HYDRA: A Dynamic Approach to Database Regeneration

A THESIS
SUBMITTED FOR THE DEGREE OF
Doctor of ‘Philosophy

IN THE
Saculty of Engineering

BY

Anupam Sanghi

Computer Science and Automation
Indian Institute of Science
Bangalore — 560 012 (INDIA)

December, 2022

Declaration of Originality

I, Anupam Sanghi, with SR No. 04-04-00-10-12-17-1-15034 hereby declare that the ma-
terial presented in the thesis titled

HYDRA: A Dynamic Approach to Database Regeneration

represents original work carried out by me in the Department of Computer Science and
Automation at Indian Institute of Science during the years 2017-2022.
With my signature, I certify that:

e [have not manipulated any of the data or results.

e [have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.
e [have explicitly acknowledged all collaborative research and discussions.
e [have understood that any false claim will result in severe disciplinary action.
e [have understood that the work may be screened for any form of academic misconduct.
£

Date: 15/12/2022 Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements
are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: PROF. JAYANT HARITSA Advisor Signature

(© Anupam Sanghi
December, 2022
All rights reserved

DEDICATED TO

My Parents

for their unconditional support

Acknowledgements

I would like to express my heartfelt gratitude to my advisor, Prof. Jayant R. Haritsa, for intro-
ducing me to the world of research and providing me with an extraordinary learning experience.
He has been a constant source of inspiration to me, not only as a passionate researcher but also
as a person who embodies humility. I am fortunate to have had the opportunity to work with
him during my M.E. and PhD. Our eight years of association, filled with lengthy technical and
non-technical discussions, have guided me in ways I could not have imagined. His unparalleled
ability to tell a story with a dash of humor is something I will cherish the most.

I am also deeply grateful to Prof. Srikanta Tirthapura from lowa State University. His
guidance has taught me how to approach and solve problems progressively. I am grateful for
his constructive feedback, which has been essential in shaping this thesis.

I am extremely thankful to all my collaborators - Shadab Ahmed, Raghav Sood, Rajkumar
S., Tarun Patel, Prashik Rawale, Dharmendra Singh, Subhodeep Maji, and Manish Jayswal
- for an extremely enjoyable and fulfilling experience. Hydra is incomplete without all of its
heads, and I thank each of them for their valuable contributions.

I sincerely thank my thesis examiners, Prof. S. Sudarshan from IIT Bombay and Dr.
Manuel Rigger from NUS, for their detailed and thoughtful review. I am also grateful to my
comprehensive committee — Dr. Satish Govindarajan, Prof. Shalabh Bhatnagar, Prof. Srikanth
Iyer, and Dr. Kunal Chaudhury, for their extremely helpful feedback and suggestions at various
stages of my PhD journey. I am also deeply thankful to Dr. Prasad Deshpande (Google) for
his invaluable guidance and support. 1 wish to extend a special thanks to the supportive
faculty at the Dept. of Computer Science and Automation (CSA), including Prof. Chiranjib
Bhattacharyya, Prof. L. Sunil Chandran, Prof. Shirish Shevade, Dr. Rahul Saladi, and Dr.
Bhavana Kanukurthi, for their guidance and encouragement during the course.

I have been fortunate to have gotten a chance to present my work at various forums and
receive insightful suggestions. Among these, I would like to especially thank the attendees of the
Dagstuhl seminar 21442, including Prof. Hannes Miihleisen (CWI Amsterdam), Dr. Danica

Porobic (Oracle), and Dr. Alexander Bohm (Google) for providing me with an industrial

Acknowledgements

perspective on my work. I am also deeply thankful to Dr. Diptikalyan Saha and the Al team
at IBM Research India and Dr. Karthik Ramachandra and the SQL team at Microsoft India
for providing the opportunity to present my work and receive their invaluable feedback.

I would like to extend a special thanks to Dr. Arvind Arasu (Microsoft) and Prof. Jian
Li (Tsinghua Univ.) for their guidance during my initial exploration of the previous research
in this field. I also thank Prof. Ashwin Machanavajjhala and Shweta Patwa from Duke Univ.
for providing useful benchmarks for experimental evaluations. I am also grateful to Ashoke
S., Kalyan S., Rajeev Rastogi, and Prasanna V., my colleagues during my one year at Huawei
Technologies. Their guidance was immensely useful in building the foundation of Hydra.

I cannot be thankful enough to my labmates at the Database Systems Lab at IISc, the
DSLites. They created a welcoming and supportive environment that encouraged both pro-
ductivity and camaraderie, and I will greatly miss working with them. In addition to my
collaborators, I was fortunate to have Dr. Anshuman Dutt, Dr. Srinivas Karthik, Manish
Kesarwani, and Shivani Tripathi as strong pillars, who were always there to offer support dur-
ing any technical or non-technical difficulty. I have many fond memories of the fun sessions
with Rafia and Kuntal, as well as the numerous discussions and outings with Sanket, Gourav,
and Urvashi. This list would be incomplete without mentioning Kapil, Dhrumil, Vishal, and
Santhosh, who supported me during the toughest stages of my journey.

[am immensely grateful to IBM Research for providing me with a PhD fellowship, which was
incredibly helpful in supporting my research. I would also like to sincerely thank Microsoft Re-
search for their generous travel support, which enabled me to attend top international database
conferences. In addition, I would like to acknowledge ACM India and the institute’s GARP
sponsorship for aiding my travel. Without their support, it would not have been possible for
me to share my research with the wider community. I am also extremely thankful to the office
staff of the CSA Dept. who have generously helped me throughout the M.E. and PhD courses.

My experience at IISc was truly special, thanks to the amazing friends I met here. My
masters’ gang - Divya, Jay, Raman, Lucky, Parita, Kuntal, Nitesh, Anshu, and Geetanjali -
have been like a second family to me for the past eight years. I would also like to express my
love and gratitude to Anwesha, Sruthi, Vishal, Nimisha, Rahul, Shweta, and Anand for making
my PhD life joyful and providing me with enough memories to cherish for a lifetime. I am
also grateful to Shadab, Hemanta, Subhodeep, Sakya, and Akshay, who made my stay at IISc
memorable and lively. I have been fortunate enough to have so many friends who have been a
part of different stages of my life, including Rupali, Riya, Yougansh (sir), and Ashish who are
always available to listen to my rants.

I am blessed to have been taught by some amazing teachers throughout my academic journey,

1

Acknowledgements

including those at Air Force School, Gwalior, and Jaypee Institute of Information Technology,
NOIDA. Their guidance and encouragement have had a lasting impact on me.

Lastly, but most importantly, I am deeply thankful to my wonderful family, who have been
my greatest support and source of inspiration. My biggest well-wisher, my grandmother, has
always blessed me with affection. My elder sister, Richa, is my first teacher, and I am extremely
grateful to her for giving me a strong foundation. My sister Shruti is my first friend, and I
thank her for being my biggest cheerleader. My parents have been unwavering in their support

and mean the world to me. I dedicate this thesis to them.

1l

Abstract

Database software vendors often need to generate synthetic databases for a variety of applica-
tions, including (a) Testing database engines and applications, (b) Data masking, (¢) Bench-
marking, (d) Creating what-if scenarios, and (e) Assessing performance impacts of planned
engine upgrades. The synthetic databases are targeted toward capturing the desired schematic
properties (e.g., keys, referential constraints, functional dependencies, domain constraints), as
well as the statistical data profiles (e.g., value distributions, column correlations, data skew,
output volumes) hosted on these schemas.

Several data generation frameworks have been proposed for OLAP over the past three
decades. The early efforts focused on ab initio generation based on standard mathematical
distributions. Subsequently, there was a shift to database-dependent regeneration, which aims
to create a database with similar statistical properties to a specific client database. However,
these mechanisms could not mimic the customer query-processing environments satisfactorily.
The contemporary school of thought generates workload-aware data that uses query execution
plans from the customer workloads as input and guarantees volumetric similarity. That is, the
intermediate row cardinalities obtained at the client and vendor sites are very similar when
matching query plans are executed. This similarity helps to preserve the multi-dimensional
layout and flow of the data, a prerequisite for achieving similar performance on the client’s
workload. However, even in this category, the existing frameworks are hampered by limitations
such as the inability to (a) provide a comprehensive algorithm to handle the queries based
on core relational algebra operators, namely, Select, Project, and Join; (b) scale to big data
volumes; (c) scale to large input workloads; and (d) provide high accuracy on unseen queries.

In this work, motivated by the above lacunae, we present HYDRA, a data regeneration tool
that materially addresses the above challenges by adding functionality, dynamism, scale, and
robustness. Firstly, extended workload coverage is provided through a comprehensive solution
for modeling select-project-join relational algebra operators. Specifically, the constraints are
represented as a linear feasibility problem, in which each variable represents the volume of a

partitioned region of the data space. Our partitioning scheme for filter constraints permits the

v

Abstract

regions to be non-convex and ensures the minimum number of regions, thereby hugely reducing
the problem complexity as compared to the rectangular grid-partitioning advocated in the
prior literature. Similarly, our projection subspace division and projection isolation strategies
address the critical challenge of capturing unions, as opposed to summations, in incorporating
projection constraints. Finally, by creating referential constraints over denormalized equivalents
of the tables, Hydra delivers a comprehensive solution that also handles join constraints.

Secondly, a unique feature of our data regeneration approach is that it delivers a database
summary as the output rather than the static data itself. This summary is of negligible size
and depends only on the query workload and not on the database scale. It can be used for
dynamically generating data during query execution. Therefore, the enormous time and space
overheads incurred by prior techniques in generating and storing the data before initiating
analysis are eliminated. Our experience is that the summaries for complex Big Data client
scenarios comprising over a hundred queries are constructed within just a few minutes, requiring
only a few MBs of storage.

Thirdly, to improve accuracy towards unseen queries, Hydra additionally exploits metadata
statistics maintained by the database engine. Specifically, it adds an objective function to the
linear program to pick a solution with improved inter-region tuple distribution. Further, a
uniform distribution of tuples within regions is modeled to obtain a spread of values. These
techniques facilitate the careful selection of a desirable database from the candidate synthetic
databases, and also provide metadata compliance.

The proposed ideas have been evaluated on the TPC-DS synthetic benchmark, as well
as real-world benchmarks based on the Census and IMDB databases. Further, the Hydra
framework has been prototyped in a Java-based tool that provides a visual and interactive
demonstration of the data regeneration pipeline. The tool has been warmly received by both

academic and industrial communities.

Publications based on this Thesis

e Projection-Compliant Database Generation
Anupam Sanghi, Shadab Ahmed, and Jayant Haritsa
Proc. of 48th Intl. Conf. on Very Large Data Bases (VLDB), Sydney, Australia, Septem-
ber 2022
published as PVLDB Journal, 15(5), January 2022

e Towards Generating HiFi Databases
Anupam Sanghi, Rajkumar S., and Jayant Haritsa
Proc. of 26th Intl. Conf. on Database Systems for Advanced Applications (DASFAA),
Taipei, Taiwan, April 2021

e HYDRA: A Dynamic Big Data Regenerator
Anupam Sanghi, Raghav Sood, Dharmendra Singh, Jayant Haritsa, and Srikanta Tirtha-
pura
Proc. of 44th Intl. Conf. on Very Large Data Bases (VLDB), Rio de Janeiro, Brazil,
August 2018
published as PVLDB Journal, 11(12), August 2018

e Scalable and Dynamic Regeneration of Big Data Volumes
Anupam Sanghi, Raghav Sood, Jayant Haritsa, and Srikanta Tirthapura
Proc. of 21st Intl. Conf. on Extending DataBase Technology (EDBT), Vienna, Austria,
March 2018

Reports

e Data Generation using Join Constraints
Anupam Sanghi, Shadab Ahmed, Prashik Rawale, and Jayant Haritsa
Tech. Report TR-2022-01, DSL/CDS, 1ISc, 2022, dsl.cds.iisc.ac.in/publications/
report/TR/TR-2022-01.pdf

vi

dsl.cds.iisc.ac.in/publications/report/TR/TR-2022-01.pdf
dsl.cds.iisc.ac.in/publications/report/TR/TR-2022-01.pdf

Publications based on this Thesis

e Data Generation using Projection Constraints
Anupam Sanghi, Shadab Ahmed, and Jayant Haritsa
Tech. Report TR-2021-03, DSL/CDS, I1Sc, 2021, dsl.cds.iisc.ac.in/publications/
report/TR/TR-2021-03.pdf

e High Fidelity Database Generators
Anupam Sanghi, Rajkumar S., and Jayant Haritsa
Tech. Report TR-2021-01, DSL/CDS, IISc, 2021, dsl.cds.iisc.ac.in/publications/
report/TR/TR-2021-01.pdf

e Scalable and Dynamic Workload Dependent Data Regeneration
Anupam Sanghi, Raghav Sood, Jayant Haritsa, and Srikanta Tirthapura
Tech. Report TR-2017-01, DSL/CDS, 1ISc, 2021, dsl.cds.iisc.ac.in/publications/
report/TR/TR-2017-01.pdf

vii

dsl.cds.iisc.ac.in/publications/report/TR/TR-2021-03.pdf
dsl.cds.iisc.ac.in/publications/report/TR/TR-2021-03.pdf
dsl.cds.iisc.ac.in/publications/report/TR/TR-2021-01.pdf
dsl.cds.iisc.ac.in/publications/report/TR/TR-2021-01.pdf
dsl.cds.iisc.ac.in/publications/report/TR/TR-2017-01.pdf
dsl.cds.iisc.ac.in/publications/report/TR/TR-2017-01.pdf

Contents

Acknowledgements

Abstract

Publications based on this Thesis

Contents

List of Figures

List of Tables

1 Introduction

1.1 Volumetric Similarity

1.1.1
1.1.2

Preliminaries

Applications

1.2 Summary of Contributions o

1.3 Thesis Overview

1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.3.6
1.3.7
1.3.8

Organization
Problem Framework (Chapter 3)
Filter Constraints (Chapter 4)
Projection Constraints (Chapter 5)
Join Constraints (Chapter 6)
Adding Robustness (Chapter 7)
Prototype Implementation (Chapter 8)
Extensions (Chapter 9) oo

1.4 Summary

viil

iv

vi

viii

xvi

Xix

CONTENTS

2 Related Work 19
2.1 Ab Initio Generation 19
2.2 Database-Dependent Regeneration 21
2.3 Query-Dependent Regeneration 22

2.3.1 Reverse Query Processing (RQP) 23
2.3.2 Query Aware Generation (QAGen) 25
2.3.3 MyBenchmark o 26
2.3.4 Touchstone 28
2.3.5 DataSynth 29
2.3.6 Linked Data Synthesis 0. 31
2.3.7 Supervised Autoregressive Models (SAM) 32
2.4 Miscellaneous 33

3 Problem Framework 35
3.1 Problem Statement 35
3.2 Assumptions 35
3.3 Output o 36
3.4 Notations 36
3.5 Filter Constraints Problem 0L 36
3.6 Projection Constraints Problem 39
3.7 Workload Feasibility 39

4 Regeneration using Filter Constraints 41
4.1 Introduction 41

4.1.1 Filter Cardinality Constraints 41
4.1.2 Technical Challenges 42
4.1.3 Our Contributions 42
4.1.4 Organization 43
4.2 Problem Framework 43
4.2.1 Problem Statement 43
4.2.2 Assumptions. 44
4.2.3 Output e 44
4.2.4 Notations 44
4.3 Design Principles 45
4.3.1 Region Partitioning 45

X

CONTENTS

4.3.2 Dimensionality Reduction 0L 46
4.3.3 Summary Based Computation 47

4.4 LP Formulation 48
4.4.1 Mathematical Basis for LP Formulation 48
4.4.2 Deriving the Optimal Partition 51
4.4.3 Consistency Constraints L. 54

4.5 Table Summary Construction, 54
4.5.1 Constructing Solution for the Table 54
4.5.1.1 Sub-Table Ordering 55

4.5.1.2 Aligning 55

4.5.1.3 Mergingo o7

4.5.2 Instantiating Table Summaries 0L Y

4.6 Tuple Generation 57
4.7 Like Predicates 58
4.7.1 Partioning using Regular Expressions 59
4.7.2 Predicate Transformation 0L 60

4.8 Experimental Evaluation oo 61
4.8.1 Constraint Accuracy 62
4.8.2 Scalability with Workload Complexity 62
4.8.3 Scalability with Materialized Data Size 64
4.8.4 Scalability to Big Data Volumes 64
4.8.5 Dynamism in Data Generation 65
4.8.6 Performance on JOB Benchmark 65

4.9 Conclusiono 66
Regeneration using Projection Constraints 67
5.1 Imtroduction 67
5.1.1 Projection-inclusive Constraints 67
5.1.2 Technical Challenges 68
5.1.3 Our Contributions 69
5.1.4 Organization 70

5.2 Problem Framework 70
5.2.1 Problem Statemento 70
5.2.2 Assumptions. 70
523 Output. 70

5.3

5.4

5.9

5.6

5.7

5.8
5.9

5.10

0.11

CONTENTS

5.24 Notations e 71
Design Principles 71
5.3.1 Region Partitioningo 71
5.3.2 Isolating Projections o 72
5.3.3 Projection Subspace Division L. 74
5.3.4 Constraints Formulation 75
5.3.5 Enriched Database Summary 75
[solating Projections 7
5.4.1 Symmetric Refinemento 7
5.4.2 Workload Decomposition L oL 79
Projection Subspace Division oL 80
5.5.1 Valid Division 81
5.5.2 Optimal Divisiono 84
5.5.3 Opt-PSD Algorithm 85
Constraints Formulation 0L 89
5.6.1 Explicit Constraints 90
5.6.2 Sanity Constraintso 91
5.6.3 Sufficiency for Data Generation 92
Data Generation 92
5.7.1 Summary Construction 93
5.7.2 Tuple Generation 93
Pipeline 94
Discussion e 95
5.9.1 Solution Guarantees Lo 95
5.9.2 Solution Complexity 96
Experimental Evaluationo 97
5.10.1 Constraint Accuracy 98
5.10.2 Generated Data 99
5.10.3 Time and Space Overheads 100
5.10.4 Scalability Profile oL 101
5.10.5 Workload Decomposition 102

5.10.5.1 Instance-based Decomposition (ID) 102

5.10.5.2 Template-based Decomposition (TD) 103
Conclusion L 104

x1

CONTENTS

6 Regeneration using Join Constraints 105
6.1 Introduction 105
6.1.1 Challenge 107
6.1.2 Background 107
6.1.3 Our Contributions 107
6.1.4 Organization 108

6.2 Problem Framework 108
6.2.1 Problem Statement 108
6.2.2 Assumptions. 109
6.2.3 Output. 109
6.2.4 Notations 109

6.3 Design Principles oo 109
6.3.1 Denormalization 110

6.3.2 Workload Decomposition 112
6.3.3 Data Space Partitioning 112
6.3.4 LP Formulation 115
6.3.5 Summary Constructiono 115

6.4 Workload Decomposition 115
6.5 Align Refinemento 117
6.5.1 Fact Table Refinement 117
6.5.2 Dimension Table Refinement 118

6.6 Block Mappings 118
6.6.1 Aligned Refined Blocks Mapping 119
6.6.2 Constituent Projection Blocks Mapping 119

6.7 Referential Constraints 119
6.7.1 NoPB Blocks 120
6.7.2 PBBlocks 120
6.7.3 LP Constraints 121

6.8 Data Generationo 122
6.8.1 View Summary Construction 122
6.8.2 Key Curation 123
6.8.3 Tuple Generation 125

6.9 Handling Select-Join Workload 126
6.9.1 View Summary Construction 126
6.9.2 Making View Summaries Consistent 126

xii

CONTENTS

6.9.3 Key Curation 127
6.10 Experimental Evaluation 0oL 127
6.10.1 Workload Decompositiono 129
6.10.2 Constraint Accuracy 129
6.10.3 Time and Space Overheads 129
6.10.4 Performance of JOB Benchmark 130
6.10.5 Select-Join Workload 131
6.11 Conclusion 134
Adding Robustness 135
7.1 Introduction L 135
7.1.1 Limitations of Basic Hydra 135
7.1.2 Our Contributions 137
7.1.3 Notations 138
7.1.4 Organization 138
7.2 Solution Overview e 139
7.2.1 Inter-block Distribution 139
7.2.2 Intra-Block Distribution00 139
7.3 Inter-Block Distribution: LP Formulation. 140
7.3.1 MDC: Optimization Function using Metadata Constraints 140
7.3.2 OE: Optimization Function using Optimizer’s Estimates 141
7.4 Intra-Block Distribution: Data Generation 143
7.4.1 Merging Sub-Viewso 144
7.4.2 Ensuring Referential Integrity 145
7.4.3 Constructing Relation Summary 145
7.4.4 Tuple Generation 147
7.4.5 Comparison with Basic Hydra 147
7.5 Experimental Evaluation L 148
7.5.1 Volumetric Similarity on Unseen Queries 148
7.5.2 Metadata Compliance Lo 150
7.5.3 Database Summary Overheads 150
7.5.4 Data Scale Independence 150
7.5.5 Data Skew and Realism 0L 151
7.6 Conclusion 151

xiil

8 Hydra Architecture and Prototype Implementation

8.1 Architecture
8.1.1 Client Site
81.2 Vendor Site L0

8.2 Implementation Details
8.2.1 Domain Representation
8.2.2 Region Data Structure
8.2.3 Dynamic Tuple Generation Implementation
8.2.4 Database Platform Portability

8.3 Prototype: User Interface
8.3.1 Input from Client Site
8.3.2 Vendor Site Processing
8.3.3 Dynamic Database Regeneration
8.3.4 Scenario Construction

8.4 Discussion

9 Extensions

9.1 Introduction L
9.1.1 Our Contributions
9.1.2 Notations
9.1.3 Organization

9.2 Duplication Distribution
9.2.1 DMotivation
9.2.2 Duplication Distribution Characterization
9.2.3 Duplication Distribution Extraction
9.2.4 Duplication Distribution Mimicking

9.3 Presortedness
9.3.1 Motivation L
9.3.2 Presortedness Characterization
9.3.3 Presortedness Extraction
9.3.4 Presortedness Mimicking

9.4 Conclusion

10 Conclusion and Future Directions

10.1 Conclusions

Xiv

CONTENTS

10.2 Future Directions

Bibliography

CONTENTS

XV

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Example Scenario 5
Data Flow o 9
Filter Constraints based Regeneration 11
Symmetric Refinemento 13
Table Summary 13
Sample Output (Item Table) 16
Hydra Architecture 17
Architecture of RQP [24] oo Lo 24
Architecture of QAGen [25] 25
Architecture of MyBenchmark [55]o oo 27
Architecture of Touchstone [52]o oo 28
Grid Partitioning in DataSyntho 30
Linked Data Architecture [37] L 32
SAM Architecture [80] 33
AQP with (a) Filter (b) Filter and Projection 38
Filter and Projection Visualization 38
Grid-Partitioning vs Region-Partitioning 46
LP Constraints 46
Table Decompositiono 47
Example Table Summaryo 48
Simple LP formulation 49
Reduced LP formulation 0 oo 50
Align and Merge Example L 56
Venn diagram showing all disjoint spaces 59

Xvi

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

7.1
7.2
7.3
7.4

LIST OF FIGURES

Distribution of Cardinality in CCs (W L) 61
Quality of Volumetric Similarity (W L_s) 62
Number of variables in the LP (WL.) 63
LP Processing Time 63
Data Materialization Time 64
Data Supply Times 65
Cardinality distribution of CCsin JOB 66
Number of Variables for JOB 66
Region Partitioning Lo 73
Symmetric Refinement and PSD L 74
Table Summary Featuring Projection 76
Partitioning in Projected Space 83
Hasse Diagram 85
Example Division Grapho 87
Sample refined-block in Summaryo 93
Projection Solution Pipeline L 95
(a) Execution Time (b) Memory Usage 102
Example AQPs 106
Join Solution Pipelineo 111
Partitioning of Reg and Std Views 113
Align Refinement 114
Sample Summary 116
Sample ARB Summary 125
Schema Graph 128
Distribution of Joins 128
AQP of Sample Query 129
Quality of Volumetric Similarity 0oL 132
Extra Tuples for Referential Integrity 133
Distribution of Absolute Errorso 133
Basic Hydra o 136
Proposed LP Formulation 0L 142
Sub-view Merging 144
Block Structure 146

7.5
7.6

8.1
8.2
8.3
8.4
8.5

9.1
9.2

LIST OF FIGURES

Volumetric Similarity on Unseen Queries and Constraints 149
Data Skew 151
Hydra Architecture 154
Domain Representation L 156
Region Data Structure 157
Client Site: Metadata, Queries and Annotated Query Plans 159
Vendor Site: Database Summary, Runtime Configuration Settings, Generation

Quality and AQP Comparison 160
Presortedness Computation on a Query Execution 172
Presortedness vs. Percentage Presorted Tuples 174

xXviil

List of Tables

3.1
3.2

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

6.1
6.2
6.3
6.4
6.5
6.6

7.1

Acronyms 36
Notations e 37
Acronyms 44
Notations e 44
Transformation of Regular Expression CCs 60
Acronyms 71
Notations e 72
No. of CPBsin Opt-PSD e 88
Workload Complexity 98
LP Solution from DataSynth L. 99
Sample Rows produced for PERSONS Table 100
Overheads 101
Block Profiles 101
No. of Blocks and Comparison against Pow-PSD 101
Tuple Generation Time 101
Workload Decomposition - ID o 103
Workload Decomposition - TD 103
Acronyms 109
Notations e 110
Workload Characteristics (TPC-DS) 130
Overheads and Block Profile (TPC-DS) 131
Workload Characteristics (IMDB) 131
Time and Space Overheads (IMDB) 132
Acronyms 138

Xix

7.2
7.3
7.4
7.5

8.1

9.1
9.2
9.3
9.4
9.5
9.6

LIST OF TABLES

Notations e 138
Row Cardinality Distribution in Test CCs 148
Space and Time Analysis Lo 150
Data Scale Experiment Analysis L 151
Sample Tuples 161
Notations e 164
Query Execution Timeo 166
Duplication Distribution vector Size 167
Query Execution Time on Different Column Order and Sort Order 171
Execution Time of Order By Queries 173
Comparing Expected vs Obtained Presortedness 175

XX

Chapter 1
Introduction

In industrial practice, a common requirement for enterprise database vendors is to adequately
test their database engines. The enormous size and complexity of these software make the
testing process challenging. The importance of addressing these challenges is also showcased
by a recent Dagstuhl seminar [3].

The testing process commonly requires generating synthetic databases and query workloads.
Traditionally, the vendors have relied on using synthetic benchmarks such as TPC-H [11] and
TPC-DS [12]. However, these benchmarks cover only a limited input testing space [25], due to
lack of flexibility with respect to the schema, queries, and data distribution.

Several database generators have been proposed from both industry and academia (e.g.
MUDD [68], PSDG [40], PDGF [62], Myriad [16]) that do an ab initio data generation. How-
ever, here as well, there is limited control on the input/output of the intermediate operators of
a query during a test, which can be an important requirement while testing individual DBMS
components. As a result, the client applications may reflect unforeseen problems. Therefore,
vendors need a way to generate representative data and workloads that accurately mimic the
data processing environments at customer deployments. While, in principle, clients could trans-
fer their original data and workloads to the vendor for the intended evaluation purposes, this
is often infeasible due to privacy and liability concerns. Moreover, even if a client is willing
to share the data, transferring and storing the data at the vendor’s site may have impractical
space and time overheads, especially in this Big Data era. Therefore, an important requirement
is to be able to dynamically regenerate representative databases while executing queries during
the testing process.

Several frameworks have been proposed in the last two decades for generating client-specific
synthetic databases. These frameworks can be classified into two main classes: (a) Database-

Dependent Regeneration, and (b) Query-Dependent Regeneration. We will discuss these classes

1

next.

Database-Dependent Regeneration

The frameworks in this category (e.g. DBSynth [61], RSGen [66], DScaler [82]) derive coarse
statistics from the original data and ensure the synthetic data also obeys these statistics. For ex-
ample, RSGen generates data using one-dimensional histograms with respect to various columns
in the database. The key limitation here is that the accuracy is restricted to simple queries,
typically dealing with single attribute filters.

More recently, a new breed of generators in this category has emerged that makes use of
machine learning models such as auto-encoders and generative adversarial networks. However,
these models are focused on synthesizing a single table [36]. Therefore, evaluation of even

simple queries involving joins between multiple tables cannot be satisfactorily performed.

Query-Dependent Regeneration

Here the objective is to ensure that the generated data ensures volumetric similarity for a given
set of input queries. That is, assuming a common choice of query execution plans at the client
and vendor sites, the output row cardinalities of individual operators in these plans are very
similar in the original and synthetic databases. This similarity helps to preserve the multi-
dimensional layout and flow of the data, a prerequisite for achieving similar performance on the

client’s workload. There are two sub-classes in this category based on the nature of constraints:

Parameterized Constraints: Here the queries are parameterized with regard to the con-
stants in the query, and the generators (e.g. MyBenchmark [55], TouchStone [52])
additionally also provide parameter values for which the intermediate cardinalities are

matched.

Value Constraints: Here predicate constants are pre-specified in the input as part of the
workload. The generators (e.g. DataSynth [17], Linked-Data [37]) ensure that the inter-

mediate cardinalities are matched for these constants.

Consider the SQL query shown in Figure 1.1(b). Here the predicate constants are specified in
the query and therefore result in value constraints. The parameterized equivalent of this query
is as follows:

Select Age, Average (Score) From Register Reg, Student Std

Where Reg.RollNo = Std.RollNo and Year = paraml and Age >= param2

In the above query, paramI and param?2 are variables.

While the parameterized constraints can be preferable from a privacy perspective, value
constraints allow construction of databases that are closer to the original and, therefore, more
robust to unseen queries. The existing frameworks across both categories suffer from one or
more of the limitations, such as the inability to (a) provide a comprehensive algorithm to handle
queries based on core relational algebra operators, namely, select, project, and join; (b) scale to
big data volumes; (c) scale to large input workloads; and (d) provide high accuracy on unseen

queries.

In this thesis, motivated by the above lacunae, we present HYDRA, a new (value) query-
dependent data generation framework, that materially addresses the above challenges by adding
functionality, dynamism, scale, and robustness. The extended workload coverage is obtained
by providing a comprehensive solution to support SPJ queries. At its core, the constraints are
modeled using linear feasibility problem, where each variable represents the volume of a region
of the data space. These regions are computed using a series of partitioning strategies. Hydra
further exploits metadata statistics maintained by the database engine in order to improve
accuracy towards unseen queries.

A unique feature of our data regeneration approach is that it delivers a database summary as
the output rather than the static data itself. This summary is of negligible size and depends only
on the query workload and not on the database scale. It can be used for dynamically generating
data during query execution. Therefore, the enormous time and space overheads incurred
by prior techniques in generating and storing data before initiating analysis are eliminated.
Specifically, the summaries for complex Big Data client scenarios comprising over a hundred
queries are constructed within just a few minutes, requiring only a few MBs of storage.

As a proof of concept, the Hydra framework has been prototyped in a Java based-tool and
evaluated on both synthetic and real-world benchmarks. Our work is closest to DataSynth [17,
18] tool from Microsoft. DataSynth also expresses the value constraints in the form of linear
feasibility program whose solution is used to construct the synthetic database. We also show a

comparison of Hydra with DataSynth on various facets in our experimental evaluation.

1.1 Volumetric Similarity

Synthetic databases have been targeted toward capturing the desired schematic properties (e.g.
keys, referential constraints, functional dependencies, domain constraints), as well as the sta-
tistical data profiles (e.g., value distributions, column correlations, data skew, output volumes)
hosted on these schemas. The contemporary school of thought [25, 55, 17, 52, 37, 80] is gener-

ating query-dependent databases that use query execution plans from the customer workloads

as input and provide volumetric similarity. That is, the intermediate row-cardinalities obtained
at the client and vendor sites are very similar when matching query plans' are executed. This
similarity helps to preserve the multi-dimensional layout and flow of the data, a prerequisite
for achieving similar performance on the client’s workload. Therefore, in this thesis, we have
primarily focused on data synthesis that achieves volumetric similarity. Extensions to other
important metrics such as Duplication Distribution and Presortedness in Chapter 9.

Now, we will discuss the preliminaries of volumetric similarity. Subsequently, we will present

some of its prominent applications.

1.1.1 Preliminaries

We start with background information on the key foundations — Annotated Query Plans [25]
and Cardinality Constraints [17] — that form the basis for achieving volumetric similarity, and

are therefore relevant to our design of the Hydra system.

Annotated Query Plans. Consider a toy university database with the schema shown in
Figure 1.1(a). A sample client query on this schema is shown in Figure 1.1(b), with the
corresponding query execution plan in Figure 1.1(c). Note that this execution plan has the
output edge of each operator annotated with the associated row cardinality? in green color —
for instance, there are 3000 rows resulting from the join of filtered Register and Student tables
and 10 rows qualify after the final projection as a result of Group By clause. Such a plan is
referred to as an “Annotated Query Plan” (AQP) in [25].

We wish to highlight that in the context of volumetric similarity, Group By clause behaves
same as Distinct SQL operation. Distinct is expressed as duplicate eliminating projection
relational algebra operation and therefore we have used projection as an umbrella term to

include Group By as well.

Cardinality Constraints. A unified and declarative mechanism for representing AQP data
characteristics, called cardinality constraints (CCs), was proposed in [17]. The canonical rep-

resentation of the constraint is:
]ﬂA(af(Tl < T .. Ty))|=k (1.1)

where f represents the filter predicates applied on the inner join of a group of tables 77, ... Ty

in the database; A represents the projection-attribute-set (PAS), i.e. the set of attributes on

Lensured through “plan forcing” [13] or “metadata matching” [73]

2These are the actual row cardinalities as evaluated during the client’s execution. Using compile-time
estimates instead can lead to a qualitatively poor synthetic database, since the estimates are routinely highly
erroneous, as emphasized in the query optimization literature.

4

SELECT Age, Average(Score)
Register (Rid, RolINo, Course, Year, Score) FROM Register Reg, Student Std
Student (RollNo, Age, GPA, Scholarship) WHERE Reg.RolINo = Std.RolINo and
Year = 2021’ and Age >= 25
GROUP BY Age

(a) Schema (b) SQL Query

T10

Thge \
3000 |7TAge(UAge > 25.vear= 2021 (RegxStd))|= 10
Reg X Std | Gage = 25,vear= 2021(RegxiStd) | = 3000
200007 T\25000 | Gage = 25 (Std)| = 25000
Oyear=2021 OAge =25 | Ovear= 2021 (Reg)| = 20000
T | Std| = 50000
370000 TSOOOO @egl - 370000 /
Reg Std
(c) Annotated Query Plan (d) Cardinality Constraints

Figure 1.1: Example Scenario

which the projection is applied; and k is a count representing the output row-cardinality of the
relational expression. For example, the CCs expressing the AQP of Figure 1.1(c) are shown in
Figure 1.1(d).

To ensure volumetric similarity, the schematic information and the set of AQPs with respect
to all the queries in the workload are taken as input from the client site. The synthetic data

produced is aimed at closely meeting the CCs derived from the AQPs.

1.1.2 Applications
By ensuring volumetric similarity, Hydra can be beneficial for a variety of use-cases. We enu-

merate some of these next.

Regression Testing. In the context of engine upgrades, a critical requirement is to synthesize

data that can mimic client environments for regression testing. This facility enables: (a)

Catching optimizer bugs such as a change in query plan leading to performance degra-
dation, or incorrect query rewriting leading to erroneous query results; (b) Performance
evaluation of operators in the query execution pipeline. For instance, a thorough as-
sessment of a new memory manager’s ability to handle a hash operator is predicated on
accurate modeling of input row cardinality; and (¢) Given an operator of interest, eval-
uating its impact on the performance of downstream operations. For instance, 12 out of
the 22 queries in the TPC-H benchmark require a sort operation immediately following
a projection-based operator. Therefore, in these cases, the projection output cardinality

affects the performance of sort operator.

Execution Tuning. Due to the dynamic nature of production environments, it is often re-
quired to carry out on-the-fly platform tuning, especially with regard to system config-
urations or query execution plans. As a non-invasive and arm’s length precursor, the
DBA can evaluate the expected tuning impacts on a synthetic equivalent — here mimick-
ing intermediate row cardinalities can be of particular utility since cardinality estimation
techniques are known to have difficulty in accurately modeling of operator outputs, es-
pecially for the higher operators in the plan tree. For instance, knowledge of left and
right intermediate table cardinalities can be used by the DBA to choose the better plan

between nested loops vs hash join based plans and subsequently force it.

Application Testing. Organizations often outsource the testing of their database applica-
tions to other organizations. However, sharing the internal databases on which these
applications operate may be infeasible due to privacy concerns. In these cases, testing
the applications using the database synthesized using cardinality constraints is a viable
option. For instance, in the context of banking applications, a routine analytical query
could be asking for the number of distinct bank accounts performing online transactions
in remote areas. Therefore, modeling this as a CC and ensuring synthetic data satisfies

it can be useful.

System Benchmarking. When evaluating competing database platforms for hosting an ap-
plication, carrying out the evaluation on an application-specific database is of much richer
relevance as compared to a generic benchmark such as TPC-H or TPC-DS. Creating a
synthetic database that models the application’s environment allows for a detailed assess-
ment of both current and future scenarios. In this context, greater realism of the synthetic
data would help to make informed choices. Volumetric similarity helps in achieving greater

fidelity to the application’s framework.

1.2 Summary of Contributions

In this thesis, we present HYDRA, a data regeneration tool that materially advances state of the
art on a variety of facets such as functionality, dynamism, scale, and robustness. Specifically,

the key contributions of Hydra are enumerated below.

Extended Workload Coverage. Hydra provides a comprehensive solution to support
queries based on SPJ relational algebra operators. Specifically, the constraints are mod-
eled using linear feasibility problem (LP)!, in which each variable represents the volume
of a region of the data space. These regions of data space are computed using a series of
partitioning strategies. For example, to encode the filter constraints, our Region Parti-
tioning approach divides the data space into the provably minimum number of regions.
Our projection subspace division and projection isolation strategies address the critical
challenges in incorporating projection constraints. By modeling referential constraints
over denormalized equivalents of the tables, Hydra delivers a comprehensive solution that

also additionally handles join constraints.

Apart from the scope of queries, by ensuring minimum region count in the output of the
partitioning algorithm, Hydra covers a larger number of input queries. As a case in point,
on comparing the Region Partitioning strategy of Hydra against the more fine-grained
Grid Partitioning approach used in DataSynth, the former reduces the LP complexity by
many orders of magnitude.For instance, an LP with a few thousand variables in Hydra
requires more than a billion variables in DataSynth— in fact, in this case, the LP is
solved in a less than a minute on the Hydra formulation, while the solver crashes on the

DataSynth formulation.

