 35 ∧ 6 ≤ GPA < 8)

c2 : 〈f2, 45000〉 | f2 = (20 ≤ Age < 40 ∧ 5 ≤ GPA < 9)

We show these by a red box and green box in Figure 7.1(a). Accordingly, the LP problem

constructed is shown in Figure 7.1(b).

Figure 7.1: Basic Hydra

The process of extracting relations from the views, while ensuring referential integrity (RI),

forces the addition of some (spurious) tuples in the dimension tables. At the end, the output

consists of concise constructors, together called as the database summary. An example summary

is shown in Fig. 7.1(c).

As discussed above, the ability to generalize to new queries can be a useful feature for the vendor

as part of the ongoing evaluation exercise. This is rendered difficult for the basic version of

Hydra due to the following design choices:

No Preference among Feasible Solutions: There can be several feasible solutions to the

linear feasibility problem. However, no particular solution is preferred over the others.
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Moreover, due to the usage of Simplex algorithm internally, the solver returns a sparse

solution, i.e., it assigns non-zero cardinality to very few blocks. This leads to very different

inter-block distribution of tuples in the original and synthetic databases.

Artificial Skewed Data: Within a block that gets a non-zero cardinality assignment, a single

unique tuple is generated. As a result, a highly skewed data distribution is generated,

which leads to an inconsistent intra-block distribution of tuples. Furthermore, the artificial

skew can cause hindrance in efficient testing of queries, and gives an unrealistic look to

the data.

Non-compliance with the Metadata: The metadata statistics present at the client site are

transferred to the vendor and used to ensure matching plans at both sites. However, these

statistics are not used in the data generation process, leading to data that is out of sync

with the client metadata.

7.1.2 Our Contributions

In this chapter, we extend Hydra to address the above robustness-related limitations while

retaining its desirable features of similarity, scalability and efficiency. Specifically, the linear

feasibility problem is replaced with a linear optimization program that works towards finding

a solution that is close to the metadata stats as well. Further, instead of generating just a few

unique tuples, a more realistic spread of tuples over the domain are generated. Since we restrict

to select and join operators, we also use the independent LP for each view strategy clubbed

with referential integrity through spurious tuple addition.

The efficacy of the proposed solution is evaluated by comparing its volumetric similarity

over unseen queries against the baseline of Hydra without the additional contributions of this

chapter wrt robustness. Our results indicate a substantive improvement – for instance, the

volumetric similarity on filter constraints of unseen queries improves by more than 30 percent,

as measured by the UMBRAE model-comparison metric [32]. Further, we also show that along

with better generalization, the proposed solution also ensures metadata compliance and the

generated data has no artificial skew. These experiments are conducted over a vanilla computing

platform using the TPC-DS benchmark hosted on the PostgreSQL engine. Note that in this

process, we also do not compromise on scale or efficiency - that is, we also support dynamic

data generation using database summary, and the algorithm continues to be independent of the

database size.
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7.1.3 Notations

The main acronyms and key notations used in this chapter are summarized in Tables 7.1 and

Table 7.2, respectively.

Table 7.1: Acronyms

Acronym Meaning
AQP Annotated Query Plan
CC Cardinality Constraint

Table 7.2: Notations

(a) Database Related

Symbol Meaning
T Output Table
A Attribute
VT View wrt T
F Fact Table
D Dimension Table
B Borrowed Attribute-Set
S Sub-Table
A Attributes in a S
µ No. of Metadata Constraints

U(T ) Set of attributes wrt the input table

(b) Workload Related

Symbol Meaning
c A CC
f Filter Predicate
l Output row card. after filter

(c) LP Related

Symbol Meaning
b filter-block
n Number of filter-blocks
xb variable for b
C LP Constraint

7.1.4 Organization

The remainder of this report is organized as follows: We present an overview of the proposed

solution in Section 7.2, followed by its primary constituents – LP Formulation and Data Gen-

eration, in Sections 7.3 and 7.4, respectively. A detailed experimental evaluation is highlighted

in Section 7.5. Our conclusions are summarized in Section 7.6.
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7.2 Solution Overview

In this section, we provide an overview of the proposed solution. Using the metadata in the

client input, the data space partitioning module constructs a refined partition, i.e. it gives finer

blocks. Further, a linear program (LP) is constructed by adding an objective function to pick

a desirable feasible solution. From the LP solution, the Summary Generator produces a richer

database summary.

The overview of the modified components is described next.

7.2.1 Inter-block Distribution

Note that the original database also satisfies the feasibility problem, but there can be several

assignments of cardinalities to the blocks such that all of them satisfy the constraints. For

example, if we consider the constraints shown in Figure 7.1(b), both the following solutions

satisfy the constraints:

Solution 1: x1 = 0, x2 = 5000, x3 = 40000, x4 = 5000

Solution 2: x1 = 5000, x2 = 10000, x3 = 35000, x4 = 0

So far no particular solution was preferred over the other. Therefore, the volume of data that

is present in various blocks of the original database may be very different from the cardinalities

assigned by the solvers to these blocks. The solver assigns non-zero cardinality to very few

blocks. This is because of the use of the Simplex algorithm internally, which seeks a basic

feasible solution, leading to a sparse solution. Further, not only is the solution sparse but also

the assigned cardinalities may be very different from the original since no explicit efforts are

made to bridge the gap. For example, the two solutions illustrated above are both similar

from the sparsity point of view but the values themselves are very different. It is very easily

possible that one of the two is picked by the solver and the other is actually the desired

solution. Therefore, the distribution of tuples among the various blocks in the original and

synthetic databases can be very different. Hence, volumetric similarity for unseen queries can

incur enormous errors. In the proposed solution, we construct finer blocks by additionally using

metadata stats. Subsequently, an LP is formulated, by adding an optimization function that

picks up a feasible solution that is close to the estimated solution derived from the stats. This

also helps us ensure metadata compliance.

7.2.2 Intra-Block Distribution

Within a block that gets a non zero cardinality assignment, we were generating a single unique

tuple. As a result, it leads to inconsistent intra-block distribution. That is, even if the inter-
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block distribution was matched between the original and synthetic databases, the distribution

of tuples within a block can vary enormously. This is again not surprising since no efforts

have been put to match the intra-block distribution. This not only affects the accuracy for

unseen queries but single point instantiation per block also creates an artificial skew in the

synthetic database. In the proposed solution, we instead try to obey the distribution based on

the information extracted from metadata stats. At the finer granularity where volumes cannot

be estimated any further, we resort to uniform distribution.

7.3 Inter-Block Distribution: LP Formulation

Here we discuss our LP formulation module to get a better inter-block tuple cardinality distri-

bution. We propose two strategies for LP formulation – MDC and OE, which augments Hydra

with metadata and query optimizer estimates, respectively.

7.3.1 MDC: Optimization Function using Metadata Constraints

In this strategy we directly model constraints from the metadata stats. To set the stage, we

first discuss some of the stats maintained by the PostgreSQL engine.

MCVs and MCFs: Postgres maintains two lists for most attributes in a relation namely,

Most Common Values(MCVs) and Most Common Frequencies(MCFs). Specifically, for

an attribute A of a table T , the frequency of an element stored at position i in the MCVs

list will be stored at the matching position i in the MCFs array.

Equi-depth histogram: Postgres additionally maintains equi-depth histograms for most of

the attributes in a relation. It stores the bucket boundaries in an array. All the buckets for

an attribute are assumed to have the same frequency. The bucket frequency is computed

by dividing the total tuple count obtained after subtracting all frequencies present in the

MCFs array from the relation’s cardinality, with the number of buckets.

We can express this information in the form of CCs as follows:

• For a value u stored in MCVs with frequency lu, the corresponding CC is:

|σA=u(T )|= lu

• Say for an attribute A, a bucket with a boundary [`, h) and frequency B exists. Further,

within this bucket, say two MCVs exist, namely u1 and u2 with frequencies lu1 and lu2
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respectively, then the following CC can be formulated:

|σA∈[`,h)(T )|= B + lu1 + lu2

Most database engines maintain similar kinds of metadata statistics which can be easily modeled

as CCs in the above manner. To distinguish these CCs from AQP CCs, we hereafter refer to

them as metadata CCs. One issue with metadata CCs is that they may not be completely

accurate as they may have been computed from a sample of the database. Therefore, to ensure

LP feasibility, we do not add metadata CCs explicitly in the LP and instead include them as

an optimization function that tries to satisfy the metadata CCs with minimal error.