Database Summary and Dynamic Database Regeneration. Hydra introduces the con-
cept of dynamic database regeneration by constructing a minuscule database summary
that can on-the-fly regenerate databases of arbitrary size during query execution. This
approach is imperative for Big Data systems, where working with materialized solutions
entails impractical time and space overheads. Specifically, dynamic generation eliminates
the need to store data on the disk and its subsequent load by the engine — instead, all data
is created and delivered on demand. An orthogonal benefit is that the generation rate
can be strictly controlled, thereby addressing wvelocity, one of the several V’s associated
with Big Data [2].

ILP term has been used to be consistent with terminology used in literature.

Data Accuracy, Scalability and Efficiency. Hydra provides perfect volumetric similarity
on the input query workload, a property not seen in the prior work. Moreover, Hydra
does so without compromising on the efficiency of the generation pipeline. In fact, the al-
gorithm proposed for database summary production is data-scale-free. That is, it depends
only on the query workload and not on the database scale. Specifically, the summaries
for complex Big Data client scenarios comprising over a hundred queries are constructed
within just a few minutes, on a vanilla computing platform, requiring only a few MBs of

storage.

Improved Robustness. Hydra provides a mechanism that is expected to provide better ac-
curacy on unseen queries — the mechanism leverages the metadata statistics maintained
by the database engine. Specifically, it adds an objective function to the linear program
to pick a solution with improved inter-region tuple distribution. Further, a uniform dis-
tribution of tuples within regions is generated to get a spread of values. In a nutshell,
these techniques facilitate careful selection of a more representative database from the

candidate synthetic databases and also provide metadata compliance.

Enhanced Evaluation. We have evaluated the proposed ideas using both synthetic bench-
marks, such as TPC-DS, and real-world benchmarks based on Census (from [37]) and
IMDB databases [45, 5]. Therefore, our evaluation is more comprehensive than that in
prior techniques, which have largely been evaluated on simpler and small-sized query

workloads operating on modest databases.

Prototype Tool. As a proof of concept, the Hydra framework has been prototyped in a Java
based-tool, running to over 50K lines of code, and is currently operational on the Post-
greSQL v9.6 engine [7]. It has an intuitive user interface that facilitates modeling of
enterprise database environments, delivers feedback on the regenerated data, and tab-
ulates performance reports on the regeneration quality. The entire tool, including the
source, is downloadable . The tool has been warmly received by both the academic and

industrial communities.

1.3 Thesis Overview

In this section we present an overview of the thesis with a brief description of the various
chapters included. The flow of information from the client to vendor is shown in Figure 1.2.

The client ships the schema information, and the query workload with its corresponding AQPs

'https://dsl.cds.iisc.ac.in/projects/HYDRA/index.html

8

https://dsl.cds.iisc.ac.in/projects/HYDRA/index.html

CLIENT SITE
@0 0.0
Query-Workload

CODD Client
l l (Seen)

1 . ueries
ISchema' é\ 6\ A . Client Metadat Q
I Set of AQPs AQPs etadata
L 2 CODD Tuple

¢ . Database - [Generator] Output AQPs

>

" Summary Database Engine | for Clientand
- Vendor Queries!

Vendor :

@0 0.0 A A I

VENDORSITE (Unsee [l]
Queries !

Figure 1.2: Data Flow

Data

-

F

Database Engine

A 4

A 4

obtained from the database engine. The statistical metadata from the database catalogs is
captured with the help of CODD metadata processor tool [19] tool. Using this information,
Hydra generates synthetic data at the vendor cite.

As discussed earlier, at its core Hydra expresses the volumetric constraints using LP. Each
variable in the LP accounts for the cardinality of a specific region of the data space. We use an
LP solver to obtain a feasible solution to the problem. !

Using LP solution, Hydra produces a collection of database summaries. Database summary
is used to produce data on demand during query execution using the Tuple Generator module
that is implemented inside the database engine. The produced data ensures volumetric simi-
larity on the client queries. In addition to this, the vendor can also evaluate unseen queries on
the produced synthetic database.

We shall now present the organization of the thesis followed by a summary of the core

technical chapters.

L An alternate strategy could have been to construct an SQL query for each region and have another iteration
of client interaction where the client provides the actual values for these queries. While this strategy has the
potential to produce more robust databases, it requires significant extra work from the client-side and may not
be always desirable from a privacy point of view.

1.3.1 Organization

The thesis Introduction and Related Work are presented in Chapters 1 and 2, respectively. The
Problem Framework is presented in Chapter 3. The mechanism for synthesizing data using
the input CCs is explained progressively in Chapters 4 through 6. Specifically, we begin by
discussing the single table synthesis method, where initially we assume only filter operators in
the CCs in Chapter 4, and subsequently include projection operator in Chapter 5. Further,
Chapter 6 discusses multiple table synthesis, which includes join operators in the CCs. Next, the
discussion on improving robustness to unseen queries is presented in Chapter 7. The complete
implementation and prototype details are provided in Chapter 8. We discuss the extensions of

Hydra in Chapter 9 and finally, conclude in Chapter 10.

1.3.2 Problem Framework (Chapter 3)

We summarize the basic problem statement, assumptions made and the output delivered.

Statement. Given an SPJ query-workload W, with its corresponding set of AQPs Q, derived
from an original database with schema & and statistical metadata M, the objective is to generate
a synthetic database D such that it conforms to § and Q. That is, the AQPs obtained from
the original database match, wrt the cardinality annotations, the AQPs obtained on D.

Assumption. We assume that W comprises of only PK-FK joins. Further, we assume that
the filters and projections are applied only on non-key columns. For simplicity, we assume that
Q is collectively feasible, that is, there exists at least one legal database instance conforming
to Q. In the regeneration usecase, this assumption holds trivially since the constraints are

produced from an original client database.

Output. Given §, M, W and Q, Hydra outputs a collection of database summaries S. Each
summary s” € S can be used to deterministically produce the associated database D. The
databases produced are such that: (a) all of them conform to 8, and (b) for each query in W,
its corresponding AQP in Q matches with the AQP obtained on at least one output database
instance.

In principle, we would like to have a single summary that represents the entire workload.
However, in order to handle the problem of conflicting projections (Section 1.3.4), we are forced

to take recourse to multiple summaries.

1.3.3 Filter Constraints (Chapter 4)

To model filter constraints, the data space of the target table is logically partitioned into a set
of Filter-Blocks. Each filter-block satisfies the condition that every data point in it satisfies the

10

same subset of filter predicates. The row cardinality of each filter-block is represented using
a variable, and is then used to construct a linear feasibility problem. The resultant system
is usually highly under-determined and therefore, to reduce the complexity of solving it, our
proposed Region Partitioning technique partitions the data space into the minimum number of
filter-blocks.

N~ T TTTT T T T T E T T T TTE T T T T T
H 1
1 1
o | i X1 + x5 = 40000
| ; x5 + x5 = 45000
] i Xq1,%X5,X3,X4 =0
1
& | i
U [l .
O] ! (b) Linear Program
1
1
o | !
: i
’ i
w | ! Student
i b, i Age, Scholarship, GPA| #Tuples
e e e mm—m—m e ! 20, 20000, 5 5000
15 20 35 40 20, 20000, 6 40000
Age 15, 20000, 5 5000
(a) Region Partitioning (c) Table Summary

Figure 1.3: Filter Constraints based Regeneration

To make the above concrete, consider the following two filter CCs on Std table.

c1 1 |O15<age<ssne<apa<s(Std)|= 40000

Co ¢ |T20< Age<sons<aPAa<o(Std)|= 45000

For simplicity, Figure 1.3 shows only the 2D data space comprising the Age and GP A attributes
since no conditions exist on the other attributes. In this figure, the filter predicates are repre-
sented using regions delineated with colored solid-line boundaries. When Region Partitioning
is applied on this scenario, it produces four disjoint filter-blocks: by, bs, b3, by, whose domains
are depicted with dashed-line boundaries.

The corresponding LP constructed on these filter-blocks is shown in Figure 1.3(b). Here,

T1,To, X3, T4 correspond to the count variables for filter-blocks by, b, b3, by, respectively. A

11

possible solution to the LP is: (x; = 0,29 = 5000, z3 = 40000, x4 = 5000). A table summary
corresponding to the example LP solution is shown in Figure 1.3(c) where a single point is
picked for each populated filter-block and is assigned multiplicity equal to the cardinality of
the filter-block.

The complete details of the above procedure, including the partitioning, proof of optimality,

summary construction mechanism and several optimizations are discussed in Chapter 4.

1.3.4 Projection Constraints (Chapter 5)
To model projection constraints, the key technical challenges faced are as follows:

Inter-Projection Subspace Dependencies. When a set of tuples b is subjected to multiple
projections, the data generation for projection subspaces may be interdependent. Given

a pair of PASs A; and A,, sourced from two CCs, we have the inclusion property:

T A1UA - A, (b) X Ty (b)

That is, it may be possible that a tuple lying within the boundaries of my, (b) and 7y, (b),
may be outside the boundary of b itself. Therefore, the projections along different sub-

spaces cannot be dealt with independently.

Intra-Projection Subspace Dependencies. Consider the projection subspace spanned by a
set of attributes A. Dealing with projection requires computing union of groups of tuples.
For example, for groups b; and bs, the direct expression for computing their projection
along A is:
| (b1 U by)|

However, even if b; and b,y are disjoint in the original table, their projections onto A may

overlap. Therefore, unlike filters, here union does not translate to a simple summation.

The key design principles incorporated in Hydra to handle the above challenges are the

following:

Isolating Projections. To circumvent inter-projection subspace dependencies, we first “iso-
late” the projections. Specifically, the following set of steps are taken in this process: (discussed
in detail in Chapter 5)

A Symmetric Refinement strategy is adopted that refines an filter-block into a set of disjoint
Refined Blocks such that each resultant refined-block exhibits translation symmetry along each
applicable projection subspace. That is, for each domain point of a refined-block r along a

particular PAS, the projection of r along the remaining attributes is identical.

12

For instance, consider by in Figure 1.3(a). Clearly, it is asymmetric along Age — specifically,
compare the spatial layout in the range 20 < Age < 35 with that in 35 < Age < 40. After
refinement, this block breaks into 1o, and 79, as shown in Figure 1.4 — it is easy to see that
roq and 7o, are symmetric. This refinement allows for the values along different projection
subspaces to be generated independently.

The above refinement, however, does not scale when the projections applied on a region are
along partially overlapping attribute-sets. To eliminate such situations, we resort to a Workload
Decomposition strategy to split the workload into non-overlapping sub-workloads using a vertex
coloring-based strategy. As a consequence, for each such sub-workload, a separate summary
is produced. From a practical perspective, the multiplicity of summaries does not impose a
substantive overhead since each summary is very small. However, to maximize the number

of constraints that can share a common database, the number of sub-workloads generated is

minimized.
Age Scholarship, GPA #Tuples
()
| (S) [20000, 50000), (G) [5,6): 12
- f2a [20, 40):5 (S) [20000, 50000), (G) [8, 9): 08 >000
é Age Scholarship GPA |#Tuples
r [i Fap
i [10000,30000): 4
i 2 :
© j [20,35): 3 [30000, 80000): 5 [6,8) | 40000
22 Scholarship Age, GPA #Tuples
v
A) [15,2 4
4 [30000, 80000): 5 (A) [(GS)' [g) ;JO[)?,SG’ 0), 5000
15 20 35 40 L
Age
Figure 1.4: Symmetric Refinement Figure 1.5: Table Summary

Projection Subspace Division. This technique divides each projection subspace into re-
gions that allow modeling the unions into a summation of the cardinality of a subset of the
regions obtained. For instance, by using a naive projection subspace division strategy to divide
the subspace with respect to Age attribute from our running example, we can express |44 (r2,U
rop UT3)| (projection of ¢y along Age) as the following summation of cardinalities of four projec-
tion regions: [(mage(r2a) \ Tage(rs))|+|(Tage(r2a) N7 age(rs)) |+ (T age(rs) \ Tage(r2a))[+|mage(ras)|-

Hydra’s strategy for projection subspace division gives the minimum number of such pro-
jection regions. These are called constituent projection blocks (CPBs). An LP variable is
constructed for each refined-block and CPB to express the CCs as a summation of LP vari-

ables.

13

A sample table summary produced is shown in Figure 1.5. FEach segment of the summary
corresponds to a populated refined-block. For example, the first refined-block’s tabulation can
be interpreted as “generate 5000 tuples, such that there are 5 distinct values of Age in the
interval [20,40), and 20 distinct value pairs of {Scholarship, GPA} such that 12 are from the
2D interval [20000,50000), [5,6), and the remaining 8 from the 2D interval [20000,50000) ,
[8,9).” For attributes that do not feature in any projection subspace, no associated distinct
cardinalities are maintained. The complete details of projection handling are discussed in
Chapter 5.

1.3.5 Join Constraints (Chapter 6)
To handle joins in the CCs, three additional steps are taken:

Denormalization. For each table T' to be constructed, a corresponding wview Vp is synthe-
sized first. This view captures the denormalized equivalent of T' (excluding the key columns).
Processing on views helps in generating correlations that are compatible with the various join

cardinalities in the input. The views constructed for our running example are as follows:
Vieg(Course, Year, Score, Age, Scholarship, GPA), Vsa(Age, Scholarship, GPA)

These views allow rewriting the join expression on a single view. For example, the first two

CCs from Figure 1.1(d) can now be rewritten as:

|7TAge (UAg6225AYear:2021 (VReg)) |: 107 |JA96225AYear:2021 (VReg) ’: 3000

Post-rewriting, the data space of each of these views is partitioned using the region partitioning

and symmetric refinement algorithms.

Referential Constraints. To obtain original tables back from their denormalized equiva-
lents, the views need to obey referential integrity. We know that referential integrity constraint
between a fact table F' containing foreign key F. fk referencing dimension table D with primary
key D.pk is expressed as mp s (F') C mp (D). The equivalent expression of this constraint in
terms of the views is the following:

ms(Vr) C Vb

where B is the set of columns in Vp, and hence is borrowed in V. Therefore we include addi-
tional constraints in the LP formulation that ensure these referential dependencies. Specifically,
these referential constraints ensure that for each interval of the borrowed columns, the number

of distinct values present in V is at most equal to the number of distinct values present in Vp.

14

To add referential constraints, the regions of Vr and Vp need to be aligned. Therefore, as a
precursor, an Align Refinement stage may be required, to ensure that each refined-block in Vp
is either contained or is disjoint with a refined-block in Vr along the subspace spanned by B.
The output of this stage is the set of Aligned Refined Blocks (ARBs).

Referential constraints only ensure cardinality subsumption. For subset property, we also
need to further enforce value subsumption. This is done in the final stage of Key-Range Curation

as described next.

Key-Range Curation. This final stage is responsible for the curation of FK values in F'.
Specifically, for each ARB a in Vg, to construct its equivalent in F', a range of FK values is
assigned to it. This assignment is done using a range of PK values associated to a set of blocks
in Vp, such that:

1. The chosen Vp blocks are contained within the boundaries of a after projecting along B.

2. The tuples associated with the selected PK values have the desired number of distinct

values along the PAS prescribed by the projection applied on the a.

In this way, we get the summary for each table, which is used for dynamic data regeneration.

The complete details of join operator handling is discussed in Chapter 6.

1.3.6 Adding Robustness (Chapter 7)

The aforementioned suite of techniques ensure volumetric similarity on seen queries provided
by the client. Generalization to new queries may be a requirement at the vendor site as part of
the ongoing evaluation exercise. To address this expectation, the following design choices are
added in Hydra:

Optimization Problem. There can be numerous feasible solutions to the LP designed by
Hydra. Even though all these ensure volumetric similarity on seen queries, it is easily possible
that several of these solutions are far from the solution that is representative of the client
database. Hence, volumetric similarity for unseen queries can incur enormous errors. To address
this, we construct finer regions by additionally using metadata stats. Subsequently, an LP is
formulated, by adding an Objective Function that picks up a feasible solution that is close to

the estimated solution derived from the stats. This also helps ensure metadata compliance.

Intra-Region Tuple Distribution. Within each populated region obtained from the LP
solution, we try to obey the tuple distribution based on the information extracted from metadata
stats. At the finer granularity where volumes cannot be estimated any further, we resort to

uniform distribution.

15

We evaluate the efficacy of these additional modules by comparing their volumetric similarity
with the basic Hydra on unseen queries. Our results indicate a substantive improvement —
specifically, the volumetric similarity on filter constraints of unseen queries was better by more
than 30 percent, as measured by the UMBRAE model-comparison metric [32]. Further, the
produced database also is metadata compliant. Finally, the produced data also has a more
realistic look. A sample set of rows produced by Hydra for a few columns of the TPC-DS table

Item is shown in Figure 1.6.

item_sk | color | price | rec_start_date
7125 Beige | 9.91 1990-05-08
3847 | Coral | 4.13 1990-03-26
1618 Dark | 4.56 1990-04-06
8450 | Floral | 2.46 1990-06-17
2836 Navy | 27.33 | 1990-03-06
3086 Pink | 63.66 | 1990-04-14
1827 Red 1.61 1990-03-08
3651 | Violet | 7.43 1990-03-24

Figure 1.6: Sample Output (Item Table)

The complete details of robustness addition are discussed in Chapter 7.

1.3.7 Prototype Implementation (Chapter 8)

The above mentioned modules are combined to produce an end-to-end data generation pipeline.
A pictorial view is presented in Figure 1.7 — in this picture, the green boxes represent the
various modules of Hydra. The key acronyms and notations used in the thesis are enumerated

in Tables 3.1 and Table 3.2, respectively.

Client Site. The information flow from the client to the vendor is as follows: At the client
site, Hydra fetches the schema information, and the query workload with its corresponding
AQPs obtained from the database engine. The statistical metadata from the database catalogs
is captured with the help of CODD [19] tool. All this information is then shipped to the vendor

site.

Vendor Site. Using the schema, views are constructed using the Denormalization module.
The query-workload is passed through a Workload Decomposition modules, which returns the
set of non-conflicting sub-workloads. The AQPs wrt each sub-workload is converted to equiv-
alent CCs using a Parser. Subsequently, the rest of the pipeline, comprising of Data Space
Partitioning, LP Formulation and Summary Construction, is executed independently for each
of these sub-workload CCs.

16

1 11 I
! CLIENT SITE see o | Output AQPs |
1 Data - I . 1
I >| Database Engine |« Query-Workload | 1! for Client an.d !
] | : Vendor Queries |
! COoDD Client | |
| 1 oo I s v vt
! é\ 6\ Queries : : Set of AQPs |
|

Schema A . | |
| I
. ClentAQPs Metaduta | vendor
:'__:_______:_'______:__ g ________I_I (Unseen) !
1 ~N Queries 1
I |
| Q@0 0.0|!
: [Denormalization] [Parser] Workloa'd. oD Query-Workload :

q [—ey
" Decomposition Database Engine I
| Database |
| Cardinality Region Query I Estimated Summary I
1 Views Constraints Multiol _ _ |4 cardinality _ :
1 ultiple . 1
| l Sub.Workloads ! LP Formulation | !
T T T T T T T T T L ta Coace Part ST T T T T TS | : Filter Referential | 1 :
: 1 Data Space Partitioning ! | Constraints Constraints : 1
oy - . . . : Align | o ! ! |
! : R(?g'lon. Filter R;fm:d fAIlgn Refiied : _5 : Projection Objective 1 :
'} |Partitioning Blocks ~[Refinement ocks (BEHMEWENY o ! &1 | Constraints Function | | 1
11 I : s e a 1
1! 18 :
: : 13 LP Solver |
i "@ Aj— " —>[Projection Subspace Division]—» 9 : 1
1! - o e 3 1TSS T T T T T T !
o c 2 1
: : "@ Aoy S —»[Projection Subspace Division |—> ST : Summary Construction : :
P : %g) = g 1 View Key o
! | % i S | Summary Range | ! |
1 @ Ap —'[Projection Subspace Division]—» a ! 1 \ Construction Curation) , 1
Il e) T ————- 1 I
1 1
1 1
1

Figure 1.7: Hydra Architecture

The Data Space Partitioning for a View and sub-workload begins with Region Partitioning
followed by Symmetric Refinement algorithm. This gives the set of refined-blocks. Further,
due to Align Refinement across Fact and Dimension tables, the refined-blocks are split and
give Align Refined Blocks (ARBs) in the output. The ARBs after being projected along the
applicable PASs, give the Projected Refined Blocks (PRBs). These PRBs and sub-workload are
then used by the Projection Subspace Division module to construct the set of CPBs.

Next, at the LP Formulation stage, an LP is constructed using variables representing the
cardinalities of ARBs and CPBs. Specifically, Filter Constraints and Projection Constraints are
modeled for each view. Subsequently, Referential Constraints are added between each pair of
Fact and Dimension table. Finally, based on the cardinality estimation module of the database

engine, an estimate of the size of various blocks is obtained. Using these estimates, an Objective

17

Function is added to the LP. This construction is then given as the input to the LP Solver. We
have used the popular Z3 solver [14] from Microsoft for this purpose.

From the solution produced by the LP solver, a comprehensive table summary is constructed
using the Summary Construction module. Specifically, it constructs View Summary and then
replaces borrowed attributes in the fact tables with the corresponding foreign key columns using
the Key Curation module.

The summary is used by the Tuple Generation module to synthesize the data. This compo-
nent resides inside the database engine, and needs to be explicitly incorporated in the engine
codebase by the vendor. As a proof of concept, we have implemented it for the PostgreSQL
engine by adding a new feature called datagen, which is included as a property for each relation
in the database. Whenever this feature is enabled for a relation, the scan operator for that rela-
tion is replaced with the dynamic generation operator. As a result, during query execution, the
executor does not fetch the data from the disk but is instead supplied by the Tuple Generator
in an on-demand manner, using the available relation summary.

The complete pipeline, the implementation detail and the visual interface are discussed in
Chapter 8.

1.3.8 Extensions (Chapter 9)

The techniques discussed in the thesis focus on ensuring volumetric similarity. In Chapter 9 we
go beyond volumetric similarity and discuss two other data characteristics — namely, Duplica-
tion Distribution and Presortedness, which are important for mimicking client data processing
environments. Specifically, we discuss their mathematical characterization, mechanism of ex-

traction and preliminary ideas on modeling them for data generation.

1.4 Summary

Synthetic data generation from a set of cardinality constraints has been strongly advocated
in the contemporary database testing literature. Hydra provides a comprehensive solution to
support SPJ constraints. Further, Hydra introduces the concept of dynamic data regenera-
tion using minuscule database summaries. These summaries are produced in a data-scale-free
manner and is hence extremely efficient and scalable. Hydra further provides a mechanism to
obtain reasonable accuracy on unseen constraints. The experimental evaluation on real-world
and synthetic benchmarks indicated that Hydra successfully produces generation summaries

with viable time and space overheads.

18

Chapter 2

Related Work

Over the past few decades, a rich corpus of literature has developed on synthetic database
construction. There are two broad streams of research on the topic, one dealing with the ab
initio generation of new databases using standard mathematical distributions (e.g. [39, 28]), and
the other with regeneration of an arbitrary existing database. In the latter category, there are
two approaches, one of which uses only schematic and statistical information from the original
database (e.g. [61, 66]). The other uses both the original database and the query workload to
achieve statistical fidelity during evaluation (e.g [53, 17]) — our work on Hydra falls into this

class. In this section, we review recent literature on this spectrum of research categories.

2.1 Ab Initio Generation

The frameworks in this category deal with the ab initio generation of new databases using
standard mathematical distributions. For example, [39] was one of the early work in the area.
The focus here was to build parallel algorithms to generate data sets with different distributions
and dense unique sequences in linear time. Thereafter, a special purpose language called Data
Generation Language (DGL) was proposed in [28]. It is used in generating synthetic data
distributions by utilizing the concept of iterators. While the work supports a broad range of
dependencies between relations, the construction of dependent tables always requires access
to the referenced table, creating a bottleneck on the data generation speed. A graph based
generation tool was proposed in [41], that models dependencies in a graph and uses a depth-
first traversal to generate dependent tables.

Two subsequent tools that offer similar capabilities are MUDD [68] and PSDG [40]. They
generate all related data at the same time thereby providing parallelism in the data genera-

tion process. MUDD proposed algorithms to efficiently generate dense-unique-pseudo-random

19

sequences and derive nonuniform distributions. Further, it gives the concept of separating the
data generation from data distribution definition. This enables users to quickly change data
distributions to suit individual needs. Like MUDD, PSDG decouples data generation details
from data description. It generates a constant output for a given input file regardless of the de-
gree of parallelism. The data is described and constrained using an XML-based language called
Synthetic Data Description Language (SDDL). While SDDL includes constructs to express
intra-row, inter-row, and inter-table dependencies, it supports restrictive data distributions.
Further, even with the benefits of parallelism, due to the requirement of generating all the
referenced tables, the above techniques can be rendered inefficient, especially if the referenced
tables are large in size or if some table is not required to be generated during a testing exercise.

A faster way of generating references is recomputing them in the distributed setting. It
helps in getting rid of the I/O cost incurred to satisfy referential constraints across tables
that are present across different nodes. PDGF [62] was designed with this goal of achieving
scalability and decoupling. In PDGF, the user specifies two XML configuration files, one for the
data model and the other for the formatting instructions. The generation strategy is based on
the exploitation of determinism in pseudo random number generators (PRNG), which enables
regeneration of the same sequences, hence eliminating the scan overheads. The multi-layer
seeding strategy used in PDGF makes it possible to generate data with cyclic dependencies as
well. However, this induces high computation cost for generating the keys. Also, PDGF comes
with a set of fixed generators for different datatypes and with some basic distribution functions.
A scheduler is responsible for dividing the work among physical nodes and the worker threads
on each node. The work is divided between nodes and workers equally making it suitable for
homogeneous clusters. A similar generator is Myriad [16], which implements an efficient parallel
execution strategy leveraged by extensive use of PRNGs with random access support. With
these PRNGs, Myriad distributes the generation process across the compute nodes and ensures
that they can run independently from each other, without imposing any restrictions on the
data modeling language.

Finally, a rule-based probabilistic approach, based on an extension of Datalog was proposed
in [22], which is capable of generating data characterized by parameterized classical discrete
distributions.

A common setback in all these frameworks is that they use standard distributions to gen-
erate the data. And it is not always feasible to assign such distributions to real-world data,
especially over multivariate spaces. Further, the generated database tends to give empty results
over complex queries since the subtle correlations between attributes are often not captured.

Therefore, mimicking customer environments remains a challenge.

20

2.2 Database-Dependent Regeneration

We now turn our attention to database-dependent regeneration techniques. DBSynth[61], an
extension to PDGF, builds data models from an existing database by extracting schema in-
formation and sampling. If sampling is permissible, histograms and dictionaries of text-valued
data are built. Also, if the textual data contains multiple words, then Markov chain gener-
ators are used. These help in analyzing the word combination frequencies and probabilities.
However, if sampling cannot be done, DBSynth falls back to random values. Finally, after the
model construction is complete, PDGF is invoked to generate the corresponding data.

Like DBSynth, RSGen|[66] takes a metadata dump, including 1-D histograms, as the input,
and generates database tables along with a loading script as the output. It uses a bucket
based model at its core, which is able to generate trillions of records with minimum memory
footprint. However, the proposed technique works well only for queries with single attribute
range predicate.

UpSizeR [71] is a graph-based tool that uses attribute correlations extracted from an existing
database to generate an equivalent synthetic database. A derivative work, Rex [29] produces an
extrapolated database given an integer scaling factor and the original database, while maintain-
ing referential constraints and the distributions between the consecutive linked tables. UpSizeR
clusters the values in each FK, does co-clustering, then generates FK values per co-cluster.

In contrast to UpSizeR, Dscaler [82] replicates per-tuple correlation patterns for key at-
tributes using the concept of correlation database. This facilitates non-uniform scaling! and
greater similarity. However, obtaining these per-tuple correlations themselves is typically hard.
Moreover, all these techniques only generate the key attributes, whereas the non-key values
are sampled from the original database using these key values. Hence, the approach becomes
impractical in Big Data and security-conscious environments. Finally, Dscaler fails to retain
volumetric similarity for some common query classes.

A different trajectory of Database-Dependent Regeneration has been followed by the ML
community. The techniques here were presented in a comprehensive study by Fan et al. [36].

They broadly classified the frameworks into statistical models and neural models as follows:

Statistical Models. The aim is to model the input data as a joint multivariate distribution
and generate synthetic data by sampling from this distribution. The dependence between
variates is captured using techniques such as copulas [51, 60], Bayesian networks [81],

Gibbs sampling [58], and Fourier decompositions [21]. Other than these, synopses-based

'In non-uniform scaling, individual tables are scaled by different factors.

21

approaches such as wavelets and multi-dimensional sketches, build compact data sum-
maries which can be then used for estimating joint distributions [30, 77]. However, sta-

tistical models may have limitations on effectively balancing privacy and data utility [36].

Neural Models. The frameworks here use deep generative models to approximate the dis-
tribution of the original data. The techniques adopted are based on autoencoders [38],
variational autoencoders (VAE) [72], and more recently generative adversarial networks
(GANs) [31, 78, 59, 20, 33, 56].

The study performed thorough evaluation of the techniques and found that GAN are promising
for relational data synthesis.

Despite the appeal, applying these techniques for our usecases is not straightforward because
of the following issues: (a) They focus on single table synthesis. Therefore, evaluation of even
simple queries involving joins between multiple tables cannot be satisfactorily performed; (b)
Training a GAN requires original data which may itself not be provided by the client; (c)
These generators largely focus on development of ML models over the synthetic databases.
Establishing their utility for ensuring volumetric similarity is an area for future work.

Apart from the above, there is extensive work in the area of data privacy. The work in
this area (e.g. [35, 43, 50, 48, 49, 69, 76]) has largely focused on generating query answers
that do not expose features of the underlying private data, rather than generate the data
itself [37]. Although, there is some work in the area of privacy-preserving data publishing
(e.g. [15, 27, 34, 47]). Here, the focus is on sharing data utility in a way that preserves sensitive
information. Our work differs from this line of work as we assume no access to the client
database instance. This lack of client data access could stem from reasons including (a) Client
may not be comfortable in sharing the data; (b) There could be regulatory protocols such as
GDPR (General Data Protection Regulation [4]) — in fact, such constraints have gained much
traction in the recent times. For example, the recent work by Beedkar et al. [23] studies data
processing under such constraints; (c) Data transfer overheads from client to vendor, especially

in the current Big Data era.

2.3 Query-Dependent Regeneration

In more recent times, generation techniques driven by constraints on query outputs have been
analyzed. Here the aim is to generate a database given a workload of queries such that vol-
umetric similarity is achieved on these queries. A particularly potent effort in this class was
Reverse Query Processing (RQP) [24], which receives a query and a result as input, and re-

turns a minimal database instance that produces the same result for the query. An alternative

22

fine-grained constraint formulation is to specify the row-cardinalities of the individual operator
outputs, and the techniques advocated in [53, 55, 17, 52, 37, 80] fall in this category. They can

be classified into two groups based on the nature of constraints.

Parameterized Constraints: Here the queries are parameterized with regard to the con-
stants in the query, and the generators (e.g., QAGen [25], MyBenchmark [55], Touch-
Stone [52]) additionally also provide parameter values for which the intermediate cardi-

nalities are matched.

Value Constraints: Here predicate constants are pre-specified in the input as part of the
workload. The generators (e.g., [17], [37], [80]) ensure that the intermediate cardinalities

are matched for these constants.

We already discussed examples of both type of constraints in the previous chapter. While
the parameterized constraints may be preferable from a privacy perspective, value constraints
generate data that is (a) more directly representative of the source environment, and as a
consequence (b) more robust to future queries outside of the original workload. Therefore, our
work is based on this category. We further discuss the various query-dependent regeneration

frameworks in greater detail.

2.3.1 Reverse Query Processing (RQP)

RQP [24] gets a query and a result as input and returns a possible database instance that could
have produced that result for that query. Specifically, the problem addressed is as follows:
“Given a SQL Query @, the Schema Sp, of a relational database (including integrity constraints),
and a Table R (called RTable), the goal of RQP is to find a database instance D such that:
R =Q(D), and D is compliant with Sp and its integrity constraints.”

Generally, there are many different database instances that can be generated for a given @)
and R. Amongst them, RQP tries to generate a small database instance.

The overall architecture of RQP is shown in Figure 2.1. An input query is (reverse) processed

by the following components: (The description of the components is largely sourced from [24].)

Parser: The SQL query is parsed into a query tree. This parsing is carried out in exactly the
same way as in a traditional SQL processor. What makes RQP special is that that query
tree is translated into a reverse query tree T. In the query tree Ty, each operator of
the relational algebra is translated into a corresponding operator of the reverse relational

algebral.

In a strict mathematical sense, the reverse relational algebra is not an algebra and its operators are not
operators because they allow different outputs for the same input.

23

compile—time

Query Q Query parser
- and Reverse Query Processor

Translator

Reverse
query tree Ty run-—tme
Bottom—u
Database _ P Model
schema SD quety checker
annotation
Annotated A o
T+ Formula L Instantiation 1
Q Y
Quer (ptimized [, | Top—down
Y o data = Database D
optimizer . ..
p mstantiation
A i

RTable R Parameter values

Figure 2.1: Architecture of RQP [24]

Bottom-up Query Annotation: The second step is to propagate schema information (types,
attribute names, functional dependencies, and integrity constraints) to the operators of
the query tree. Furthermore, properties of the query (e.g., predicates) are propagated to
the operators of the reverse query tree. As a result, each operator of the query tree is
annotated with constraints that specify all necessary conditions of its result, to give Tg :
This, for instance, guarantees that a top-level operator of the reverse query tree does not

generate any data that violates one of the database integrity constraints.

Query Optimization: In the last step of compilation, the annotated query tree ch is trans-
formed into an equivalent optimized reverse query tree T, é? that is expected to be more

efficient at run-time.

Top-down Data Instantiation: At run-time, the annotated reverse query tree is interpreted

using R as input. Just as in traditional query processing, there is a physical implemen-

24

tation for each operator of the reverse relational algebra that is used for reverse query
execution. The result of this step is a valid database instance D. As part of this step, a

model checker is used in order to generate the data.

We would like to emphasize that RQP differs from the frameworks that focus on preserv-
ing volumetric similarity since RQP focuses on matching the final query result as opposed to

cardinalities at intermediate nodes in the query execution plan.

2.3.2 Query Aware Generation (QAGen)

The idea of using cardinalities from a query plan tree for data regeneration was first introduced
in QAGen [25, 53]. It deals with generating synthetic data for a single query plan only. The
general architecture of QAGen is shown in Figure 2.2. The various modules in the pipeline are

described next: (The modules’ description is largely sourced from [25].)

7. Instantiated

Parameter(s)
1. Query Qp, ‘
Schema M { ! Query Analyzer Data Instantiator 8. Instantiated | Generated
Tuple
[Database
]
/\ | | knob = 2 4
oo T Knob =? /~ }Knab -7 2. Correct
||_2 g /M\ | knob-annotated 6. Symbolic Tuple
Knob=7? § & THKnob=7? QAGen
Knob =? execution plan
Knob=? R S yuop = 2 5. Invoke
Y
3. Knob . . 4. Symboli i
7Va|:§s - Symbolic Query Engine 47%’:@0 e Symbolic
Database

Figure 2.2: Architecture of QAGen [25]

Query Analyzer. First, the database schema M and the input query Qp are taken as input
by the Query Analyzer. The output of this process is a knob-annotated query execution
plan. A knob can be regarded as a parameter of an operator that controls the output.

A basic knob that is offered by QAGen is the output cardinality constraint. This knob

25

allows a user to control the output size of an operator. However, whether a knob is

applicable depends on the operator and its input characteristics.

Symbolic Query Processing (SQP). After parsing, the next phase is of SQP. The goal
here is to capture the user-defined constraints on the query into the target database. For
this, QAGen integrates the concept of symbolic execution from software engineering into
traditional query processing. Symbolic execution is a well known program verification
technique, which represents values of program variables with symbolic values instead of
concrete data and manipulates expressions based on those symbolic values. Borrowing this
concept, QAGen first constructs a symbolic database containing a set of symbols instead
of concrete data. Since the symbolic database provides an abstract representation for
concrete data, this allows controlling the output of each operator of the query. The input
query is executed by a Symbolic Query Engine just like in traditional query processing; i.e.,
each operator is implemented as an iterator, and the data flows from the base tables up to
the root of the query tree. Each operator manipulates the input symbolic data according
to the operator’s semantics and the user-defined constraints, and incrementally imposes
the constraints defined on the operators to the symbolic database. After this phase, the
symbolic database is then a query-aware database that captures all requirements defined

by the test case of the input query (but without concrete data).

Data Instantiation. This phase reads in tuples from the symbolic database that are prepared
by the SQP phase and subsequently, a Constraint Satisfaction Program (CSP) is invoked
to identify values for symbols that satisfy all the constraints, and instantiates the symbols.

The instantiated tuples are then inserted into the target database.

On the positive side, QAGen is capable of handling complex operators as they use a general
CSP, but the performance cost is huge since the number of CSP calls substantially increases
with the database size. Further, it requires operating on a symbolic database of matching size
to the original database, and processing of the entire database during the algorithm execution.
This makes it impractical for Big Data environments. Finally, as mentioned earlier, QAGen

supports only one query plan in the input.

2.3.3 MyBenchmark

This single query input limitation of QAGen was addressed in a follow-up tool called My-
Benchmark [54, 55], which creates a symbolic database on a per query basis and at the end

tries to heuristically merge the various databases into a small number of databases. Specifically,

26

the problem addressed is as follows: “Given a database schema H, a set of annotated queries
Q ={Q1,Q,...,Q,} (the operator(s) in @; are annotated with cardinality constraint(s) C;),
MyBenchmark generates m (m < n) databases Dy, Ds, ..., D,, and m sets of parameter values
Py, Py, ..., Py, such that (1) all databases D; (1 < j < m) conform to H, and (2) the resulting
cardinalities C; of executing (); on one of the generated databases D;, using the parameter
values P;, approximately meet C; (the degree of approximation defined is based on the relative
error between actual cardinalities and annotated cardinalities).”

If m = n, that essentially means MyBenchmark is the same as QAGen where one database

is generated per query. MyBenchmark aims to minimize m, the number of generated databases.