While this method provides additional constraints that help to obtain a better LP solution,

it can still suffer from inconsistent inter-block distribution from the solver – in fact, we may

even obtain a sparse solution. This is because there is no explicit constraint that works on the

individual blocks. However, in general, we expect that this optimization is likely to improve

the result quality in comparison to basic Hydra. The complete algorithm is as follows:

1. Run region partitioning using all the CCs, i.e. CCs from AQPs and metadata.

2. The CCs from AQPs are added as explicit LP constraints as before.

3. The CCs from metadata are modeled in the optimization function that minimizes the

L1 norm of the distance between the output cardinality from metadata CCs and the

cardinality from the sum of variables that represent the CCs. If there are n blocks

(variables) together obtained from µ metadata CCs and Q AQP CCs, then the LP is as

shown in Figure 7.2a. Here, 1ij is an indicator variable, which takes value 1 if block i

satisfies the filter predicate in the jth metadata CC, and takes value 0 otherwise. Further,

C1, C2, ..., CQ are the Q LP constraints corresponding to the Q AQP CCs. Finally, lj

represents the cardinality associated with the jth metadata CC.

7.3.2 OE: Optimization Function using Optimizer’s Estimates

We now consider an alternative technique, OE, where instead of directly adding constraints from

the metadata information, an indirect approach is used where the estimate for each block’s

cardinality is obtained from the engine itself. Hence, not only is the metadata information

obtained, but also the optimizer’s selectivity estimation logic. Once the estimates are obtained

for all the blocks, we find a solution that is close to these estimates while satisfying all the

explicit CCs coming from the AQPs. The complete algorithm is as follows:
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minimize

µ∑
j=1

εj subject to:

1. − εj ≤

( ∑
i:1ij=1

xi

)
− lj ≤ εj, ∀j ∈ [µ]

2. C1, C2, ..., CQ

3. xi ≥ 0 ∀i ∈ [n], εj ≥ 0 ∀j ∈ [µ]

(a) MDC LP Formulation

minimize
n∑
i=1

εi subject to:

1. − εi ≤ xi − x̃i ≤ εi ∀i ∈ [n]

2. C1, C2, ..., CQ

3. xi, εi ≥ 0 ∀i ∈ [n]

(b) OE LP Formulation

Figure 7.2: Proposed LP Formulation

1. Same as Step 1 in MDC.

2. For each block obtained from (1), we construct an SQL query equivalent. Any query that

can capture the block precisely is acceptable.

As an example, the queries for the four blocks from Figure 7.1(a) are as follows:

Select * From Student Std

Where Age >= 15 and Age < 20 and GPA >= 6 and GPA < 8;

Select * From Student Std

Where Age >= 20 and Age < 35 and GPA >= 6 and GPA < 8;

Select * From Student Std

Where (Age >= 20 and Age < 40 and ((GPA >= 5 and GPA < 6)

or (GPA >= 8 and GPA < 9))) or (Age >= 35 and Age < 40 and

GPA >= 6 and GPA < 8);
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Select * From Student Std

Where GPA >= 9 or GPA < 5 or Age >= 40 or Age < 15 or

(Age >= 15 and Age < 20 and ((GPA >= 5 and GPA < 6) or

(GPA >= 8 and GPA < 9)));

3. Once the block-based SQL queries are obtained, their estimated cardinalities are obtained

from the optimizer. This is done by dumping the metadata on a dataless database using

the CODD metadata processing tool [19], and then obtaining the compile-time plan (for

example using EXPLAIN 〈query〉 command in Postgres).

4. We construct an LP that tries to give a feasible solution, i.e. that satisfies all AQP

constraints, while minimizing the L1 distance of each block from its estimated cardinality

as obtained from the previous step. Let the estimated cardinality for the n blocks be

x̃1, x̃2, ..., x̃n. Then the new LP that is formulated is shown in Figure 7.2b.

Our choice of minimizing L1 norm in these strategies is reasonable because from query execution

point of view, the performance is linearly proportional to the row cardinality. This is especially

true for our kind of workloads where the joins are restricted to PK-FK joins. Further, note that

the dimensionality reduction optimization of decomposing the view into sub-views can still be

easily applied.

Given the MDC and OE alternative strategies, the following aspects need to be considered

for choosing between them:

1. MDC is comparatively simpler as it adds fewer constraints and hence is computationally

more efficient. However, since generating data is typically a one-time effort, any practical

summary generation time may be reasonable.

2. The solution quality depends entirely on the quality of the metadata and the optimizer

estimates. Since OE works at a finer granularity, it is expected to provide higher fidelity

assuming a reasonably accurate cardinality estimator. On the other hand, the accuracy

of the constraints in MDC is usually more reliable as they are derived as it is from the

metadata.

7.4 Intra-Block Distribution: Data Generation

We saw in the previous section how inter-block cardinality distributions were represented. In

this section, we go on to discuss the strategy to represent the intra-block distributions.

The LP solution returns the cardinalities for various blocks within each sub-view. As dis-

cussed earlier, the blocks across sub-views need to be merged to obtain the solution at the view
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level. After merging, the views are made consistent to ensure referential integrity (RI) and

finally a database summary is constructed from these views. This summary is used for either

on-demand tuple generation or, alternatively, for generating the entire materialized database.

We briefly discuss these stages now.

7.4.1 Merging Sub-Views

Say two sub-views S1 and S2, with attribute-set A1 and A2 respectively, are to be merged. If the

two attribute-sets are non-overlapping (i.e. A1∩A2 = ∅) then we can directly take the cross of

the blocks in S1 and S2 to obtain the blocks in the view space. But when the intersection is non-

empty, the merging of blocks happen among compatible pair. A block from S1 is compatible

with a block form S2 if the two have an identical projection along the intersecting columns

A1 ∩ A2. Several blocks in S1 and S2 can have identical projection along the intersecting

columns. Therefore, we define compatibility at a set level. That is a compatible pair is a set of

blocks from S1 and S2 such that all these blocks have identical projections along the intersecting

columns. For such a compatible pair, let b1
1, b

1
2, ..., b

1
n1

be the blocks from S1 and b2
1, b

2
2, ..., b

2
n2

be the blocks from S2. In the proposed solution, we merge each block b1
i with each block b2

j

from a compatible pair and assign it a cardinality
|b1i ||b2j |∑
i∈[n1]

|b1i |
. Note that

∑
i∈[n1]|b1

i |=
∑

j∈[n2]|b2
j |,

which is ensured by consistency constraints in the LP. Hence in each pair, n1 × n2 blocks

are constructed. Merging of two blocks can be thought of as taking a join of the two blocks

along A1 ∩A2. A sample sub-view merging is shown in Figure 7.3 where two sub-views (Age,

GPA) and (Age, Scholarship) have five and four blocks respectively. Further, there are three

compatible pairs that finally lead to eight blocks after merging.

Figure 7.3: Sub-view Merging
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7.4.2 Ensuring Referential Integrity

Since each view is solved separately, it can lead to RI errors. Specifically, when VF , the fact

table view, has a tuple where the value combination for the attributes that it borrows (say B)

from VD, the dimension table view, does not have a matching tuple in VD, then it causes an RI

violation. Our algorithm for ensuring referential integrity is as follows:

1. For each block bF of VF , project the block along B. Let the projected block be πB(bF ).

2. Iterate on the blocks in VD that have non zero cardinality and find all the blocks that

have an intersection with πB(bF ).

3. For each block bD of VD obtained from (2), split bD in two disjoint sub-blocks bD1 and

bD2 such that bD1 is the portion of bD that intersects with πB(bF ) and bD2 is the remaining

portion. Cardinality of bD is split between bD1 and bD2 using the ratio of their domain

volumes. A corner case to this allocation is when the cardinality of bD is equal to 1 – in

such a case, we replace bD with bD1 .

4. If no block is obtained from (2), then we add πB(bF ) in VD and assign it a cardinality 1.

This handles RI violation but leads to an additive error of 1 in the relation cardinality

for dimension table. Collectively, these errors can be considered negligible. Also, they

are independent of the scale of the database we are dealing with, and therefore, as the

database size grows, the relative error keeps shrinking.

As we saw that the algorithm takes projections of blocks along borrowed set of dimensions.

Since, the blocks neither have to be hyper rectangles nor have to be continuous, they may not

be symmetric along the borrowed attribute(s), further adding to the complexity of ensuring

consistency. If the set of the attributes in a fact table F is U(F ) and the set of attributes that

are borrowed in VF are B, then a block bF in VF is symmetric along B iff:

bF = πB(bF )× πU(F )(b
F )

In order to ensure blocks are symmetric, before starting the referential integrity step, blocks

are split into sub-blocks to make them symmetric along the borrowed set of attributes.

7.4.3 Constructing Relation Summary

Once we get the consistent summary for each view, where for each view we have the set of

(symmetric) blocks and their corresponding cardinalities, we need to replace the borrowed
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attributes in a view with appropriate FK attributes. Here the challenge is to remain in the

summary world and still achieve a good span among all the FK values within a block. To handle

this, instead of picking a single value in the FK column attribute for a block, we indicate a

range of FK values.