SChema_ H o Execution Planner
Annotated queries ——»
Q1 ooy Gis -oes O i v 3
Size =10
Zipfdistributionp-q/ \E;S\ze=20 /| SymbolicDB | - ©
/ I . A Integrated
size=57 i 51';9=200 k4 " ‘ symbolic DB; [*, /‘ D81
= ize = -~ / \ L
I Symbolic I
saP » 4 / 9 Data p
Size=2RU Size = 100 engine | - ﬁ]?éat::f:r - 4 instantiator [~ =an
Symbolic DB 9 .
v| / A
Y N - 94 Integrated DB
N - symbolic DB.. "
Symbolic DB
MyBenchmark

Figure 2.3: Architecture of MyBenchmark [55]

Figure 2.3 shows the architecture for MyBenchmark. The data flow through this pipeline, as
described in [55], is as follows: “To generate m databases for n annotated queries Q1, Qa, - . ., @y,
MyBenchmark first uses QAGen’s SQP engine as a black-box component to process each an-
notated query separately (without data instantiation) and generates n Symbolic Databases
Dy, Ds,...,D,. Each symbolic database D; guarantees that Q;(D;) satisfies the constraints
annotated on ();. Then, a Symbolic Database Integrator is used to integrate these databases.
The integration algorithms are designed to minimize the number of symbolic tuples with con-
tradicting constraints and the number of generated databases. Finally, the Data Instantiator
of QAGen is used to instantiate each integrated symbolic database with concrete values.”

This concept of constructing multiple databases for a single query workload is similar to
our Workload Decomposition module. Our module constructs different sub-workloads which
do not have overlapping projections, which also finally results in multiple database summaries.

However, we differ on the key practical issue that MyBenchmark generates a database on a per

27

query basis to begin with, which results in enormous time and space overheads. In contrast,

our approach is not only always in the summary space, but also data-scale-free.

2.3.4 Touchstone

Touchstone [52, 75] targeted the scalability limitations of its predecessors and achieved fully
parallel data generation, linear scalability, and lean memory consumption for supporting the

generation of enormous query-aware test databases.

Input Query Instantiation
R size: 10 Q Init Random Column Generators |
ry | Primary Key
H Do imeger | * @ Grez Gro Gsss, N Instan_tiatgd
r» | Double Query Instantiator Queries Q
£k cz» e
R.r| O [[0,10]
D: [rr| 0 [[030]] - ——
Ss,| 0 | [0, 20] @ GIEEs
el zon | y
: Data Generation
site =2 o T A
size = 4 size = 3 @ G, Chain, Chain, Chain; -
\ 0 Generated
o A Distributed [-=%.| Data DBI
|R,r2<P1 |5.SJ_ P2 G i
R S Controller [<5|Generator ~_
Info T

Figure 2.4: Architecture of Touchstone [52]

The input to Touchstone contains the database schema H, data characteristics of non-key
columns D, and parameterized cardinality constraints. The infrastructure of Touchstone is
divided into two major components, which are responsible for query instantiation and data
generation, respectively, as shown in Figure 2.4. The details of the pipeline is as follows: (The
pipeline description is largely borrowed from [52])

Touchstone builds a group of random column generators G = {G1, G, ..., G, }, which de-
termine the data distributions of all non-key columns to be generated. A random column
generator (G; in G is capable of generating values for the specified column while meeting the

required data characteristics in expectation.

28

Given the input workload characteristics W, Touchstone instantiates the parameterized
queries by adjusting the related column generators if necessary and choosing appropriate values
for the variable parameters in the filter and non-equi-join predicates. The instantiated queries
@ are output to the users for reference, while the queries Q and the adjusted column generators
G are fed into the data generation component.

Given instantiated queries @ and constraints over the equi-join operators, Touchstone de-
composes the query trees annotated with constraints into constraint chains, in order to decouple
the dependencies among columns, especially for PK-FK pairs. Data generation component gen-
erally deploys the data generators over a distributed platform. The random column generators
and constraint chains are distributed to all data generators for independent and parallel tuple
generation.

While TouchStone significantly improved the efficiency of data generation, it does not sup-
port projection based operators in the query. Further, equality constraints over filters involving
multiple columns are also not supported. Also, an important thing to note is that the techniques
adopted here do not translate to the value constraints case. For example, column generator

usage and parameter values adjustment exploit the flexibility of dealing with query parameters.

2.3.5 DataSynth

DataSynth [17, 18] was the first work which identified the declarative property of cardinality
constraints and its ability to specify data characteristics. Given a set of value cardinality
constraints as input, the paper proposed algorithms based on the LP solver and graphical
models to instantiate tables that satisfy those constraints.

DataSynth also constructs a denormalized table (variant) for each relation in the database
first. The core idea here is also to express the constraints using an LP, where each variable
represents the volume of a region of the data space. The regions are constructed using a grid-
partitioning approach. In this approach, the domain of each attribute is intervalized based
on the constants appearing in the CCs. This gives a grid structure which is aligned with the
interval boundaries for each attribute. For each cell in the grid, a variable is created that
represents the number of data rows present in that cell. For example, Figure 2.5 shows the
grid partitioning for the example constraints considered in the Introduction. Each rectangular
box (formed with dotted lines) forms a region in DataSynth and subsequently a variable in the
LP. Therefore, for this example, it results in 25 variables. The solution of the LP is used to
generate a denormalized table using a sampling based approach.

While DataSynth laid the foundation for Hydra, the latter has significantly extended the

solution on multiple facets:

29

1 2 3 4 5
O oo —————————————————————————————————— = = = = = ==
6 i 7 8 9 |10
VNN RN AN S S—
<
o !
8 11 | 12 13 14 | 15
© | | ‘ S —
16 | 17 | 18 19 | 20
o A R
21 | 22 | 23 24 (25
15 20 35 40
Age

Figure 2.5: Grid Partitioning in DataSynth

Constraints Scope. The algorithm adopted in DataSynth handled constraints with filter and
join operators satisfactorily, however, the support for the projection operator has been
minimal, restricted to a few extreme cases. Specifically, proposed projection generator
catered to single-column tables. Here, due to the single-column restriction, there are by
definition no critical challenges of intra/inter projection subspace dependencies. Hydra

gives a comprehensive solution to handle SPJ constraints.

LP Complexity. By replacing the grid-partitioning approach with region-partitioning, Hydra
significantly reduces the complexity of the LP. For example, for the above example, grid
partitioning led to 25 variables, while region partitioning of Hydra (shown in Figure 1.3)
resulted in only four variables. This differences magnifies as the number of constraints
grow. As a case in point, an LP with more than a billion variables in DataSynth got
reduced to an LP with a few thousand variables in Hydra — in fact, in this case, the LP
solver crashes on the DataSynth formulation, but runs to completion in less than a minute

on the Hydra formulation.

Database Instantiation Overheads and Accuracy. In DataSynth, the sampling approach
and its subsequent processes require iterating on the entire database multiples times. This
is an computationally expensive, especially for Big Data systems. Further, the sampling
technique also induces errors in volumetric fidelity. Hydra replaces the sampling strategy
with a deterministic Align-Merge algorithm that not only eliminates the inaccuracies, but

also is extremely efficient, thanks to its data-scale-free nature.

30

2.3.6 Linked Data Synthesis

Recently, a framework was proposed in [37] with the focus on generating key columns, such

that, the generated data obeys referential integrity. Specifically, the input is a relation R; with

an unknown foreign key dependence on a relation Rs, i.e., the F'K column in R; is missing,
and a set of CCs and Integrity Constraints (ICs). Further, for the ICs, they define a type of
Denial Constraints (DCs), called Foreign Key DCs, that applies to Ry and forbids tuples from

having the same FK value under specified conditions.

The solution operates in two phases as shown in Figure 2.6. We briefly describe these next.

Phase 1. The goal here to construct the view R; <1 Ry based on the CCs. This view is

initialized with a copy of R; without the F'K column, along with an empty column per
non-key column in R,. The algorithm for generating the view is inspired from the grid
partitioning approach of DataSynth. Further, when the CCs do not have intersections
and disjunctions, an optimization is used, where the containment and disjointedness of

CCs are modeled as a Hasse diagram.

Phase 2. Here the generated view is used to construct the F'K column so that the DCs are

satisfied. For this, the concept of conflict hypergraphs and hypergraph coloring is used.
Specifically, the tuples in R; are taken as vertices and an edge between a pair of vertices
is added if the corresponding tuples will violate a DC if assigned the same foreign key.
Here an approximate greedy algorithm for coloring is used and therefore leads to some

artificial tuple addition in R,.

Using the techniques in this paper for our settings has the following concerns:

1.

The work assumes that the tables without the key column are given as input. This may

not be acceptable to the clients due to privacy concerns.
Projection CCs are not considered here as well.

The focus is on satisfying constraints only on the foreign key table (R;). Therefore, as a
consequence of ensuring referential integrity, significant spurious tuple may be added to
the referenced table (Ry).

The techniques have high computational overheads.

31

—— . —————————————————

‘ cting CC Solution \
! |nteré‘»gs _ Add Marginals]
+ Solve as ILP

Solve as Hasse] :
Diagram

(o]
nt. /' Vjoin

-—— e —— — ———

DC Solution 1
Conflict Graph Color Graph | |

R, with FK

.| for R;Based on Using List
: DCs Coloring 1 Augn;ented
\ /

Figure 2.6: Linked Data Architecture [37]

2.3.7 Supervised Autoregressive Models (SAM)

We discussed several neural frameworks in Section 2.2. These frameworks used the original data
in the input to train their models. An exception to these models is the recent work by Yang et
al. [80], where a Supervised deep Autoregressive Model-based method for database generation
(SAM) is proposed. SAM trains the model of joint data distribution of the entire database
from a query workload, rather than the data directly. With an autoregressive model of the
joint data distribution, it is straightforward to generate a database instance of a single relation.
To address the challenges of multi-relation databases, the proposed approach includes inverse
probability weighting and scaling algorithms to obtain unbiased base relation samples from
full outer join samples, and Group-and-Merge algorithm to assign join keys to the generated
relations.

Figure 2.7 shows the workflow of SAM, consisting of two stages — learning and generation.
During the learning stage, batches of (query, cardinality) pairs are collected. From these,
SAM learns the joint data distribution of the original database using differentiable progressive
sampling. During generation, SAM first samples full outer join tuples from the training model.
Further, inverse probability weighting is used to produce samples for each base relation. Finally,
join keys are assigned using the Group-and-Merge algorithm.

While SAM advances ML based regeneration techniques, the proposed approach raises the

following concerns:

1. Since SAM is probabilistic in behaviour, it is likely to make errors in matching output

32

Query Inverse Probability
Workload Weighting
- — Supervised
Autoregressive Generated
Differentiable Model Database
Progressive Group-and-Merge
Sampling Strategy
[Y J L Y]
Learning SAM Generation using SAM

Figure 2.7: SAM Architecture [80]

row cardinalities, especially wrt fine-grained equality predicates. This is not the case with

Hydra as it is deterministic in nature.

2. The framework’s accuracy with respect to volumetric similarity is predicated on training

the model with large query workloads.

3. Modeling has been done for the Select and Join operators, but support for projection

based operators has not yet been established.

2.4 Miscellaneous

Hydra focuses on mimicking the client environments at the vendor site to aid in performance
testing of the system subsequently. This falls under client-dependent testing approach, which is
the most focused testing approach. However, an alternative is randomized creation of databases
and queries - for instance, the optimizer testing approach by Waas and Galindo-Legaria [74]
employs stochastic generation of queries. Alternatively, learning-based techniques can be used
to detect anomalies during query execution, as implemented in SolarWinds [8].

Apart from performance testing, several techniques in the literature deal with functional
testing of the system. For example, SQLsmith [10] has been effective in finding the queries
that cause the DBMS process to crash. Similarly, general-purpose fuzzers such as AFL [1] are
routinely applied to DBMSs, and have found many bugs. RAGS uses a differential testing
based approach, where a bug is flagged if inconsistent outputs are obtained on evaluating
automatically generated queries over multiple DBMSs. SQLancer [9] strives to find logic bugs
in the DBMS that causes incorrect query results. It uses the following testing approaches: (a)

Pivoted Query Synthesis (PQS) [63], where the core idea to automatically generate queries for

33

which it is expected that a specific, randomly selected row (called pivot row), is fetched — if it is
not fetched, a bug is flagged; (b) Non-optimizing Reference Engine Construction (NoREC) [64],
which aims to find optimization bugs by translating a query that is potentially optimized by
the DBMS to one for which hardly any optimizations are applicable, and comparing the results
— if there is a mismatch, a bug is flagged; (c¢) Ternary Logic Partitioning (TLP) [65], which
partitions the query into three, whose results are composed and compared to the original query

— a mismatch indicates a bug.

34

Chapter 3
Problem Framework

In this chapter, we summarize the problem statement, the underlying assumptions, the output

delivered, and a tabulation of key notations used in the thesis.

3.1 Problem Statement

Given an SPJ query-workload W, with its corresponding set of AQPs Q, derived from an original
database with schema & and statistical metadata M, the objective is to generate a synthetic
database D such that it conforms to § and Q. That is, the AQPs obtained from the original
database match, wrt the cardinality annotations, the AQPs obtained on D.

3.2 Assumptions

We assume that W comprises of only PK-FK joins!. Further, we assume that the filters and
projections are applied only on non-key columns. These assumptions are common in prior work
as well as OLAP benchmarks.

For simplicity, we assume that Q is collectively feasible, that is, there exists at least one
legal database instance conforming to Q. In the regeneration usecase, this assumption holds
trivially since the constraints are produced from an original client database. The infeasibility

scenario is deferred to Section 3.7.

By PK-FK joins, we mean that for each join node in the query plan tree, the participating intermediate
tables should possess PK-FK nature, where one table has join column with all distinct values, and the other
table has the join column with the subset property. In a nutshell, we want that queries can be mapped to
denormalized tables.

35

3.3 Output

Given 8, M, W and Q, Hydra outputs a collection of database summaries S. Each summary s® €
S can be used to deterministically produce the associated database D. The databases produced
are such that: (a) all of them conform to 8, and (b) for each query in W, its corresponding
AQP in Q matches with the AQP obtained on at least one output database instance.

3.4 Notations

The main acronyms and key notations used in the thesis are summarized in Tables 3.1 and

Table 3.2, respectively. We provide a more detailed notation set in the respective chapters.

Table 3.1: Acronyms

Acronym Meaning
AQP Annotated Query Plan
CC Cardinality Constraint
PIC Projection-inclusive Constraint
SPJ Select Project Join
DNF Disjunctive Normal Form
PAS Projection Attribute Set
PRB Projected Refined Block
ARB Aligned Refined Block
CPB Constituent Projection Block
PSD Projection Subspace Division
TAS Target Attribute-Set

The mechanism for synthesizing data is explained progressively in the upcoming chapters.
Specifically, we begin by discussing the single table synthesis method, where initially we assume
only filter operators in the workload in Chapter 4, and subsequently include projection operator
in Chapter 5. The more general problem, including multiple table synthesis with join operator
in the workload, is discussed in Chapter 6.

We now discuss the simplified problem frameworks for Chapters 4 and 5.

3.5 Filter Constraints Problem

Here, we assume the AQPs are given for producing a single table T with the schema 8. Further,
these AQPs are comprised of only filter predicates over T, as shown in Figure 3.1(a). Therefore,
beside the base table cardinality, each AQP can consist of a series of filters and their associated

cardinalities. Each filtered output can be represented as a CC of the form (f,[). This means

36

Table 3.2: Notations

(a) Database Related

Symbol | Meaning

Attributes in a S

(c) Block Related

Symbol | Meaning
b filter-
block
r refined-
block
a ARB
P CPB

that [tuples qualify after applying f filter predicate on the table T'. For example, consider the

S Database Schema

D Output Database (b) Workload Related

M Statistical Metadata Symbol | Meaning

T Output Table q Query

A Attribute W Query Workload

t Tuple Q Set of AQPs

5P Summary of D c A CC

st Summary of T f Filter Predicate

F Fact Table A PAS

D Dimension Table [Output row card. after filter
Vr View wrt T’ k Output row card. after projection
B Borrowed Attribute-Set

S Sub-Table

A

(d) Relation/Function Related

Symbol

Meaning

U(T) | Set of attributes wrt the input table

Domain of the input parameter

A relation btw two tuples

A relation btw CCs and blocks

A relation btw CPBs and blocks

A relation btw ARBs wrt Vr and Vp

S
SR = 2

A relation btw CPBs wrt Vr and Vp

following filter constraint on Std (RollNo, Age, GPA, Scholarship):

(f,4000) | f = (Age > 30 A4 < GPA <9)

The above constraint denotes that applying the f predicate on Std should produce 4000 rows in
the output. We show a visualization of this constraint wrt a sample Std Table in Figure 3.2. In
the figure, the purple rectangle depicts the filter predicate. We see that there are some points
instead the rectangle denoting the tuples in the table. Further, each tuple is annotated with a
number representing its cardinality. If we sum the cardinalities wrt all the tuples in the purple

rectangle, we indeed get 4000, which is the filter output.

37

Distinct Row-Count
after Projection (k)
VA
Filtered Table Filtered Table
Row-Count (I) Row-Count (1)
o* o*
Table Row-Count Table Row-Count
(IT1]) (1T1])
T T
(a) AQP with Filter (b) AQP with Filter and Projection

Figure 3.1: AQP with (a) Filter (b) Filter and Projection

A filter predicate f can be followed by another filter f” in the AQP. Then, the corresponding

filter CC would have f A f” as the filter condition.
In Chapter 4, we simply assume a given set C of filter CCs in the input. Using C, Hydra

produces a table summary s’ that can be used to deterministically produce the associated table

T. Further, T' conforms to & and satisfies C.

(1200) (800)
|] |]

(500) (80)
6 A A

GPA =

(515) (900) (5)
4.3 * * *

30 32 35 38 40 43

Agem

Figure 3.2: Filter and Projection Visualization

38

3.6 Projection Constraints Problem

Here as well, we assume that the AQPs are given for a single table T" with the schema §. The
AQPs now include projection on top of the filter predicate result on 7. Therefore, besides
base table cardinality, each AQP gives two CCs, one filter CC and one projection CC. This
pair of CCs is collectively called a Projection-inclusive Cardinality Constraint (PIC). A PIC
is represented using the quadruple (f, A, [, k), as a shorthand notation. Here, f represents
the filter predicate applied on T, A represents the projection attribute-set (PAS), [signifies
the row-cardinality of the filtered table, and k represents the row-cardinality after projection
on this filtered table. For example, consider the following PIC on Std(RollNo, Age, GPA,
Scholarship):
(f,GPA,4000,3) | f = (Age >30N4 < GPA<9)

The above PIC denotes that applying the f predicate on Std should produce 4000 rows in the
output, which is further reduced to 3 rows after projecting on the GPA column. Let us revisit
Figure 3.2. We can see that the points in the rectangle had three kinds of shape — rectangle,
triangle and star. These three shapes denote the three distinct GPA values (4.3, 6 and 7)
present within the filter predicate boundary.

In Chapter 5, we simply assume a given workload Q of PICs in the input. Using Q, Hydra
outputs a collection of table summaries S. Each summary s” € S can be used to determin-
istically produce the associated table T'. The tables produced are such that: (a) all of them
conform to 8, and (b) each PIC in Q is satisfied by at least one of them.

3.7 Workload Feasibility

Defining a set of necessary and sufficient conditions that ensure solution feasibility for various
types of input constraints has been looked at in the database literature. For instance, [46] deals
with schematic constraints on the participation cardinalities for the relationships between en-
tities in the ER model, and provides necessary and sufficient conditions to determine whether
database instances exist such that all entities and relationships are populated. However, giv-
ing a similar holistic solution in the statistical query-based constraints space, is still an open
problem, although restricted versions have been attempted. Specifically, feasibility of projec-
tion cardinality constraints has been discussed in [26, 70, 44]. A class of constraints, called
BT inequalities, were proposed in [26], which capture the necessary conditions to be satisfied
by the projection output cardinalities. However, this constraint set is not sufficient, making
it still possible that no actual database can satisfy these values. Subsequently, another class

of constraints, called NC (non-uniform cover) inequalities, was proposed in [70]. While this

39

constraint set creates sufficient conditions for database construction, the limitation is that sat-
isfiability of these conditions is not guaranteed. Further, the feasibility space does not exhibit
a convex behavior, making it inexpressible as a set of linear constraints [44].

Although we assume a feasible workload as input to Hydra, if the vendor, while constructing
“what-if” scenarios, ends up giving an infeasible workload as input, the following two possibil-

ities may arise:

1. It may so happen that Workload Decomposition, while resolving conflicting projections,
may as a collateral benefit, also produce feasible sub-workloads. In this scenario, Hydra

produces one database per sub-workload.

2. Alternatively, in case this beneficial effect of decomposition does not happen, then the
LP constraints themselves become infeasible. Hence, the LP solver eventually flags this
infeasibility. We have explicitly verified this to be the case for the Z3 solver with a few

deliberately created infeasible constraint sets.

40

Chapter 4

Regeneration using Filter Constraints

4.1 Introduction

This chapter discusses the mechanism for synthesizing a table that is compliant with a given

set of filter cardinality constraints.

4.1.1 Filter Cardinality Constraints

A filter cardinality constraint applicable on a synthetic table T is of the following form:

o (T)=1

Here, f is a selection predicate and [is a non-negative integer equal to the number of rows
satisfying predicate f. We assume that each predicate is in disjunctive normal form (DNF).
As a shorthand notation, we represent the above filter CC using the pair (f,[). Also, for
brevity, we refer to filter CCs as CCs simply in the rest of this chapter.
As a sample instance, consider the following pair of CCs on a generated table Std (RollNo,
Age, GPA, Scholarship):

c1: {f1,40000) | f1 = (15 < Age < 35 A6 < GPA < 8)
Co ¢ {f2,45000) | fo = (20 < Age < 40A5 < GPA < 9)

Here, ¢, denotes that applying the f; predicate on Std should produce 40000 rows in the output;
likewise, co denotes that 45000 rows qualify the f5 predicate.

41

4.1.2 Technical Challenges

The key challenges in handling a set of filter constraints are as follows:

Overlapping Filters. For a given set of CCs, the filter predicates in these constraints may
intersect. A pair of filters fi and f, intersect if there is a point ¢ in the domain space of the
table that satisfies both f; and f5. Intersection among filters induces an interdependence
among the CCs that has to be accounted for while generating the data. For example, the
filters wrt ¢; and ¢y in the aforementioned example were intersecting. Therefore, the data

for them cannot be generated independently.

Curse of Dimensionality. The CCs that do not have a direct intersection, may indirectly
intersect due to the presence of additional dimensions in the table. For example, con-
sider the following two CCs: (Age < 25,25000), (GPA < 8,43000). If the data for the
table along the two dimensions Age and GPA is generated independently and simply
concatenated thereafter, then both the CCs are satisfied. However, if we consider the
both the dimensions together, then the 2-dimensional data points cannot be generated
independently for the two CCs. Therefore, as the number of dimensions being considered

increase, typically, this kind of dependence among the constraints become more profound.

4.1.3 Owur Contributions

Hydra adopts a partitioning strategy that divides the data space into optimal (minimum) num-
ber of regions. This provides an efficient way to handle overlapping filters, as the input CCs
can be modelled using an LP with lower complexity. Further, a combination of dimensionality
reduction strategy and an align-merge strategy to recover the original space, help to overcome
the intersections in higher dimensions. Hence, these techniques provide Hydra the strength to
overcome the limitations of prior work in terms of (a) handling larger workloads, (b) providing
efficient end-to-end solution, (c) giving improved volumetric similarity.

Therefore, the key contributions of the ideas presented in this chapter are as follows:

Extended Workload Coverage: Hydra incorporates a novel LP formulation technique,
region-partitioning, that can encode volumetric constraints with an LP of low complex-
ity. When compared with the grid-partitioning approach used in DataSynth, region-
partitioning reduces the LP complexity by many orders of magnitude. For instance, an
LP with more than a billion variables in DataSynth is reduced to an LP with a few thou-
sand variables in Hydra— in fact, in this case, the LP solver crashes on the DataSynth

formulation, but runs to completion in less than a minute on the Hydra formulation. The

42

beneficial outcome of the low LP complexity is that it facilitates the efficient handling of

much richer query workloads.

Efficiency: To synthesize the output table from its lower dimensional parts, Hydra replaces
the sampling-based approach proposed in DataSynth by an align-merge strategy. The
primary benefit of the latter is that it operates directly on the table summary, and is

therefore extremely efficient.

Accuracy: The aforementioned align-merge strategy, is deterministic in nature, and does not
suffer the probabilistic errors that affect the sampling approach, and therefore delivers

ideal fidelity with regard to volumetric similarity.

Enhanced Evaluation: We evaluate Hydra on workloads of 300-plus filter CCs constructed
from the complex TPC-DS benchmark and the real world JOB benchmark, and the results
show that it can efficiently regenerate data for such workloads at various data scales. This
makes our evaluation more comprehensive than prior techniques, which have largely been
evaluated on simpler and small-sized query workloads operating on modest databases.
For instance, DataSynth has been evaluated on simple TPC-H database environments

that resulted, with their formulation, in LPs with only a few thousand variables.

The entire end-to-end pipeline operates in the summary space, hence providing data-scale-
independence.
4.1.4 Organization

The remainder of this chapter is organized as follows: The problem framework is discussed in
Section 4.2. The key design principles in handling filter CCs are introduced in Section 4.3,
and then described in detail in Sections 4.4 through 4.6. The mechanism to handle LIKE filter
predicates is discussed in Section 4.7. The experimental evaluation is reported in Section 4.8.

Finally we conclude in Section 4.9.

4.2 Problem Framework

We summarize the basic problem statement, assumptions, the output delivered, and a tabula-

tion of the notations used in this chapter.

4.2.1 Problem Statement

Given a workload C of filter CCs and a table schema &, the objective of data generation is to

synthesize a table instance T such that it conforms to 8 and satisfies C.

43

4.2.2 Assumptions

It is assumed that CCs consist of filters on only non-key attributes. Further, we assume the
predicates are in the DNF form. Finally, for simplicity, we assume that the CCs are collectively

feasible, that is, there exists at least one legal table instance satisfying all the constraints.

4.2.3 Output

Using C and 8, Hydra produces a table summary s’ that can be used to deterministically

produce the associated table T'. Further, T' conforms to 8§ and satisfies C.

4.2.4 Notations

The main acronyms and key notations used in this chapter are summarized in Tables 4.1 and

Table 4.2, respectively.
Table 4.1: Acronyms

Acronym Meaning
CC Cardinality Constraint
DNF Disjunctive Normal Form

Table 4.2: Notations

(a) Database Related

Symbol | Meaning
S Table Schema (b) Workload Related
T Output Table :
1 Attrbute Symbol | Meaning
I | Tuple c |ACC
T D f Filter Predicate
s Summary of T’
l Output row card. after filter
S Sub-Table C Sot of 00
A Attributes in a .S o 5
K Cardinality of A
Q Domain of S

(c) Block Related

Symbol | Meaning (d) Relation/Function Related
b filter-block Symbol | Meaning
F Partition (Set of filter- dom(.) | Domain of the input parameter
blocks) R A relation btw two tuples
x variable for row cardinality

44

4.3 Design Principles

In this section, we give an overview of the core design principles of handling filter CCs, with the
Std table of the Introduction used as the running example to explain their impact. Subsequently,

in Sections 4.4 through 4.6, each principle is described in detail.

4.3.1 Region Partitioning

At its core, Hydra models the input CCs into an LP. Using the CCs, the data space of the table
is partitioned into regions using a novel region-partitioning algorithm. There is one variable
for each region, corresponding to the number of tuples chosen from the region. Each CC is
encoded as an LP constraint on these variables, and the solution of the LP is used in deciding
which tuples to include in the table.

Our region-partitioning strategy is in marked contrast to the grid-partitioning strategy used
in DataSynth. Grid-Partitioning first intervalizes the domain of each attribute based on the
constants appearing in the CCs, and divides the domain into a grid aligned with the interval
boundaries for each attribute. If the table has K attributes, and in the worst case an attribute
gets divided into ¢ intervals, then the data space is partitioned into a grid of O(¢%) cells. For
each cell in the grid, a variable is created that represents the number of data rows present in
that cell. In contrast, our region-partitioning strategy divides the domain into only the number
of regions required to precisely write out each CC, and assigns one variable to each region. This
results in O(29) variables, where) is the number of CCs — this typically leads to far fewer
variables than grid-partitioning.

To make the above concrete, consider the CCs ¢; and ¢y from our running example. Grid-
partitioning divides the domain of the table as shown in Figure 4.1a. With a variable assigned
to each grid cell, there is a total of 25 variables. In contrast, the region-partitioning strategy
partitions the space into 4 regions as shown in Figure 4.1b, resulting in a tally of only 4 variables.

The CCs, expressed in terms of LP constraints, are shown below in Figure 4.2a and 4.2b for
grid-partitioning and region-partitioning, respectively. In the former, variable z; denotes the
cardinality of cell ¢, while in the latter, variable z; denotes the cardinality of region b;.

The LP is are passed on to the solver, which provides one of the feasible solutions as the
output — we have used Z3 [14] to implement this functionality. With region-partitioning, the
LP is usually much simpler due to the smaller number of variables. Further, as the CCs get
more complex, the differences in complexity of the LPs produced by region-partitioning and

grid-partitioning become more pronounced.

45

14 2 3 4 is
1o Y S S S— o
6 | 7 8 i9 |10
PSR P SN U S ©
< <
a i o
& 11 | 12 13 14 | 15 &
PP . ; . ©
16 | 17 | 18 i 19 | 20
o o — 0
200 22 23 {24 {25
15 20 35 40 15 20 35 40
Age Age
(a) Grid-Partitioning (b) Region-Partitioning

Figure 4.1: Grid-Partitioning vs Region-Partitioning

Tio + T3 = 40000 T, +x3 = 40000

Ty + X9+ X135+ T4 + T18 + T19 = 45000 To + T3 = 45000
r1+ 29 + ... + 295 = 50000 r1 + xo + x3 + 24 = 50000

(a) Grid-Partitioning (b) Region-Partitioning

Figure 4.2: LP Constraints

4.3.2 Dimensionality Reduction

Since the intersections among CCs tend to increase in higher dimensional space, the LP com-
plexity is also adversely affected due to exponential increase in the number of regions. To
address this, the table is first decomposed into a set of sub-tables to reduce the intersections
among CCs in lower dimensions. This effectively reduces the LP complexity. This optimization
was proposed in [17]. We summarize the algorithm here: Construct a “table-graph” by first
creating a node for each attribute, and then inserting an edge between a pair of nodes if the cor-
responding attributes appear together in one or more CCs. Further, additional edges are added
(if required) to make the table-graph to be chordal', a property required to ensure acyclicity
in the subsequent processing. Now, the sub-tables are identified as the mazimal cliques in the
table-graph.

For instance, the sub-tables of the table-graph in Figure 4.3a are AEC, BED and CED, as
shown in Figure 4.3b.

LA chordal graph is one in which all cycles of four or more vertices have a chord.

46

EE

C D
(a) Table Graph (b) Sub-Tables

Figure 4.3: Table Decomposition

Once the sub-tables are identified, the region partitioning is executed on each sub-table.
Since the sub-tables can have common attributes, additional consistency constraints are added
in the LP to ensure the marginal distribution of tuples along these common columns are iden-
tical.

Since partitioning is carried out at a sub-table level, the LP solution, which is expressed
in terms of sub-table variables, needs to be mapped to equivalents in the original table space.
A sampling-based approach was proposed in [17] for this purpose — for example, say a table
(A, B,C) is split into a pair of sub-tables (A, B) and (B,C), the algorithm computes the
distributions Prob(A, B) and Prob(C|B). Then, each tuple is generated by first sampling a
point from the former distribution, and then sampling a point from the latter conditioned on
this outcome.

However, we have chosen not to take this approach since the computational overheads in-
curred are enormous, and the sampling process introduces errors in volumetric fidelity. Instead,
we have designed and implemented an alternative data-scale free, deterministic align-merge al-
gorithm, which produces an intermediate table summary in the output. This not only provides

data scalability but also eliminates the accuracy errors incurred by the sampling strategy.

4.3.3 Summary Based Computation

Hydra produces a table summary in its output. An example summary for Std table, is shown
in Figure 4.4.

The Tuple Generator module of Hydra resides in the database engine. It ensures that
whenever a query is fired, data is not fetched from the disk but instead gets generated on-

demand, using the table summary.

47

Age, GPA, Scholarship | NumTuples
15,8,4K 3000
15,8,1K 2000
20,6,8K 40000
20,5,8K 3000

35,5,12K 1000
35,5,35K 1000

Figure 4.4: Example Table Summary

4.4 LP Formulation

An LP for a table T' is constructed as follows: For each sub-table S in T', every CC that is within
its scope is formulated as an LP constraint. Since sub-tables may share common attributes,
additional consistency constraints are added to the LP to ensure that the marginal distributions
along the common set of attributes are identical in the solutions for the sub-tables.

In this section, we first present the mathematical basis underlying our formulation of LP
constraints for a set of CCs applicable on a sub-table. We then present an algorithm that par-
titions the domain into the minimum number of regions required to capture each CC precisely,
resulting in an LP with the optimal number of variables. Finally, we discuss the formulation
of additional consistency constraints to ensure consistency across multiple sub-tables belonging
toT.

4.4.1 Mathematical Basis for LP Formulation

Let K denote the number of attributes in the given sub-table S, dom(A;) the domain of the
ith attribute (A;). So, dom(A;) x dom(As) x -+ x dom(Af) represents the domain of the S.
We represent this domain using the shorthand notation (2.

We are given a set of () CCs that are applicable on S. For 1 < j < Q.

Simple LP Formulation Let us first consider a simple way of formulating an LP that
encodes all CCs. For each tuple ¢ € (), assign a variable x; that denotes the number of copies
of ¢ in the sub-table S. Then, the LP formulation shown in Figure 4.5 ensures that a feasible
solution satisfies all CCs, including a constraint on the total size of S.

The problem with this formulation is that the number of variables in the resulting LP is as

large as the size of the universe 2. Hence, it is infeasible to work directly with this formulation.

48

(1) For each t € Q,2; > 0

2) [z y

teQ

= [T

(3) For each 5,1 < j <@, Z x| =1,

t:oj(t)=true

Figure 4.5: Simple LP formulation

Reduced LP Formulation We can derive an LP with far fewer variables as follows: We
first note that in the simple formulation, variables corresponding to a pair of points ¢1,t; € Q
that behave identically with respect to a constraint ¢; (i.e. o;(t1) = 0;(t2)) can be combined
together as (z;, + x,), for the purposes of satisfying constraint ¢;. If this is true that with
respect to every constraint ¢; for j =1...Q, 0j(t1) = 0,(t2), then there is no need to treat ¢,
and o separately — instead, they can be combined into a single region, and the variables z;, and
xy, can be merged into a single variable (z;, + x1,) in every equation, leading to fewer variables
in the LP. By repeating this variable merging process recursively until it is no further possible,
we arrive at a vastly reduced LP.

We hasten to add that the above LP construction process based on merging variables is
only for illustrating the concept — the actual algorithm employed in our system directly derives
the regions, as described in Section 4.4.2.

For constraint ¢ and ¢ € Q, let ¢(t) be an indicator variable:

true if ¢ satisfies ¢
c(t) =

false otherwise

Definition 4.1 For a pair of points t1,t5 € Q) and a set of constraints C, we say t1Rts if for
each c € C, c(t1) = c(t2).

Observation 4.1 R is an equivalence relation on €.

Proof: It can be easily seen that R is reflexive and symmetric. For transitivity, suppose that
for t1,t9,t3 € Q, t1 Rty and tyRts. Note that for each ¢ € C, it must be true that c(t1) = c(t2)
and c(t2) = c(t3). Therefore, it must be true that c(t;) = c(t3) for each ¢ € C, showing that

the relation is transitive. O

49

A partition of €2 is a set of subsets of €2 such that every element ¢ € 2 is in exactly one of

these subsets. The individual sets in a partition are called filter-blocks.

Definition 4.2 A set of points b is said to be valid with respect to a set of constraints C if for
any two points ty,ty € b, t1Rty. Given a set of constraints C, a partition F of Q is said to be a
valid partition if for each filter-block b € F, b is valid with respect to C.

In a valid partition of 2 with respect to C, any pair of points within the same filter-block
satisfy the same set of CCs. Once we obtain a valid partition F, the LP can be re-formulated as
shown in Figure 4.6. Instead of a variable for each point ¢ € €2, there is now a single variable z;
for each filter-block b € F representing the number of tuples of the sub-table that are contained
in b. Note that the tuples in a sub-table need not be unique, therefore x;, may include duplicates

in its count.

(1) For each b € F,z, > 0

2 [z .

belF

= [T

(3) For each j,1 <j <Q, Z Ty | =1,

b:oj(b)=true

Figure 4.6: Reduced LP formulation

The total number of variables in the reduced LP shown in Figure 4.6 is equal to the number
of filter-blocks in the partition F and is potentially much smaller than the number of variables
in the original LP, shown in Figure 4.5. Since we desire an LP with the smallest number of
variables, we look for a valid partition of €2 with the minimum number of filter-blocks. A valid
partition with respect to C is an optimal partition if it has the smallest number of filter-blocks

from among all valid partitions of €2 with respect to C.

Lemma 4.1 The quotient set of Q by R is the (unique) optimal partition of Q with respect to
C.

Proof: Let IF; denote the quotient set! of 2 by R. By the definition of an equivalence relation,
for any filter-block b € Fy, all points in b are related to each other by R, and hence F; is a valid

partition.

!The quotient set is the set of equivalence classes resulting from R on Q.

20

Suppose that Fy is not the unique optimal partition. Then, there must exist another valid
partition Fy such that Fy # F; and |Fy|< |Fy|. This implies that there exist two points ¢y, ty € §2
such that ¢; and t, are in different filter-blocks in [F;, but in the same filter-block in Fy. Since
t; and t, belong to different filter-blocks in 'y, it must be true that ¢; and ¢, are not related
by R. But, in Fy points ¢; and t, belong to the same filter-block, which implies that Fy cannot

be a valid partition, a contradiction. O

4.4.2 Deriving the Optimal Partition

We now present an algorithm to derive the optimal partition of {2 with respect to C. Each
constraint ¢ € C is in DNF, and is expressed as the union of many smaller “sub-constraints”.
Each sub-constraint is the conjunction of many per-attribute constraints, and each per-attribute
constraint is a constraint on the values that the attribute is permitted to take. For example,

the following constraint on attributes A; and As:

((A; <20) A (Ay > 30)) V (A; > 50)
is divided into the basic sub-constraints:

(A; <20) A (Ag > 30) and (A; > 50)

Algorithm 1 (Optimal Partition) takes a set of DNF constraints as input, and returns a
partition with the smallest number of regions with respect to this set. Internally, it invokes
Algorithm 2 (Valid Partition) that takes a set of sub-constraints as input and returns a valid

partition of the domain with respect to this set.