Before discussing how the FK column value ranges are computed, let us discuss how the PK

columns are assigned values. Each block in any view has an associated block cardinality. PK

column values are assumed to be auto-number so, given two blocks b1 and b2, the PK column

value ranges for the two blocks are 0 to |b1|−1 and |b1| to |b1|+|b2|−1, respectively. Now, to

compute the FK column values, for each block bF in the fact table view VF , the corresponding

matching blocks from the dimension table view VD are fetched. Once these blocks are identified,

their PK column ranges are fetched and the union of these ranges is assigned to the FK column

for bF .

Recall that a block in its most general form can be represented as a collection of multi-

dimensional arrays, where each multi-dim. array has an array of intervals for its constituent

dimensions (relation attributes). For example, Figure 7.4 shows the structure of a block that

is symmetric along dimension A. It can be expressed in words as the domain points where

((A ∈ [a1,a2) or [a3, a4)) and (B ∈ [b1,b2) or [b3, b4)) and C ∈ [c1,c2)) or

((A ∈ [a1,a2) or [a3, a4)) and B ∈ [b5,b6) and C ∈ [c3,c4))

Figure 7.4: Block Structure

Now, we split the block into sub-blocks, where each sub-block is a single multi-dimensional

array. Further, we divide the parent block’s cardinality among the sub-blocks in the ratio of

their volumes. In this way summary for each relation collectively gives the database summary.
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7.4.4 Tuple Generation

The summary generation module gives us the database summary featuring various (sub) blocks

and their associated cardinalities. We want to spread the block’s cardinality among several

points. Now depending on our requirement of either dynamic generation or materialized

database output, the strategy would slightly differ as follows:

Materialized Database. If a materialized database output is desired, randomness can be

introduced. For each (non-PK) attribute, the values are generated by first picking up an interval

using a probability distribution where each interval’s selection probability is proportional to the

length of the interval. Once the interval is picked, a random value in that interval is generated.

Dynamic Generation. With dynamic generation, we cannot generate values randomly be-

cause the resultant tables will not be consistent across multiple query executions. Therefore,

we generate values in a deterministic way. Based on the lengths of the intervals that are con-

tained for an attribute in the block, the ratio of tuples to be generated from each interval is

computed. Now, if ω values have to be generated within an interval, the interval is split into

ω equal sub-intervals and the center point within each interval is picked. If the range does not

allow splitting into ω sub-intervals, then it is split into the maximum possible sub-intervals,

followed by a round-robin instantiation.

7.4.5 Comparison with Basic Hydra

For a compatible pair where we construct n1 × n2 blocks (as described above), the basic Hy-

dra may generate as few as max(n1, n2) blocks. Therefore, it leads to several “holes” (zero-

cardinality blocks) in the view, further leading to poor generalizations to unseen queries.

For blocks that are constructed after merging the sub-views, a single tuple is instantiated.

This is again a bad choice as it creates holes.

RI violations lead to addition of spurious tuples as we discussed. In the proposed solution,

these violations are sourced primarily from undesirable solution, where the solver assigns a

non-zero cardinality to a block in fact table for which the corresponding block(s) in dimension

table has a zero cardinality. In such a case, then no matter how we distribute tuples within the

blocks, it will always lead to a violation. However, earlier the choice of the single tuple that it

instantiates within a block itself was not done carefully. Therefore, it has additional sources of

RI violations.

Finally, the single point instantiation per block also generates an artificial skew and gives

an unrealistic appeal to the data.
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7.5 Experimental Evaluation

In this section, we empirically evaluate the performance of the proposed solution as compared

to the baseline, i.e. basic Hydra. In these experiments, the Z3 solver was used to compute

solutions for the linear programs. The performance is evaluated using a 1 GB version of the

TPC-DS decision-support benchmark. The database is hosted on a PostgreSQL v9.6 engine,

with the hardware platform being a vanilla standard HP Z440 workstation.

Base Filters Joins
Row Count # CCs Row Count # CCs

1-5 3 0-10K 8
30-300 13 15-200K 13

1000-80K 8 250K-2.5M 6
Total 24 27

Table 7.3: Row Cardinality Distribution in Test CCs

We constructed a workload of 110 representative queries based on the TPC-DS benchmark

query suite. This workload was split into training and testing sets of 90 and 20 queries,

respectively. The corresponding AQPs for the training query set resulted in 225 cardinality

constraints, while there were 51 such CCs for the testing query set. The distribution of the

cardinalities in these AQPs covered a wide range, from a few tuples to several millions. The

distribution of tuples for the CCs from test queries are shown in Table 7.3, with a separation

into two groups – CCs that are pure selection filters on base relations, and CCs that involve

such filters along with 1 to 3 joins. 2622 CCs were derived from metadata statistics, such as

MCVs, MCFs and histogram bounds.

7.5.1 Volumetric Similarity on Unseen Queries

For evaluating the volumetric accuracy on the constraints derived from the unseen queries,

we use the UMBRAE (Unscaled Mean Bounded Relative Absolute Error) model-comparison

metric [32], with basic Hydra serving as the reference model. Apart from its core statistical

soundness, UMBRAE’s basis in the absolute error is compatible with the L1 norm used in the

proposed optimization functions. UMBRAE values range over the positive numbers, and a

value U has the following physical interpretation:

U = 1 denotes no improvement wrt baseline model

U < 1 denotes (1− U) ∗ 100% better performance wrt baseline model

U > 1 denotes (U− 1) ∗ 100% worse performance wrt baseline model
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The value U is computed using the formula:

U =
MBRAE

1−MBRAE
, where MBRAE =

1

Q

Q∑
j=1

|ePj |
|ePj |+|eBj |

where |ePj | and |eBj | denote the absolute error for proposed solution and baseline respectively

with respect to jth constraint; Q denotes the total number of constraints.

The UMBRAE values obtained by the proposed solution variants over the 20 test queries

in our workload are shown in Figure 7.5, with basic Hydra serving as the reference baseline

(U = 1). For clearer understanding, the results for base filters, join nodes, and metadata

statistics are shown separately. We see that the proposed solution delivers more than 30%

better performance on filters, while also achieving an improvement of over 20% with regard to

joins. The reason for the greater improvement on filters is that metadata is typically maintained

on a per-column basis, making it harder to capture joins that combine information across

columns.

On drilling down we found that as the number of joins increase, the improvement keeps

reducing, as should be expected due to the progressively reduced quality of the input statistics.

Also, we found that among the two proposed techniques, OE did better than MDC for constraint

with multiple join predicates. Specifically, we found that OE did 33% better than MDC for 2

Figure 7.5: Volumetric Similarity on Unseen Queries and Constraints
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join cases and 13% better for 3 join cases. This is again expected since MDC is not sensitive to

join constraints beyond first level joins while OE, due to its operations on the blocks directly,

uses the optimizer’s estimates for all the join constraints.

7.5.2 Metadata Compliance

We now turn our attention to evaluating the compatibility of the generated data wrt the

metadata constraints. This is quantitatively profiled in Figure 7.5(c), and again we observe a

very substantial improvement over the baseline – 98% and 70% for MDC and OE, respectively.

Further, MDC outperforming OE is as expected because the former explicitly minimizes the

errors in satisfying metadata CCs in its optimization function.

7.5.3 Database Summary Overheads

A key difference between the proposed solution and the baseline is with regard to the structure

of the database summary. Firstly, the former has many more blocks in the summary. Secondly,

instead of picking a single point per block, the summary retains the entire block and generates

a wider spread of tuples intra-block. Due to these changes, a legitimate concern could be the

impact on the size of the database summary and the time taken to generate the database

from the summary. To quantitatively evaluate this concern, the space and time overheads are

enumerated in Table 7.4. We see here that there is certainly a large increase in summary size,

going from kilobytes to megabytes – however, in absolute terms, the summary size is still small

enough to be easily viable on contemporary computing platforms. When we consider the time

aspect, again there is an expected increase in the generation time from a few seconds to several

tens of seconds, but here too the absolute values are small enough (sub-minute) to make the

solution usable in practice.

Baseline MDC OE
Database Summary Size 40 KB 6 MB 985 MB

Tuples Materialization Time 6 seconds 37 seconds 51 seconds

Table 7.4: Space and Time Analysis

7.5.4 Data Scale Independence

The summary sizes and the time taken to generate the summary are independent of the client

database size. We evaluate this by taking two instances of TPC-DS benchmark as the client

database, namely 1 GB and 10 GB, and generating summary from both strategies MDC and

OE. The results are enumerated in Table 7.5. While going from 1× to 10× with the database
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size, the summary sizes and the generation time do not vary much. Also note that although the

summary generation time looks large for OE, most of the time is incurred in getting a feasible

solution from the LP Solver.

Strategy MDC OE
Data Scale (TPC-DS) 1 GB 10 GB 1 GB 10 GB
Database Summary Size 6 MB 6.3 MB 985 MB 1.3 GB
Summary Generation Time 12m 55s 13m 8s 22h 57m 16h 48m
Summary Generation Time
(excluding LP Solver Time)

54.3s 54.3s 20m 54s 24m 41s

Table 7.5: Data Scale Experiment Analysis

7.5.5 Data Skew and Realism

Finally, to showcase the difference of skew, we drill down into the “look” of the data produced.

For this purpose, a sample fragment of the TPC-DS Item relation produced by the baseline is

shown in Figure 7.6a, and the corresponding fragment generated by the proposed solution is

shown in Figure 7.6b. It is evident from the former figure has heavily-repeated attribute values

– for instance, all the rec start date values are the same. In contrast, the proposed solution

delivers more realistic databases with significant variations in the attribute values.

item sk color price rec start date
0 Coral 10.01 1991-02-01
1 Coral 10.01 1991-02-01
... ... ... ...
21 Coral 10.01 1991-02-01

17908 Beige 7.00 1991-02-01
17909 Beige 7.00 1991-02-01

... ... ... ...
17999 Beige 7.00 1991-02-01

(a) Database (Item) from Baseline

item sk color price rec start date
7125 Beige 9.91 1990-05-08
3847 Coral 4.13 1990-03-26
1618 Dark 4.56 1990-04-06
8450 Floral 2.46 1990-06-17
2836 Navy 27.33 1990-03-06
3086 Pink 63.66 1990-04-14
1827 Red 1.61 1990-03-08
3651 Violet 7.43 1990-03-24

(b) Database (Item) from Proposed Solution

Figure 7.6: Data Skew

7.6 Conclusion

In this chapter we looked into the problem of generating databases that are robust to unseen

queries. In particular, we extended the existing Hydra framework by bringing the potent power

of metadata statistics and optimizer estimates to bear on the generation exercise. In particular,
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this information was captured in the form of additional cardinality constraints and optimiza-

tion functions. The resulting fidelity improvement was quantified through experimentation on

benchmark databases, and the UMBRAE outcomes indicate that proposed solution successfully

delivers high fidelity databases.
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Chapter 8

Hydra Architecture and Prototype

Implementation

In the previous chapters, we saw the technical details of various contributions with respect

to regenerating databases using SPJ cardinality constraints. We also discussed how Hydra

incorporates the metaphor of “dataless databases” (proposed in [73]), whereby database envi-

ronments are simulated without persistently generating and/or storing the contents. This is

achieved by dynamically generating databases during query execution by using the minuscule

database summary.

This dynamic generation provides Hydra a way to model two facets [2] of Big Data, namely,

volume and velocity, which are of primary interest in the context of enterprise relational ware-

houses. Since the data is generated in memory, not just the large volumes of data can be easily

generated, the velocity of data generation can be closely regulated, as compared to disk-resident

databases. To complement dynamic database regeneration, Hydra also ensures that the process

of summary construction is data-scale-free. Specifically, the summaries for complex Big Data

client scenarios are constructed within just a few minutes.

On the implementation front, Hydra is completely written in Java, running to over 50K

lines of code, and is currently operational on the PostgreSQL v9.6 engine [7]. Most of the

functionality was achieved by leveraging existing APIs, with only the dynamic generation com-

ponent requiring a few modifications within the engine. It has an intuitive user interface that

facilitates modeling of enterprise database environments, delivers feedback on the regenerated

data, and tabulates performance reports on the regeneration quality. The entire tool, including

the source, is downloadable 1, and has been warmly received by both academic and industrial

1https://dsl.cds.iisc.ac.in/projects/HYDRA/index.html
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organizations.

In the remainder of this chapter, we discuss the architecture, some implementation details,

and the visual interface of the prototype tool.

8.1 Architecture

A pictorial view of it is presented in Figure 8.1 – in this picture, the green boxes represent the

various modules of Hydra.

Figure 8.1: Hydra Architecture

8.1.1 Client Site

The information flow from the client to the vendor is as follows: At the client site, Hydra fetches

the schema information, and the query workload with its corresponding AQPs obtained from
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the database engine. The statistical metadata from the database catalogs is captured with the

help of CODD [19] tool. All this information is then shipped to the vendor site.

To address the privacy concerns the above information can be passed through an appropriate

anonymization layer at the client. For example, the table names, column names can be renamed.

Likewise, the predicate constants can also be changed to any order preserving domain.

Note that if the client wishes to provide more than one AQP for the same query, that can

also be done by giving all the AQPs for the query in the input. The volumetric constraints

will be derived from all the nodes of each plan. The underlying assumption is that the AQPs

will be mutually compatible, which is trivially true since the plans are derived from an original

client deployment. Therefore, the constraints when modeled as an LP will also be feasible.

8.1.2 Vendor Site

Using the schema, views are constructed using the Denormalization module. The AQPs are

converted to equivalent CCs using a Parser. The workload hence obtained is given to Workload

Decomposition, which returns the set of non-conflicting CCs. Subsequently, the rest of the

pipeline, comprising of Data Space Partitioning, LP Formulation and Summary Construction,

is executed independently for each of these sub-workloads.

The Data Space Partitioning for a View and sub-workload begins with Region Partitioning

followed by Symmetric Refinement algorithm. This gives the set of refined-blocks. Further,

due to Align-Refinement across Fact and Dimension tables, the refined-blocks are split and give

Align Refined Blocks (ARBs) in the output.

Let β be the total number of PASs across all the constraints, as indicated in Figure 8.1.

For each PAS across all CCs, the PRBs are computed using the ARBs. These PRBs and sub-

workload are then used by the Projection Subspace Division module to construct the set of

CPBs.

Next, at the LP Formulation stage, an LP is constructed using variables representing the

cardinalities of ARBs and CPBs. Specifically, Filter Constraints and Projection Constraints are

modeled for each view. Subsequently, Referential Constraints are added between each pair of

Fact and Dimension table. Finally, based on the cardinality estimation module of the database

engine, an estimate of size of various blocks is obtained. Using these estimates, an Objective

Function is added to the LP. This construction is then given as the input to the LP Solver. We

have used the Z3 solver [14] from Microsoft for this purpose.

From the solution produced by the LP solver, a comprehensive table summary is constructed

using the Summary Construction module. Specifically, it constructs View Summary and then

replaces borrowed attributes in the fact tables with the corresponding foreign key columns using
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the Key Curation module.

The summary is used by the Tuple Generation module to synthesize the data dynamically

during query execution. Dynamic generation is useful if we are interested in analysis of in-

termediate operators in the query plan. If the focus is on scan operations, then materialized

database instance should be generated from the summary. For experimental evaluation, we

restricted the query plans to only have sequential scans.

8.2 Implementation Details

In this section we discuss the data structure and implementation detail of certain key concepts.

8.2.1 Domain Representation

The domain of a table is represented using a two dimensional vector as shown in Figure 8.2. Each

row here represents a dimension (attribute) of the domain space. The vector corresponding to a

dimension represents the split points inserted to break the dimension into intervals. Specifically,

if the jth value in ith row is represented using vi[j], then the interval corresponding to it is

[vi[j], vi[j+1]) 1 For example, from the figure we can conclude that dimension A1 is broken into

intervals [0, 20), [20, 30), [70, 90), [90, Amax1 ), where Amax1 is the max value of the domain of A1.

Figure 8.2: Domain Representation

The split points are inserted using the constants appearing in the filter predicates of the

CCs. Specifically, if a predicate is represented as 〈col op val〉 then the split point is added

based on the following condition:

• If op = ‘≥’ or op = ‘<’, then val is inserted in the vector.

• If op = ‘>’ or op = ‘≤’, then (val + 1) is inserted in the vector.

• If op = ‘=’, then both val and (val + 1) are inserted in the vector.

1If j is the last index then the vi[j + 1] represents the max value of the domain.
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Note that each filter predicate can be represented as a disjunction or conjunction of the sub-

predicates of the 〈col op val〉 form. Therefore, the above split point insertion is done for each

such sub-predicate. For example, Between SQL construct can be expressed using conjunction of

two sub-predicates involving ≥ and ≤ operators; Likewise, In SQL construct can be expressed

using disjunction of sub-predicates, each of which involves an = operator.

The above procedure assumes that the columns are of integer type. In Hydra, we additionally

deal with string, float, and date column datatypes. The predicate constants for such columns are

mapped to an integer domain while preserving their relative order. Subsequently, post database

summaries production, the column values can (optionally) be mapped to their original domain.