Algorithm 1: Optimal Partition(€2, C)

Input: Universe 2, set of DNF constraints C

Output: An optimal partition F* of) subject to C

Generate the set of sub-constraints C’ resulting from the constraints in C;

2 Construct a valid partition F" of Q subject to C' using Valid-Partition(£2, C’)
(Algorithm 2);

For each filter-block b € F’, compute the label £(b), equal to the set of all constraints in
C that b satisfies. Let £ denote the set of all distinct labels from {¢(b)|b € F'};

4 Coarsen partition F’ into F* as follows: For each label ¢ € £, merge all filter-blocks in

" whose labels equal ¢ into a single filter-block;
5 Return F*;

[y

w

Lemma 4.2 Given a set of DNF constraints C, Algorithm 1 returns an optimal partition of ()

with respect to C.

o1

Proof: As in the algorithm, let C’ denote the set of sub-constraints resulting from constraints
in C. From Lemma 4.3, we know that [’ is a valid partition with respect to C’. Consider any
filter-block b € F’. Since b is valid with respect to C’, and each constraint in C’ is stricter than
a corresponding constraint in C, b is valid with respect to C. Hence, [F’ is a valid partition with
respect to C.

Next, consider that each filter-block b* in F* was obtained by merging filter-blocks in F’
that have the same label. For any pair of points t1,%, in b*, it is true they satisfy the same set
of constraints in C, showing that F* is a valid partition wrt C. Also, any two filter-blocks in
F* have distinct labels (if they had the same label, they would have been merged). Therefore,
we conclude using arguments similar to Lemma 4.1 that F* is an optimal partition of 2 with

respect to C. O

Deriving a Valid Partition for a Set of Sub-Constraints: We now present an algorithm

for deriving a valid partition with a small number of filter-blocks, for a set of sub-constraints

C.

Definition 4.3 For a sub-constraint ¢ and dimension i, let ¢' denote the restriction (projection)
of ¢ to dimension i. Further, let ¢, = /\j:l...i ¢ denote the restriction of ¢ to dimensions
1,2,...,i. For instance, if c = (A; > 1) A (Ay > 4) A (A < 5) A (A3 > 6), then 2 = (Ay >
4)A (A <5), and & = (A1 > 1) A (Ay > 4) A (Ay < 5). For convenience, if ¢ does not have a

constraint along dimension i, then ¢ is defined to be “true”.

Our algorithm, described in Algorithm 2, proceeds iteratively, one dimension at a time.
Before processing dimension ¢, it has a partition of €2 that is a valid partition subject to
constraints along dimensions 1 till (i — 1). In processing dimension i, it refines the current
partition as follows: For each filter-block b in the current partition, it appropriately divides the
filter-block along dimension i if there is a constraint ¢ € C such that there are some points in

b that satisfy constraint ¢!, and some that do not.

Definition 4.4 A constraint c is said to split an filter-block b C §Q if there exist a pair of points
t1,ta € b such that c(t1) = true and c(ty) = false. If ¢ splits b, then refining b by ¢ partitions b
into two subsets bt (c) = {t € ble(t) = true} and b~ (c) = {t € blc(t) = false}.

Lemma 4.3 Given a set of sub-constraints C, Algorithm 2 returns a valid partition of € with

respect to C.

o2

Algorithm 2: Valid-Partition(€2, C)

Input: Universe (2, set of sub-constraints C

Output: A valid partition FF of €2 subject to set of sub-constraints C
1 F¥={Q} // A partition with one set, (.
2 for ¢ from 1 to K do

3 7 + Fit

4 foreach c € C do

5 7'« (;

6 foreach block b € Z do

7 if ¢ splits b then

8 Let b* and b~ result from refining b with c';
9 Add b* and b~ to Z';
10 else

11 L Add b to Z';
12 AR AR
13 Fi « Z;

14 Return F¥;

Proof: For 1 <i < K, let Ci = {¢{|c € C}. We show by induction on i that after the ith
iteration of the outermost for loop in the algorithm, F? contains a valid partition of € with
respect to C¢. Since CI = C, it follows that after K iterations, FX contains a valid partition
of with respect to C. We consider i = 0 as the base case, and the set C{ as a set of “always
true” constraints. Hence, F°, which consists of only one element, €, is a valid partition with
respect to CY.

For the inductive step, suppose that for i > 0, Fi~! is a valid partition of Q with respect
to Ci~'. For each filter-block b € Fi~!, two cases are possible: (1) b is not split by ¢, for any
¢ € C. Then b is valid with respect to C}, and will be retained in F’. (2) b is split by one more
constraints ¢*. The algorithm iterates through all such constraints that split b, and partitions
filter-block b such that every resulting filter-block is valid with respect to each ¢, ¢ € C.

We next note that F is indeed a partition of Q (i.e. the union of domain of all filter-blocks
equals). To see this observe that each filter-block b € F*~! is either present in F? or has been
refined and all its constituent filter-blocks (whose union equals b) are in F?. Thus, F* is a valid

partition with respect to Ci. This proves the inductive step. O

23

4.4.3 Consistency Constraints

Since different sub-tables can have common attribute(s), additional constraints need to be added
to ensure that their distributions for the common attribute(s) are the same. In order to do so,
we may need to further refine the partition generated from the above procedure. Specifically,
consider a pair of sub-tables S; and S, with attribute sets A; and A, respectively, such that
A1NAg # 0. Let Q' = [[;c4, dom(A;), and Q% =[],
for Sy and Sy respectively, and Q"% = [, 4, dom(4;). Let the partitions obtained on Q'

dom(A;) be the corresponding domains

and Q2 be F; and FFy, respectively. In order to keep F; and Fy consistent with each other, we
need to ensure that their region boundaries are aligned with each other, and this is achieved
by refining 'y and Fs so that they have common boundaries along dimensions A; N Ay. We
consider the union of the “split points” of F; and Fy along dimensions A; N A, and further for
each filter-block in F; (and Fs), we refine this filter-block until it no longer crosses such a split
point. Finally, we add LP constraints that equate distributions of the common attributes in
and [F,.

4.5 Table Summary Construction

This component takes the LP solution for each table as the input and generates the table
summary, which as mentioned previously, can be used for dynamically generating data for
query execution, or can optionally be used to generate the materialized table.

Recall that a variable in the LP represents an underlying filter-block in a sub-table’s par-
tition, and its assigned value is the number of rows present in that filter-block— this value is
hereafter referred to generically as NUMTUPLES. The collection of NUMTUPLES values repre-
sent the sub-table solutions, and these solutions are integrated to obtain the solution for the
complete table. This process can be enumerated in two steps: (a) Constructing a solution for

complete tables, (b) Instantiating table summaries. Each of these are detailed next.

4.5.1 Constructing Solution for the Table

For integrating the sub-table solutions to obtain the collective solution for the complete table,
we first order the sub-tables. Then, we iteratively build the table-solution by aligning and
merging the next sub-table solution in the given order. Let S denote the input list of sub-
table solutions, and tableSol be the final table solution that we wish to compute. Algorithm 3
describes the high-level process for constructing tableSol from S, and its ordering, aligning and

merging procedures are described in the remainder of this sub-section.

o4

Algorithm 3: Table Solution Construction

1 S <~ ORDERSUBTABLES(S);

2 tableSol « 0

3 foreach S € S do

4 tableSol, S <— ALIGN(tableSol, S) ;
5 L tableSol <~ MERGE(tableSol, S);

4.5.1.1 Sub-Table Ordering

Ordering is implemented through a greedy iterative algorithm where we can start with any
sub-table as the first choice. Subsequently, at iteration ¢, let the set of visited sub-tables until
now be S. A sub-table S from outside this set can be chosen to be the next in the ordering
only if it satisfies the following condition: On removing the common vertices between S and S
in the (chordal) table-graph, there should not exist any path between the remaining vertices of
S and the remaining vertices of S.

For instance, in the example of Figure 4.3, there are three sub-tables: AEC, ECD and BED.
Here, if we start with sub-table AEC as the first choice in the ordering sequence, then BED
cannot be the next selection — this is because even after removing the common attribute E
between BED and AEC, the edge DC continues to connect the two components. The sub-table
ECD, on the other hand, satisfies the required condition, and is chosen to be the second in the
order. After ECD is chosen, then BED follows as the last sub-table in the sequence.

4.5.1.2 Aligning

After obtaining the sub-table merge order as per above, in every iteration we merge the next
sub-table solution (S) in the sequence to the current table-solution (tableSol), after a process
of alignment. The alignment algorithm is a two step exercise, as shown in the example of

Figure 4.7:

Solution Sorting: First, the tableSol and S solutions are each sorted on their common set of
attributes to facilitate direct comparison of their matching ranges. For instance, the solu-
tions (Age, GPA) and (Age, Scholarship) in Figure 4.7a are each sorted on the intervals

enumerated in the common attribute Age.

Row Splitting: Our addition of consistency constraints during the LP formulation ensured
that the distribution of tuples along the common set of attributes is the same in the various
sub-tables. Therefore it easy to see that the sum of NUMTUPLES values in any interval

of the common attributes is the same for the sub-table solutions under alignment. For

95

(c) Merged Table Solution

Figure 4.7: Align and Merge Example

Age GPA NumTuples Age | Scholarship | NumTuples
[15,20) [8,10) 5000 [15,20) | [4K,12K) 3000
[20,35) [6,8) 40000 [15,20) [1K,4K) 2000
[20,35) | [5,6) U [8,9) 3000 [20,35) | [8K,35K) 43000
[35,40) [5,9) 2000 [35,40) | [12K,35K) 1000

[35,40) | [35K,70K) 1000
(a) Sub-table Solution

Age GPA NumTuples Age | Scholarship | NumTuples
[15,20) [8,10) 3000 [15,20) | [4K,12K) 3000
[15,20) [8,10) 2000 [15,20) [1K,4K) 2000
[20,35) [6,8) 40000 [20,35) | [8K,35K) 40000
[20,35) | [5,6) U[8,9) 3000 [20,35) | [8K,35K) 3000
[35,40) [5,9) 1000 [35,40) | [12K,35K) 1000
[35,40) [5,9) 1000 [35,40) | [35K,70K) 1000

(b) Table Alignment
Age GPA Scholarship | NumTuples
[15,20) [8,10) [4K,12K) 3000
[15,20) [8,10) [1K,4K) 2000
[20,35) [6,8) [8K,35K) 40000
[20,35) | [5,6) U[8,9) [8K,35K) 3000
[35,40) [5,9) [12K,35K) 1000
[35,40) [5,9) [35K,70K) 1000

example, in Figure 4.7a, the total number of tuples with Age = [15,20) is 5000 in both the
(Age, GPA) and (Age, Scholarship) solutions. Likewise, the other entries in column Age
also have matching total number of tuples across the solutions. The align step splits the
rows in these solutions such that the corresponding rows in both solutions have the same
number of tuples. The sub-table solutions of Figure 4.7a are shown in Figure 4.7b after

undergoing the alignment process, with both solutions now having identical NUMTUPLES

o6

in the corresponding rows.

4.5.1.3 Merging

This is the last step in the construction of the table solution. Here we simply merge the two
solutions obtained after alignment through a “position” based join, where the physically cor-
responding rows in each solution are combined, with the common attributes being represented
once. For example, the aligned solutions of Figure 4.7b are merge-joined using the positions

(or row identifiers) to deliver the final table solution of Figure 4.7c.

As discussed earlier, DataSynth adopted a sampling algorithm for constructing the table solu-
tions post LP solving. In marked contrast, Hydra deterministically generates the table solutions,
facilitating us to operate purely in the summary space. There are two tangible benefits of this
deterministic strategy: (a) elimination of the time and space overheads due to sampling, and

(b) elimination of sampling-based errors in satisfying CCs.

4.5.2 Instantiating Table Summaries

As shown in Figure 4.7c, each row in the table solution is comprised of a series of intervals
(across various attributes) and the number of tuples in the region represented by these intervals.
We now need to decide as to how these tuples are distributed within the attribute intervals.
Our current solution is very simple: Assign the entire cardinality to the left boundaries of the
intervals. For example, the first row in Figure 4.7c would result in generation of 3000 tuples all
having Age = 15, GPA = 8, Scholarship = 4K values.

The schema of the summary s” of a table T" has all the non-key columns of 7" and additionally
has the NUMTUPLES entry denoting the number of rows with that value combination. A sample
table summary was previously shown in Figure 4.4.

Like before, DataSynth again iterates over the complete instantiated tables to construct
the corresponding materialized tables. Obviously, this leads to considerable time and space

overheads in contrast to our data-scale independent summary based approach.

4.6 Tuple Generation

The Tuple Generator component resides inside the database engine, and needs to be explicitly
incorporated in the engine codebase by the vendor. Whenever this feature is enabled for a
table, the scan operator for that table is replaced with the dynamic generation operator. As a
result, during query execution, the executor does not fetch the data from the disk but is instead

supplied by the Tuple Generator in an on-demand manner, using the available table summary.

57

Each row in the table summary has a value combination and an associated NUMTUPLES
entry. We consider the PK values to be the row numbers of the table. Therefore, to get the
1th tuple of a table T', the PK is chosen as i and the rest of the attributes come from the table
summary. We iterate over the rows of s7 and take the cumulative sum of the NUMTUPLES
entries until the sum exceeds 7. Say the summation crosses the value i in jth row of s(7).
Then the rest of the values of the ith tuple are assigned to be precisely the same as those
present in the jth row of s7. For example, the 5100th row of table Std in Figure 4.4, would be
(5100, 20, 6, 8K).

Note that this form of tuple generation is expected to be efficient since the attribute value
assignments are deterministic and independent, and these expectations are confirmed in the

experiments shown in the following section.

4.7 Like Predicates

LIKE predicate constants are typically expressed as regular expressions. There are two wild-

cards often used in conjunction with the LIKE operator:

e The percent sign (%) represents an arbitrary number, including zero, characters.

e The underscore sign (_) represents a single character.

To handle LIKE predicates, we begin by collecting all the predicate constants that occur
with the LIKE operator. This collection is segregated on the basis of the attribute on which
they are applied. Depending on the number of expressions associated with an attribute, the

handling mechanisms are classified as follows.

Single LIKE Predicate. Consider an attribute that has only one LIKE predicate applied on
it in the entire workload. We take the regular expression and generate any valid representative
string that satisfies the regular expression, and with that, we convert the LIKE predicate into
an equality filter predicate.

For example, consider the following CC on an attribute A from table T"
|0-A~La,%’<T)‘: 4

Here the ~ symbol represents the LIKE predicate.
The LIKE predicate is applied on A, and the regular expression is ‘_a_%’. ‘aaa’ is a valid

representative string that satisfies the regular expression. Therefore, the transformed CC is:

|0A:‘aaa’ (T) |: 4

o8

Now, this modified CC can be handled in the same way in which other equality filter
predicate CCs are handled with the existing setup.

Multiple LIKE Predicates. Now, consider an attribute having multiple LIKE predicates
applied upon it in the workload. The data generation mechanism in such cases needs to be
aware of any possible intersections among the different predicates. To make the above concrete,

consider the following three CCs:
0490090 (T)|= 8, |oawbere (T)|=4, |oavuew (T)|=17

Note that here we cannot transform the CCs in the similar way with an equality represen-
tative string. This is because regular expressions corresponding to different CCs may have an
intersection. For instance, a tuple ‘be’ would satisfy both ‘%b%’ and ‘%bc%’ regular expres-
sions. Hence, direct transformation can cause infeasible constraint-set. Therefore, we need to
do partitioning of data space into blocks such that that regular expressions attached to any
two blocks do not intersect. Once, the partitioning is done, the input regular expressions in
the CCs are transformed into disjunctive equality predicates. We discuss each of these steps in

detail next.

4.7.1 Partioning using Regular Expressions

To do the partitioning, we first construct a Venn diagram that captures intersections of the
regular expressions. For example, the Venn diagram for three regular expressions from our

running example is shown in Figure 4.8.

1: %b% N %bc% N %c%
: %bc% N %b% N %c%
1 %c% N %b% N %bc%

%b% 5
3
4: %b% N %bc% N %c%
5
6
7

1 %b% N %bc% N %c%
: %bc% N %b% N %c%
: %b% N %bc% N %c%

%bc% Yoc%

Figure 4.8: Venn diagram showing all disjoint spaces

29

The diagram features intersections and complements of regular expressions. To perform
intersection and complement on regular expression strings, we use concepts from automata
theory. First, we convert each regular expression to a DFA. This is done by following the
sequence: Regular Expression — Epsilon-NFA — NFA — DFA. Note that DFAs are
closed under intersection and complement. Therefore, once we have equivalent DFAs for the
regular expressions, we can perform these operations on the DFAs easily.

From the Venn diagram in Figure 4.8 we can see that there are seven disjoint regions.
Some of these regions can be empty, that is their corresponding final DFA results in NULL.
For example, regions 2, 4, 6 in the Venn diagram shown above correspond to empty regions.
For each of the non-empty regions, we generate a representative string. For example, the

representative strings for the populated regions in our running example are as follows:
1. b, 3: ‘', b ‘eb’, T bd

Optimization. The intersection of two DFAs can result in a large number of states in the
resultant DFA. This can make the subsequent intersection computation complex. Hence as an
optimization measure, we minimize the resultant DFA after each individual intersection and
then proceed with subsequent intersections. Specifically, once we get a NULL for an intersection,

its subsequent intersections with other regular expressions are avoided.

4.7.2 Predicate Transformation

After obtaining representative strings for each populated region of the Venn diagram, we rewrite
each input regular expressions in the CCs as a disjunction of equality predicates. Specifically, for
a regular expression, the disjunctive equality predicates are with respect to the representative
strings associated with its constituent regions of the Venn diagrams. We show the transformed

CCs for our running example in Table 4.3.

Original CC Transformed CC
|0 s (T)|=8 | |oaepp vy (T)]|=8
oA (T)|=4 | [oaepuey(T)]|= 4
|0av e (T)|= T | |oacpesve ey (T)=T7

Table 4.3: Transformation of Regular Expression CCs

Once this transformation is done, the CCs can be handled like any CC having disjunction

with equality predicates.

60

4.8 Experimental Evaluation

We have implemented the Hydra design, described in the previous sections, in a Java tool.
Z3 [14] solver is leveraged to compute solutions for the LP formulations. In this section,
we evaluate Hydra’s empirical performance, using our implementation of DataSynth as the
comparative yardstick in the analysis. For a fair comparison of Hydra’s performance against

DataSynth, we extended the implementation of DataSynth to also handle constraints in DNF.

Database Environment. The TPC-DS [12] decision-support benchmark database, with a
default size of 100GB, is used as the baseline in our experiments. The database is hosted on a
PostgreSQL v9.6 engine [7] with the hardware platform being a vanilla HP Z440 workstation.

Workload Construction. A complex query workload, W L., featuring 351 filter CCs was
created by customizing the 99 queries of the benchmark. The constructed CCs were rewritten
as a filter predicate on denormalized tables. Hence, in the output, denormalized tables were
constructed. This was done to stress test the system by (a) including more CCs per table; (b)
dealing with high dimensional tables. The distribution of the cardinalities for these CCs are
shown in Figure 4.9, with the cardinalities measured on a log-scale. The figure clearly indicates
that a wide range of cardinalities are present in the constraints, going from a few tuples to

almost a billion.

[o]
o

(o2}
o

N
o

N
o

Count of constraints

o

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9
logqo(cardinality)

Figure 4.9: Distribution of Cardinality in CCs (W L_c)

The above constraints result in a large number of geometrically overlapping regions. Hydra,
due to its region-partitioning approach, comfortably handles this scenario. In marked contrast,
DataSynth, due to its grid-partitioning construction, generates a very large number of LP
variables (in the several billion) from the constraints, overwhelming the solver’s capabilities.

We therefore also created an alternative simplified query workload, called W L, with 311 CCs,

61

wherein the variables created by DataSynth were less than a million, and therefore well within

the solver’s processing power.

4.8.1 Constraint Accuracy

100 B DataSynth
-E 80
-E Hydra
S &0
Z
T 40
1<
5
S 20
®
o m - | . . . -
gle > S S o © oo o> oo
'@01' ég‘r’ o’gr“ {fg‘rﬂ 10.;1 ! &l L,e,l*
7 @1':;} <.§|l°' ,\"’1"‘ S @“IP ! :\,df“
% & Q X
% Error

Figure 4.10: Quality of Volumetric Similarity (W L_s)

We begin by investigating how closely the volumetric similarity, with regard to operator
output cardinalities, is achieved between the client and vendor sites for the W L, workload by
the Hydra and DataSynth regenerators. This behavior is captured in Figure 4.10, which plots
the percentage of CCs that are within a given error percentage of volumetric similarity. From
the plot it is evident that Hydra satisfies all the CCs with no error. This is in contrast to
DataSynth, which satisfies around 80 percent of the CCs with minor error, but then incurs high
error to achieve complete coverage of the remaining CCs.

As a final observation, it is interesting to note that DataSynth has to contend with both
negative (volumes less than desired) and positive (volume greater than desired) errors, due to
its sampling strategy — in fact, about one-third of the CCs suffered negative errors. From a
practical standpoint, it is especially undesirable to have negative error because these do not

induce required stress on the data processing elements in the engine.

4.8.2 Scalability with Workload Complexity

We now turn our attention to evaluating the complexity of the underlying LP that is formulated
by Hydra and DataSynth. Since LP complexity is essentially proportional to the number of
variables in the problem, we compare this number for the two techniques.

The number of LP variables for a representative set of TPC-DS tables, including the major

fact and dimension tables (catalog_sales, store sales, item) is captured, on a log-scale, in Fig-

62

ure 4.11 for the WL, complex workload. We observe here that the LPs formulated using the
region-partitioning strategy in Hydra generate several orders of magnitude fewer variables than
the corresponding LPs derived from the grid-partitioning in DataSynth. As a case in point,
consider the catalog_sales table — the number of variables created by DataSynth was almost 5.5
million, which is reduced to as low as 1620 by Hydra. Even more dramatic is the change for

item table, where the number of variables is reduced from an enormous 10! to around 3700.

1012 T T T T T T T T T T
| I DataSynth Hydra

No. of Variables (log-scale)
[y
o

<
SRS TPC-DS relations
Figure 4.11: Number of variables in the LP (W L,)

From an absolute perspective also, the large number of variables created by DataSynth is a
critical problem since, as mentioned previously, the LP solver crashed in handling these cases.
In marked contrast, the few thousands of LP variables generated by Hydra were easily solvable
in less than a minute. Moreover, even when we switched to the simple workload, W L, the LP
solution time for DataSynth was almost an hour, whereas Hydra completed in a few seconds as

shown in Figure 4.12.

Complex Workload (WL.) | Simple Workload (W L;)
DataSynth Hydra DataSynth Hydra
crash 58 sec 50 min 13 sec

Figure 4.12: LP Processing Time

63

4.8.3 Scalability with Materialized Data Size

This experiment compares the data instantiation times, post LP solution, of DataSynth and
Hydra on the W L, workload. While Hydra, in principle, due to its summary-based approach,
does not have to instantiate the data immediately, we assume in this experiment that the
vendor requires complete materialization.

The experimental results are shown in Figure 4.13, where we also present, for comparative
purposes, the performance with 10 GB and 1000 GB databases, apart from the default 100 GB
database. We see here that there is a huge reduction in the materialization time of Hydra at all
scales. Further, even in absolute terms, Hydra is able to output a 100 GB database in around
11 minutes, whereas DataSynth takes 42 hours to complete the same task.

The marked difference in the efficiency of the two techniques is attributed to the fact that
DataSynth instantiates complete tables through sampling, subsequently performs several passes
on these instantiations to ensure referential integrity, and to derive tables from them. Hydra
on the other hand, after LP-solving, constructs the tables summaries in just a few seconds, and

then instantiates the materialized data directly from it.

Size (in GB) | DataSynth | Hydra
10 4 hours 2 min

100 42 hours 11 min

1000 > 1 week 1.6 hours

Figure 4.13: Data Materialization Time

4.8.4 Scalability to Big Data Volumes

In our next experiment, we validated the ability of Hydra, thanks to its summary-based tech-
nique, to scale to Big Data volumes. To demonstrate this feature, we modeled an exabyte-sized
(10'8 bytes) data scenario as follows: We used CODD, which is capable of modeling arbitrary
metadata scenarios, to obtain the optimizer-chosen plans at the exabyte database scale for all
the workload queries. To get AQPs for this database, we executed the obtained plans on the 100
GB instance and scaled the intermediate row counts with the appropriate scale factor. Hydra
was able to formulate and solve the LPs (one per table), and generate the table summaries
in less than 2 minutes. Once the summary is generated, the user can begin to submit the
workload queries since the data required for the execution can be produced on-the-fly by the

Tuple Generator.

64

4.8.5 Dynamism in Data Generation

Our next experiment evaluates Hydra’s ability to produce tuples on-the-fly instead of first
materializing them, and then reading from the disk. To verify whether dynamic generation can
indeed produce data at rates that are practical for supporting query execution, we compared
the total time that Hydra’s tuple generator took to construct and supply tuples to the executor,

while running simple aggregate queries, as compared to the standard sequential scan from the
disk.

Rel. Name | Size | Row count | Scan time (secs)
(in GB) | (in millions) | Disk | Dynamic
store_returns 3 29 16 8
web_sales 10 72 43 25
inventory 19 399 107 74
catalog_sales 20 144 46 48
store_sales 34 288 168 87

Figure 4.14: Data Supply Times

The results of this experiment are shown in Figure 4.14 for the five biggest tables in the
100 GB database instance. We see here that the tuple generator is not only competitive with a
materialized solution, but is in fact typically faster. Therefore, using dynamic generation can
prove to be a good option since it can help to eliminate the large time and space overheads
incurred in: (1) dumping generated data on the disk, and (2) loading the data on the engine

under test.

4.8.6 Performance on JOB Benchmark

A legitimate concern with regard to the above encouraging results for Hydra is that they may
be an artifact of the TPC-DS database, and perhaps might under-perform on other datasets.
To address this concern, we consider in our final experiment, a schematically highly different
database, namely the JOB benchmark [45, 5], which is based on the IMDB real-world dataset.
Here, we created a workload of 523 CCs, whose cardinality distribution is again highly varied
as seen in Figure 4.15.

We found that Hydra efficiently solved this workload as well, with the number of variables
in each table being typically in the few thousands, and never exceeding a hundred thousand,
as shown quantitatively in Figure 4.16. The overall table summaries were quickly generated in

around 20 seconds while ensuring high fidelity.

65

200

" 169
t 160
©
=]
2 120
9 93
5 s /4 73
2 56
]
8 40 25 27
6
0 . . I
0-1 1-2 -6 6-7 7-8

logo(Cardinality)

Figure 4.15: Cardinality distribution of CCs in JOB

10°

—

2

® 104

2 10

1]

=] 3

£ 10

o

5 102

©

.E .

8§ 10

I I I I

s , INNNNNEn in] I

& LS & £ & & & O .5 & @
("a rz,/&&) ({b *QQ(G Q\Qo,ﬁ? \\Q Ob‘c\q \\Q \z§k0>\\ Qz>\ 0 (\)Q Q\Q
@7 T s o S ,k°’\{_e \-;\’\@*’@Q W@ S S
% & Q/@Q & 6& bl * Iy & A\Q/\@’ é\ &
K@ & 6\04‘ &

Figure 4.16: Number of Variables for JOB

4.9 Conclusion

In this chapter we discussed the mechanism for regenerating synthetic table using filter con-
straints. Specifically, by reworking the basic LP problem formulation into a region-based vari-
able assignment, Hydra improves on the state-of-the-art DataSynth’s performance by orders
of magnitude with regard to problem complexity, data materialization time, and scalability
to large volumes. Secondly, by using a deterministic alignment technique for database con-
sistency, it provides far better accuracy in meeting volumetric constraints as compared to the
probabilistic approach employed in DataSynth. Finally, its summary-based framework organi-
cally supports the dynamic regeneration of streaming data sources, an essential prerequisite for

efficiently testing contemporary deployments.

66

Chapter 5

Regeneration using Projection

Constraints

5.1 Introduction

This chapter discusses the mechanism for synthesizing a table using AQPs including projection
operator. Our motivation for modeling Projection stems from its core appearance in the Dis-
TINCT, GROUP BY, and UNION SQL constructs — as a case in point, among the 22 queries in
the TPC-H benchmark [11], as many as 16 feature the projection operation.

5.1.1 Projection-inclusive Constraints

We represent an AQP including a filter and projection on a table, using a projection-
inclusive cardinality constraint (PIC). To express a PIC ¢ on a table T', we use the quadruple
c: (f,A /1 k), as a shorthand notation. Here, f represents the filter predicate applied on T,
A represents the projection attribute-set (PAS), [signifies the row-cardinality of the filtered
table, and k represents the row-cardinality after projection on this filtered table.

Our focus here is on the duplicate-eliminating version of projection where only the distinct
rows are retained in the projected output (the alternative duplicate-preserving option does
not alter the filter output’s row-cardinality, and is therefore trivially handled by the existing
frameworks). In the context of volumetric similarity, Group By and Union clause behaves same
as Distinct SQL operation. Distinct is expressed as duplicate eliminating projection relational
algebra operation and therefore we have used projection as an umbrella term to include Group
By and Union as well.

As a sample instance, consider the following set of PICs on Std (RollNo, Age, GPA,

67

Scholarship):

c1: (f1,GPA,30000,5) | f1 = (Age < 30) A (5 < GPA < 8)
eo : (fa, GPA,4000,3) | f» = (Age > 30) A (4 < GPA < 9)
€3 - <f3,Ag€,48000,9> | f3 = (Age > 15)

Here, PIC ¢; denotes that applying the f; predicate on Std should produce 30000 rows in the
output, which is further reduced to 5 rows after projecting on the GPA column; the other PICs

can be interpreted analogously.

5.1.2 Technical Challenges

There are two primary challenges to modeling PICs within the table generation process, related
to handling dependencies within and across the data subspaces identified by these constraints,

as described below.

Intra-Projection Subspace Dependencies. Consider the projection subspace spanned by
a set of attributes A. Dealing with projection requires computing union of groups of
tuples. For example, for two tuples/group of tuples b; and by, the direct expression for
computing projection along A is:

|7TA(b1 U b2>|

However, even if b; and by are disjoint in the original table, their projections onto A may
overlap. Therefore, to handle PICs, explicitly computing the cardinality of the union of
a group of tuples post-projection is required. Using the fact that projection distributes

over union [67], we can rewrite the above expression as:

|ma(br) Uma(by)]

but even here the union does not translate to a simple summation. For instance, consider
the following two sample rows from the Std table:

t1: (RollNo = 10001, GPA =7, Age = 25, Scholarship = 20K), and

ty : (RollNo = 10002, GPA =7, Age = 20, Scholarship = 30K).
Both rows satisfy the filter f;, but the union of their projections along GPA yields a
single outcome — namely, GPA =T7.

Inter-Projection Subspace Dependencies. When a set of tuples b is subjected to multiple

projections, the data generation for projection subspaces may be interdependent. Given

68

a pair of PASs A; and Ay, sourced from two PICs, we have the inclusion property:

TA1UA (b) - A, (b) X Ty (b)

For instance, consider a group of tuples b, from the table Std, satisfying the following

disjunctive filter condition:

b={teStd| (t.Age >30Nt.GPA>9)V
(15 <t.Age <30 Nt.GPA > 8)}

Here, a tuple with GPA = 8.5 and Age = 35 can belong to both mgpa(b) and 74, (b),

but lies outside b’s boundary.

Moreover, A; and A, may themselves intersect. Therefore, in general, expressing a set
of PICs with an LP, while ensuring a physically constructible solution, is often infeasible
— this is because the set of constructible solutions does not form a convex polytope [44].

Hence, alternative methods are needed to address this issue.

5.1.3 Owur Contributions

In this chapter, we present the strategy that addresses the above challenges and extends the
current scope of data generation to include projection in its ambit. The key design principles
are: (a) Projection Subspace Division, which divides each projection subspace into regions that
allow modeling the unions, thereby ensuring that the intra-subspace dependencies are resolved;
and (b) Isolating Projections, for independent processing of each projection subspace, thereby
tackling the inter-projection subspace challenge.

Additionally, the concept of dynamic data regeneration is leveraged to constructs an En-
riched Table Summary, that ensures data can be generated on-demand during query processing
while satisfying the input PICs. Therefore, no materialized table is required in the entire test-
ing pipeline. Further, the time and space overheads incurred in constructing the summary is
independent of the size of the table to be constructed and, in our evaluations, requires only a
few 100 KBs of storage.

A detailed evaluation on multiple workloads of PICs, covering both real-world datasets
(IMDB, Census), and synthetic benchmarks (TPC-DS) has been conducted. The results demon-
strates that Hydra accurately and efficiently models Projection outcomes. As a case in point,
for a workload of PICs, comprising over a hundred PICs in total, Hydra generated data that

satisfied all the PICs, with perfect accuracy. Moreover, the entire summary production pipeline

69

completed within viable time and space overheads.

Note: If we want to add cardinality constraint on a group (output of Group By), that can
be easily done by applying a filter on the group key. For instance, consider the following
constraint: for the group with column-set A having value a, the total number of rows is equal
to . This constraint on the group can be modeled as: |o4—4(T")|= 7. This is the standard
filter constraint considered in the previous chapter. Therefore, using the techniques described

for filter constraints, these cardinality constraints per group can also be handled.

5.1.4 Organization

The remainder of this chapter is organized as follows: The problem framework is discussed
in Section 5.2. Further, the key design principles of the proposed solution are introduced in
Section 5.3, and then described in detail in Sections 5.4 through 5.7. The end-to-end implemen-
tation pipeline is presented in Section 5.8 with the critique in Section 5.9. The experimental

evaluation is reported in Section 5.10. Finally, we conclude this chapter in Section 5.11.

5.2 Problem Framework

In this section, we summarize the basic problem statement, the underlying assumptions, the

output delivered, and a tabulation of the notations used in this chapter.

5.2.1 Problem Statement

Given an input table schema & and a workload Q of PICs, the objective of data generation is

to construct a table T', such that it conforms to 8 and satisfies Q.

5.2.2 Assumptions

We assume that each PIC in Q is of the form described in the Introduction. Further, for
simplicity, we assume that Q is collectively feasible, that is, there exists at least one legal
database instance satisfying all the constraints. Finally, for brevity, we present the ideas using

tables with columns having float data type; the extension to other data types is straightforward.

5.2.3 Output

Given 8 and Q, Hydra outputs a collection of table summaries S. Each summary s’ € S can be
used to deterministically produce the associated table T. The tables produced are such that:

(a) all of them conform to 8, and (b) each input PIC in Q is satisfied by at least one of them.

70

5.2.4 Notations

The main acronyms and key notations used in the rest of this chapter are summarized in

Tables 5.1 and 5.2, respectively.

Table 5.1: Acronyms

Acronym Meaning
PAS Projection Attribute Set
PIC Projection-inclusive Constraint
PRB Projected Refined Block
CPB Constituent Projection Block
PSD Projection Subspace Division

5.3 Design Principles

In this section we overview the core Hydra design principles, with the Std table of the Intro-
duction used as the running example to explain their impact. Subsequently, in Sections 5.4
through 5.7, each principle is described in detail. To set the stage, here are some basic defini-

tions underlying our work.

Definition 5.1 A block is a bag of points (i.e. tuples) in the data space D(T') of the synthetic
table T'.

Definition 5.2 A projection block is a subset of points from D*(T), where D*(T) represents
the data subspace of the synthetic table T' spanned by a given PAS A.

Since this chapter focuses deals with a single table, we denote D(T) and D4(T) as simply D

and D*, respectively.

5.3.1 Region Partitioning

To model the filter predicates associated with Q, the data space D is logically partitioned into
a set of blocks. For this, we leverage the region partitioning technique from Chapter 4, which
partitions the data space into the minimum number of blocks.

Each resultant block is referred to as a filter-block. The algorithm outputs the domain of
each filter-block, which forms its logical condition. The domain of an filter-block b is denoted
as dom(b).

Consider the three filter predicates, fi, fo, f3 on Std from Section 5.1.1.

71

Table 5.2: Notations

(b) Workload Related

(a) Database Related Symbol | Meaning
Symbol | Meaning Q Set of PICs
S Table Schema c A PIC
T Output Table f Filter Predicate
t Tuple A PAS
st Summary of T’ l Output row card. after filter
D Data space of T k Output row card. after projection
DA Data subspace spanned by A Qe A compatible PICs Workload
g Number of PASs across Q¢
(c) Block Related
Symbol | Meaning
filter-block (d) Relation/Function Related
refined-block i
Set of refined-blocks Symbol Meanlng. _
PRB wit - and a PAS U(T) | Set of attributes in T’

dom(.) | Domain of the input parameter
Set of PRBs foiﬁ M A relation btw PICs and refined-
Cardinality of R blocks

CPB LA A relation btw CPBs and PRBs
Set of CPBs for A
variable for |r|
variable for [p|

551&@%5 %Lﬁl%ﬁv

For simplicity, Figure 5.1 shows only the 2D data space comprising the Age and GPA at-
tributes since no conditions exist on the other attributes. In this figure, the filter predicates
are represented using regions delineated with colored solid-line boundaries. When region parti-
tioning is applied on this scenario, it produces the four disjoint filter-blocks: by, bs, b3, by whose

domains are depicted with dashed-line boundaries.

5.3.2 Isolating Projections

To circumvent inter-projection subspace dependencies, we first “isolate” the projections. Specif-
ically, the following set of steps are taken in this process.

A symmetric refinement strategy is adopted that refines an filter-block into a set of disjoint
refined-blocks such that each resultant refined-block exhibits translation symmetry along each
applicable projection subspace. That is, for each domain point of a refined-block r along a

particular PAS, the projection of r along the remaining attributes is identical.

72

GPA

Figure 5.1: Region Partitioning

For instance, consider filter-block b4 in Figure 5.1. Clearly, it is asymmetric along the PAS
Age — specifically, compare the spatial layout in the range 15 < Age < 30 with that in Age > 30.
After refinement, this block breaks into r4, and ry as shown in Figure 5.2(a) — it is easy to
see that ry, and 7y are symmetric. (The other filter-blocks (by, b, b3) happen to be already
symmetric, and are shown as ry,ry and rs, respectively, in Figure 5.2(a)). This refinement
allows for the values along different projection subspaces to be generated independently. That
is, dom(r) = dom(mgpa(r)) X dom(mwage(r)), for each refined-block .