Since there are finite number of predicates, this integer mapping is always feasible.

8.2.2 Region Data Structure

A primary data structure, used to represent a variety of objects in the implementation, is

Region pictorially represented in Figure 8.3.

Figure 8.3: Region Data Structure

Each individual tabulation in this data structure is called as a Bucket-Structure. Like the

domain representation, each Bucket-Structure is also represented as a two dimension vector

where each row represents a dimension. The value in a cell of a row represents the index of the

split point from the domain data structure. For example, the index value 1 for A1 dimension

will represent split point 20 as can be seen from Figure 8.2. As discussed earlier, each split

point represents an interval. In a Bucket-Structure, these intervals are concatenated using

disjunction intra-dimension and conjunction inter-dimensions. The first Bucket-Structure

in Figure 8.3 shows the conjunction and disjunction with the help of the ∧ and ∨ symbols,

respectively. Further, the Bucket Structures are concatenated by disjunctions to represent

the entire Region.
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Note that a block in the partition need not be a contiguous hyper-rectangular region. It is

simply a collection of points in the domain, which can be stored in a Region object. Therefore,

this data structure is used to represent the various blocks (filter-block, refined-block, ARB,

PRB, CPB). Hence, the output of the region partitioning algorithm is a collection of Region

objects. Further, it is also used to represent the filter predicate region associated with a CC.

At a constraint level, this modeling choice helps to handle DNF constraints easily.

8.2.3 Dynamic Tuple Generation Implementation

The summary is used by the Tuple Generation module to synthesize the data dynamically.

This component resides inside the database engine, and needs to be explicitly incorporated in

the engine codebase by the vendor. As a proof of concept, we have implemented it for the

PostgreSQL engine by adding a new feature called datagen, which is included as a property for

each table in the database. To enable this feature, the following command is executed on the

Postgres engine:

alter table 〈table-name〉 set (datagen = 1);

Whenever this feature is enabled for a table, the scan operator for that table is replaced with

the dynamic generation operator. As a result, during query execution, the executor does not

fetch the data from the disk but is instead supplied by the Tuple Generator in an on-demand

manner, using the available table summary.

8.2.4 Database Platform Portability

The work assumes relational data and the constraints including select, project and join oper-

ations. As long as the input constraints can be modeled to suit these requirements, there is

no conceptual dependence on the database engine. To port to any other relational system, the

implementation changes would be included in the following:

Plan Parser. To extract query plans standard APIs provided by the database engines are

used. The Plan Parser in Hydra interfaces with these APIs and generates the cardinality

constraints corresponding to the query plan.

Dynamic tuple generation. The module that replaces the traditional scan operation to give

data on demand during query execution. This implementation has been done within

PostgreSQL source code as it is open source.
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8.3 Prototype: User Interface

In this section, we discuss the interface of the tool with a variety of visual scenarios that

showcase the utility of the HYDRA tool.

8.3.1 Input from Client Site

Figure 8.4: Client Site: Metadata, Queries and Annotated Query Plans

At the Client Site, the client supplies the query workload and the corresponding AQPs

are obtained by optimizing and executing these queries on the client platform. Currently, the

JSON format is supported to parse the execution plans. The next screen in the client interface

is shown in Figure 8.4. In this figure, the top half profiles the metadata statistics. Specifically,

the user can choose a specific table column, and the system presents the distribution of the

most common values and the bucket boundaries of the equi-depth histogram for this column.1

In the bottom half, the user can pick a query from the input workload (the figure shows a

query on the TPC-DS schema), and the corresponding SQL text is displayed at the bottom left

along with the associated AQP at the bottom right. The widths of the edges connecting the

operators in the plan are scaled to visually indicate the volume of data flowing in each of these

edges. Finally, once the user selects the Submit button, all this information is transferred for

1The metadata visualization is customized for PostgreSQL [7].
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Figure 8.5: Vendor Site: Database Summary, Runtime Configuration Settings, Generation
Quality and AQP Comparison

Vendor Site processing.

8.3.2 Vendor Site Processing

After receiving the above-mentioned information package from the client, the Vendor Site ini-

tiates the data regeneration process. Here, the primary interface during the LP solving stage

tabulates the LP complexity in terms of their number of variables and run times. Subsequently,

in the next screen, shown in Figure 8.5, the final database summary is displayed. The user

can select an individual table, and the system shows its summary in the top middle panel. For

instance, the first row in the item table summary in Figure 8.5 indicates that there are 917

rows with values <40, pop, Music, ...>. The PK columns are generated as auto-numbers.

Secondly, the top right panel shows the runtime configuration settings where the user can

choose to either dynamically generate or optionally materialize the selected table. Also, for

dynamic generation, the desired velocity, measured in rows per second, can be set using the

slider bar. The chosen table’s row count for the original and synthetic database are shown

below the bar. To assess the overall quality of the regenerated data, the bottom left graph

plots the percentage of volumetric constraints that are satisfied within a given relative error.

Finally, the user can also drill down to a query-specific AQP comparison by selecting a query
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from the drop down menu. In this mode, the corresponding SQL text and AQP are shown in

the bottom middle and right panels, respectively. The edges in the AQP are annotated with

the original cardinality in green color, and the relative errors (typically minor) incurred as a

result of the regeneration are shown in red color.

8.3.3 Dynamic Database Regeneration

We would like to reiterate that the regenerated database has absolutely no data stored in

the physical tables – i.e. the “dataless” approach. Instead, using our tuple generator, data is

generated and supplied on-demand during query execution. As an example of the final outcome,

a few sample rows for the initial columns of the item table (highlighted in Figure 8.5) are

enumerated in Table 8.1.

Table 8.1: Sample Tuples

item sk i manager id i class i category ...
0 40 pop Music ...

917 91 dresses Women ...
938 0 accessories Men ...
963 1 reference Electronics ...

8.3.4 Scenario Construction

Finally, Hydra also facilitates the vendor to pro-actively simulate anticipated client environ-

ments, by constructing synthetic AQPs through injecting cardinality annotations into the orig-

inal client AQPs. For such “what-if” scenarios, Hydra creates the regeneration summary after

verifying the feasibility of the synthetic assignments. This feature is particularly useful for

testing the ability of the vendor’s engine to robustly handle boundary condition scenarios and

stressed Big Data environments.

8.4 Discussion

Having presented the mechanics of Hydra, we now take a step back and critique the approach

on relevant aspects.

Multiple Summaries. We would ideally like to produce a single summary instance that sat-

isfies all the CCs. However, Hydra may have to produce multiple summaries, and hence

multiple databases, to cater to constraint workloads that feature overlapping projection

spaces. From a practical perspective, this multiplicity does not impose a substantive
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overhead due to the minuscule size of each summary. Further, Hydra attempts to reduce

the number of sub-workloads to the minimum required to ensure compatibility.

Workload Scale. Despite the proposed techniques provably gives minimal number of blocks

(variables) needed for expressing CCs, they can still be exponential if the input CCs

have high overlaps. Hydra currently handles workloads of reasonable complexity as show-

cased in our experiments. However, for more complex scenarios, a promising recourse

is to introduce approximation, where volumetric accuracy is marginally compromised to

achieve solution tractability. For example, a plausible heuristic could be to not create all

the CPBs in one go, but to create them greedily until the error limit is reached. Being a

highly underdetermined system, there always exist a sparse solution to the LP – therefore,

this iterative process is expected to converge quickly. However, from the solution quality

perspective, using a sparse solution may not always be desirable. This is so because,

sparse solutions create large holes in the data space, where there are no data points. This

can have robustness limitations in assessing performance of unseen queries. Construct-

ing an approximation scheme that achieves better workload scalability while producing

qualitatively robust solutions is an area of future research.
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Chapter 9

Extensions

9.1 Introduction

So far the focus has been on generating synthetic data that exhibits volumetrically similar

behavior to the original database on a given query workload. That is, for every query in the

workload, the output row cardinalities of individual operators in the corresponding query plans

are similar in the original and synthetic data. While volumetric similarity captures a critical

data characteristic necessary for mimicking client data processing environments, it lacks in-

formation such as data-skew and ordering of values. These can be important for mimicking

performance of hash and sort operations. For example, various SQL constructs such as Join,

Group By, Distinct, Union routinely require a hash based computation internally. The com-

plexity of a hash-probe operation extensively depends on the amount of duplication in the data,

especially when a hash bucket leads to spilling. Likewise, Order By, Group By, Distinct,

Union constructs often use sorting operation internally. A sort operation’s complexity also de-

pends on how much data was pre-sorted in the input. This is because the movement of tuples

and number of comparisons required during the sort are dependent on this feature.

9.1.1 Our Contributions

Keeping the above in mind, in this chapter, we focus on extending volumetric similarity to

include other data characteristics, namely

1. Duplication Distribution

2. Presortedness

Specifically, for the above characteristics, we discuss the following:
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1. Motivation for capturing the characteristics

2. Modeling the characteristics mathematically

3. Extracting the characteristics during query execution

4. Simple strategies for mimicking the characteristics in synthetic data

9.1.2 Notations

The key notations used in this chapter are summarized in Table 9.1. We use the acronym TAS

to refer to Target Attribute-Set.

Table 9.1: Notations

Symbol Meaning
D Output Database
T TAS
T Output Table
A Attribute
d Duplication Value
e Frequency of a Duplication Value
z Duplication Distribution
δ Length of z
h Hash Table
X Index Array
Y Sorted Index Array
λ Linearization of z
∆ Distance btw two Duplication Distributions
ρ Sortedness

9.1.3 Organization

In the upcoming sections we discuss each of the aforementioned characteristics sequentially.

Specifically, Section 9.2 discusses the Duplication Distribution in detail. Further, Section 9.3

discusses the Presortedness characteristic. Finally, we conclude in Section 9.4.

9.2 Duplication Distribution

A duplication distribution, for a target attribute-set (TAS) T in Table T , is expressed as a 2-D

vector that stores the information of how many value combinations corresponding to T occur

with a certain frequency in T . For example, for a column A = [4, 2, 3, 1, 4], the Duplication
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Distribution vector will be {(1, 3)(2, 1)}. This is because the number of elements appearing

once is three (values 1, 2, 3), while number of elements appearing twice is one (value 4).

Note that Duplication Distribution already encapsulates the total row-cardinality informa-

tion. Therefore, ensuring matching Duplication Distribution implies volumetric similarity as

well.

In the rest of this section, we discuss the Duplication Distribution characteristic in detail.

Specifically, we begin with a motivating example. Followed by it, we discuss the mathematical

expression and properties of Duplication Distribution. Subsequently, we discuss how to extract

this information during query execution, and finally discuss how to model the characteristic in

synthetic data generation.

9.2.1 Motivation

As discussed in Section 9.1, Duplication Distribution is important for modeling various oper-

ations such as Hash Join. To illustrate this, we constructed two sample datasets D1 and D2.

Each dataset has a single column for each table from our running example schema. Specifically,

we have Std.RollNo and Reg.RollNo columns in both D1 and D2. Recall that Reg.RollNo

is a foreign key column - that is, it takes values from the corresponding reference table col-

umn Std.RollNo. The frequency distribution of this foreign key column in the two datasets is

specified below:

D1: Reg.RollNo has a uniform distribution over all the values present in Std.RollNo.

D2: Reg.RollNo has all identical values.

Both the datasets have 655 million and 82 million rows in Reg and Std tables, respectively.

Now, consider the following simple SQL query:

Select * From Register Reg, Student Std

Where Reg.RollNo = Std.RollNo;

We executed the above query on D1 and D2 with the same underlying hardware, database

platform (a popular commercial engine), and system configuration. We found that the query

optimizer picked identical physical query plans, comprising of hash join operation, and same

output row cardinalities. However, in spite of satisfying volumetric similarity, they have sig-

nificantly different running times, as shown in Table 9.2. As we can see, for D1 the time was

18 minutes which increased to 28 minutes for D2. As per our judgement, the primary source

of the time difference is the spilling behavior that happens while computing the hash table,

which is used for performing the join operation. The spilling invocation depends heavily on the
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Duplication Distribution of the data. Hence, our focus is on capturing Duplication Distribution

in the synthetic data.

Distribution Type Running Time
D1 18 min
D2 28 min

Table 9.2: Query Execution Time

9.2.2 Duplication Distribution Characterization

Now, we formally describe Duplication Distribution with respect to a TAS T. Further, we also

give a measure of computing distance between a pair of Duplication Distributions.

Expression

A Duplication Distribution with respect to a TAS T in table T is expressed using a 2D vector

{(d, e)}, where d represents the number of duplicates, and e denotes the number of T values

having d duplicates in T . For the above example, the (d, e) vector for Reg.RollNo in D1 is {(8,

82 million)} as all 82 million values were uniformly distributed, and for D2 is {(655 million,

1)}, since all values are identical.

Duplication Distribution contains volume (total cardinality) information as well, and can

be expressed as

‖z‖ =
δ∑
i=1

(di × ei) = |T |

where z = {(d1, e1), (d2, e2), . . . , (dδ, eδ)}, and δ is number of (d, e) elements in z.

Bound on size of Duplication Distribution

The number of entries in the Duplication Distribution vector is equal to the number of distinct

duplication frequencies for values occurring wrt T in T . We express this number as δ. It is

easy to see that δ is maximum when the duplication frequency distribution is of the type:

{(1, 1), (2, 1), (3, 1), . . . , (δ, 1)}. This gives us the following condition:

1(1) + 2(1) + 3(1) + . . . , δ(1) = |T | (9.1)

This gives us δ = O(
√
|T |). Hence even for a trillion rows relation, the duplication frequency

distribution of each attribute can be captured using few MBs of data in the worst case.

We also verified this experimentally by computing Duplication Distribution wrt each non-

key attribute of four tables from 1 GB TPC-DS benchmark. The total size of Duplication
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Distribution vectors was less than 40 KB. The detailed results are tabulated in Table 9.3. (The

min, max and average δ values are with respect to various columns in the corresponding table.)

Table (T ) Min. δ size Avg. δ size Max. δ size O(
√
|T |) Total tuples (M)

store sales 6 257 924 1620 2.6
catalog sales 6 194 864 1195 1.4
customer 5 24 37 317 0.1
inventory 1 3 5 3428 11.7

Table 9.3: Duplication Distribution vector Size

Now, before we discuss how to compute similarity between two Duplication Distributions, let

us first understand a prerequisite concept of linearization.

Linearlization

Linearization of a Duplication Distribution vector z is a linear (one-dimensional array) repre-

sentation of it, represented as λ(z). It is computed such that for each element (d, e) in z, d is

added e times to the array λ(z). Further, the values in the array are sorted in decreasing order.

Notice that the number of element in λ(z) is equal to the number of distinct values wrt TAS

T in table T , where each index stores the frequency of an T value in T . Therefore, λ(z) is just

an exploded version of z.

To compare two Duplication Distribution vectors, we require linearizing them first. Further,

this linearization should result in equal size arrays. In order to do that, we append zero values

in the smaller array. Adding a zero value to the array implies there is an additional value

appearing with 0 frequency. In other words, the value does not exist. Therefore, this addition

does not change the semantic meaning of the array.

Distance between two Duplication Distributions

Given two Duplication Distribution vectors z1 and z2, the duplication distance between z1 and

z2 can be defined as the summation of absolute difference between corresponding elements of

λ(z1) and λ(z2). That is,

∆(z1, z2) =
1

2|T |

|λ(z1)|∑
i=1

|λ(z1)[i]− λ(z2)[i]|

Here we are assuming λ(z1) and λ(z2) have been made of equal length, as described above.
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Distance Computation Example

Consider the following two Duplication Distributions:

z1 : [(5, 1), (4, 2), (3, 1), (1, 2)], z2 : [(4, 4), (2, 1)]

The vectors obtained after linearization are as follows:

λ(z1) : [5, 4, 4, 3, 1, 1], λ(z2) : [4, 4, 4, 4, 2, 0]

Therefore, the distance between z1 and z2 is given as:

∆(z1, z2) =
|5− 4|+|4− 4|+|4− 4|+|3− 4|+|1− 2|+|1− 0|

2 ∗ 18
=

4

36
= 0.11

The term in the denominator of ∆ expression has been added to normalize the distance such

that it ranges from 0 to 1, with 0 being the minimum distance obtained for identical Duplication

Distributions. The derivation of the bound is given next.

Bound on Distance

The two most distant Duplication Distributions are z1 : (|T |, 1) and z2 : {(1, |T |)}. Here,

{(|T |, 1)}, represents the case having all T values same. In contrast, {(1, |T |)}, represents the

case where all T values are distinct. For this case, the distance ∆(z1, z2) is given as:

∆(z1, z2) =
(|T |−1) + 1 ∗ (|T |−1)

2 ∗ |T |
= 1− 1

|T |

From the above, we can conclude that ∆ is always less than 1.