The above refinement, however, does not scale when the projections applied on an filter-block
are along partially overlapping PASs, i.e. when different PASs share some attribute(s). There-
fore, to eliminate such situations, we resort to decomposing the workload into non-overlapping
sub-workloads using a wverter coloring-based strategy. As a consequence, for each such sub-
workload, a separate summary is produced at the conclusion of the LP solution process. From
a practical perspective, the multiplicity of summaries does not impose a substantive overhead
since each summary is very small. However, to maximize the number of constraints that can
share a common database, the number of sub-workloads required to eliminate all conflicts is

minimized.

73

CPBs GPA (m.p4)

" A P = () ()
8.5 * ngA =n(r) \7(rz)
7.: o PPt =mn(r)\n(n)
7 [| PSPA =n(r;)
6.5 CPBs Age (7,,.)
s A pl = m0) \ ()
.7 F 529 = n(ry) 0 i)
+ 0 3% = n(r) Nu(ra)
3 O Py = n(ra) \m(r)
1 g pi%¢ = m(ry) \ (rs)
1 4 81215 18 22 25 283032 35 38 40 43 < p?‘ge =m(r3) \ (1)
E Agem
[T) (a) Constituent Projection Blocks (CPBs)
GPA | & 7.5 55 75 7 6.5 6 9.5 8.5
Age 4 8 12 18 28 25 25 18 18
GPA | 47 47 9.5 10 3 1 43 6 7
Age | 22 28 32 38 35 43 32 43 40

(b) Sample Student Table (Distinct Rows)

Figure 5.2: Symmetric Refinement and PSD

5.3.3 Projection Subspace Division

To deal with intra-projection subspace dependencies, the domain of each PAS is logically divided
into a set of projection blocks, called constituent-projection-blocks (CPBs). This construction
ensures that each projection cardinality is expressible as a summation over the cardinalities
of these CPBs. Further, we ensure that the minimum number of CPBs is produced, aiding in
efficient LP formulations.

For our example scenario, Hydra divides the data subspace associated with the GPA di-
mension into 4 CPBs: p{P4, pifA piPA piP4 and the Age dimension subspace into 6 CPBs:
pfge,p‘;ge, ...,p?ge, as shown in Figure 5.2(a). Each CPB has a semantic meaning associated

with it. For example, p{"4 semantically represents the G PA values present in both 7, and rs.

74

Further, the CPBs need not be mutually disjoint, as in the case of p§¥4 and p§F4. Finally,

Figure 5.2(a) also shows the unique tuples enumerated by the sample output table shown in
Figure 5.2(b), and the CPB (s) to which each of these tuples belongs.

5.3.4 Constraints Formulation

The LP solving procedure is constructed using variables representing the row cardinalities of

refined-blocks and CPBs. For instance, if x; represents the cardinality of refined-block r;, and

yGPA and y'% represent the cardinalities of CPBs p&r4

(2

and poe

1

, respectively, then PICs are

expressed by linear equations as follows:

1ty +ap=30000, yiPA 4yt

co: x5 =4000, ySP4 =3

ST

C3: X9+ T3+ Tyy + Typ = 48000,

Age Age Age Age Age Age
R e i e i A A S T

Finally, additional sanity constraints are added to the LP to ensure data constructibility.
For example, the distinct row-cardinality of the projection of a refined-block is upper-bounded
by the refined-block’s native cardinality.

A sample solution to the above LP is shown below:

1 = 30000, 29=0, z3=4000, x4, =0, x4 = 14000

Age
yoPr =0, S =5 =0, " =3, ¥ =0
Age Age Age Age Age
Y 't =5, yg” =0, Y =0, y" =0, yg =4

5.3.5 Enriched Database Summary

To construct the final summary, the domain of each PAS is divided into a set of intervals and
then the CPBs are assigned these intervals. A sample summary for the Std table with respect
to the aforementioned LP solution is shown in Figure 5.3, after incorporating an additional
attribute Scholarship to illustrate a multi-dimensional projection.

Each segment of the summary corresponds to a populated refined-block. Specifically, the
figure shows the tabulation for the 7, r3 and ry, refined-blocks. Each tabulation comprises of a
column for each PAS acting on the refined-block, and an additional last column indicating the

total number of tuples present in the refined-block. In each PAS column, the information for

5

generating data of the associated projection subspace is present. Specifically, we maintain the
intervals in the projection subspace along with their distinct counts. As a case in point, the first
tabulation, corresponding to 7y, is interpreted as “generate 30000 tuples, such that there are 5
distinct values of GPA in the interval [5,8), and 20 distinct value pairs of { Age, Scholarship}
of which 12 are from the 2D interval [1,15), [8K,20K), and the remaining 8 from the 2D
interval [1,15), [25K,35K).”

GPA Age, Scholarship #Tuples
(A) [1, 15), (S) [8K,20K): 12
r :
158151 Ay 11, 15), (5) [25K, 35K): 08| 300%°
GPA Age Scholarship | #Tuples
rs| [4,9):3 [[3370%;2 [35K,70K) | 4000
Age GPA, Scholarship #Tuples

(G) [1,4) U [9,10),

r .
bl [30,37):5 1 gy 131k 35K): 6

14000

Figure 5.3: Table Summary Featuring Projection

For attributes that do not feature in any projection subspace, no associated distinct car-
dinality is maintained — an example is Scholarship in rs. Lastly, the primary-key column
(RollNo in the example) is omitted from the summary and is assumed to be a sequence of
distinct natural numbers during on-demand tuple generation. Further, note that the intervals
present in a summary may not be continuous. For instance, the {GPA, Scholarship} points
in ry are sourced from two separate intervals: [1,4) and [9,10) for GPA column. From a
generation perspective, however, data can be constructed from either or both the sub-intervals.
Finally, we observe that this summary is significantly different from the pure filter case. The
key difference lies in that earlier we neither maintained intervals nor distinct value counts. Also,
since only filter-blocks were maintained, which being inherently disjoint have no dependency
among them. Here, we need to handle the dependencies enforced due to common CPBs being
shared between refined-blocks.

This summary is used for deterministic tuple instantiation method, which ensures that
despite the tuples being generated independently for various CPBs across all refined-blocks,

the row-cardinalities match the requirement.

In the following sections, we present the internal details of each of the aforementioned concepts.

76

5.4 Isolating Projections

To facilitate independent processing of projection sub-spaces, we refine the filter-blocks so that

the resultant blocks become symmetric. The symmetry is formally defined as follows:

Definition 5.3 A block r in the data space of a table T with set of dimensions U(T) is sym-
metric along a PAS A iff

dom(r) = dom(ma(r)) x dom(myrpa(r))

where dom(.) returns the domain of the input block.

Likewise r is symmetric along PASs Ay, Ag, ..., A, iff

dom(r) = dom(ma, (1)) x dom(ma,(r)) % ... x dom(ma, (1)) X dom (T)\ (arussU...ua) (7))

The Cartesian product implies that for a symmetric block, the data can be independently
generated for each PAS considered. Therefore, Symmetric Refinement module refines each
filter-block into a set of symmetric blocks along the PASs acting on it. Hence, post-refinement,
the different projection spaces can be processed independently. The refinement algorithm is

discussed in Section 5.4.1.

Impact of Overlapping Projection Subspaces. When partially overlapping PASs, say
A; and A,, are applied on an filter-block b, symmetric refinement becomes computationally
challenging. This is because A1, Ay have to be made conditionally independent for b, requiring
refinement such that each resulting block is symmetric along A; and A, for each domain point
in dom(A; N Ay). This is easily done by enumeration for small cardinality domains, but does
not scale in general. Hence, in Hydra we bypass such overlapping projection operations by
ensuring, as described in Section 5.4.2, that the input workload is initially itself decomposed

such that there are no projection subspace overlaps in the resulting sub-workloads.

5.4.1 Symmetric Refinement

The refinement for each filter-block is done independently. Given an filter-block b and its
associated PASs, this module refines b into a group of refined-blocks, such that each refined-
block is symmetric along the input PASs.

Let us first understand the refinement procedure for an filter-block along a single PAS. Here,

given a block b, and a PAS A, the refinement of b along A is carried out as follows:

1. Let I be the subset of all interval-combinations in dom(A) that are present in b. The

interval boundaries along an attribute are computed using the constants that appear in

7

the filter predicates of the input PICs. For some interval-combination I € I, let b; denote

the part of b whose projection along A is I.

2. For each interval combination I € I, the projection of b; along U(T') \ A is computed, and
denoted as m(by).

3. A hashmap is created with keys as m(b;) and value as I. Hence, the parts of b where
the projection of b along U(T') \ A do not alter with changing values of A are clubbed
together into a single hash entry. This construction provides independence between A

and the U(T) \ A subspaces.

4. Each entry e in the hashmap corresponds to an refined-block, constructed by taking the
region stored as key in e for the U(T') \ A attribute-set, and a union of regions stored as

value in e for the A attribute-set.

Interestingly, the above refinement strategy also ensures that the number of resultant blocks is
kept to a minimum. The domain of b along A be denoted as dom(my(b)). Further, let £ be a
relation associated with the points in dom(ma(b)). For a pair of points t1,ty € dom(ma (b)), we
say t1 E'ty iff the projection ¢, and t5 along the rest of the attributes i.e. U(7T)\ A is identical. It
is easy to verify that E forms an equivalence relation. For an equivalence relation, the quotient

set of the relation gives the minimum partition.

Lemma 5.1 The Symmetric Refinement algorithm returns the quotient set of dom(mwa(b)) by
E.

The proof follows from the fact that Symmetric Refinement algorithm uses a hashmap,
which enables grouping of points in dom(m4 (b)) together such that their projection on U(7T)\ A
are identical. Hence, for a PAS, the symmetric refinement algorithm produces the quotient set

of E, and hence returns the refinement with minimum number of blocks.

Extension to Multiple PAS

We now move on to the multiple PAS scenario. Let there be o PASs (A1, Ay, ..., A,) ap-
plicable on b across all PICs. This implies that there are o + 1 projection subspaces —
7oy (0), ay (b)), s a, (b), and Ty (a;uasu..ua,) (D). It is easy to see that the block becomes
symmetric when refined along any « of these a4 1 subspaces.

The refinement is done iteratively, where the output of refinement along one subspace is fed

into the next in the sequence. Since any sequence among the chosen a subspaces results in a

a+1

N)a! ways to do the refinement. The specific choice that

symmetric block, there are a total of (

78

we make from this large set of options is important because it has an impact on the number
of variables in the LP, and hence the computational complexity and scalability of the solution
procedure. In particular, the number of CPBs created depends on the geometry of the refined-
blocks, and usually more overlaps of refined-blocks along a PAS results in more CPBs. More
precisely, if we refine a block along a subspace, the overlaps in that space remain unaffected, but
the overlaps along the remaining subspaces may increase. Therefore, to minimize this collateral
impact, we adopt the following greedy heuristic in Hydra: The subspace having the maximum

filter-block overlaps with b is chosen as the next subspace to be refined in the iterative sequence.
Mapping refined-blocks to PICs

The set of refined-blocks, denoted by R, are connected with the set of PICs using the following

relation:
Definition 5.4 An refined-block r € R 1is related by relation M to a PIC ¢ containing filter
predicate f, iff dom(r) satisfies f. That is,

rMe &t satisfies f,Vt € dom(r)

For a PIC ¢, the associated filter predicate’s output cardinality [can be expressed as the union

of a group of refined-blocks related to ¢ by M, as follows:
U =D =t
rirMc rirMc

Since all the refined-blocks are mutually disjoint, the union could be replaced with summation

in the above equation.

5.4.2 Workload Decomposition

As discussed previously, symmetric refinement is performed when distinct PASs applicable on
an filter-block are non-overlapping. This holds true when, for each domain point ¢, the distinct
PASs across various PICs that are applicable on ¢, are mutually disjoint. For any given collection
of sets (PASs) to be mutually disjoint, it is equivalent to say that they are pairwise disjoint.
This leads us to defining the concept of an conflicting pair of PICs.

Definition 5.5 A pair of PICs (cy : (f1,A1,l1, k1), c¢2: (fa, Ao, o, ko)) conflict iff:
o their PASs partially intersect, i.e.,
AiNAy #0,A # Ay, and

79

o f1 and fy overlap, i.e., there exists a point t in the domain space of T' such that t satisfies

J1and fs.

For example, consider the following pair of constraints, ¢4 and c¢5, on the Std table:

¢y (GPA < 8 A Scholarship > 40K, (Age, Scholarship), 500, 20)
¢s :(Age > 10 A\ Scholarship < 4K, (GPA, Scholarship), 2000, 6)

We see that the filters in the two constraints overlap, and the corresponding PASs also partially
intersect.

In the Workload Decomposition module, the input workload is split such that there are
no conflicting pairs of PICs in the resulting sub-workloads. We refer to a workload with no
conflicting pairs as a compatible workload, and denote it using Q°.

Given Q, the set of conflicting pairs is computed first. Subsequently, we construct the set
of compatible sub-workloads that cover the entire workload. Additionally, we aim towards
minimizing the number of sub-workloads. This minimization is desirable to facilitate common
platform for workload performance evaluation. Since the minimization is NP-complete (reduc-
tion from vertex coloring), we adopt a heuristic based on greedy vertex coloring. The algorithm
iterates over the PICs, and in each iteration, the PIC ¢ with minimum conflicts in the set is
picked and assigned to a compatible sub-workload Q¢. If multiple compatible options are avail-
able, an assignment that minimizes the skew in the sub-workload sizes is made. On the other
hand, if no such assignment is possible, a new sub-workload is constructed, and initialized with
c. Note that a single query always produces at most one PIC and hence is always free from
conflicts.

In the worst case, the above algorithm can create one sub-workload per query. However, it is
our experience that in practice, a small number of sub-workloads is usually sufficient. Further,
we hasten to add that even if the worst case materializes, the overheads incurred would be

marginal as only a single small summarized table is stored per sub-workload.

5.5 Projection Subspace Division

We now turn our attention to handling intra-projection subspace dependencies. The projection

output cardinality with respect to a PIC ¢ can be expressed using the relation M as follows:

U m) =k

rirMc

80

We use the shorthand 7 to represent the projection of a refined-block r on A, i.e. 7 = my(r),
and this projection block is referred to as a projected-refined-block (PRB). The set of all PRBs
for a PAS A is shown as R Further, for brevity, we overload the same relation M to establish

an association between PRB 7 and a constraint c¢. That is, TMc¢ < rMc. Hence we can rewrite

7=k

rrMc

the above equation as:

The union here cannot be replaced with summation because unlike refined-blocks, the PRBs
need not be disjoint. Therefore, to express the constraint as a linear equation, the projection
subspace D* needs to be divided into a set of CPBs. The set of CPBs corresponding to a PAS
A is denoted using P*. Each element p € P* logically represents a subset of D*. Further, a
relation L is provided that connects the elements of P* with elements of R". We first define
the notion of what constitutes a valid division, and then go on to presenting an algorithm that

provides the (unique) optimal division.

5.5.1 Valid Division

A valid division is defined as follows:

Definition 5.6 Given QC,KA and M, a division (P* L*), with respect to a projection data

subspace D*, is called a valid division if it satisfies the following two requirements:

Condition 1. Fach PRBT € R" s expressible as a union of a group of elements from P*,

determined by relation L*, as shown below:

r=Jp VvrFeR (5.1)

p:pLAT

Condition 2. All elements in P* that are related to a constraint ¢ € Q¢ through the composite
relation
Mo L* = {(p,c)|3F € R" . TMec A pL 7}

that is, all elements of the set {p : (p,c) € M o L*}, should be mutually disjoint for all
ce Q°.

Condition 1 is needed to associate an PRB with its constituent CPBs. This is required during
data generation in order to populate appropriate refined-blocks based on the cardinalities of
CPBs obtained from the LP solution. Condition 2 enforces that each constraint is comprised

of disjoint constituent CPBs, thereby enabling expression of constraints as linear equations.

81

For ease of presentation, we drop A, which can be assumed implicitly, from the superscript

in the rest of this section.

We now give a bound on the number of CPBs required. Each element p of P maps to a
collection of sets from R using relation L. If there are m elements in R, then p has one of the

total 2 — 1 possible mappings.

Lemma 5.2 If a pair of CPBs in P, py and py, map to identical sets in R, they can be combined

into a single element py U po, without violating either condition.

Proof: We are given that p; and p, € P are such that p, L7 < p,L7 for 7 € R. We need to

prove that replacing p; and py with p; 2 = p1Up, in P does not violate any of the two conditions.

e Condition 1: It is required that each 7 € R is expressible as union of related elements
of P through L.

If (p1,7) ¢ L, then (p2,7) ¢ L (and vice versa). Hence, the expression for 7 remains

unaltered.

If (p1,7) € L, then (p2,7) € L (and vice versa). Let p = {p € P\ {p1,p2} : pL7}. Then,
T = p Upy UpE 2 After replacing p; and py with p; 9, the expression would become
T:pl,Q UpEpp'

e Condition 2: Let ¢ be any PIC in Q¢ such that (p;,c) € M o L* (and (pa,c) € M o L*).
It is easy to see that (from Condition 2) p; will be disjoint with all the other elements of
PP that are related to ¢ through M o L*. That is,

prNp =0, €P\{pi}:(p,c) € MolL*

Likewise, ps will also be disjoint with all the other elements of P that are related to c.
Therefore, on replacing p; and p; with their union p; o, p1 2 will continue to remain disjoint
with all the other elements of P that are related to c.

(Il

From Lemma 5.2, we know that at most one CPB is needed for each mapping. Therefore,
2™ — 1 is the upper bound on the number of CPBs required for an R of length m.

From this observation, let us first look at an extreme construction of (P, L) with |P|= 2" —1,

where there is a single element p € P for each possible mapping.

82

Powerset Division

Consider a set P having 2™ — 1 elements with a mapping relation L such that each element p

in P maps to one of the non-empty subsets of R. Further, p’s content is defined as follows:

e 0 <U'>

7:(p,F)EL 7:(p,7)¢

7 (5.2)

That is, p includes the data points that are present in all the PRBs that are related to p and
absent from each of the remaining PRBs.

P satisfies the two conditions for valid division. This is because:

1. Each element 7 € R can be expressed as a union of a subset of elements in P, as shown
T= U p
p:pLT

2. All the elements in P are mutually disjoint.

below:

. . . . —GPA)
Consider the projection subspace of GPA in our running example. R Pa_ {71,729, 73}. Since
there are three PRBs, seven possible mappings exist. Figure 5.4 illustrates these seven map-
pings. Powerset Division (Pow-PSD) creates seven CPBs, one CPB corresponding to each map-

ping. Hence, the seven resulting CPBs in P%74 are as follows:

71\ (ToUT3), (F1NTe)\T3, (T1NT3)\Te, T1NTaNTs,
7o\ (T1UT3), ToNT3\T1, T3\ (F1UT2)

epa(12)

Figure 5.4: Partitioning in Projected Space

83

5.5.2 Optimal Division

The number of CPBs in P determine the number of variables in the LP. Therefore, reducing
the size of P helps in reducing the complexity of LP, thereby providing workload scalability and
computational efficiency. Hence, we define an optimal division as a valid division that has the

minimum number of CPBs.

Definition 5.7 A wvalid division (P, L) is called an optimal division iff there does not ezist any
other valid division (P', L") such that |P'|< |P|. We represent the optimal division by (P*, L*).

We now shift our focus towards identifying the optimal division. As a first step, let us define
some general characteristics of the set P and the corresponding relation L.
If a CPB p is related to a PRB 7, then p is a subset of 7. That is,

plF = pCT (5.3)

Alternatively, a second possibility is of disjointedness. Let pq, ps be such that (p1, ¢), (p2,¢) €
M o L for some ¢ € Q°. Further, let R(pl),ﬁ(pg) represent the set of PRBs that are related to
p1 and ps, respectively, through L. Using Condition 2 and Equation 5.3, we can say that

pNT =0, whereT € R(py)\
poNT =0, where7 € R(p;) \ R(py2) (5.4)

Therefore, CPBs may have a disjoint relation with a PRB.

Finally, a third possibility is when a CPB does not have a relation with a PRB, which allows
room for constructing CPBs that overlap.

Our division algorithm distinguishes these three possibilities using a vector v, corresponding
to each CPB pin P. The vector is of length m, where each element is associated with an element
of R. Further, the element associated with 7 € R is denoted by v, (). Specifically, element v,(T)
is set to 1 iff pL7. Using Equation 5.4, the elements in v, corresponding to the sets R(p') \ R(p)
for all p’ such that (p,c), (p',c) € M o L for some ¢ € Q°, are represented as 0, denoting the
absence of values from these sets. The remaining elements of v, are set as ‘<’ denoting a don’t
care state, i.e. p and 7 may or may not have an intersection.

Finally, using the vector v,, p can be expressed as:

p= () 7\ U 7 (5.5)

Tp(T)=1 7 :0p(T')=0

84

Let V represent the set of all possible vectors. Further, let Q denote the collection of CPBs,
where there is a projection-block p associated with each vector v, € V. Therefore, P* C Q.
Let the subset of V corresponding to the elements in P* be denoted as V*. Each position in
vector v, can have one of the three possibilities among 0, 1, X, and at least one position needs to
mandatorily be 1. Therefore, QQ comprises 3™ — 2™ elements. Note that Q forms a partial-order
with respect to the subset relation, and can therefore be represented by a Hasse Diagram. As
an exemplar, the Hasse Diagram for an m = 3 case is shown in Figure 5.5 (for simplicity, the

elements of V are shown instead of Q).

(11><2>3) (X, 1,x)
)/‘\ 1
(1,%,0) [(1,0,x)| [(1,1,%) 1x1) ><, Y (x,1,1) (x,0,1) (0,x,1)

VAR X

(1,000 (1,1,0) (101 <111) (0,1,00 (0,1,1) (0,0,1)

Figure 5.5: Hasse Diagram

We hasten to add that to compute P*, it is not necessary to iterate on all the elements of
Q. Instead, the division begins with the top nodes of the Hasse diagram and recursively splits
a block only if required to satisfy the two conditions.

The detailed mechanics of the division algorithm, called Opt-PSD, with pseudocode as shown

in Algorithm 4, are described next.

5.5.3 Opt-PSD Algorithm

We begin our computation of the projection subspace division by creating a Division Graph
(DG). In this graph, a vertex is created corresponding to each element of R. Then, an edge
is added between vertices corresponding to 7; and 75 if there exists a constraint ¢ such that
71Mc and 7o Me, (i.e. both the PRBs are related to a common constraint ¢), and the domains
of 71 and 75 intersect. The resultant graph G is given as input to Algorithm 4, which returns
the set of vectors V* in the output. Leveraging the vectors, the contents of the CPBs are
computed using Equation 5.5. Then, the L* relation is populated with the expression: (p,7) €
L*, if wu,(7)=1v, € V*

85

The rest of the algorithm proceeds as follows:

e We iterate over the vertices of GG. In the iteration for a PRB 7, a vector is initialized
with ‘x’ for all the positions except that corresponding to 7, which is set to 1 (Line 3 of
Algorithm 4). These initial vectors represent the top nodes of the Hasse Diagram. They
are recursively further split in the while loop (Line 5), using a running list of vectors
called toBeSplit.

e In cach iteration of the while loop, an element v, from toBeSplit is popped and split
using a pivot vertex; the resultant elements are re-inserted in the list. A pivot PRB is
distinguished as one which is included in v, and co-occurs in a constraint ¢ with another
PRB (target) whose current assignment in the vector is x. To compute the pivot vertex in
G, the get Pivot function is used, which selects the pivot based on the following conditions:
(a) v,(pivot) = 1, and (b) There exists a PRB 7 such that there is an edge between the

vertices corresponding to pivot and 7. Further, the value for 7 in the vector v is x.

e The collection of all PRBs that satisfy condition (b) is denoted as the targets set cor-
responding to pivot, and is returned by the getPivot function. Now, v, is split using
the Split function, which computes a powerset enumeration of the vector positions corre-
sponding to PRBs in targets. This function also ensures that no redundant elements are
added in the result set.

The correctness of Opt-PSD algorithm follows from the following:

e it starts from the top nodes of the Hasse diagram and recursively refines them. Therefore,

it continues to cover all the elements of R.

e the PRBs that are related to a common constraint are split by restricted powerset enu-

meration ensuring that they are mutually disjoint.

Hence, the algorithm does restricted enumeration depending on vertex’s neighbours, or in

other words it takes into account which PRBs co-appear in a constraint.

Example Division

Consider the projection subspace of GPA in Example 1. RO

how the CPBs for projection subspace of GPA are created by Opt-PSD. The input DG for the

example is shown in Figure 5.6.

= {7,72,T3}. Let us see

Initialization: toBeSplit = (), V* = ()

86

Algorithm 4: Optimal Projection Subspace Division
Input: Division Graph G
Output: Optimal Vectors-set V*

1 toBeSplit <+ 0;

2 visited < 0;

3 for 7 in R do

4 visited <— visited UT vy,_init <— {x}"™, v,_init(T) < 1;

5 toBeSplit < {v,_init};

6 | while toBeSplit # () do

7 v, < toBeSplit.pop();

8 pivot, targets < get Pivot(G, vy);

9 if pivot exists then

10 ‘ toBeSplit < toBeSplit U Split(v,, pivot, targets, visited);
11 else

12 L V* =V U {v, };

13 return V*;

ry r, T3
Gr— []

Figure 5.6: Example Division Graph

Iteration 1: 7, is picked, v,-init = (1 x x) is added to toBeSplit, toBeSplit = {(1 x x)}.
After popping, v, = (1 x X), getPivot returns pivot = 1,targets = {2} as vertex 1 is
connected to vertex 2. The split function splits v, by a restricted powerset enumeration
on targets. {(11x), (10x)} is added to toBeSplit, toBeSplit = {(11x), (10x)}. Both
the elements in toBeSplit are popped one by one and are added to V* as they have no
pivot. toBeSplit = 0, V* = {(11x), (10x)}.

Iteration 2: 7, is picked and the corresponding v, = (x1x) is added to toBeSplit,
toBeSplit = {(x1x)}. After popping, v, = (x1x) which return pivot = 2, targets = {1}
as vertex 2 is only connected to vertex 1. On splitting, {(01x), (11x)} are added to
toBeSplit. Both the elements are popped and (01x) is added to V* as it does not have
a pivot. (11x), being already present in V*, is not inserted again. toBeSplit = (), V* =
{(11x), (10x), (01x)}.

Iteration 3: 73 is picked with (x x 1) and added to toBeSplit. After popping, v, = (X X 1),

no pivot is found by get Pivot as vertex 3 is not connected to any other vertex. v, is added
to V*.

87

1 Function Split (v, pivot, targets, visited):
2 splitSet + (;

3 for 7 € targets do

4 if 7 € visited then

5 L v, (F) < 0;

6

remove T from targets;

7 | if targets = () then
L return vy,

9 powerset <— generate powerset enumeration of targets;
10 for s € powerset do
11 new_v, < vp;
12 new_v,(T) < 1,VF € s;
13 new_v,(F) < 0,VT € targets \ s;
14 splitSet < splitSet U new_v,(F);
15 return splitSet;

Finally, V* = {(11x), (10x),(01x),(x x 1)} (highlighted in Figure 5.5). Using Equation
5.5, it yielded in 4 CPBs for GPA, P* = {p1,p2,ps3,ps} (as discussed in Section 5.3) and
L ={(p1,71), (p1,72), (P2, 1), (P3,T2), (Pa; T3) }-

The degree of the DG has a proportional impact on the number of CPBs constructed. To see
this behavior, the number of CPBs for Opt-PSD for a few general DGs are shown in Table 5.3.

Table 5.3: No. of CPBs in Opt-PSD

Division Graph No. of CPBs
Empty Graph (k) m
Path Graph (P,,) sm(m+1)
Cycle Graph (C,,) m?*—m+1
Star (K1 1) 2m 1+ m —1
Complete Graph (K,,) 2m —1

Proof of Optimality

We now prove that Opt-PSD produces the optimal division. For a CPB p € P, consider the set
of points given as: [ﬂmp@:l 7\ UF':UP(?’):O,X 7|. This is a subset of p and cannot overlap with

any p' € P\ {p}. This restriction leads to the following lemma:

Lemma 5.3 Given (P, L) returned by Opt-PSD, Vp € P, there exists a point t € p such that
t¢p,vp e P\ {p}.

88

We use this observation to prove that Opt-PSD returns an optimal division, and further, that

this optimal division is unique.
Lemma 5.4 0pt-PSD returns the unique optimal division.

Proof: We give a brief sketch of the proof here.
Let (P, L) be the division provided by Opt-PSD, and let there be another division (P’,L’)
such that |P'|< P.

= Jt; € p1,ta € pa(3 p1) for some py, ps € P, where py L7y, po LT,
71,72 € R, such that t,,t, € p/,p'L'F, p' L'T5 for some p’ € P.

Case (1) 7y =T9 = T: Since p; LT and po LT,

— Jc such that 7Me, 7 Me, for some 7 € R and
(p1,7) € L, (p2,7) ¢ L (wlog) (using Lemma 5.2)
=ty ¢ 7', otherwise there would exist p3 € P such that ¢y € ps;
p2 N ps # () and ps L7 would imply Condition 2 violation.
= Jp" € P such that p"L'7 t; € p” and t5 ¢ p".
Since,p' Np” # 0 and (p,¢), (p",¢c) € Mo L'

Hence, contradiction (Condition 2 violation).

Case (2) 7, £ Ta:
(2a): t1 € p1 \ p2 (or ta € pa \ p1, wlog)
Since, t1 € py, p1 Lo, therefore t; € 79
—> dps € P such that t; € p3 and p3 L7
D2, p3, P’ are such that t1 € p3,to € po,t1,te € P, poLTo, p3 Lo, p’ L'Ts.
This is not possible using result of Case (1). Contradiction.
(2b): t1,t € p1 N po
p1,p2 has at least one point each that is absent in all the other CPBs (using Lemma 5.3).
Therefore, if ¢1,t5, which are present in p; N ps are merged in P’ then |P’|> |P|. Contradiction.
Hence, Opt-PSD gives the optimal division. a

5.6 Constraints Formulation

As just discussed, Projection subspace division outputs a set of CPBs and a mapping function

L. These form the input to the Constraints Formulation module, whose objective is to construct

89

an LP that captures the projection constraints while ensuring that the solution corresponds to
a physically constructible database.

Condition 1 of valid division ensures that each PRB 7 € R is completely covered by a
set of CPBs. While Condition 2 ensures that all CPBs related to some ¢ € Q° are mutually
disjoint. As a consequence, a constraint ¢ (f, A, [, k) can now be expressed as a summation of
cardinalities of CPBs related to ¢ through M o L*.

malor (M= Y 1ol (5.6)

pi(p,c)€MoLh

Further, since each 7 € R" is related to at least one c € Q¢ through M o L*, the CPBs
associated with 7 € R through L* are also disjoint. Hence, the cardinality of 7 € R* can be

represented as a summation of the cardinalities of related CPBs.
7= Ipl (5.7)
p:pLAT
The LP construction uses the above facts while constructing constraints. Specifically, the
LP variables that are constructed, and their interpretations, are as follows:

x,: total tuple cardinality in r € R, i.e. |r]|
y,: (distinct) tuple cardinality in p € P4, i.e. |p| for PAS A.

Given this framework, there are two classes of constraints, Explicit Constraints and Sanity
Constraints, that constitute the input to the LP and are discussed in the remainder of this

section.

5.6.1 Explicit Constraints

These are the LP constraints that are directly derived from the projection constraints. For each

projection constraint, ¢ : (f, A, [, k), the following pair of constraints are added:

(a) Total Row Cardinality Constraint

> z=1 (5.8)

rirMe

(b) Distinct Row Cardinality Constraint (using Equation 5.6)

Z Yp =k (5.9)

pi(p,c)€MoLA

90

5.6.2 Sanity Constraints

These are the additional constraints necessary to ensure that the LP solution can be used for

constructing a physical database instance. Here, there are three types of constraints:

Type 1: These constraints ensure that the row cardinality for each refined-block and CPB are

non-negative in the LP solution. That is,

z, >0,¥r€R, and g, >0,Vpec P forall PAS A (5.10)

Type 2: These constraints ensure that the total number of tuples for each refined-block is
greater than or equal to the number of distinct tuples along each applicable PAS for that
block. Using Equation 5.7, these constraints, for each refined-block r and each of its

associated PAS A, are expressed as follows:

S oy < (5.11)

p:pLAT
where 7 = ().

Type 3: Even after satisfying the above sanity constraints, we can still have a situation where
the total number of tuples for a refined-block may be positive while the number of distinct
tuples along some projection subspace remains zero. To avoid this scenario, we add the

following constraint for each refined-block r and each of its associated PAS A:

o <IT1 Y (5.12)

p:pLAT

In the above, T = my(r) and |T'| is the cardinality of T', which is an upper-bound on x,.

We assume that |7'] is given as an input PIC with no filter predicate.

We had already seen, in Section 5.3, the explicit constraints for our running example. The

associated sanity constraints are shown in the box below:

91

Type 1l xy,79,23, 244,74, = 0
ylG'PA7 ngA’ ngA, y4GPA Z 0
U s e i iRy > 0
Type 2,3y + 4™ <y <|T|(y7" + 95"
Yo PA + ST <y T + 9574

yGPA < g < |T|yS0A

Age Age Age Age
Y2 4y < ap < TNy +y3%)
Age Age Age Age
yzg +y69 §$3§’T|(929 +yﬁg)
Y+ 1 < waq < IT|(45%° + 43 ™)

Age A A Age
Y2 7+ ys < way < |T|(ya* + 5 ™)

5.6.3 Sufficiency for Data Generation

For a refined-block and an associated PAS, the above sanity constraints ensure that any LP
solution can always be used to generate data that conforms to it. Now, since refined-block is
symmetric in nature, data across different PASs can be generated independently and concate-

nated together. Therefore, the constructed LP is sufficient for data generation.

5.7 Data Generation

The LP solution gives the following information:
1. A list of refined-blocks with their corresponding row cardinalities, and

2. For each refined-block and its associated PASs, a list of CPBs with their associated

(distinct) row cardinalities.

Thus far, we have only associated statistical significance to each CPBs, specifying the presence
or absence of their tuples in refined-blocks. Now, we drill down to assign intervals for each CPB,
thereby producing the summary tabulation for all refined-blocks. The CPBs along each PAS are
assigned intervals independently since each refined-block is symmetric along its associated PASs.
The final summary that is produced can be used for either on-demand tuple generation, or for
generating a complete materialized database instance. We discuss the summary construction

and tuple generation procedures here.

92

5.7.1 Summary Construction

The summary construction module compactly stores information needed for efficient tuple gen-
eration. Each projection subspace is dealt with independently thanks to the projection isolation
techniques. Consider the projection subspace corresponding to PAS A — here, the first step is
to assign an interval to each CPB p € P*. A challenge in this assignment is that the domains
of different CPBs may intersect. For instance, the domains of CPBs p5% and pgl 9¢ intersect
in Std. However, since CPBs related to a common projection constraint should not intersect,
we assign disjoint intervals to these CPBs to ensure Condition 2. Hence, p5? and pi?® are
allocated disjoint intervals for PAS Age as (59, ¢s), (pa?°, ¢s) € M o LA9. On the other hand,
in the case of PAS GPA, p§4 and p§{f4 are not related to any c in Q°, and therefore their
data generation intervals can overlap.

As per above, a feasible interval assignment for Std is:

PSPA — [5,8) | p5° « [30,37)
PS4 [4,9) | pg9 « [37,50)

The summary is maintained refined-block-wise, with the template structure shown in Fig-
ure 5.7. We see here that all the CPBs associated with the block, along with their distinct tuple
cardinalities, are represented in the summary. Using a to denote the total number of associated
PASs, a refined-block can be represented in o+ 1 components, with each component associated
with a PAS having a distinct row-cardinality. For the attribute-set on which no projection is
applied for the refined-block, shown as A, the domain of the projection block is kept as is
and no distinct tuple count is maintained. Lastly, each refined-block has an associated total
cardinality. A populated instance of the template, and its interpretation, was discussed earlier
in Section 5.3.5.

A, Ag A, Ajese
CPB-1: card., | CPB-1: card., | ... | CPB-1: card., refined-block
CPB-2: card., | CPB-2: card., | ... | CPB-2: card., | PB | Card.

Figure 5.7: Sample refined-block in Summary

5.7.2 Tuple Generation

Using the information in the summary, the tuples of the table are instantiated. Specifically,

the algorithm iterates over each refined-block and generates the number of rows specified in

93

the associated total cardinality value. For a refined-block and an associated PAS A, each
CPB is picked and the corresponding partial tuples are generated. This gives a collection of
partial tuples for A which may be less than the total cardinality. To make up the shortfall
without altering the number of distinct values, we repeat the generated partial tuples until the
total cardinality is reached. For the A,y component, which only has a single interval, any
partial-tuple within its boundaries can be picked for repetition. Finally, partial-tuples across

all projection spaces of the refined-block are concatenated to construct its output tuples.

Inter-Block Dependencies. We have to ensure that the partial-tuples associated with a
CPB are identical for each of the associated refined-blocks. To do so, we employ a deterministic
algorithm that takes an interval and a cardinality as input, and produces a series of distinct
points, equal to the cardinality, from the interval — this series is used in all the associated
refined-blocks. As a case in point, for the sample summary in Figure 5.3, the partial tuples
generated for the CPB with interval [30,37) and distinct row cardinality 5 are identical in both

rg and 74p.

5.8 Pipeline

The extension of the end-to-end Hydra pipeline, to incorporate Projection, is shown in Fig-
ure 5.8. The new/updated modules that differ from previous chapter are shown in green color.

Hydra takes a set Q of PICs over a single table T" as input. Let 8 be the total number of PASs
across all the constraints, as indicated in Figure 5.8. From the constraints, Hydra produces data
for T'. This is carried out by a sequence of core components, namely Workload Decomposition,
LP Formulation, and Data Generation modules. Workload Decomposition splits Q into
a set of compatible sub-workloads. Subsequently, the rest of the pipeline, comprising of LP
Formulation and Data Generation, is executed independently for each of these sub-workloads.
The LP Formulation for a sub-workload Q¢ begins with Region Partitioning followed by
Symmetric Refinement algorithm. This gives the set of refined-blocks. For each PAS across
all PICs, the PRBs are computed using the refined-blocks. These PRBs and Q¢ are then
used by the Projection Subspace Division module to construct the set of CPBs. Next, at
the Constraints Formulation stage, an LP is constructed using variables representing the
cardinalities of refined-blocks and CPBs. This construction is then given as the input to the
LP Solver. From the solution produced by the LP solver, a comprehensive table summary is
constructed using the Summary Construction module. This summary is used by the Tuple
Generation module to synthesize the data. It can generate tuples on-demand during query

processing, thereby eschewing the need for data materialization. Alternatively, if the user

94

Data Space Partitioning

Filter Symmetric Refined
Blocks ~|Refinement Blocks

"@ Aj— " —ﬂ Projection Subspace Division

@ —4 Projection Subspace Division

A A

Schema

|
I

1

|

|

|
Workload :
Decomposition | 1
|

|

|

|

|

|

|

|

PICs —»

I8!