9.2.3 Duplication Distribution Extraction

All the database platforms give the information of input/output row cardinality for each op-

erator in the query execution plan. However, the Duplication Distribution information is not

provided explicitly. Therefore, to compute it, we use either (a) a non-invasive offline algorithm,

where for each target operator1 in the plan tree, a corresponding SQL query is constructed

that returns the required duplication distribution at that operator, or (b) an invasive online

algorithm, which computes the duplication distribution for the operator during the query exe-

1A target operator refers to an operator whose input data is to be used for Duplication Distribution com-
putation. For example, a hash operator in the query plan can be a target operator as its efficiency is predicated
on the Duplication Distribution of the attribute-set over which the hash is being computed.
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cution itself. We have implemented this approach for open-source PostgreSQLv9.6 [7] database

engine. Further, to make the computation efficient, we also have an approximation variant

of the algorithm that gives approximate duplication distribution. We now describe both the

offline and online strategies in detail.

Offline Approach

Applying GROUP BY with aggregate on T gives frequency count of each distinct T value in T and

applying GROUP BY on the top of this frequency distribution gives the duplication distribution

for T. Specifically, following query is executed:

Select dup, count(*)

From (Select T, count(*) as dup FROM T Group By T)
Group By dup;

If the Duplication Distribution is to be computed for an intermediate node in the query ex-

ecution (e.g. join output), then an additional where clause with the corresponding condition(s)

is added to the inner query.

Online Approach

In online approach, we monitor the (intermediate) tables created during query execution and

compute the duplication distribution wrt T. Specifically, first a frequency counter (FC-1) is

added to have the frequency count of each T value – this is same as computing aforementioned

inner query result. Secondly, another frequency counter (FC-2) is applied on FC-1 for computing

the Duplication Distribution.

To reduce the time and space overheads of the above solution, we also propose an approx-

imate online approach. Here, instead of using frequency counter FC-1, we use Approximate

Frequency Counter (AFC). AFC uses Lossy Counting [57] as an approximation algorithm, to

keep track of most frequent items only. Thus, using AFC results in less number of elements af-

ter first frequency counting. This reduces space overheads. Further, second frequency counter,

which runs over the result of AFC, gets benefited from this space reduction. This helps in

reducing time overheads as well. However, since second frequency counter runs on AFC, it will

give approximated Duplication Distribution. To make up for the loss in accuracy as a result

of using AFC, the remaining cardinality is assumed to be filled by elements occurring once.

From our observation, significant reduction in overheads were obtained as a result of using the

approximation while only causing minor reduction in accuracy.
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9.2.4 Duplication Distribution Mimicking

We now discuss the mechanism to mimic Duplication Distribution at the base table level.

Depending on the constants appearing in the filter predicates, the domain of T can be divided

into a set of intervals. Let this be the set I. Further, let the Duplication Distribution vector

z = {(d1, e1), (d2, e2), . . . , (dδ, eδ)}. Now, let xij represent the fraction of ei (with corresponding

duplication value di) present in interval Ij ∈ I. Therefore, following constraints need to be

satisfied for each interval Ij:

|σT∈Ij(T )|=
δ∑
i=1

xij ∗ di

Next, for each ei ∈ z, following needs to be ensured:

|ei|=
∑
Ij∈I

xij

The regions obtained from data space partitioning in Hydra can be split further so that the

blocks do not span a split point along T. Then, we can also say that the cardinality of rows

inside each interval is equal to the summation of the row cardinalities of its constituent blocks.

If we wish to mimic duplication distribution for each histogram bucket maintained in the

metadata stats, this can also be easily done by a simple extension of the above formulation.

This is because the histogram buckets are mutually disjoint and can be mapped to the intervals

easily.

9.3 Presortedness

In relational query processing, sort is a commonly used operator. It is not only used for

handling order by SQL clause, but also used often as a component for various other operators

like joins (sort-merge), or projection operator based constructs (group by, distinct, union). Sort

operation in a query plan can have significant impact on the total execution. The execution

time of sort operation depends on (a) number of comparisons among the data elements, and

(b) movement of tuples while sorting. These aspects are influenced by the extent of ordering

pre-existing in the input data – in other words, the Presortedness in the data.

In this section, we discuss Presortedness characteristic in detail. Specifically, we begin with

a motivating example followed by modeling Presortedness mathematically. Subsequently, we

discuss how to extract this information during query execution, and finally how to model it in

synthetic database generation.
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9.3.1 Motivation

To demonstrate the impact of Presortedness, we performed an experiment on the INVENTORY

table of the TPC-DS [12] benchmark which has size 8.4 GB and 400M plus tuples. We picked

an attribute (inv qty on hand) from the table and created a new table (T (A1, A2)) with two

attributes, both having the all values of inv qty on hand, with one column having elements

in sorted order, while the other column has the same values in random order. Then, we ran

ORDER BY ASC and ORDER BY DESC query on both attributes and the time taken by

queries is in Table 9.4. Here, Column Order represents the order from the data and Sort Order

represents the order from the query. As can be seen from the table, in the first case of ascending

sort and column order, the query took the least amount of execution time. This is because,

unlike the other cases, here there was no tuple movement involved during the sort.

Column Order Sort Order Time (in min)
Ascending Ascending 1.5
Random Ascending 5.1
Ascending Descending 3.9
Random Descending 4.9

Table 9.4: Query Execution Time on Different Column Order and Sort Order

9.3.2 Presortedness Characterization

Let T be the TAS along which the order is being considered. Further, let the value-combination

present in the ith row of input table T be represented by T [i]. Next, let T̃ be the sorted

counterpart of T along T. Now, let there be an Index Array X that stores the index of the

corresponding value from T in T̃ . That is, X[i] stores the index value of T [i] in T̃ . Finally, let

Y be the sorted counterpart of X. Our aim is to compute correlation between the arrays X

and Y . Note that |X|= |Y |= |T |.
To compute correlation between the two arrays X and Y , we use the Pearson Correlation

Coefficient [6], represented by ρ. Therefore, the Presortedness between T and T̃ is given by:

ρ =

∑|T |−1
i=0 (X[i]−X)(Y [i]− Y )√∑|T |−1

i=0 (X[i]−X)2

√∑|T |−1
i=0 (Y [i]− Y )2

(9.2)

Here, X and Y represent the mean of the arrays X and Y , respectively. Note that Y is an

array of values [0, 1, 2, .., (|T |−1)]. Further, X = Y = |T |(|T |−1)
2

.
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Example

Let the input array of values be [40, 30, 20, 10]. Its sorted version is [10, 20, 30, 40]. Therefore,

the index array (X) will be [3, 2, 1, 0]. Further, the Pearson’s correlation coefficient ρ = -1.

Having ρ = 1 means the data is already sorted, and ρ = −1 means data is sorted in the

opposite order, and having ρ = 0 means maximum randomness in the data. In general, positive

value implies that there are a greater number of elements closer to their position in the sorted

array and negative correlation means farther from it.

9.3.3 Presortedness Extraction

To compute the Presortedness of a TAS used by the sort operator in the query plan, we

monitor the edge which gives input to the sort operator. Hashtable(H) maps the attribute

values to their corresponding indices in the input list (unsorted) to the sort operator. Once the

sort node is processed, each tuple comes in order and helps to create the Index Array for the

input unordered list. Subsequently, the index array is passed to Pearson correlation coefficient

calculator. This flow is shown in Figure 9.1. The shaded blocks in the figure are the modules

added in the Postgres execution engine.

Figure 9.1: Presortedness Computation on a Query Execution

We now describe the details of each of these contributed modules.

Hashtable(h). The hashtable (h) is a data structure having key-value pair, where key is a

TAS value-combination and value is the list of all indexes having the corresponding TAS

value-combination. Hashing is performed on the input tuples to the sort operator. For
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example, given TAS values: [30, 10, 20, 40, 30], then h will have (30,[0,4]), (10,[1]),

(20,[2]), (40,[3]).

Compute Index Array (X). Once the sort operation is performed, the output tuples are

ordered on TAS . So for each output tuple, we pick its TAS value-combination and using

h, get the corresponding index values for unordered set and add them to the Index Array.

For the above example, the sorted order is [10,20,30,30,40], and the Index Array X is [1,

2, 0, 4, 3].

Pearson Coefficient Calculator. Once the Index Array is constructed, it is passed to Pear-

son correlation coefficient calculator. Here, the Presortedness is computed using the

formula in Equation 9.2.

Query# |T | Execution Time Time with
Original ρ Computation

1 12 0.1 ms 0.2 ms
2 50000 0.7 s 0.9 s
3 100000 0.9 s 0.9 s
4 2622614 9 s 10 s
5 11745000 28 s 29 s

Table 9.5: Execution Time of Order By Queries

The time overheads incurred due to the additional code for Presortedness computation in

PostgreSQL are shown in Table 9.5. We can see that the overheads are viable. Further, they

can be further reduced by using the native data structures of PostgreSQL.