Sub-workload

=
I
Projected
ock

Refined

Constituent

Projection Blocks

v

| "@ Ap— —»{ Projection Subspace Division

1
1
1
1
I
1
1
1
1
1
I
1
1
1
1
I
I
1
ﬁ.
1
1
I
1
1
1
1
1
I
1
1
[

I
I I
I - - . I
> Filter Projection l—
| | Constraints || Constraints :
I

Figure 5.8: Projection Solution Pipeline

Database
Summary

Summary
Construction

LP Solver

desires a materialized database instance, it can be generated from the summary and stored

persistently.

5.9 Discussion

Having presented the mechanics of handling projections, we now take a step back and critique

the approach on relevant aspects.

5.9.1 Solution Guarantees

The input workload feasibility is true by definition since the PICs have been derived from an
existing setup. In such scenarios, Hydra ensures, thanks to the explicit LP constraints, that the
generated data satisfies the PICs with 100% accuracy. Further, the sanity constraints ensure

the LP solution is always constructible. This leads us to the following lemma:

Lemma 5.5 For a feasible and compatible set of PICs, Hydra always produces an instance of
the table that satisfies all the constraints.

Given an initially feasible workload, workload-decomposition can always produce sub-workloads

95

that are both feasible and compatible. Therefore, for any initially feasible workload, the data

produced by Hydra can cover all the input constraints. We formally prove Lemma 5.5 next.
Proof of Lemma 5.5

We briefly discuss the proof for Lemma 5.5, which is split into two parts: (a) The LP constructed
for a feasible compatible workload Q¢ is always satisfiable; (b) Given any LP solution, data can

be always be constructed from it, and this data will satisfy Q°.

Part (a): Given workload feasibility, there exists at least one instance 7" of the table that
satisfies Q°. Further, due to compatibility, Q¢ is modeled in a single LP. Say 71" does not satisfy
this LP. This implies T" does not satisfy at least one of the Explicit or Sanity constraints. If T’
violates an Explicit constraint, then it does not satisfy at least one input PIC. This is because
each input PIC is modeled using two Explicit constraints that ensure the data satisfies the PIC.
Further, there cannot be a physical table that violates any Sanity constraint due to its inherent
nature. Hence, T satisfies all the Sanity constraints as well. Therefore, by contradiction,
we can conclude that T satisfies the LP — in fact, the LP gives the necessary conditions for
data generation adhering to the workload. This implies that for feasible workloads, the LP is
satisfiable.

Part (b): For a particular PAS A, the Sanity constraints ensure that for each populated
refined-block, the total tuple count in the refined-block is at least the number of distinct rows
along A, and the distinct row count is positive. Hence, the data along each projection subspace
is generated easily. Further, since refined-block is symmetric in nature, data across its different
projection subspaces can be generated independently and concatenated. Therefore, any LP
solution is sufficient for data generation. Since, each PIC is modeled in the LP using the

Explicit constraints, the generated data is compliant with Q¢

5.9.2 Solution Complexity

Computationally, the bottleneck of the pipeline lies in the LP solver. The LP complexity is
primarily governed by the number of CPBs created, which is determined by the overlaps between
the blocks intra-projection subspaces. The extent of overlaps is reflected by the outdegree of
vertices in the Division Graph G introduced in Section 5.5. For adversarial cases, the number
of CPBs can be as high as the number of connected induced subgraphs of GG, which can go up
to 2. Here, m is the number of refined-blocks that are subjected to projection along a PAS A.

96

Connection to Connected Induced Subgraph Problem

Assuming the domain of all the blocks are identical, then the number of CPBs is identical to
the number of connected induced subgraphs in . This can be proved by a straightforward
bijection argument. That is, each induced connected subgraph has a corresponding CPBs in

the solution and vice versa.

Further, m itself is O(2!°°). However, these worst-case exponential scenarios are relatively rare

in practice, and our experience is that the count is usually well within the solver’s computational

limits. We quantitatively assess this aspect in our experimental evaluation (Section 5.10).
Lastly, the decision version of the general data generation problem is NEXP-complete, as

shown in [17].

5.10 Experimental Evaluation

In this section, we evaluate the empirical performance of a Java-based implementation of Hydra.
Z3 solver [14] is invoked by the tool to compute the solutions for the LP formulations. Our
experiments cover the accuracy, time and space overheads and scalability aspects of Hydra, and

are conducted using the PostgreSQL v9.6 engine [7] on a vanilla HP Z440 workstation.

Workload Construction. In presenting the experimental results, we initially focus on fully
compatible workloads. Subsequently, in Section 5.10.5, we discuss the corresponding perfor-
mance for workloads featuring conflicts. A variety of real world and synthetic benchmarks
were used in designing the workloads. For representative large fact tables from each of the
benchmarks, a workload of compatible PICs was derived by executing a set of queries. The
denormalized versions of these tables were considered for constructing PICs. The details of the

compatible workloads are as follows:

TPC-DS Suite: This suite comprises of four workloads, corresponding to the four TPC-DS
tables [12] subject to the maximum number of projection operations in the benchmark —
namely, STORE_SALES (SS), CATALOG_SALES (CS), WEB_SALES (WS), and INVENTORY
(INV).

Census Workload: Here, the Census dataset framework used in [37] is extended to addition-
ally feature projections apart from the extant filter cardinality constraints. In particular,

a single workload was constructed on the PERSONS (P) table.

IMDB Suite: This suite is designed from the JOB [45, 5] benchmark based on the IMDB

dataset. It comprises of three workloads, corresponding to the three tables subject to the

97

maximum projection operations — namely, MOVIE_LKEYWORD (MK), cAasT_INFO (CI),
and MOVIE_COMPANIES (MC).

The complexity of these various workloads is quantitatively characterized in Table 5.4. Note
that they feature a substantial degree of both inter-projection complexity (up to 10 projection
subspaces and 6 dimension subspaces) and intra-projection complexity (maximum degree of the

Division Graph vertices goes as high as 72).

Table 5.4: Workload Complexity

Dataset | Table # # PAS Length | Vertex Degree
PICs | PASs | Avg. | Max. | Avg. Max.
SS 16 8 1.4 5 3.95 10
CS 15 10 2.2 5 4.74 15
TPCDS 5 16 8 2 6 5.7 16
INV 6 3 1.5 4 0.92 4
Census P 220 3 1.67 2 1.33 72
MK 16 4 1.25 2 5.68 14
CI 14 3 2.67 3 3.7 17
IMDB MC 19 4 1.5 2 3.75 15

We compare Hydra against the DataSynth framework that supports value cardinality con-

straints. For DataSynth, projection constraints need to be restricted to single attribute tables.

5.10.1 Constraint Accuracy

When Hydra was run on the aforementioned workloads, the generated data satisfied all the
constraints with 100% accuracy. To appreciate the complexity present in these successfully
modeled constraints, we present a representative sample constraint applied on the denormalized

relation of STORE_SALES from TPC-DS below:

c: (f,A, 31921358, 15061)

f: dyear =2002 A
(i_category € (‘Jewelry’,*Women’) A i_class € (‘mens watch’,‘dresses’)) V
(i_category € (‘Men’,‘Sports’) Ai_class € (‘sports-apparel’,‘sailing’)) and
A : {i_category,i_brand, s_store_name, s_company_name, d-moy}.
Note that there are several attributes in the projection set, and both conjunctive and disjunctive

predicates in the filter condition.

98

Turning our attention to DataSynth, we also generated a customized workload from the
TPC-DS benchmark, comprising of only single attribute projection and filter constraints to
suit DataSynth’s restricted environment. For a single attribute case, there is only one pro-
jection subspace possible. Further, two distinct tuples cannot overlap in projection subspace
either. Therefore, the inter projection subspace and intra projection subspace challenges do not
surface. For this simplified scenario, we found several cases, where the LP solution obtained
from DataSynth was inconstructible. An example illustration showcasing this fundamental
problem is shown below:

Consider a toy example with the following pair of projection-inclusive constraints (PICs) on
the ITEM table from TPC-DS:

PIC 1: (4 <i.class_id < 12,i_class_id, 6876, 8)
PIC 2: (8 <i_class_id < 16,i_class_id, 4490, 8)

DataSynth’s algorithm divided the domain of i_class_id attribute into five intervals and
further assigns total row cardinality and distinct row cardinality to each of these intervals. The
obtained boundaries and the two cardinalities for each interval is tabulated in the table below.
We can see from the table that for intervals I; and I, the total row cardinality is positive, while
the distinct row cardinality is 0. Since to populate an interval, at least one (distinct) tuple is
necessary, therefore, this solution can not produce a valid instantiated table.

For this scenario, DataSynth produced the following interval-based solution:

Table 5.5: LP Solution from DataSynth

Interval Range Total, Distinct Row Card.
I t-classid < 4 11124,0
I 4 <i_classad < 8 2386,0
I3 8 <i_class_id < 12 4490,8
1 12 < i_class_id < 16 0,0
Iy i_class_id > 16 0,0

Having established the shortcomings of the prior work, we restrict our attention to Hydra

in the rest of this section.

5.10.2 Generated Data

We now show a concrete example of how the data generated by Hydra satisfies the input PICs.
Consider the following PIC from the CENSUS workload on the PERSONS table:
(18 < Age < 85 A Relationship = ‘Spouse’ N PUM A = 822, (Age, Sex), 205, 4)

99

A snippet of the generated table is shown in Table 5.6. Here, the first four rows in the (Age, Sex)
columns are repeated in round-robin fashion, while the remaining attributes have a fixed con-
stant value, for producing the first 205 rows. Then, the subsequent rows (206th row onwards)

in the table are assigned values that do not satisfy the above constraint.

Table 5.6: Sample Rows produced for PERSONS Table

Age Sex Relationship | PUMA | Tenure
18 M Spouse 822 Rented
25 F Spouse 822 Rented
36 M
68 M o
Repeated in Round Robin Spouse 822 Rented
(Row # 206) 76 F Parent 100 Owned

5.10.3 Time and Space Overheads

Having established the accuracy credentials of Hydra, we now turn our attention to the asso-
ciated computational and resource overheads. To begin with, the summary construction times
and sizes for various summary tables are reported in Table 5.7. We see here that the time to
produce the summary is in a few tens of minutes. From a deployment perspective, these times
appear acceptable since database testing is usually an offline activity. Moreover, the summary
sizes are minuscule, just a few 100s of kilobytes at most.

Drilling down into the summary production time, we find that virtually all of it is consumed
in the LP solving stage. In fact, the collective time spent by the other stages was less than
ten seconds in all the cases. These results highlight the need for minimizing the number of LLP
variables, since the solving time is largely predicated on this number. To obtain a quantitative
understanding, we report the sizes of the intermediate results at various pipeline stages in
Table 5.8 — specifically, the table shows the number of filter-blocks, refined-blocks, and CPBs
created by Hydra. We see here that there is huge jump in the number of regions from the
initial filter-block to the final CPBs, testifying that Q¢ has considerable overlap among its
constraints, and therefore represents a “tough-nut” scenario wrt projection. An exception to
this observation is the PERSONS table from Census dataset, where even though the maximum
degree for a vertex in the Division graph was 72 (Table 5.4), the overlaps between PICs are
limited as also indicated by the average degree which is less than 2.

We also show the improvement of Opt-PSD over Pow-PSD by additionally reporting the
number of CPBs in case of Pow-PSD. Lastly, the speedup achieved by Opt-PSD over Pow-PSD

100

Table 5.7: Overheads

Table 5.8: Block Profiles

Summar Cardinality of

Table Time S?,ze Table filter-blocks reﬁned-yblocks CPBs
SS 21 min | 58 kB SS 74 88 132662
CS 32 min | 117 kB CS 139 141 165936
WS 15 min | 64 kB WS 119 132 73929
INV 2s 13 kB INV 11 16 41
MK 2min | 15.5 kB MK 30 32 30083
CI 41 s 13.6 kB CI 278 301 14386
MC 3.6 min | 27.7 kB MC 187 203 42835
P 30 min | 416 kB P 1193 1529 7170

is shown in the last column of the table. Typically, for larger inputs, the speedup achieved is
also high. As a case in point, for store_sales table, Opt-PSD completed 70 times faster than
Pow-PSD. In absolute terms also, while Pow-PSD took days to produce the summary, Opt-PSD

completed the process in a few minutes.

Table 5.9: No. of Blocks and Comparison against Pow-PSD

. #PRBs #PRBs | Multiplicative
Table | # Filter-Blocks | #RBs Opt-PSD | Pow-PSD Speed-up
SS 74 88 132662 524404 70
CS 139 141 165936 524336 16

The summarized table can be used to generate tuples either in-memory during query pro-
cessing, or to produce materialized instances. The time to generate the tuples from the summary
in-memory is reported in Table 5.10, and we see that even a huge table such as SS, having close

to 3 billion records, is generated within a few minutes.

Table 5.10: Tuple Generation Time

Tuple Gen. Tuple Gen.
Table | # Rows Time Table | # Rows Time
SS 2.9 bn 4 min WS 0.72 bn 8 seconds
CS 1.4 bn 1.5 min INV 0.78 bn 9 seconds

5.10.4 Scalability Profile

We now provide quantitative observations with regard to data and workload scale.

101

Data Scale The time and space overheads incurred to produce table summaries are intrinsi-
cally data-scale-free, i.e., they do not depend on the generated size. We explicitly verified this
property by running Hydra over 10 GB, 100 GB and 1 TB versions of TPC-DS.

Workload Scale The time and space requirements with increasing number of PICs is shown
in Figures 5.9(a) and 5.9(b), respectively, for the Census workload. The figures highlight that
the memory consumption is relatively stable and manageable (few GB) across the spectrum,
but that time scalability can be a limitation for workloads beyond a certain complexity (Fig-

ure 5.9(a) is on a log scale).

= 10t 2.0
2)
4 10° S 1.5
2 o
= 102 Em
%1 ﬂ.‘luﬁ
ElO = 0.
F oo £ 0.0
j R R E-E-E=
o cooocoocoococOo0O0O0O O
g N O ®O®ON—O®®Oo N = AMe=BRRBAZTLOXD N
w - - - - NN
No. of PICs No. of PICs

Figure 5.9: (a) Execution Time (b) Memory Usage

5.10.5 Workload Decomposition

We now turn our attention to conflicting workloads, which require the pre-processing step
of workload decomposition. To model this scenario, we added conflicting PICs to the TPC-
DS workload suite, with the final workloads having the following PIC distributions: SS (52
PICs), CS (28 PICs), WS (29 PICs), and INV (8 PICs). In particular, we have evaluated the
Hydra results on Q for two decomposition strategies: (a) Instance-based Decomposition, and

(b) Template-based Decomposition, which are discussed below.
5.10.5.1 Instance-based Decomposition (ID)

Here the decomposition algorithm uses Definition 5.5 of a conflicting pair, and for this frame-
work, the number of workloads obtained for the four tables are shown in Table 5.11. We observe
that despite using an approximate vertex coloring algorithm (Section 5.4.2), a partitioning of
Q into at most 6 sub-workloads sufficed for ensuring internal compatibility. Interestingly, the
aggregate summary generation times are extremely small, completing in just a few seconds,

and much lower than the corresponding numbers for Q¢ in Table 5.7. At first glance, this might

102

appear surprising given that Q is more complex in nature — the reason is that due to workload
decomposition, an array of databases is produced for Q with low individual production com-
plexity, whereas a single unified database is produced for Q°. From a testing perspective, it is
preferable to generate the minimum number of databases, and therefore we would always strive

to have as little decomposition as possible.

Table 5.11: Workload Decomposition - ID

Sub-Workload Aggregate Aggregate
Table . . .
Sizes Summary Time | Summary Size
SS 13,11,8,7,7,6 14's 135 kB
CS 14,5,5.4 12's 69 kB
WS 12,10,7 7s 58 kB
INV |62 3s 16 kB

5.10.5.2 Template-based Decomposition (TD)

Here, the decomposition algorithm assumes conflicting pairs are defined at a template level.
That is, two constraints conflict if their PASs partially intersect. The reason we consider TD
is to remove any coincidental performance benefit that may have been obtained thanks to the
specific filter predicate constants present in the original workload. Table 5.12 shows the number
of workloads obtained for the four tables with this artificially expanded definition of conflict.
We observe that even here, just 8 sub-workloads are sufficient for producing compatibility.
Finally, again thanks to decomposition, both the summary generation times and the summary

sizes are extremely small.

Table 5.12: Workload Decomposition - TD

Sub-Workload Aggregate Aggregate
Table . . .
Sizes Summary Time | Summary Size
SS 10,10,8,8,5,5,4,3 | 70 s 109 kB
CS 9,74,44 14 s 117 kB
WS 9,9,6,5 7s 41 kB
INV |62 2s 16 kB

Finally, we also verified the quality of the approximation algorithm for decomposition. That
is, how far is the obtained number of sub-workloads from the actual minimum count. To assess
this, we implemented the exponential algorithm that computes the true minimum number of
sub-workloads and in the cases where this exhaustive algorithm could be evaluated, we found

that the approximation algorithm returned the same count as the optimal.

103

5.11 Conclusion

In this chapter, the scope of the supported constraints in Hydra were expanded to include the
general Projection operator. The primary challenges in this effort were tackling dependencies
within a projection subspace and across different projection subspaces. By using a combination
of workload decomposition and symmetric refinement, dependencies across various projection
subspaces were handled. Within a projection subspace, union was converted to summation via
division of the space. Further, an optimal division strategy was presented to construct efficient
LP formulations of the constraints. The experimental evaluation on real-world and synthetic
benchmarks indicated that Hydra successfully produces generation summaries within viable

time and space overheads.

104

Chapter 6

Regeneration using Join Constraints

6.1 Introduction

So far the regeneration algorithms discussed were restricted to constraints on a single table.
In presence of multiple tables, join constitutes an important primitive operation. Ensuring
volumetric similarity for queries involving multiple tables is dependent critically on modeling
joins. To understand the underlying concepts let us revisit the university database schema from

the Introduction chapter.

Register (Rid, RollNo, Course, Year, Score)
Student (RollNo, Age, Scholarship, GPA)

Here, Register.Rid and Student.RollNo are the primary key columns of Register and
Student tables respectively. Further, Register.RollNo is a foreign key column referencing
Student.RollNo.

Now, consider the following queries featuring joins: (For ease of exposition, we use the same

constants in the queries.)

1. Select Distinct GPA From Register Reg, Student Std
Where Reg.RollNo = Std.RollNo and GPA < 6 and Age < 20;

2. Select Distinct GPA From Register Reg, Student Std
Where Reg.RollNo = Std.RollNo and (GPA < 6 or Age >= 20);

The client AQPs obtained for the above two queries are shown in Figure 6.1. As we know,
the aim is to generate a synthetic database that preserves volumetric similarity. That is, the
AQPs obtained on the synthetic database match the client AQPs.

105

A A

2 5
TlgpA Tlgpa

A A

15000 250000
Reg X Std Reg X Std

3700V WO 3700V WOO

Reg OAge<20 A GPA<6 Reg OAge=20V GPA<6

50000 T 50000 T
Std Std

(a) AQP g, (b) AQP q,

Figure 6.1: Example AQPs

In the previous two chapters, we encoded each AQP in a single CC/PIC. In presence of
joins, each AQP gives multiple CCs. Specifically, we construct a CC for each edge in the AQPs.

A CC comprising of SPJ operators is represented as:
|7TA(0'f(T1 > 1o > TN))‘: k

where k is the number of rows that are output after applying the complete relational expression,
i.e., the output cardinality, A represents the set of attributes on which projection is applied
(PAS), and f represents the filter conditions on the inner join of relations 77, 15, ..., Ty. Further,
the joins are restricted to PK-FK joins.

For the AQPs shown in Figure 6.1, following set of CCs are obtained:

c1 0 |mapra(0agec20napace(Reg > Std))|=2 co 1 |[Tapa(0ages20vapa<e(Reg > Std))|=5
C3 ¢ |0 age<20napa<e(Reg pa Std)|= 15000 ¢4 : |0 age>20vapa<e(Reg > Std)|= 250000
C5 ¢ |0 age<20naPA<6(Std))|= 2000 6 * |0age>20vapa<e(Std))|= 42000

c7 : |Reg|= 370000 cs : |Std|= 50000

In the above we can see that the ci, c9, c3, ¢4 CCs feature the join operator. Among these, ¢;

106

and ¢y additionally feature the projection operator. To ensure matching AQPs at the vendor,
the synthetic data needs to satisfy all the CCs.

6.1.1 Challenge

Filter predicates considered so far specify the constants/value-ranges that are permissible for
the constrained columns. In other words, these were of the type (col op wal). In contrast,
modeling join predicates require constructing dependence with respect to the join columns
such that the generated tables obey the required join output cardinality across all constraints.
For instance consider the queries wrt Figure 6.1. The filter predicates directly operate on the
domain of GPA and Age columns, whereas the join predicates equate RollNo column across
the two tables. Hence, these columns need to possess a relation that can lead to the desired

output cardinality.

6.1.2 Background

A way to deal with join operators was proposed in DataSynth[17], where they first constructed
a view for each table in the database, and at the end, extracted the original table. Specifically,
the view Vp for a table T comprises of all the non-key attributes of 7" and the tables on which
it depends through referential constraints. These views allow rewriting the join expression on
a single view. Using these views, filters on each view can be handled independently using
the single table algorithm. However, the challenge then lies in extracting the original tables
from the views. This is because these views need to obey referential integrity. For DataSynth,
due to the absence of projection operation in its input, adding some spurious tuples in the
referenced table was sufficient to ensure referential integrity. However, this volume discrepancy
magnifies in presence of projection because each value-combination with respect to the borrowed
columns needs to be represented in the referenced table. Therefore, the LP formulation and the

subsequent data generation from the solution need to explicitly model referential constraints.

6.1.3 Owur Contributions

In this work, we provide a comprehensive solution to handle the join constraints. Specifically, we
update the aforementioned views to be equivalent to the denormalized versions of the original
tables (excluding key columns). Specifically, for each borrowed column in the view, we maintain
the path from the source to the destination table in the join graph through which the column is
borrowed. This allows for multiple copies of a borrowed column in the view if there are multiple
join paths possible between the tables involved. Hence, this helps to handle DAG join graphs
instead of the tree-join graphs that DataSynth handled.

107

Further, a marked contrast is in the way we model join conditions in the solution pipeline.
We construct a unified LP for the linked (through referential constraints) tables. This LP
models the referential constraints to ensure that the number of distinct value-combinations
generated, with respect to the borrowed columns, in various intervals of the Foreign-Key table
(referencing) view is upper bounded by the corresponding interval in the (referenced) Primary-
Key table. Further, our Key Curation module ensures that the key values picked are such
that the corresponding tuples in the dimension table have the prescribed number of distinct
value-combinations for borrowed columns.

Additionally, the feature of dynamic database regeneration is preserved. Therefore, no ma-
terialized table is required in the entire testing pipeline. Further, the time and space overheads
incurred in constructing the summary are independent of the size of the table to be constructed.

A detailed evaluation on workloads derived from TPC-DS and JOB benchmarks has been
conducted. The results demonstrate that the proposed solution accurately and efficiently models
the SPJ CCs. As a case in point, for TPC-DS based workload of over 100+ queries, leading to
~500 CCs, the generated data satisfied all the CCs with perfect accuracy. Moreover, the entire

summary production pipeline completed within viable time and space overheads.

6.1.4 Organization

The rest of the chapter is organized as follows: we discuss the problem framework in Section 6.2.
The overview of the design principles of the proposed technique is presented in Section 6.3 and
further described in detail in Sections 6.4-6.8. Further, an optimized solution to handle Select-
Join workloads is given in Section 6.9. The experimental evaluation is presented in Section 6.10

and finally, we conclude in Section 6.11.

6.2 Problem Framework

In this section, we summarize the problem statement, the underlying assumptions, the output

delivered, and a tabulation of the notations used in this chapter.

6.2.1 Problem Statement

Given an SPJ query-workload W, with its corresponding set of AQPs Q, derived from an original
database with schema & and statistical metadata M, the objective is to generate a synthetic
database D such that it conforms to & and Q. That is, the AQPs obtained from the original
database match, wrt the cardinality annotations, the AQPs obtained on D.

108

6.2.2 Assumptions

We assume that W comprises of only PK-FK joins such that each query can be mapped to
denormalized tables as discussed in Chapter 3. Further, we assume that the filters and projec-
tions are applied only on non-key columns. These assumptions are common in prior work as
well as OLAP benchmarks.

Again, we assume that Q is collectively feasible. Finally, for brevity, we present the ideas
using tables with columns having float data type; the extension to other data types is straight-

forward.

6.2.3 Output

Given 8§, M, W and Q, Hydra outputs a collection of database summaries S. Each summary s® €
S can be used to deterministically produce the associated database D. The databases produced
are such that: (a) all of them conform to 8, and (b) for each query in W, its corresponding
AQP in Q matches with the AQP obtained on at least one output database instance.

6.2.4 Notations

The main acronyms and key notations used in this chapter are summarized in Tables 6.1 and

Table 6.2, respectively.

Table 6.1: Acronyms

Acronym Meaning
AQP Annotated Query Plan
cC Cardinality Constraint
SPJ Select Project Join
PAS Projection Attribute Set
ARB Aligned Refined Block
CPB Constituent Projection Block
PSD Projection Subspace Division
NoPB No Projection on a Subset of Borrowed Columns
PB Projection on a Subset of Borrowed Columns

6.3 Design Principles

The solution pipeline is illustrated in Figure 6.2. The green boxes illustrate the modules
added /updated to handle joins. We briefly discuss each of the core modules in this section. For

ease of exposition, we use the fact and dimension table terminology from data warehousing to

109

Table 6.2: Notations

D 1
(a) Database Related (b) Workload Related

Symbol | Meaning :
S Database Schema Syrzlbol g/{fe?;lmg
Gs | Schema Graph W | Query Workload
D Output Database 0 Set of AQDs
T Output Table
s Summary of D ¢ Ac
f Filter Predicate
F Fact Table
. . A PAS
D Dimension Table
- [Output row card. after filter
Vi View wrt T k Output row card. after projection
B Borrowed Attribute-Set P W - Do)
(c) Block Related (d) Relation/Function Related
Symbol | Meaning Symbol | Meaning
rt refined-block U(T) | Set of attributes in T
wrt Vr dom(.) | Domain of the input parameter
a’ ARB wrt Vp M A relation btw CCs and ARBs
pl CPB wrt Vi L A relation btw CPBs and ARBs
z(a®) | variable for |a’| H A relation btw ARBs wrt Vi and V)
y(p') | variable for |p| J A relation btw CPBs wrt Vp and Vp

refer to the tables having FK and the corresponding PK, respectively. Further, the notations

F and D are used to denote a fact table and dimension table, respectively.

6.3.1 Denormalization

Inspired from DataSynth, we also construct views, where the view Vp for a table T is its
denormalized equivalent (excluding key columns). Each column in a view is stored as a structure
comprising of two fields: {Column Name, Column Path}. The Column Path is stored as an array
of the foreign key columns involved in the query. Each view is associated with a view name
and an array of the column structures. To populate this array, first a schema graph Gg is
constructed. Here, a vertex is made corresponding to each table in the database. For each
PK-FK dependency, a directed edge is added from the FK table to PK table. The edge is
annotated with the participating columns of both the relations. Note that, since two relations
can have multiple PK-FK dependencies, there can be multiple directed edges between tables.
We assume Gg to be a DAG, which is common in real-world databases and is reflected in the
benchmarks too.

Once Gg is constructed, we traverse it in reverse topological order. For each edge

110

Data Space Partitioning

Region Filter Symmetric Refined Align A]Eg"d
Partitioning| Blocks ' |Refinement| = Blocks [Refinement REflc::lfs

Schema—>| Denormalization

'

Views ——>

Query
Workload, [Workload

|
|
|
|
! :
! |
|
AQps — | Decomposition) : :
. L |
1” : "@ A — - —| Projection Subspace Division 21
Sub-workload | - é 28|
I "@ A; — £ @ —| Projection Subspace Division |— $ 2 :
! : 3 5.0
Parser I : ge ag |
a & c o |
} : »@AB 2 (Projection subspace Divis Sg
Cardinality Constraints =i - —>_Projection Subspace Division . :
b o o o o o o e o e e e e e e e e =
Suite ofiRegions < I
T T S | -t STt T T T
: LP Formulation L] Summary Construction
| N - |
I Filter Projection Referential |~ —>: View Key I—, Database
I'l Constraints || Constraints Constraints : o | Summary Range : Summary
: | 1 { Construction Curation J ,
________________________ I |

Figure 6.2: Join Solution Pipeline

(F.fk, D.pk) in the order, the columns in view Vp are added to Vp. For each such column
A, the Column Path of V. A, prepended with F.fk, is inserted as the Column Path for Vi. A.

The join expression in a CC ¢, consists of series of PK-FK columns that participate in the
joins in the subtree rooted at the AQP node corresponding to c¢. It is easy to see that this
PK-FK column series can be uniquely mapped to a path in Gg. The view Vi corresponding to
the source vertex in this path will have columns from all the tables included in the path. Also,
it is easy to see that the filter and projection operation on a join expression can be equivalently
written on V. Hence, in this way, each CC can be written as a filter and projection operation
on a single view.

For our running example, the Views that are constructed are as follows:
Vreg(Age, Scholarship, GPA, Course,Y ear, Score), Vsa(Age, Scholarship, GPA)

Further, the aforementioned CCs from our running example, can be rewritten on the views

VReg and VStd as follows:

(G ‘WGPA(UAge<20AGPA<6<VReg>)’: 2 Co ! |7TGPA(UA96220VGPA<6(V369))|: 4

¢3¢ |0age<c20nGPA<6(VReg)|= 15000 cy ¢ |0 age>20vaPa<6(VReg)|= 250000

111

Cs5 ¢ |0 age<aonapa<e(Vsia))|= 2000 6 |oagex20vapa<ce(Vsia))|= 42000

¢1 ¢ |Vieg|= 370000 ¢s ¢ [Vswa|= 50000

As described earlier, referential integrity has to be ensured in the data that is generated.

Let us first describe referential integrity in the view semantics.

Theorem 6.1 Two tables F' and D, with F' having an FK column referencing table D, satisfy
a referential integrity dependency, iff the corresponding views Vp and Vp obey the following

condition:

m8(Vr) C me(Vp)

where B is the set of columns in Vp borrowed by V.

6.3.2 Workload Decomposition

In the previous chapter, a pair of constraints were defined to be overlapping if their PASs
partially intersect and their filters overlap. To handle this, we had an additional workload
decomposition module that splits the input workload into sub-workloads such that each of
them is free from these overlapping projection conflicts.

We have extended this case of overlapping projections to include the projection conflicts
that surface in the presence of joins. For example, a pair of queries ¢;,g> on a dimension
table D, with PASs A; and A, respectively, induce a conflict if (a) the PASs Ay, Ay C D, and
partially overlap with each other, and (b) the filters in ¢; and g, intersect. We discuss the
details of all the conflicts in Section 6.4. These conflicts are additionally used by the workload

decomposition module to do the workload split.

6.3.3 Data Space Partitioning

Region Partitioning and Symmetric Refinement. To model the filter predicates associ-
ated with the input workload, the data space of each view is logically partitioned into a set of
blocks. Each block satisfies the condition that every data point in it satisfies the same subset of
filter predicates. To do this partitioning, we leverage the region partitioning technique discussed
in Chapter 4, which partitions the data space into the minimum number of filter-blocks.

To handle various projection subspaces (corresponding to the different PASs in the input
queries) independently, a Symmetric Refinement strategy is adopted (discussed in Chapter 5).
Specifically, it refines an filter-block into a set of disjoint refined blocks such that each resultant

refined-block exhibits translation symmetry along each applicable projection subspace.

112

| | std i
| i 2 |
| | e
< L < b sta |
G & © : T3 !
[42] L‘!‘ll
std |
Tr 2 |
L e e e
20
Age Age
(a) Register View (b) Student View

Figure 6.3: Partitioning of Reg and Std Views

To make the above concrete, the partitioning of data space of Vi, is shown in Figure 6.3(a).
For ease of presentation, we show only the two dimensions that participate in the example
queries. In this figure, the filter predicates are represented using regions delineated with colored
solid-line boundaries. When region partitioning is applied on this scenario, it produces the three
disjoint filter-blocks: r1®¢, 59 I whose domains are depicted with dashed-line boundaries.
For our running example, the resultant blocks are already symmetric. The partitioning with
respect to Vs is also shown in Figure 6.3(b). Here, we have additionally added a constraint

shown by blue solid-line to add complexity in the example.

Align Refinement. To obtain the original tables from their denormalized equivalents, the
views need to obey referential integrity. As discussed in Theorem 6.1, the referential integrity

constraint between fact table view Vp and dimension table view Vp is expressed as follows:
mg(Vr) C me(Vp)

To add referential constraints, for a CC ¢ with PAS A (where A C B) applicable on Vg, its
constituent refined-blocks need to be aligned with each other along A. By align we mean that
the domain of refined-blocks along A are either identical or disjoint. The blocks obtained after
refinement are called Aligned Refined Blocks (ARBs). For example, 75 in Figure 6.3(a) is
split into a2 and as? to ensure alignment with ai’, as shown in Figure 6.4(a). (The other

refined-blocks happen to be already aligned, so their equivalent ARBs are unaltered).

113

aReg

= / 34
|77 i,

dx
\\x

M— ?%%
- s

GPA

20
Age Age
(a) Register View (b) Student View

Figure 6.4: Align Refinement

Further, we also need to ensure that each refined-block in Vp, is either completely contained
or disjoint from the domain of each ARB in V. Therefore, we also do a refinement of refined-
blocks in Vp as part of this module and produce ARBs that ensure alignment with V. For
example, 75 and r5' in Figure 6.3(b) are split into a5, a5i? and a3t a5i? respectively, as

shown in Figure 6.4(b). We discuss the details of this module in Section 6.5.

Projection Subspace Division. This technique divides each projection subspace into a set
of constituent projection blocks (CPBs), as discussed in Chapter 5. For our running example,
the CPBs obtained for Vg, are as follows:

Pfeg = mgpala Reg) Nmgpala Rbeg)a pgeg = 7TGPA() \7TGPA<CL§1,)
p?eg = 7TGPA<) \WGPA(Reg)7 pfeg = 7-‘-GPA(GJgaeg)

Further, the CPBs obtained for Vg, are as follows:
p' = mapa(ar™) Nmapalaz?), 3t = mapa(a?™) \ mapalaz?)
p3t = A(') Nmepalaz?), i = mepa(ai") \ mapalaz,?)
pgtd = A(')\ mapalal™?), pgtd = 7rGPA(CngfGl) \ mgpala;™)
p}qtd = (), pg “=m GPA(agéd)

114

6.3.4 LP Formulation

After the above processing is completed for each view, we formulate a unified LP for the linked
(through referential constraints) tables. The LP is constructed using variables representing the
cardinalities of ARBs and CPBs. Specifically, Filter Constraints and Projection Constraints
are modeled for each view in the same way as proposed in the previous chapter. For modeling
Referential Constraints we also do a Block Mapping where the ARBs and CPBs of Vi are
mapped to those of V. The referential constraints ensure that for each block in V the number
of distinct values along borrowed columns is upper bounded by the number of distinct values
in the corresponding blocks in Vp. Once this is ensured, the exact subset property is ensured

in the final Key Curation stage.

6.3.5 Summary Construction

Using the LP solution, we first build a summary data structure for each view that contains all
the relevant information for extracting the corresponding base relation. Specifically, from the
view summary the base relation summary is obtained by replacing the borrowed columns with

the appropriate FK column. The process to do this is described next.

Key Range Curation. This final stage is responsible for the curation of FK values in F'.
Specifically, for each ARB a!" in Vp, to construct its equivalent in F', a range of FK values is
assigned to it. This assignment is done using a range of PK values associated to a set of blocks
in Vp, such that:

1. The chosen Vp blocks are contained within the boundaries of a’ after projecting along B.

2. The tuples associated with the selected PK values have the desired number of distinct
values along the PAS prescribed by the projection applied on af.

In this way, we get the summary for each table, which is used for dynamic data regeneration. A
sample summary is shown in Figure 6.5. To appreciate the summary in entirety, we also show
the other columns in the Std table schema. Therefore, we can see that the distinct row counts
along different projection subspaces are represented similar to the discussion in the previous
chapter. Additionally, we show the FK column in Reg table summary having the range of
RollNo values to be included.

6.4 Workload Decomposition

As discussed in the previous section, the case of conflicting projection constraints is handled

by splitting the workload into sub-workloads such that each sub-workload is free from such

115

GPA Age, Scholarship #Tuples
[[3’25)).:11 (A) [0,15), (S) [20000, 50000): 12 2000 asltd
[2’ 3): 3 (A) [15,20), (S) [20000, 50000): 8
GPA Age Scholarship #Tuples
RollNo #Tuples [10000 30000). 4 Std
: : ’ ' a
aﬁeg 0 15000 [8,10): 3| [20,50):25 (30000, 80000): 5 10000 2a
1 GPA Age, Scholarship #Tuples
Reg | - RoliNo #Tuples [0,2): 1 Std
a , 2):
2a | [2000,2001] 120000 [2.3).3| (A1[20550),(S)[20000,50000) | 10000 | A%,
RollNo HTuples GPA Age Scholarship | #Tuples | ¢4
qReg 32000 [6, 8): 4 | [20,50): 25 | [10000,80000) | 10000 | %34
2b | - 1;88(1) 115000 GPA Scholarship Age | #Tuples
) [10000,30000): 4 Std
aReg RoliNo #Tuples [3,5):1 [30000, 80000): 5 (20,50) | 10000 a 3b
3 42000 120000
Age GPA, Scholarship #Tuples qStd
[0, 20): 10| (G) [6,10), (S) [20000, 50000) | 8000 4
Register Student

Figure 6.5: Sample Summary

conflicts. In addition to the characterization of such overlapping projections in case of single
table queries (mentioned in Chapter 5), we have extended the class of overlapping projections to
include the cases that appear in presence of joins. These additional cases of projection conflicts

can be categorized based on the nature of referential dependencies as follows:

1F :1D. Assume a pair of queries ¢; and ¢ having common fact (F) and dimension (D)
tables, and the PASs applicable are A; and A, respectively, where A; # A,. Further, the filter
conditions in the queries intersect. In this case, ¢; and ¢y are conflicting if Ay, Ay C D. The
conflict arises because there is an implied projection dependency between F' and D with respect
to Ay U Ay as well. Therefore, F' is subjected to projection constraints along A; U Ay, A; and

Ay, which are overlapping.

multi-F : 1D. Assume a pair of queries ¢1, go with PASs Ay and A,. Further, both the queries
involve a dimension table D such that the filters along D in the queries are overlapping. Now, if
Ay, Ay C D and partially overlap with each other, then it is a straightforward case of overlapping

constraints on D. Therefore, ¢; and ¢ form a conflicting pair of queries.

1F : multi-D. Assume a query ¢ involving fact table F' and dimension tables D; and Ds.
Further, the PAS A applied on ¢ is such that A C D; U Dy and A Q Dy, A Q D;. To ensure
referential integrity, projection constraints on F' along AN D; and A N D, are required. Both

these constraints conflict with the preexisting projection constraint along A.

116

The conflicts in the 1F : 1D and multi-F' : 1D category can be handled by splitting the
workload into sub-workloads. Specifically, we construct a graph with each query being a vertex
and adding an edge between two queries if there is conflict between them. Now, if we run vertex
coloring algorithm on the graph, the subset of queries having the same color assigned form a
sub-workload.

Unlike the previous two conflicts which were inter-query, the third case of 1F : 1D type
conflict is intra-query. A workaround to handle these queries is to generate all distinct tuples
along A N D, for filter compliant region of the dataspace in D;, and along A N Dy in D,.
Subsequently, for F', the requisite number of distinct rows along A are generated by curating
FKs from Dy, D,. This is always possible since the distinct row cardinality along A in F' can at
most be the product of the distinct cardinality along A N Dy in Dy and the distinct cardinality
along A N Dy in Dy. Due to the distinct rows generation in Dy and D, any other query with
overlapping filters on D; (or Ds) will lead to a conflict. Again, we use workload decomposition

to take care of these conflicts.

6.5 Align Refinement

To apply referential constraints on the various blocks of the fact table and dimension table
views, we need to ensure that the blocks are well aligned. We next discuss the alignment

process separately for the fact and dimension tables.

6.5.1 Fact Table Refinement

We know that the CPBs related to the same CC ¢ need to be assigned disjointed set of values,
even if their domains overlap. Therefore, for solution tractability, as a first step, we ensure that
for the CPBs that are related to the same constraint ¢ featuring PAS A, have either identical
or disjointed domains. This helps to divide the domain of A, for a constraint ¢, into a set of
intervals such that each constituent CPB is associated with an interval.

This CPB to interval mapping is done by ensuring that any two refined-blocks related to
the same CC with PAS A are aligned with each other along A. That is, they are either identical

or disjoint with each other along the subspace spanned by A. Specifically, two blocks rf, rf

are considered aligned with each other if either dom(my (rf")) = dom(ms(rk)) or dom(ma(rf)) N

dom(my(ry)) = 0.

The Align Refinement module for a fact table view Vi takes the refined-blocks for the view
as input and refines them such that the resultant blocks are mutually aligned. A block in Vg
obtained after refinement is called an Aligned Refined Block (ARB) and is denoted as a. In

. R R
Figure 6.3(a), we saw r;"* and r,"“ participate in a common constraint comprising of projection

117

along GPA, and are not aligned along GPA. As a result, 7’2 9 is split in afa and azb , as shown
in Figure 6.4(a) after which alignment is preserved. Further we can see that the red constraint
is associated with a single interval I; : GPA < 6 and the green constraint is associated with
two intervals I; : GPA <6 and I, : GPA > 6.

The algorithm for performing this refinement iterates over each pair of refined-blocks (rf, 71’
related to the same CC with PAS A, and outputs four (if non-empty domains) blocks, the

domains of which are represented as follows:

1))\ dom(ma(ry))),

dom(mu(epa(ry)) x (dom(ma 5))
ry)) \ dom(ma(r7))
2))

)

()
dom(myry\a(ry) X (dom(ma(),
dom(myrpa(rt)) x (dom(ma(rf)) N dom(ma(ry))),
dom(myrpa(rs)) x (dom(ma(ry)) N dom(ma(rs)))

6.5.2 Dimension Table Refinement

Each ARB a! along fact table view has to be given values for the borrowed columns that appear
in the dimension table and are within its domain boundary. For this, we do a refinement of
the refined-blocks in dimension table as well so that each resultant block is either completely
contained in the domain of a block a" (along B) or is disjoint from it.

The Align Refinement module for a dimension table view Vp, takes the refined-blocks for the
view as input and refines them such that the resultant blocks are mutually aligned. A block in
Vp obtained after refinement is also called an aligned refined block (ARB) and is denoted as

aP. In Figure 6.3(b), the refined-blocks 5% and 5% partially overlap with the blocks as<? and
al (from Figure 6.4(a)) along the 2-D space (GPA, Age). Therefore, we split these blocks
into a3', as3d, a3', and a3i® ARBs, as shown in Figure 6.4(b).

The algorithm for performing this refinement iterates over each refined-block 7 one by one.

For an r?, each ARB a! in Vi is compared along B, and if dom(mg(a’)), dom(r?) partially

overlap, then 77 is broken into two blocks, the domains of which are represented as follows:

dom(rP) \ dom(mg(a”)), dom(rP) N dom(ms(a®))

6.6 Block Mappings

To ensure referential integrity, we need to establish a mapping between the ARBs and CPBs
in Vg and Vp. We define these mappings first.

118

6.6.1 Aligned Refined Blocks Mapping

An ARB af is related to an ARB a” by a relation H iff the domain of a” is contained into

domain of af" along the borrowed columns B. That is:
(a¥',a”) € H <= dom(a®) C dom(rg(a"))

For our running example, the ARB mapping is given as follows:

H = {(ay",ai""), (a3, a3s"). (a3, a53"). (a5, a5"), (a5, a5%), (a5, 05"}

6.6.2 Constituent Projection Blocks Mapping
A CPB p* is related to a CPB p® by a relation J iff for each ARB a!" associated with pf’, there

is an ARB a” associated with p”, such that, the domain of a” is contained in the domain of
a®. That is:

(p*',pP) € J <= Vas.t. p" La* ,3aPs.t. (pP La®) A (¥ HaP)

Essentially all the CPBs in D that are related to a CPB p* through J together form its domain.

For our running example, the CPB mapping is given as follows:

J = {(pf, p7"), (pr, p3'), (p5°0, pi'), (p5 %, p3"), (p3 %, p3'Y), (p3, pi'Y),

(P59, 3, (P59, p3t), (D5, p3*), (059, p5), (py?, p3'?), (py?, pst?)}

6.7 Referential Constraints

The referential constraints are imposed on the ARBs and CPBs depending on the nature of

projections applied. Therefore, we first classify ARBs into two main categories:

No Projection on a Subset of Borrowed Columns (NoPB) If an ARB a’ in Vp is ei-
ther not subjected to a projection constraint, or the projection is along PAS A such that
A ¢ B, then o is included in the NoPB category. For example, af® is not subjected to

any projection along the borrowed columns. Therefore, it belongs to the NoPB category.

Projection on a Subset of Borrowed Columns (PB) If an ARB o in V- is subjected to
a projection constraint with PAS A such that A C B, then we call a’ to be in the PB

category. For example, ai®?, ak® ,agfg are all subjected to projection constraint along

119

G PA borrowed column. Therefore, these ARBs belong to the PB category.

6.7.1 NoPB Blocks

If there is a projection constraint applied on a block af along a PAS A, which is not a proper
subset of B, then this means that there is at least one attribute in A that was present in the
original schema of the fact table F itself. In this case, we replace the PAS from A to ANU(F),
where U(F) are the set of attributes in F'. By ensuring distinctness for a subset of A, we
automatically get distinctness for A as well.

After the above pre-processing, each block a!" in the NoPB category has no projection
constraint along any attribute of B. Therefore, we can generate any single value along B that
lies in the domain boundary of the block. In other words, we can pick any value from the
ARBs in Vp that are related to a” by relation H. To do this, we need to ensure that if o is
populated then at least one related ARB a” is also populated. This is ensured by the following
constraint:

IS IFL Y e (6.1)

aP:(a¥,aP)eH

Here |F| is a trivial upper bound on a’".

6.7.2 PB Blocks
Consider a block a on which a constraint with PAS A, such that A C B, is applied. The

distinct cardinality relationship has to be ensured at two levels for a’” — (a) Constituent CPBs
level, and (b) Constraint level, stemming from the interdependence of the ARBs. Specifically,

the following constraints are applied:

CPB Bound. For a CPB p’, its cardinality is upper bounded the summation of the CPBs in
D that form its domain. That is:

S (6.2)

pP:(pF pP)eJd

Constraint Interval Bound. For each interval I obtained wrt a CC ¢ (after Align Refine-
ment), the sum of the cardinalities of the CPBs wrt Vy that are associated with ¢, and
have domain as I, is upper bounded by the sum of the cardinalities of the CPBs wrt Vp,
which are related to any of the aforementioned CPB wrt Vg, using J. That is,

> < > p”] (6.3)

pF:dom(p¥)=IN(p¥ ,c)e MoL pP:(pF pP)eJAdom (pF)=IA(p¥ ,c)eMoL

120

6.7.3 LP Constraints

The LP has variables with respect to each ARB and CPB in both the fact table and dimension
table views. Specifically, for a CPB p, we have a corresponding variable y(p) denoting [p|, and
for each ARB a, we have a corresponding variable x(a) denoting |a|. Therefore, replacing these
cardinality expressions (in Equations 6.1, 6.2, and 6.3) with the corresponding variables, we
get the referential constraints. The filter and projection constraints are modeled as discussed
in the previous chapters.

For our running example, following are the LP constraints for the two example AQPs:

Filter Constraints

z(al™) = 15000
2(al™) + 2(ak?) + x(al?) = 250000
2(af) + (a5 + 2(ad?) + x(ad?) = 370000
z(a™) = 2000
z(a™) + (a3t + 2(a5i?) + z(a3?) + x(a5i?) = 42000
z(a?™) + z(ad!) + 2(a5i) + x(a3™) + x(a3i?) + 2(al™) = 50000
Projection Constraints
Y1) + y(py?) = 2
(1) + y(03) + y(P5) + y(py) =5

Referential Constraints

[NoPB]
z(ay®) < 370000z (a3t?)

[PB - CPB Bound]

y(P) < y(?™) + y(ps')
y(p3) <y + y(ps") + y(ps') + y(pi")
y(p5?) <y + y(ps") + y(5") + y(ps')
(i) < y(ps") + y(ps')

121

[PB - Constraint Interval Bound]

y(p) + y(p5) + y(pse?) <y + y(5') + y(p5') + y () + y (') + y(pst?)
y(pr) < y(ps") + y(ps™)

In addition to these constraints, we also add the sanity constraints as discussed in the
previous chapters. One possible solution to the LP is as follows:
[Reg ARBs]:

z(al) = 15000, z(as?) = 120000, z(aZ?) = 115000, z(a5?) = 120000

[Std ARBs|:

z(a3™) = 2000, 2(a5!*) = 10000, x(a35*) = 10000,

z(a3™) = 10000, z(az:?) = 10000, z(a;") = 8000
[Reg CPBs|:

y(pr) = 2,y(p3) = 0,y(p§) = 1,y(py*) =2
[Std CPBs|:

(™) = 2,y(p3") = 0,y(p5"") = 4,y(pi") =0,

y(ps™) = 0,y(pg") = 0,y(p7™) = 3, y(ps') = 4

6.8 Data Generation

From the LP solution, we get the following information for each view:
1. The cardinality for each ARB in the view.
2. The cardinality for each CPB in the view.

In this section we discuss how the database summary is constructed using this information and

subsequently tuples are generated from it.

6.8.1 View Summary Construction

To begin with we first construct the view summaries independently using the same technique

as discussed in Chapter 5. To summarize, we first assign domain intervals to each CPB. Recall

122

that two CPBs that are associated with a same constraint need to be disjoint even if there
domains are overlapping. Therefore, during the domain interval assignment, we break the
domain into disjoint intervals and assigned them to these CPBs. After this assignment, we
have view summaries ready. In these summaries, we omit the domain assignment to the CPBs
of the ARBs in V that belong to PB category. As a next step, we need to extract relation
summaries back from the views. Specifically, we need to replace the borrowed columns in the

views with the appropriate FK column.

6.8.2 Key Curation

A number of CPBs in VF map to a CPB in Vp using the relation J. Since these CPBs may
require disjoint domain intervals assigned to them, we further split the domain interval assigned
to a CPB in the Vp based on the CPBs in Vi related to it. Specifically, we do the following:

1. We construct a graph G for each CPB p” in V. Construct a vertex for each CPB p”
such that (p”',p?) € J. An edge is added between two vertices if the corresponding CPBs
are not related to a common constraint through MoL. In other words, these CPBs need

not be disjoint and can therefore can be assigned the same values.

2. Extract maximal cliques from the graph. Number of maximal cliques correspond to the
number of sub-domains in which the domain of p? is to be broken. Let the cardinality

share of p” from the sub-domain s be expressed using the variable y,b(s).

3. Each vertex in the graph can be a part of multiple maximal cliques. This means, the
corresponding CPB p! can be assigned values from multiple sub-domains. Let the share

of pf from a sub-domain s in the graph GZ’? be expressed using variable y,r (pP, s).

4. Now, we compute the values for all the variables y,o(s), y,#(p”, s) across all the graphs

and maximal cliques such that:

e Summation of the share of a dimension table CPB p” across all its sub-domains

(maximal cliques) is equal to its total cardinality. That is:

> ypo(s) = ypo

e Summation of the share of a fact table CPB p*" across all the sub-domains (maximal

123

cliques) in various graphs is equal to its total cardinality. That is:
Z Ypr (07, 5) = Ypr
(P,s)

e The cardinality share of a vertex is upper bounded by the cardinality share of the
graph itself. That is:

Ypr (p”, 8) < ypo(s)

We use the above information to break the domain of p” into sub-domains and its associated
cardinality divided wrt each sub-domain.
For our running example, considering only populated blocks, the domains of the CPBs of

Vsiq are as follows:

P [3,6), p3':[0,3), pi:[8,10), pg:[6,8)

7t and p3' have two cliques corresponding

Std Std

Among these, the graphs correspondmg to both p;

€9 Reg

to the singleton vertices pl and p; 7. Therefore the domains of py** and p3** are split into

two sub-domains and the cardinality is also split. We show one possible split as follows:

p7™(Split 1) : [3,5), Card.: 2 p7™(Split 2) : [5,6), Card.: 0
p3™(Split 1) : [0,2), Card.: 1 p3'(Split 2) : [2,3), Card.: 3

Using these domain splits, we now show the domain assignments done to each of the popu-
lated CPBs of Vgey:

pi9(Split 1) : [3,5), Card.: 1 pi9(Split 2) : [0,2), Card.: 1
pye9(Split 1) : [5,6), Card.: 0 pie9(Split 2) : [2,3), Card.: 1
pre9(Split 1) : [8,10), Card.: 2 pie9(Split 2) : [6,8), Card.: 0

Next, we need to populate the FK column for each ARB in Vr. We do this depending on
the nature of ARB.

NoPB
If an ARB ! is in the NoPB category, then we first pick any ARB a® such that (a”',a?) € H.

In the summary of D, we compute the cumulative ARB cardinality from the beginning till a”.

D

This gives the number of tuples generated before a” is generated. Let this value be . Since

124

PK values are generated from 0, the tuple with PK value v will be the first tuple in a”. Since
any PK value in a” is a valid value for the FK column wrt a’’, we assign the FK value ~ to the

entire af block.
PB

Now we consider the case where an ARB a! is in the PB category. Each of its constituent
CPBs are to be assigned FK value ranges. For a CPB p’’, we take its share with respect to each
(pP, s) combination. We then iterate on the ARBs in Vi that are related to a using H and get
a target ARB that constitutes the CPB p”. There we identify the fraction of p” that features
s. Now, we identify the number of tuples generated before this point. This is by adding the
total ARB cardinality before the target ARB and then adding the total distinct cardinality for
the CPBs before the specific p? CPB. Further, the subdomain cardinalities before the specific
s are also added. This gives the first FK value that we need. Say this is fk-val. Then the range
assigned is [fk-val, fk-val+ y,r (p”, s).

In this way, for a particular fact table, a sample template for an ARB summary is shown in
Figure 6.6. There is total cardinality of the ARB, and for every PAS acting on it, all the CPBs
associated with different projection subspaces and their distinct cardinalities are maintained.
Further, for the attributes not involved in any projections (A), only the domain is stored
without any distinct cardinality. What is different here from the no-join case, is that we now
also store the value ranges for each Foreign Key column. Each range is wrt to a CPB and its

corresponding CPB in dimension table.

Ay Ao A, Aoy fk
CPB-1: card., | CPB-1: card., | ... | CPB-1: card., K ARB
CPB-2: card., | CPB-2: card., | ... | CPB-2: card., | PB Yy Card.
Ranges

Figure 6.6: Sample ARB Summary

A sample database summary for our running example was already shown in Figure 6.5.

6.8.3 Tuple Generation

The tuples are generated similar to how we discussed in Chapter 5. Additionally, for FK
columns, we use the value ranges present in the summary and do a round robin on them until
the entire ARB is instantiated.

125

6.9 Handling Select-Join Workload

If the input workload features only select and join operators, i.e. no projection operation, then

certain optimizations become feasible. Specifically, following modifications are done:

One LP per View. In the existing solution, we had added referential constraints. These
constraints required a unified LP for all the linked tables. In a pure SJ workload, we

construct one LP per view and therefore, no referential constraints are added.

Ensuring Referential Integrity. Due to this independent solving of views, the views need
not obey referential integrity. To address this concern, post LP processing, we add some
spurious tuples to the view summaries — this leads to minor additive errors in satisfying

volumetric similarity.

Additionally, note that since there are no projections, there are no conflicts in a workload.

Therefore, we create a single database summary in the output for the entire workload.

6.9.1 View Summary Construction

Recall the way table summaries were constructed in the pure filter case discussed in Chapter 4.
In the same way, we first get sub-view solutions from the LP solver and perform the Align-
Merge algorithm. At this point, each view solution is comprised of a series of intervals (across
various attributes) and the number of tuples in the region represented by these intervals. Next,

we assign the entire cardinality to the left boundaries of the intervals.

6.9.2 Making View Summaries Consistent

Since the solution for each view is obtained independently, there could be inconsistencies across
them. To address this problem, we first carry out a topological sort on the schema graph Gj
and then iteratively make the current view consistent with its predecessors. To make a pair of
views Vg and Vp consistent with each other, where Vi is dependent on Vp, we iterate over the
rows in the view solution of Vr and look for the value combination that each row has for the
attributes borrowed from Vp. If that value combination is not present in the solution of Vp,
we add a new row in its solution with the corresponding NUMTUPLES attribute set to 1. This
results in an additive error in the total number of tuples in the view as compared to the original
AQP at the client. But we hasten to add that the error is a fixed number of rows, determined
by the nature of the constraints and the LP solution, and not by the data scale. Therefore,
at Big Data volumes, the discrepancy can be expected to be minuscule, and our experiments

empirically confirm this expectation.

126

This technique is similar to DataSynth. However, since the latter operates on complete
database instantiations, and not just summaries, the time and space overheads incurred for
making the views consistent can be large. Moreover, the additive error in this case is amplified
due to the inherent sampling errors. Our experiments also capture this distinction between the

errors incurred due to referential constraints in Hydra and DataSynth.

6.9.3 Key Curation

The non-key columns and PK are generated in the same way as discussed in Chapter 4. To
instantiate foreign key values for a table F, its corresponding borrowed columns in Vp are
considered. We iterate over the value combinations for this column-set in each row of the
view summary. For an iteration, let the value combination be v. Now, we iterate over the view
solution of the corresponding dimension table view Vp and find where v is present. We compute
the cumulative sum of the cardinality entries till v is reached. This sum provides the fk-value
to be inserted against v in F'.

Again, DataSynth iterates over the complete instantiated (consistent) views to construct
the corresponding materialized relations. This leads to considerable time and space overheads

in contrast to our data-scale independent summary based approach.

6.10 Experimental Evaluation

In this section, we evaluate the empirical performance of a Java based implementation of our
proposed solution. The Z3 solver [14] is invoked to compute the solutions for the LP formu-
lations. Our experiments cover the accuracy, time and space overheads aspects of our work.
The experiments were conducted using the PostgreSQL v9.6 engine [7] on a vanilla HP Z440

workstation.

Workload Construction. We designed a workload of 145 SQL queries derived from the
TPC-DS decision support benchmark such that they satisfy the underlying assumptions. These
queries covered four fact tables and their corresponding dimension tables. These fact tables
were — STORE_SALES (SS), CATALOG_SALES (CS), WEB_SALES (WS), INVENTORY (INV). The
distribution of queries among these four tables were: ss (73 Queries), Cs (33 Queries), Ws (32
Queries), INV (7 Queries). We have shown the snapshot of a fraction of the schema graph in
Figure 6.7. We can see the four fact tables with their dimension tables in the figure.

These 145 queries led to a tally of 540 CCs. The constraints had PAS of upto length ten.
The join distribution in these CCs is shown in Figure 6.8. As we can see from the figure, the
number of joins ranges from 1 to 4.

We show a sample SQL query from our input workload below. The corresponding AQP is

127

Customer
Demographics

Web

tore Site \

Household Customer
Store |———""] Demographics Address

Sales \‘

Web
Sales

Promotion

Catalog

Date i
Sales

Dlm/
tem Catalog /

— Page

Inventory

Figure 6.7: Schema Graph

80
/]
@
‘= 60
@
-
G 40
s
. 20
=
0
1 2 3 a4
No. of Joins

Figure 6.8: Distribution of Joins

also shown in Figure 6.9.

Sample SQL Query.

Select Distinct i_item_id

From store_sales SS, date.dim D, item I, customer_demographics CD, promotion P
Where ss_sold date_sk = d.date_sk and ss_item sk = i_item sk

and cd_demo_sk = ss_cdemo_sk and p_promo_sk = ss_promo_sk

and d_year = 2001 and cd_gender = ‘M’ and cd.marital_status = ‘M’

128

and cd_education_status = ‘4 yr Degree’ and p-channel email = ‘N’ ;

I 5350
n i_item_id

8046 |

o p_channel_email ="N'

3 Dq : 18000
8049// \\
SS N CD Y i_category_id>=1
52714?/ 7440 300
Y (cd_gender = 'M') AND
SS D<] D (cd_marital_status = 'M') AND
?65 (cd_education_status = '4 yr Degree')
2685628 O g year = 2001 18000
920800
\73049
cD [P

SS D

Figure 6.9: AQP of Sample Query

6.10.1 Workload Decomposition

We decompose the input workload into fifteen sub-workloads such that all the conflicts discussed
are resolved. The complexity of these sub-workloads is quantitatively characterized in Table 6.3.
6.10.2 Constraint Accuracy

We ran our framework on the workloads mentioned before and the generated data satisfied
all the constraints with 100% accuracy. This is because — (a) additional constraints were
included in the LP to ensure distinct cardinality relationships between fact tables and their
corresponding dimension tables; (b) key curation ensured the explicit subset requirement, hence

ensuring referential integrity.

6.10.3 Time and Space Overheads

We now turn our attention to the computational and resource overheads. The summary produc-

tion times and sizes corresponding to all the sub-workloads are shown in Table 6.4. We see here

129

Table 6.3: Workload Characteristics (TPC-DS)

Workload No. | #Queries | #CCs | Max PAS Length | Max joins
1 13 56 2 5
2 10 45 4 5}
3 8 33 10 4
4 8 26 3 4
5 11 44 5 4
6 10 38 2 5
7 9 22 3 3
8 10 32 4 3
9 10 47 4 5
10 9 41 6 5
11 8 30 2 5
12 7 20 2 4
13 8 27 6 5
14 14 39 2 4
15 10 40 5 5

that the end-to-end time for summary production for each sub-workload is less than a minute
except for sub-workload 9 which is a couple of minutes. From a deployment perspective, these
times appear acceptable since database generation is usually an offline activity. Moreover, the
summary sizes, as shown in the table, are minuscule, within a few MBs. As mentioned earlier,
these are independent of the data-scale of the original database.

To obtain a quantitative understanding, we report the sizes of the intermediate results at
various pipeline stages also in Table 6.4 — specifically, the number of ARBs and CPBs created
by Hydra are presented. The number of variables are simply the summation of these two

quantities.

6.10.4 Performance of JOB Benchmark

We also evaluated the proposed solution on a workload of 35 SQL queries derived from the
JOB benchmark [45, 5] based on IMDB dataset. This workload covered the three promi-
nent fact tables — namely, MOVIE_LKEYWORD (11 Queries), CAST_INFO (14 Queries), and
MOVIE_COMPANIES (10 Queries), and their associated dimension tables. The number of joins
in these queries range from 2 to 4. The workload led to a tally of 161 CCs.

The workload was split into 6 sub-workloads. The characteristics of these sub-workloads
are shown in Table 6.5.

In this case as well, Hydra ensured 100% volumetric similarity. The computational and

130

Table 6.4: Overheads and Block Profile (TPC-DS)

Workload | #ARBs | #CPBs | #Variables | 1. <S“m§?)z£i (MBs)
1 89 583 672 21 1.1
2 81 162 243 11 0.6
3 39 27 66 8 4.8
4 40 76 116 4 3.8
) 120 6485 6605 81 5.2
6 93 69 122 6 0.2
7 38 137 175) 0.7
8 48 66 114 6 8.2
9 98 8356 8634 121 3.3
10 65 122 187 9 0.9
11 46 29 75 6 0.04
12 24 70 94 3 4.3
13 36 78 114 4 0.15
14 75 1473 1548 110 1.7
15 o8 243 301 11 5.4

Table 6.5: Workload Characteristics (IMDB)
Workload No. | #Queries | #CCs | Max PAS Length | Max joins
1) 27 3 3
2 6 33 3 4
3 7 30 2 3
4 6 24 3 3
5 6 28 2 3
6) 19 2 3

resource overheads are tabulated in Table 6.6. We see that the time is at most a couple of

minutes and the summary sizes are also typically within a few MBs.

6.10.5 Select-Join Workload

To showcase improvements in handling pure SJ workload, we also made another SJ-workload
having 311 CCs derived from the TPC-DS benchmark. We compared Hydra against DataSynth
for this workload. As mentioned earlier; in the SJ case, only a single database summary is
produced because of the absence of conflicts that are induced by the projection operator.

We begin by investigating how closely the volumetric similarity, with regard to operator
output cardinalities is achieved by the Hydra and DataSynth regenerators. This behavior is

captured in Figure 6.10, which plots the percentage of CCs that are within a given relative error

131

Table 6.6: Time and Space Overheads (IMDB)

Workload | #Variables Time (Sumsnlngzz (MBs)
T 94 1 0.4
5 66 1 0.3
3 1321 | 7 2.5
1 198 |84 0.2
5 142 10 20
6 30 1 9.1

of volumetric similarity. From the plot it is evident that Hydra satisfies around 90 percent of
the CCs with virtually no error, and the remaining CCs are also satisfied within a relative error
of less than 10%. This is in contrast to DataSynth, which accurately satisfies around 80 percent
of the CCs, but then incurs as much as 60% relative error to achieve complete coverage of the

remaining CCs.

100 PRI R
o
I
a0)
|
&0 I
O B0¢
O |
5
G 40 i
20 = = = DataSynth
———Hydra
0
] 20 40 60 80 100

% Relative Error (RE)

Figure 6.10: Quality of Volumetric Similarity

There are two reasons for the error-prone behavior of DataSynth: (1) the probabilistic
sampling technique, and (2) the maintenance of referential integrity. While Hydra also is
forced to insert additional tuples to maintain referential integrity, the number is substantially
smaller than those injected by DataSynth. This is because the integrity errors are amplified by
the impact of the sampling errors. This effect is quantified in Figure 6.11, where the number
of extra tuples inserted is plotted on a log-scale for representative TPC-DS tables. We see here

that Hydra is often an order-of-magnitude smaller with regard to the addition of these extra

132

10°

| I DataSynth Hydra

10° |

10% |

10 |

No. of Extra Rows (log-scale)

d S 8 &
> & &° TPC-DS relations

Figure 6.11: Extra Tuples for Referential Integrity

80

70

50 =10 GB

&0 "\ —1GB
\
|

100GB

40 -

30

20 \k

10 x

E

—

Absolute Error (| Original Card. — Obtained Card.|)

Constraints Set

Figure 6.12: Distribution of Absolute Errors

tuples as compared to DataSynth. Recall that integrity errors in Hydra are independent of the
data scale. Figure 6.12 shows the distribution of absolute volumetric errors for the constraints
set at different database scales. We can see that this distribution is very similar for the three
different scales. Hence, in the relative sense, the errors become minuscule as the data is scaled

to large volumes.

133

6.11 Conclusion

Our work expands the scope of supported constraints to collectively include Select, Project
and Join operators. The main challenge in handling joins in the CCs was to ensure referential
integrity among tables. Our solution constructed a unified LP for the linked tables and added
referential constraints that address the aforementioned challenge. Techniques of Align Refine-
ment and Block Mapping aid in the process of adding these constraints. The experimental
evaluation on workloads derived from TPC-DS and JOB benchmarks indicated that our so-
lution accurately models the SPJ CCs and produces generation summaries within viable time

and space overheads.

134

Chapter 7

Adding Robustness

7.1 Introduction

The applicability of the solution discussed so far is restricted to handling volumetric similarity
on seen queries. Generalization to new queries can be a desirable requirement at the vendor site
as part of the ongoing evaluation exercise. However, the Hydra design described thus far does
not reflect this robustness objective because of (a) treating all candidate databases equally, (b)
inserting an artificial skew in the database, (¢) generating data that does not comply with the
metadata statistics.

In this chapter, we extend Hydra to address these robustness-related limitations while retain-
ing its desirable features of similarity, scalability and efficiency. As an initial effort, we describe
the solution wrt a select-join input workload. Extending the ideas to include projection is an

area of future work.

7.1.1 Limitations of Basic Hydra

In order to understand the limitations of the solution discussed thus far, we begin by briefly
discussing the solution pipeline. Since, we are restricting to select-join workload, we omit the
details of projection here. Hydra first constructs a denormalized version (without key columns)
of each table, called a view. To generate a view, its data space is partitioned into a set of
disjoint blocks determined by the filter predicates in the CCs. Further, a variable is created for
each block, representing its row cardinality in the synthetic database. Next, a linear feasibility
problem is constructed, where each CC is expressed as a linear equation in these variables.
After solving the problem, a unique tuple within the block-boundaries is picked and replicated

as per the block-cardinality obtained from the solution.

135

Example: Consider the following two CCs from Chapter 4 wrt the table Std.

c1 ¢ (f1,40000) | f; = (15 < Age < 35 A6 < GPA < 8)
¢3¢ (f2,45000) | f = (20 < Age < 40 A5 < GPA < 9)

We show these by a red box and green box in Figure 7.1(a). Accordingly, the LP problem

constructed is shown in Figure 7.1(b).

X1 + X3 = 40000

X, + x3 = 45000

X1 +x2 +.7C3 +X4 = 50000
X1,%X2,X3,X4 =0

(b) Linear Program

GPA

Register
. |RolINo|#Tuples
1 22000
45000 | 15000

Student
Age, Scholarship, GPA|H#Tuples
20, 20000, 5 5000
20, 20000, 6 40000
15, 20000, 5 5000

(a) Region Partitioning (c) Database Summary

Figure 7.1: Basic Hydra

The process of extracting relations from the views, while ensuring referential integrity (RI),
forces the addition of some (spurious) tuples in the dimension tables. At the end, the output
consists of concise constructors, together called as the database summary. An example summary

is shown in Fig. 7.1(c).

As discussed above, the ability to generalize to new queries can be a useful feature for the vendor
as part of the ongoing evaluation exercise. This is rendered difficult for the basic version of

Hydra due to the following design choices:

No Preference among Feasible Solutions: There can be several feasible solutions to the

linear feasibility problem. However, no particular solution is preferred over the others.

136

Moreover, due to the usage of Simplex algorithm internally, the solver returns a sparse
solution, i.e., it assigns non-zero cardinality to very few blocks. This leads to very different

inter-block distribution of tuples in the original and synthetic databases.

Artificial Skewed Data: Within a block that gets a non-zero cardinality assignment, a single
unique tuple is generated. As a result, a highly skewed data distribution is generated,
which leads to an inconsistent intra-block distribution of tuples. Furthermore, the artificial
skew can cause hindrance in efficient testing of queries, and gives an unrealistic look to
the data.

Non-compliance with the Metadata: The metadata statistics present at the client site are
transferred to the vendor and used to ensure matching plans at both sites. However, these
statistics are not used in the data generation process, leading to data that is out of sync

with the client metadata.

7.1.2 Our Contributions

In this chapter, we extend Hydra to address the above robustness-related limitations while
retaining its desirable features of similarity, scalability and efficiency. Specifically, the linear
feasibility problem is replaced with a linear optimization program that works towards finding
a solution that is close to the metadata stats as well. Further, instead of generating just a few
unique tuples, a more realistic spread of tuples over the domain are generated. Since we restrict
to select and join operators, we also use the independent LP for each view strategy clubbed
with referential integrity through spurious tuple addition.

The efficacy of the proposed solution is evaluated by comparing its volumetric similarity
over unseen queries against the baseline of Hydra without the additional contributions of this
chapter wrt robustness. Our results indicate a substantive improvement — for instance, the
volumetric similarity on filter constraints of unseen queries improves by more than 30 percent,
as measured by the UMBRAE model-comparison metric [32]. Further, we also show that along
with better generalization, the proposed solution also ensures metadata compliance and the
generated data has no artificial skew. These experiments are conducted over a vanilla computing
platform using the TPC-DS benchmark hosted on the PostgreSQL engine. Note that in this
process, we also do not compromise on scale or efficiency - that is, we also support dynamic
data generation using database summary, and the algorithm continues to be independent of the

database size.

137

7.1.3 Notations

The main acronyms and key notations used in this chapter are summarized in Tables 7.1 and

Table 7.2, respectively.

Table 7.1: Acronyms

Acronym Meaning
AQP Annotated Query Plan
CC Cardinality Constraint

Table 7.2: Notations

(a) Database Related

Symbol Meaning
T Output Table
A Attribute
Vir View wrt T
F Fact Table
D Dimension Table
B Borrowed Attribute-Set
S Sub-Table
A Attributes in a S
! No. of Metadata Constraints
U(T) | Set of attributes wrt the input table

LP 1
(b) Workload Related (c) LP Related

Symbol Moaning Symbol Meaning
b filter-block
1 A CC
- . n Number of filter-blocks
f Filter Predicate -
l Output row card. after filter . variable for b
P C LP Constraint

7.1.4 Organization

The remainder of this report is organized as follows: We present an overview of the proposed
solution in Section 7.2, followed by its primary constituents — LP Formulation and Data Gen-
eration, in Sections 7.3 and 7.4, respectively. A detailed experimental evaluation is highlighted

in Section 7.5. Our conclusions are summarized in Section 7.6.

138

7.2 Solution Overview

In this section, we provide an overview of the proposed solution. Using the metadata in the
client input, the data space partitioning module constructs a refined partition, i.e. it gives finer
blocks. Further, a linear program (LP) is constructed by adding an objective function to pick
a desirable feasible solution. From the LP solution, the Summary Generator produces a richer
database summary.

The overview of the modified components is described next.

7.2.1 Inter-block Distribution

Note that the original database also satisfies the feasibility problem, but there can be several
assignments of cardinalities to the blocks such that all of them satisfy the constraints. For
example, if we consider the constraints shown in Figure 7.1(b), both the following solutions

satisfy the constraints:

Solution 1: z; = 0,25 = 5000, z3 = 40000, x4, = 5000
Solution 2: x; = 5000, x5 = 10000, x5 = 35000, 24 = 0

So far no particular solution was preferred over the other. Therefore, the volume of data that
is present in various blocks of the original database may be very different from the cardinalities
assigned by the solvers to these blocks. The solver assigns non-zero cardinality to very few
blocks. This is because of the use of the Simplex algorithm internally, which seeks a basic
feasible solution, leading to a sparse solution. Further, not only is the solution sparse but also
the assigned cardinalities may be very different from the original since no explicit efforts are
made to bridge the gap. For example, the two solutions illustrated above are both similar
from the sparsity point of view but the values themselves are very different. It is very easily
possible that one of the two is picked by the solver and the other is actually the desired
solution. Therefore, the distribution of tuples among the various blocks in the original and
synthetic databases can be very different. Hence, volumetric similarity for unseen queries can
incur enormous errors. In the proposed solution, we construct finer blocks by additionally using
metadata stats. Subsequently, an LP is formulated, by adding an optimization function that
picks up a feasible solution that is close to the estimated solution derived from the stats. This

also helps us ensure metadata compliance.

7.2.2 Intra-Block Distribution

Within a block that gets a non zero cardinality assignment, we were generating a single unique

tuple. As a result, it leads to inconsistent intra-block distribution. That is, even if the inter-

139

block distribution was matched between the original and synthetic databases, the distribution
of tuples within a block can vary enormously. This is again not surprising since no efforts
have been put to match the intra-block distribution. This not only affects the accuracy for
unseen queries but single point instantiation per block also creates an artificial skew in the
synthetic database. In the proposed solution, we instead try to obey the distribution based on
the information extracted from metadata stats. At the finer granularity where volumes cannot

be estimated any further, we resort to uniform distribution.

7.3 Inter-Block Distribution: LP Formulation

Here we discuss our LP formulation module to get a better inter-block tuple cardinality distri-
bution. We propose two strategies for LP formulation - MDC and OE, which augments Hydra

with metadata and query optimizer estimates, respectively.

7.3.1 MDC: Optimization Function using Metadata Constraints

In this strategy we directly model constraints from the metadata stats. To set the stage, we

first discuss some of the stats maintained by the PostgreSQL engine.

MCVs and MCFs: Postgres maintains two lists for most attributes in a relation namely,
Most Common Values(MCVs) and Most Common Frequencies(MCFs). Specifically, for
an attribute A of a table T', the frequency of an element stored at position ¢ in the MCVs
list will be stored at the matching position ¢ in the MCF's array.

Equi-depth histogram: Postgres additionally maintains equi-depth histograms for most of
the attributes in a relation. It stores the bucket boundaries in an array. All the buckets for
an attribute are assumed to have the same frequency. The bucket frequency is computed
by dividing the total tuple count obtained after subtracting all frequencies present in the

MCFs array from the relation’s cardinality, with the number of buckets.