9.3.4 Presortedness Mimicking

We begin by establishing a relationship between percentage of sorted tuples vs Presortedness

value ρ. We start with an array of |T | tuples [0 to (|T |−1)] and shuffle it to get its ρ value close

to 0. Now, we fetch different percentage of data from the array, sort it, and replace them back

at the same locations in the array, but in sorted order. That is, if the tuples were fetched from

locations ii, i2, . . . , iZ , the first tuple in the sorted order is inserted on location i1; second on i2,

and so on.

The above exercise is performed for varying percentage of tuples and |T | value. Also,

both ascending and descending order is considered. The relationship obtained is depicted in

Figure 9.2. In these figures, the Pearson coefficient for each percentage is obtained by averaging

over different set of fetched tuples.
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(a) Ascending, |T |= 100

(b) Descending, |T |= 100

(c) Ascending, |T |= 10000 (d) Descending, |T |= 10000

Figure 9.2: Presortedness vs. Percentage Presorted Tuples

The next step is to order the table T such that it gives the desired Presortedness value ρ∗.

For this, the required percentage of tuples is sorted in T . To compute the required percentage,

we use the inverse of the aforementioned relation of percentage of sorted tuples vs Presortedness

value. For a specific percentage, the tuples are chosen at random. We performed some pre-

liminary experiments with the implementation of the ideas presented. The results comparing

the desired vs obtained Presortedness are shown in Table 9.6. We can see that the computed

correlation coefficient is quite close to the actual correlation coefficient, thus this algorithm

gives a promising direction.

9.4 Conclusion

In this chapter we went beyond volumetric similarity and discussed two other data characteris-

tics – namely, Duplication Distribution and Presortedness, which are important for mimicking
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Desired ρ∗ Obtained ρ #Tuples
0.53 0.58 1000
-0.67 -0.65 10000
0.12 0.13 10000
0.82 0.84 100000

Table 9.6: Comparing Expected vs Obtained Presortedness

client data processing environments. Specifically, we discussed their mathematical characteri-

zation, mechanism of extraction and simple strategies for modeling them for data generation.
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Chapter 10

Conclusion and Future Directions

The ability to synthetically regenerate databases that accurately conform to the volumetric

behavior on queries at client sites is of crucial importance to database vendors, especially with

the advent of Big Data applications. Existing database regeneration frameworks are crippled

by limitations on several fronts such as inability to (a) handle queries based on core SPJ

relational algebra operators; (b) scale to big data volumes; (c) scale to large input workloads;

and (d) provide high accuracy on unseen queries. The contribution of this thesis is a new data

regeneration framework, namely Hydra, that materially addresses these challenges by adding

functionality, dynamism, scale, and robustness.

In this final chapter, we summarize our conclusions, followed by outlining a number of

potential areas for further research to achieve the larger goal of scalable, efficient and robust

database regeneration.

10.1 Conclusions

In this thesis, we provide a comprehensive solution to support queries based on SPJ relational

algebra operators. The volumetric constraints are modeled using an LP, in which each variable

represents the volume of a region of the data space. The regions are computed using a suite of

data space partitioning strategies – namely, Region Partitioning, Symmetric Refinement, Align

Refinement and Projection Subspace Division. Additionally, referential constraints are applied

over denormalized equivalents of the tables. Along the way, we ensured that the partitioning

algorithms at various stages have provable optimality guarantees to keep the complexity of the

LP low, thereby providing workload scalability.

We also proposed a dynamic approach to data regeneration where we generated a minuscule

database summary as the output rather than the static data itself. This summary can be
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used for dynamically generating data during query execution. Therefore, the enormous time

and space overheads incurred by prior techniques in generating and storing the data before

initiating analysis are eliminated. Further, in order to retain the spirit of data scalability, we

also ensured that the entire regeneration pipeline is data-scale-free.

To improve accuracy towards unseen queries, metadata statistics were exploited to facilitate

careful selection of a desirable database from the candidate synthetic databases and also provide

metadata compliance.

We also discussed the details of the Java-based prototype implementation of Hydra and

showed its performance on both real-world and synthetic benchmarks.

Finally, we also discussed other plausible data characteristics that are useful for mimick-

ing client data processing environments. Specifically, we discussed two potent characteristics,

namely, Duplication Distribution and Presortedness.

Closing Statement. In closing, Hydra provides the novel approach of dynamic database

regeneration which guarantees volumetric similarity while eschewing the time and space over-

heads typically incurred in the process. The tool has been warmly received by both academic

and industrial communities.

10.2 Future Directions

We now turn our attention to some interesting future directions that can further data regener-

ation goals and solutions.

1. Using Approximation Algorithms. Hydra currently handles workloads of reasonable

complexity as showcased in our experiments. However, for more complex scenarios, a

promising recourse is to introduce approximation, where volumetric accuracy is marginally

compromised to achieve solution tractability. These can include techniques such as:

Constraints Merging. The number of variables grow exponentially with the number

of constraints. Therefore, one promising way of reducing the complexity of the

problem is by merging the constraints that are similar. One plausible similarity

metric is the density of data. For instance, if two constraints are similar in their

data density, then they can be merged by mildly compromising on the associated

output cardinalities.

Greedy Partitioning. A plausible heuristic could be to not create all the CPBs in

one go, but to create them greedily until the error limit is reached. Being a highly

underdetermined system, there always exist a sparse solution to the LP – therefore,

this iterative process is expected to converge quickly.

177



2. Directing LP Solution. We currently use the solver as a black box to get a solution

that satisfies the constraints and is close to the metadata constraints. An alternate setting

could be to develop an invasive algorithm that guides the solver to prefer one solution

over the other. For example, finding a solution that is at the centroid of the polytope

of the feasible solutions. This can be an interesting direction for getting a more robust

solution.

3. Exploiting Cardinality Estimators. We have used the native optimizer of the Postgres

engine as our cardinality estimator to get the estimates for the SQL queries for the regions.

In the recent years, several promising selectivity estimation algorithms based on machine-

learning techniques (e.g., NARU [79], MSCN [42], SDV [60]) have been proposed. These

techniques significantly enhance the quality of cardinality estimation. Therefore, we would

like to incorporate some of these techniques into the Hydra framework with the hope to

further improve the robustness of the synthetic database produced.

4. Balancing Robustness and Workload Scalability. To further improve robustness

towards volumetric similarity on unseen queries, it is important to handle large training

workloads in the input. With the increase in workload constraints, we may run into

scalability issues, stemming from the inherent LP complexity. The load on the solver

further increases with the addition of objective functions. To sidestep this challenge,

a promising recourse is to update our workload decomposition module. Currently the

module splits a workload to handle the conflicting constraints. But this can be expanded

such that each sub-workload focuses on only a fraction of the data space, while being

conflict free. Further, for a test query, we can forward it to the database summary

corresponding to the nearest sub-workload. Recall that having multiple summaries does

not impose a substantive overhead due to the minuscule size of each summary.

5. Building Incremental Solutions. Currently the entire constraint workload is assumed

to be given as the input. An alternative scenario is where the constraints are incrementally

provided. While, the data-scale-free summary creation permits rebuilding the solution

from scratch cheaply, it’s an interesting open problem to be able to modify the solution

to satisfy additional constraints. Further, this can add in workload-scalability as well.

6. Expand Scope of Supported SQL Constructs. Currently Hydra supports filter,

inner key-based joins and projection based constructs such as Distinct, Group By and

Union. Further, Order By and Aggregate operators are trivially supported from the

point of view of volumetric similarity. In the future, we would further like to expand
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the scope to include other SQL operations such as Having, non-key joins, outer joins and

nested queries.

7. Exploit Duplication Distribution. In Chapter 9, we discussed the duplication dis-

tribution data characteristic and a basic solution to integrate it with Hydra at the level

of base relations. This can be expanded to include each target intermediate operator

in query processing. For example, maintaining duplication distributions for the columns

participating in hash joins or hash aggregates (used in projections), can help to mimic

client environments more closely.

8. Mimic Presortedness. Also in Chapter 9, we discussed about the presortedness data

characteristic and some initial modeling of it for base table columns. Again, this can

be expanded to include intermediate operators in the query plan where it is relevant.

For example, maintaining presortedness for the columns participating in sort as part of

sort-merge join, or sort based projection, or simply an order by clause, can help to mimic

client environments more closely.

9. Other Characteristics. Beside duplication distribution and presortedness, other char-

acteristics can also be aimed for mimicking client environments. These can include the

aspects of memory, encoding and storage. For example, (a) String lengths and precision

for numeric data types play a role in comparison-based operations. Further, they impact

how much data can be cached and affect the I/O calls. (b) Differences in value identities

can also lead to changes in UDFs computation complexity. It also affects column encoding

(for columnar databases), which can lead to difference in the physical size of the data.

(c) Data layout on the disk plays a significant role if tables are scanned from the disk,

especially in the case of index scans.
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