We can express this information in the form of CCs as follows:

e For a value u stored in MCVs with frequency [,, the corresponding CC is:
|UA=u(T)‘: Ly

e Say for an attribute A, a bucket with a boundary [¢, h) and frequency B exists. Further,

within this bucket, say two MCVs exist, namely u; and uy with frequencies [, and [,,

140

respectively, then the following CC can be formulated:

‘O—AE[Z,h) (Tﬂ: B+ lul + luz

Most database engines maintain similar kinds of metadata statistics which can be easily modeled
as CCs in the above manner. To distinguish these CCs from AQP CCs, we hereafter refer to
them as metadata CCs. One issue with metadata CCs is that they may not be completely
accurate as they may have been computed from a sample of the database. Therefore, to ensure
LP feasibility, we do not add metadata CCs explicitly in the LP and instead include them as
an optimization function that tries to satisfy the metadata CCs with minimal error.

While this method provides additional constraints that help to obtain a better LP solution,
it can still suffer from inconsistent inter-block distribution from the solver — in fact, we may
even obtain a sparse solution. This is because there is no explicit constraint that works on the
individual blocks. However, in general, we expect that this optimization is likely to improve

the result quality in comparison to basic Hydra. The complete algorithm is as follows:
1. Run region partitioning using all the CCs, i.e. CCs from AQPs and metadata.
2. The CCs from AQPs are added as explicit LP constraints as before.

3. The CCs from metadata are modeled in the optimization function that minimizes the
L1 norm of the distance between the output cardinality from metadata CCs and the
cardinality from the sum of variables that represent the CCs. If there are n blocks
(variables) together obtained from p metadata CCs and Q AQP CCs, then the LP is as
shown in Figure 7.2a. Here, 1;; is an indicator variable, which takes value 1 if block %
satisfies the filter predicate in the jth metadata CC, and takes value 0 otherwise. Further,
C,Cy,...,Cq are the (Q LP constraints corresponding to the ¢ AQP CCs. Finally, [,
represents the cardinality associated with the jth metadata CC.

7.3.2 OE: Optimization Function using Optimizer’s Estimates

We now consider an alternative technique, OE, where instead of directly adding constraints from
the metadata information, an indirect approach is used where the estimate for each block’s
cardinality is obtained from the engine itself. Hence, not only is the metadata information
obtained, but also the optimizer’s selectivity estimation logic. Once the estimates are obtained
for all the blocks, we find a solution that is close to these estimates while satisfying all the

explicit CCs coming from the AQPs. The complete algorithm is as follows:

141

w
minimize E €; subject to:
Jj=1

1. —¢ < (Z %) —1; <e¢, Vjelu
:1=1

2. C1,Coy ... Cg

3. x2;, >0 VZE[TZ], 6]20 V]E[/J]

(a) MDC LP Formulation

minimize Z €; subject to:
i=1

2. (1,0, ...,Cq

3. T, € Z 0 Vie [n}

(b) OE LP Formulation

Figure 7.2: Proposed LP Formulation

1. Same as Step 1 in MDC.

2. For each block obtained from (1), we construct an SQL query equivalent. Any query that

can capture the block precisely is acceptable.

As an example, the queries for the four blocks from Figure 7.1(a) are as follows:

Select * From Student Std

Where Age >= 15 and Age < 20 and GPA >= 6 and GPA < 8§;
Select * From Student Std

Where Age >= 20 and Age < 35 and GPA >= 6 and GPA < 8;
Select * From Student Std

Where (Age >= 20 and Age < 40 and ((GPA >= 5 and GPA < 6)
or (GPA >= 8 and GPA < 9))) or (Age >= 35 and Age < 40 and
GPA >= 6 and GPA < 8);

142

Select * From Student Std
Where GPA >= 9 or GPA < 5 or Age >= 40 or Age < 15 or
(Age >= 15 and Age < 20 and ((GPA >= 5 and GPA < 6) or
(GPA >= 8 and GPA < 9)));

3. Once the block-based SQL queries are obtained, their estimated cardinalities are obtained
from the optimizer. This is done by dumping the metadata on a dataless database using
the CODD metadata processing tool [19], and then obtaining the compile-time plan (for
example using EXPLAIN (query) command in Postgres).

4. We construct an LP that tries to give a feasible solution, i.e. that satisfies all AQP
constraints, while minimizing the L1 distance of each block from its estimated cardinality
as obtained from the previous step. Let the estimated cardinality for the n blocks be

Z1,%2,...,T,. Then the new LP that is formulated is shown in Figure 7.2b.

Our choice of minimizing L1 norm in these strategies is reasonable because from query execution
point of view, the performance is linearly proportional to the row cardinality. This is especially
true for our kind of workloads where the joins are restricted to PK-FK joins. Further, note that
the dimensionality reduction optimization of decomposing the view into sub-views can still be
easily applied.

Given the MDC and OE alternative strategies, the following aspects need to be considered

for choosing between them:

1. MDC is comparatively simpler as it adds fewer constraints and hence is computationally
more efficient. However, since generating data is typically a one-time effort, any practical

summary generation time may be reasonable.

2. The solution quality depends entirely on the quality of the metadata and the optimizer
estimates. Since OE works at a finer granularity, it is expected to provide higher fidelity
assuming a reasonably accurate cardinality estimator. On the other hand, the accuracy
of the constraints in MDC is usually more reliable as they are derived as it is from the

metadata.

7.4 Intra-Block Distribution: Data Generation

We saw in the previous section how inter-block cardinality distributions were represented. In
this section, we go on to discuss the strategy to represent the intra-block distributions.
The LP solution returns the cardinalities for various blocks within each sub-view. As dis-

cussed earlier, the blocks across sub-views need to be merged to obtain the solution at the view

143

level. After merging, the views are made consistent to ensure referential integrity (RI) and
finally a database summary is constructed from these views. This summary is used for either
on-demand tuple generation or, alternatively, for generating the entire materialized database.

We briefly discuss these stages now.

7.4.1 Merging Sub-Views

Say two sub-views S; and Sy, with attribute-set A; and A, respectively, are to be merged. If the
two attribute-sets are non-overlapping (i.e. A; NAy =) then we can directly take the cross of
the blocks in S7 and S5 to obtain the blocks in the view space. But when the intersection is non-
empty, the merging of blocks happen among compatible pair. A block from S; is compatible
with a block form S, if the two have an identical projection along the intersecting columns
A N As.

columns. Therefore, we define compatibility at a set level. That is a compatible pair is a set of

Several blocks in S; and Sy can have identical projection along the intersecting

blocks from S; and S; such that all these blocks have identical projections along the intersecting
columns. For such a compatible pair, let b}, by, ...,b, be the blocks from S; and b3,03, ..., b2,

be the blocks from S,. In the proposed solution, we merge each block b} with each block b?

from a compatible pair and assign it a cardinality % Note that 32,1101 1= D25 05];
which is ensured by consistency constraints in the LP. Hence in each pair, n; X ns blocks
are constructed. Merging of two blocks can be thought of as taking a join of the two blocks
along A; N Ay. A sample sub-view merging is shown in Figure 7.3 where two sub-views (Age,
GPA) and (Age, Scholarship) have five and four blocks respectively. Further, there are three

compatible pairs that finally lead to eight blocks after merging.

- Age GPA | Scholarship | NumTuples
Age GPA | NumTuples Age | Scholarship | NumTuples
[15,20) | [8,10) 3000 [15,20) | [4K,12K) 3000 [1520) | [810) | (4K 12K) 1800
[20,35) | [6,8) 40000 [15,20) | [1K,4K) 2000 [1520) | 18,10) | [1K:K) 1200
[20,35) | [5,6) 3000 [20,35) | [8K,35K) 43000 [2035) | [68) | [8K35K) 40000
[35,40) | [5,9) 2000 [35,40) | [12K,70K) 2000 [2035) | [56) | [8K35K) 3000
(15,20) | 0.6) 5000 [35,40) | [5,9) | [12K,35K) 1000
[35,40) | [5,9) | [35K,70K) 1000
[15,20) | [0,6) | [4K,12K) 1200
[15,20) | [0,6) [1K,4K) 800

Figure 7.3: Sub-view Merging

144

7.4.2 Ensuring Referential Integrity

Since each view is solved separately, it can lead to RI errors. Specifically, when Vg, the fact
table view, has a tuple where the value combination for the attributes that it borrows (say B)
from Vp, the dimension table view, does not have a matching tuple in Vp, then it causes an RI

violation. Our algorithm for ensuring referential integrity is as follows:
1. For each block b of Vi, project the block along B. Let the projected block be g (b).

2. Tterate on the blocks in Vp that have non zero cardinality and find all the blocks that

have an intersection with 7 (b").

3. For each block b” of Vp obtained from (2), split b” in two disjoint sub-blocks bP and
b? such that b is the portion of b that intersects with mg(b!) and b2 is the remaining
portion. Cardinality of b is split between bY and b using the ratio of their domain
volumes. A corner case to this allocation is when the cardinality of b” is equal to 1 — in

such a case, we replace b with bP.

4. Tf no block is obtained from (2), then we add 7g(b") in Vp and assign it a cardinality 1.
This handles RI violation but leads to an additive error of 1 in the relation cardinality
for dimension table. Collectively, these errors can be considered negligible. Also, they
are independent of the scale of the database we are dealing with, and therefore, as the

database size grows, the relative error keeps shrinking.

As we saw that the algorithm takes projections of blocks along borrowed set of dimensions.
Since, the blocks neither have to be hyper rectangles nor have to be continuous, they may not
be symmetric along the borrowed attribute(s), further adding to the complexity of ensuring
consistency. If the set of the attributes in a fact table F'is U(F') and the set of attributes that

are borrowed in Vi are B, then a block b% in Vi is symmetric along B iff:
b" = 7 (b") x Ty (bF)

In order to ensure blocks are symmetric, before starting the referential integrity step, blocks

are split into sub-blocks to make them symmetric along the borrowed set of attributes.

7.4.3 Constructing Relation Summary

Once we get the consistent summary for each view, where for each view we have the set of

(symmetric) blocks and their corresponding cardinalities, we need to replace the borrowed

145

attributes in a view with appropriate FK attributes. Here the challenge is to remain in the
summary world and still achieve a good span among all the FK values within a block. To handle
this, instead of picking a single value in the FK column attribute for a block, we indicate a
range of FK values.

Before discussing how the FK column value ranges are computed, let us discuss how the PK
columns are assigned values. Each block in any view has an associated block cardinality. PK
column values are assumed to be auto-number so, given two blocks b; and b,, the PK column
value ranges for the two blocks are 0 to |b;|—1 and |by| to |by|+]|b2|—1, respectively. Now, to
compute the FK column values, for each block b in the fact table view Vi, the corresponding
matching blocks from the dimension table view Vp, are fetched. Once these blocks are identified,
their PK column ranges are fetched and the union of these ranges is assigned to the FK column
for bt

Recall that a block in its most general form can be represented as a collection of multi-
dimensional arrays, where each multi-dim. array has an array of intervals for its constituent
dimensions (relation attributes). For example, Figure 7.4 shows the structure of a block that

is symmetric along dimension A. It can be expressed in words as the domain points where

((A € [al,a2) or [a3, a4)) and (B € [bl,b2) or [b3, bd)) and C € [cl,c2)) or
((A € [al,a2) or [a3, a4)) and B € [b5,b6) and C € [c3,c4))

[al, a2)]| [a3, a4)\

[bl, b2)| [b3, b4)
[c1, c2)

[al, a2)| [a3, a4d)

[b5, b6)
%

[c3, c4)
Figure 7.4: Block Structure

/ﬁUJ:D ﬁUJ:D\

Now, we split the block into sub-blocks, where each sub-block is a single multi-dimensional
array. Further, we divide the parent block’s cardinality among the sub-blocks in the ratio of

their volumes. In this way summary for each relation collectively gives the database summary.

146

7.4.4 Tuple Generation

The summary generation module gives us the database summary featuring various (sub) blocks
and their associated cardinalities. We want to spread the block’s cardinality among several
points. Now depending on our requirement of either dynamic generation or materialized

database output, the strategy would slightly differ as follows:

Materialized Database. If a materialized database output is desired, randomness can be
introduced. For each (non-PK) attribute, the values are generated by first picking up an interval
using a probability distribution where each interval’s selection probability is proportional to the

length of the interval. Once the interval is picked, a random value in that interval is generated.

Dynamic Generation. With dynamic generation, we cannot generate values randomly be-
cause the resultant tables will not be consistent across multiple query executions. Therefore,
we generate values in a deterministic way. Based on the lengths of the intervals that are con-
tained for an attribute in the block, the ratio of tuples to be generated from each interval is
computed. Now, if w values have to be generated within an interval, the interval is split into
w equal sub-intervals and the center point within each interval is picked. If the range does not
allow splitting into w sub-intervals, then it is split into the maximum possible sub-intervals,

followed by a round-robin instantiation.

7.4.5 Comparison with Basic Hydra

For a compatible pair where we construct n; x ny blocks (as described above), the basic Hy-
dra may generate as few as maxz(ny,n2) blocks. Therefore, it leads to several “holes” (zero-
cardinality blocks) in the view, further leading to poor generalizations to unseen queries.

For blocks that are constructed after merging the sub-views, a single tuple is instantiated.
This is again a bad choice as it creates holes.

RI violations lead to addition of spurious tuples as we discussed. In the proposed solution,
these violations are sourced primarily from wundesirable solution, where the solver assigns a
non-zero cardinality to a block in fact table for which the corresponding block(s) in dimension
table has a zero cardinality. In such a case, then no matter how we distribute tuples within the
blocks, it will always lead to a violation. However, earlier the choice of the single tuple that it
instantiates within a block itself was not done carefully. Therefore, it has additional sources of
RI violations.

Finally, the single point instantiation per block also generates an artificial skew and gives

an unrealistic appeal to the data.

147

7.5 Experimental Evaluation

In this section, we empirically evaluate the performance of the proposed solution as compared
to the baseline, i.e. basic Hydra. In these experiments, the Z3 solver was used to compute
solutions for the linear programs. The performance is evaluated using a 1 GB version of the
TPC-DS decision-support benchmark. The database is hosted on a PostgreSQL v9.6 engine,
with the hardware platform being a vanilla standard HP Z440 workstation.

Base Filters Joins
Row Count | # CCs | Row Count | # CCs
1-5 3 0-10K 8
30-300 13 15-200K 13
1000-80K 8 250K-2.5M 6
Total 24 27

Table 7.3: Row Cardinality Distribution in Test CCs

We constructed a workload of 110 representative queries based on the TPC-DS benchmark
query suite. This workload was split into training and testing sets of 90 and 20 queries,
respectively. The corresponding AQPs for the training query set resulted in 225 cardinality
constraints, while there were 51 such CCs for the testing query set. The distribution of the
cardinalities in these AQPs covered a wide range, from a few tuples to several millions. The
distribution of tuples for the CCs from test queries are shown in Table 7.3, with a separation
into two groups — CCs that are pure selection filters on base relations, and CCs that involve
such filters along with 1 to 3 joins. 2622 CCs were derived from metadata statistics, such as
MCVs, MCFs and histogram bounds.

7.5.1 Volumetric Similarity on Unseen Queries

For evaluating the volumetric accuracy on the constraints derived from the unseen queries,
we use the UMBRAE (Unscaled Mean Bounded Relative Absolute Error) model-comparison
metric [32], with basic Hydra serving as the reference model. Apart from its core statistical
soundness, UMBRAE’s basis in the absolute error is compatible with the .1 norm used in the
proposed optimization functions. UMBRAE values range over the positive numbers, and a

value U has the following physical interpretation:

U =1 denotes no improvement wrt baseline model
U < 1 denotes (1 — U) * 100% better performance wrt baseline model

U > 1 denotes (U — 1) * 100% worse performance wrt baseline model

148

The value U is computed using the formula:

MBRAFE

U=1"73/BRrAE

here MBRAE — i ey
, where ==y 1 =
" Q = |ef[+e?]

where \ef | and \eﬂ denote the absolute error for proposed solution and baseline respectively
with respect to jth constraint; () denotes the total number of constraints.

The UMBRAE values obtained by the proposed solution variants over the 20 test queries
in our workload are shown in Figure 7.5, with basic Hydra serving as the reference baseline
(U = 1). For clearer understanding, the results for base filters, join nodes, and metadata
statistics are shown separately. We see that the proposed solution delivers more than 30%
better performance on filters, while also achieving an improvement of over 20% with regard to
joins. The reason for the greater improvement on filters is that metadata is typically maintained
on a per-column basis, making it harder to capture joins that combine information across
columns.

On drilling down we found that as the number of joins increase, the improvement keeps
reducing, as should be expected due to the progressively reduced quality of the input statistics.
Also, we found that among the two proposed techniques, OE did better than MDC for constraint
with multiple join predicates. Specifically, we found that OE did 33% better than MDC for 2

1
Basic Hydra
08 - B MDC [OOE
Ll 4
< 0.6
(14
m 04 -
=
2 02 -
O 4 - - — -
Join Nodes Base Filter Metadata Base Dim. Table
(Unseen) Nodes Constraints Filter Nodes
(Unseen) (Seen)

(a) (b) (c) (d)

Figure 7.5: Volumetric Similarity on Unseen Queries and Constraints

149

join cases and 13% better for 3 join cases. This is again expected since MDC is not sensitive to
join constraints beyond first level joins while OE, due to its operations on the blocks directly,

uses the optimizer’s estimates for all the join constraints.

7.5.2 Metadata Compliance

We now turn our attention to evaluating the compatibility of the generated data wrt the
metadata constraints. This is quantitatively profiled in Figure 7.5(c), and again we observe a
very substantial improvement over the baseline — 98% and 70% for MDC and OE, respectively.
Further, MDC outperforming OE is as expected because the former explicitly minimizes the

errors in satisfying metadata CCs in its optimization function.

7.5.3 Database Summary Overheads

A key difference between the proposed solution and the baseline is with regard to the structure
of the database summary. Firstly, the former has many more blocks in the summary. Secondly,
instead of picking a single point per block, the summary retains the entire block and generates
a wider spread of tuples intra-block. Due to these changes, a legitimate concern could be the
impact on the size of the database summary and the time taken to generate the database
from the summary. To quantitatively evaluate this concern, the space and time overheads are
enumerated in Table 7.4. We see here that there is certainly a large increase in summary size,
going from kilobytes to megabytes — however, in absolute terms, the summary size is still small
enough to be easily viable on contemporary computing platforms. When we consider the time
aspect, again there is an expected increase in the generation time from a few seconds to several
tens of seconds, but here too the absolute values are small enough (sub-minute) to make the

solution usable in practice.

Baseline MDC OE
Database Summary Size 40 KB 6 MB 985 MB
Tuples Materialization Time | 6 seconds | 37 seconds | 51 seconds

Table 7.4: Space and Time Analysis

7.5.4 Data Scale Independence

The summary sizes and the time taken to generate the summary are independent of the client
database size. We evaluate this by taking two instances of TPC-DS benchmark as the client
database, namely 1 GB and 10 GB, and generating summary from both strategies MDC and
OE. The results are enumerated in Table 7.5. While going from 1x to 10x with the database

150

size, the summary sizes and the generation time do not vary much. Also note that although the
summary generation time looks large for OE, most of the time is incurred in getting a feasible

solution from the LP Solver.

Strategy MDC OE
Data Scale (TPC-DS) 1 GB 10 GB 1 GB 10 GB
Database Summary Size 6 MB | 6.3MB | 985 MB | 1.3 GB

Summary Generation Time | 12m 55s | 13m 8s | 22h 57m | 16h 48m
Summary Generation Time | 54.3s 54.3s | 20m 54s | 24m 41s
(excluding LP Solver Time)

Table 7.5: Data Scale Experiment Analysis

7.5.5 Data Skew and Realism

Finally, to showcase the difference of skew, we drill down into the “look” of the data produced.
For this purpose, a sample fragment of the TPC-DS Item relation produced by the baseline is
shown in Figure 7.6a, and the corresponding fragment generated by the proposed solution is
shown in Figure 7.6b. It is evident from the former figure has heavily-repeated attribute values
— for instance, all the REC_START_DATE values are the same. In contrast, the proposed solution

delivers more realistic databases with significant variations in the attribute values.

item_sk | color | price | rec_start_date item_sk | color | price | rec_start_date

0 Coral | 10.01 | 1991-02-01 7125 | Beige | 9.91 1990-05-08
1 Coral | 10.01 | 1991-02-01 3847 | Coral | 4.13 1990-03-26
1618 Dark | 4.56 1990-04-06
21 Coral | 10.01 | 1991-02-01 8450 | Floral | 2.46 1990-06-17

17908 | Beige | 7.00 1991-02-01 2836 Navy | 27.33 | 1990-03-06

17909 | Beige | 7.00 1991-02-01 3086 Pink | 63.66 | 1990-04-14
1827 Red | 1.61 1990-03-08

17999 | Beige | 7.00 1991-02-01 3651 | Violet | 7.43 1990-03-24
(a) Database (Item) from Baseline (b) Database (Item) from Proposed Solution

Figure 7.6: Data Skew

7.6 Conclusion

In this chapter we looked into the problem of generating databases that are robust to unseen
queries. In particular, we extended the existing Hydra framework by bringing the potent power

of metadata statistics and optimizer estimates to bear on the generation exercise. In particular,

151

this information was captured in the form of additional cardinality constraints and optimiza-
tion functions. The resulting fidelity improvement was quantified through experimentation on
benchmark databases, and the UMBRAE outcomes indicate that proposed solution successfully
delivers high fidelity databases.

152

Chapter 8

Hydra Architecture and Prototype

Implementation

In the previous chapters, we saw the technical details of various contributions with respect
to regenerating databases using SPJ cardinality constraints. We also discussed how Hydra
incorporates the metaphor of “dataless databases” (proposed in [73]), whereby database envi-
ronments are simulated without persistently generating and/or storing the contents. This is
achieved by dynamically generating databases during query execution by using the minuscule
database summary.

This dynamic generation provides Hydra a way to model two facets [2] of Big Data, namely,
volume and wvelocity, which are of primary interest in the context of enterprise relational ware-
houses. Since the data is generated in memory, not just the large volumes of data can be easily
generated, the velocity of data generation can be closely regulated, as compared to disk-resident
databases. To complement dynamic database regeneration, Hydra also ensures that the process
of summary construction is data-scale-free. Specifically, the summaries for complex Big Data
client scenarios are constructed within just a few minutes.

On the implementation front, Hydra is completely written in Java, running to over 50K
lines of code, and is currently operational on the PostgreSQL v9.6 engine [7]. Most of the
functionality was achieved by leveraging existing APIs, with only the dynamic generation com-
ponent requiring a few modifications within the engine. It has an intuitive user interface that
facilitates modeling of enterprise database environments, delivers feedback on the regenerated
data, and tabulates performance reports on the regeneration quality. The entire tool, including

the source, is downloadable !, and has been warmly received by both academic and industrial

https://dsl.cds.iisc.ac.in/projects/HYDRA/index.html

153

https://dsl.cds.iisc.ac.in/projects/HYDRA/index.html

organizations.
In the remainder of this chapter, we discuss the architecture, some implementation details,

and the visual interface of the prototype tool.

8.1 Architecture

A pictorial view of it is presented in Figure 8.1 — in this picture, the green boxes represent the

various modules of Hydra.

[Denormalization] [Parser]

| !
. CLIENT SITE X Output AQPs |
: Data |e Database Engine guecrg-v%rk'lé g : | for Client and :
| 1! Vendor Queries |
| CcoDD Client 1! |
1 1 (Seen) 1! 6\ é\ '&\ 1
1 1! Set of AQPs |
I B A A Queries 1! |
Schema . |1
| Client AQPs - Metadata | vendor
g g g ---=' (Unseen) !
|
|
1
1
|
1

~ Queries
TupIe
@00.0
workind (i) 2202
Decomposition | [~ CODD ————

I
|
|
|
|
D Engin
: l 1 atabase Eng e Database |
| ‘ Cardina.lity Region Query Il Est|njat§d Summary :
1 Views Constraints Multiol __ _|¥ Cardinality ____ _ _ _ X
1 ultiple . 1
| l Sub-Workloads I LP Formulation | !
L T T T T T T T e Dot e | : Filter Referential | 1 :
: | Data Space Partitioning 1 | Constraints Constraints : 1
—
" i i S i Refined AI| n Niign | 2 | ! \
11| Region Filter ymmetric elmke g Refined1 & | | Projection Objective | 1 |
: : Partitioning Blocks Refinement Blocks Reflnement B|0Ck$ 1 éﬂ 1 Constraints Function : 1
i : s a |
I 12 !
11 = :
| n
: | "@ A — " —>[Projection Subspace Division]—» P : 1
1! - S = 8 I . 1 |
o c 2 1
1 "@ Ao &5 —>[Projection Subspace Division]—> g ;| | Summary Construction | |
1! QT 25 ! - 1
11 : o2 . = 1 View 1
| H o C M c o 1 1 L]
: X e B . S8<1 || Summary Range : X
i "@ Ag —»[Projection Subspace Division]—» a ' | | Construction Curation) , 1
Il e eee e mrmrm—m/—/m/m8m8m8™m8 m ™M —————] e e e e - 1 |
I |
| |
1

Figure 8.1: Hydra Architecture

8.1.1 Client Site

The information flow from the client to the vendor is as follows: At the client site, Hydra fetches

the schema information, and the query workload with its corresponding AQPs obtained from

154

the database engine. The statistical metadata from the database catalogs is captured with the
help of CODD [19] tool. All this information is then shipped to the vendor site.

To address the privacy concerns the above information can be passed through an appropriate
anonymization layer at the client. For example, the table names, column names can be renamed.
Likewise, the predicate constants can also be changed to any order preserving domain.

Note that if the client wishes to provide more than one AQP for the same query, that can
also be done by giving all the AQPs for the query in the input. The volumetric constraints
will be derived from all the nodes of each plan. The underlying assumption is that the AQPs
will be mutually compatible, which is trivially true since the plans are derived from an original

client deployment. Therefore, the constraints when modeled as an LP will also be feasible.

8.1.2 Vendor Site

Using the schema, views are constructed using the Denormalization module. The AQPs are
converted to equivalent CCs using a Parser. The workload hence obtained is given to Workload
Decomposition, which returns the set of non-conflicting CCs. Subsequently, the rest of the
pipeline, comprising of Data Space Partitioning, LP Formulation and Summary Construction,
is executed independently for each of these sub-workloads.

The Data Space Partitioning for a View and sub-workload begins with Region Partitioning
followed by Symmetric Refinement algorithm. This gives the set of refined-blocks. Further,
due to Align-Refinement across Fact and Dimension tables, the refined-blocks are split and give
Align Refined Blocks (ARBs) in the output.

Let £ be the total number of PASs across all the constraints, as indicated in Figure 8.1.
For each PAS across all CCs, the PRBs are computed using the ARBs. These PRBs and sub-
workload are then used by the Projection Subspace Division module to construct the set of
CPBs.

Next, at the LP Formulation stage, an LP is constructed using variables representing the
cardinalities of ARBs and CPBs. Specifically, Filter Constraints and Projection Constraints are
modeled for each view. Subsequently, Referential Constraints are added between each pair of
Fact and Dimension table. Finally, based on the cardinality estimation module of the database
engine, an estimate of size of various blocks is obtained. Using these estimates, an Objective
Function is added to the LP. This construction is then given as the input to the LP Solver. We
have used the Z3 solver [14] from Microsoft for this purpose.

From the solution produced by the LP solver, a comprehensive table summary is constructed
using the Summary Construction module. Specifically, it constructs View Summary and then

replaces borrowed attributes in the fact tables with the corresponding foreign key columns using

155

the Key Curation module.

The summary is used by the Tuple Generation module to synthesize the data dynamically
during query execution. Dynamic generation is useful if we are interested in analysis of in-
termediate operators in the query plan. If the focus is on scan operations, then materialized
database instance should be generated from the summary. For experimental evaluation, we

restricted the query plans to only have sequential scans.

8.2 Implementation Details

In this section we discuss the data structure and implementation detail of certain key concepts.

8.2.1 Domain Representation

The domain of a table is represented using a two dimensional vector as shown in Figure 8.2. Each
row here represents a dimension (attribute) of the domain space. The vector corresponding to a
dimension represents the split points inserted to break the dimension into intervals. Specifically,
if the jth value in ith row is represented using v;[j], then the interval corresponding to it is
[v3[7], v:[7 +1]) ! For example, from the figure we can conclude that dimension A; is broken into
intervals [0, 20), [20, 30), [70, 90), [90, A7***), where A*** is the max value of the domain of A;.

Ay:|0[20 30| 70|90

A,:| 0 | 100 | 700

Figure 8.2: Domain Representation

The split points are inserted using the constants appearing in the filter predicates of the
CCs. Specifically, if a predicate is represented as (col op wal) then the split point is added

based on the following condition:
o If op = ‘>’ or op = ‘<’, then wal is inserted in the vector.
o If op =>"or op = ‘<’ then (val + 1) is inserted in the vector.

(>

e If op = ‘=’, then both val and (val + 1) are inserted in the vector.

If j is the last index then the v;[j + 1] represents the max value of the domain.

156

Note that each filter predicate can be represented as a disjunction or conjunction of the sub-
predicates of the (col op wval) form. Therefore, the above split point insertion is done for each
such sub-predicate. For example, Between SQL construct can be expressed using conjunction of
two sub-predicates involving > and < operators; Likewise, In SQL construct can be expressed
using disjunction of sub-predicates, each of which involves an = operator.

The above procedure assumes that the columns are of integer type. In Hydra, we additionally
deal with string, float, and date column datatypes. The predicate constants for such columns are
mapped to an integer domain while preserving their relative order. Subsequently, post database
summaries production, the column values can (optionally) be mapped to their original domain.

Since there are finite number of predicates, this integer mapping is always feasible.

8.2.2 Region Data Structure

A primary data structure, used to represent a variety of objects in the implementation, is

Region pictorially represented in Figure 8.3.

Vv W v
A;:lo|l1]3]| 4 Aiilo| 2 | 4 Ay |2
A Ayl 0 Ao 1
n A 1] 3 Ag:| o] 2
A
Ag:lo| 2 | 3

Figure 8.3: Region Data Structure

Each individual tabulation in this data structure is called as a Bucket-Structure. Like the
domain representation, each Bucket-Structure is also represented as a two dimension vector
where each row represents a dimension. The value in a cell of a row represents the index of the
split point from the domain data structure. For example, the index value 1 for A; dimension
will represent split point 20 as can be seen from Figure 8.2. As discussed earlier, each split
point represents an interval. In a Bucket-Structure, these intervals are concatenated using
disjunction intra-dimension and conjunction inter-dimensions. The first Bucket-Structure
in Figure 8.3 shows the conjunction and disjunction with the help of the A and V symbols,
respectively. Further, the Bucket Structures are concatenated by disjunctions to represent

the entire Region.

157

Note that a block in the partition need not be a contiguous hyper-rectangular region. It is
simply a collection of points in the domain, which can be stored in a Region object. Therefore,
this data structure is used to represent the various blocks (filter-block, refined-block, ARB,
PRB, CPB). Hence, the output of the region partitioning algorithm is a collection of Region
objects. Further, it is also used to represent the filter predicate region associated with a CC.

At a constraint level, this modeling choice helps to handle DNF constraints easily.

8.2.3 Dynamic Tuple Generation Implementation

The summary is used by the Tuple Generation module to synthesize the data dynamically.
This component resides inside the database engine, and needs to be explicitly incorporated in
the engine codebase by the vendor. As a proof of concept, we have implemented it for the
PostgreSQL engine by adding a new feature called datagen, which is included as a property for
each table in the database. To enable this feature, the following command is executed on the

Postgres engine:
alter table (table-name) set (datagen = 1);

Whenever this feature is enabled for a table, the scan operator for that table is replaced with
the dynamic generation operator. As a result, during query execution, the executor does not
fetch the data from the disk but is instead supplied by the Tuple Generator in an on-demand

manner, using the available table summary.

8.2.4 Database Platform Portability

The work assumes relational data and the constraints including select, project and join oper-
ations. As long as the input constraints can be modeled to suit these requirements, there is
no conceptual dependence on the database engine. To port to any other relational system, the

implementation changes would be included in the following:

Plan Parser. To extract query plans standard APIs provided by the database engines are
used. The Plan Parser in Hydra interfaces with these APIs and generates the cardinality

constraints corresponding to the query plan.

Dynamic tuple generation. The module that replaces the traditional scan operation to give
data on demand during query execution. This implementation has been done within

PostgreSQL source code as it is open source.

158

8.3 Prototype: User Interface

In this section, we discuss the interface of the tool with a variety of visual scenarios that
showcase the utility of the HYDRA tool.

8.3.1 Input from Client Site

Tables Columns Most Frequent Values Histogram Buckets
STORE = i_manager_id = value frequency = 69.18 =
STORE_SALES i_class 0.46 187 76.39
ITEM i_category 2.49 186 84.30
DATE_DIM i_color 4.43 183 92.29
WAREHOUSE < 1.83 180 - 99.98 =
Client Query (102 |~} Annotated Query Plan

A |16966
SELECT * 1 XSS
FROM DATE_DIM D, STORE_SALES SS, ITEM | 18;9 928430
WHERE d_date_sk = ss_sold_date_sk i manager_id=1 DM SS
i =i 366
and .ssfltemfsk = i_item sk 102000' 366~ \28800991
and i_manager_id=1 O year=2000 SS
and d_year = 2000 I [.:3049
L D

Figure 8.4: Client Site: Metadata, Queries and Annotated Query Plans

At the Client Site, the client supplies the query workload and the corresponding AQPs
are obtained by optimizing and executing these queries on the client platform. Currently, the
JSON format is supported to parse the execution plans. The next screen in the client interface
is shown in Figure 8.4. In this figure, the top half profiles the metadata statistics. Specifically,
the user can choose a specific table column, and the system presents the distribution of the
most common values and the bucket boundaries of the equi-depth histogram for this column.*
In the bottom half, the user can pick a query from the input workload (the figure shows a
query on the TPC-DS schema), and the corresponding SQL text is displayed at the bottom left
along with the associated AQP at the bottom right. The widths of the edges connecting the
operators in the plan are scaled to visually indicate the volume of data flowing in each of these

edges. Finally, once the user selects the SUBMIT button, all this information is transferred for

!The metadata visualization is customized for PostgreSQL [7].

159

Tables Relation Summary
STORE 21| #TUPLES | i_manager_id i_class i_category i_color Materialize Data
STORE_SALES 917 40 pop Music Velocity
— # rows/sec
ITEM 21 91 dresses Women chocolate [———— — |
DATE_DIM 25 0 accessories Men hisque
— Row Count
WAREHOUSE 1749 1 reference Electronics I 102000 ‘ Original
STORE_RETURNS | ‘r'-‘ﬂ' n | Hama almand _’I;li I 102035 ‘ Generated
Generation Quality Client Query H AQP Comparison
100
E J = |1696€:
= +0.00%
T 80 SELECT * | D4SS
p FROM DATE_DIM D, STORE_SALES SS, +01§J€,’ 928430
S WHERE d_date_sk = ss_sold_date_sk > NN
g _da e_S - SS—SO = ate_s Ji_manager_id=1 DM SS
g 40 and :ss_utem_sk = i_item_sk 102000 e \23528331
3 5 and i_manager_id=1 B | G4_year=2000 SS
< and d_year = 2000 73049
..5 0 +0.16%
R® 0 20 40 60 4 | H| - D
% Relative Error

Figure 8.5: Vendor Site: Database Summary, Runtime Configuration Settings, Generation
Quality and AQP Comparison

Vendor Site processing.

8.3.2 Vendor Site Processing

After receiving the above-mentioned information package from the client, the Vendor Site ini-
tiates the data regeneration process. Here, the primary interface during the LP solving stage
tabulates the LP complexity in terms of their number of variables and run times. Subsequently,
in the next screen, shown in Figure 8.5, the final database summary is displayed. The user
can select an individual table, and the system shows its summary in the top middle panel. For
instance, the first row in the item table summary in Figure 8.5 indicates that there are 917
rows with values <40, pop, Music, ...>. The PK columns are generated as auto-numbers.
Secondly, the top right panel shows the runtime configuration settings where the user can
choose to either dynamically generate or optionally materialize the selected table. Also, for
dynamic generation, the desired velocity, measured in rows per second, can be set using the
slider bar. The chosen table’s row count for the original and synthetic database are shown
below the bar. To assess the overall quality of the regenerated data, the bottom left graph
plots the percentage of volumetric constraints that are satisfied within a given relative error.

Finally, the user can also drill down to a query-specific AQP comparison by selecting a query

160

from the drop down menu. In this mode, the corresponding SQL text and AQP are shown in
the bottom middle and right panels, respectively. The edges in the AQP are annotated with
the original cardinality in green color, and the relative errors (typically minor) incurred as a

result of the regeneration are shown in red color.

8.3.3 Dynamic Database Regeneration

We would like to reiterate that the regenerated database has absolutely no data stored in
the physical tables —i.e. the “dataless” approach. Instead, using our tuple generator, data is
generated and supplied on-demand during query execution. As an example of the final outcome,
a few sample rows for the initial columns of the ITEM table (highlighted in Figure 8.5) are

enumerated in Table &.1.

Table 8.1: Sample Tuples

item_sk | i_manager_id i_class i_category
0 40 pop Music
917 91 dresses Women
938 0 accessories Men
963 1 reference | Electronics

8.3.4 Scenario Construction

Finally, Hydra also facilitates the vendor to pro-actively simulate anticipated client environ-
ments, by constructing synthetic AQPs through injecting cardinality annotations into the orig-
inal client AQPs. For such “what-if” scenarios, Hydra creates the regeneration summary after
verifying the feasibility of the synthetic assignments. This feature is particularly useful for
testing the ability of the vendor’s engine to robustly handle boundary condition scenarios and

stressed Big Data environments.

8.4 Discussion

Having presented the mechanics of Hydra, we now take a step back and critique the approach

on relevant aspects.

Multiple Summaries. We would ideally like to produce a single summary instance that sat-
isfies all the CCs. However, Hydra may have to produce multiple summaries, and hence
multiple databases, to cater to constraint workloads that feature overlapping projection

spaces. From a practical perspective, this multiplicity does not impose a substantive

161

overhead due to the minuscule size of each summary. Further, Hydra attempts to reduce

the number of sub-workloads to the minimum required to ensure compatibility.

Workload Scale. Despite the proposed techniques provably gives minimal number of blocks
(variables) needed for expressing CCs, they can still be exponential if the input CCs
have high overlaps. Hydra currently handles workloads of reasonable complexity as show-
cased in our experiments. However, for more complex scenarios, a promising recourse
is to introduce approrimation, where volumetric accuracy is marginally compromised to
achieve solution tractability. For example, a plausible heuristic could be to not create all
the CPBs in one go, but to create them greedily until the error limit is reached. Being a
highly underdetermined system, there always exist a sparse solution to the LP — therefore,
this iterative process is expected to converge quickly. However, from the solution quality
perspective, using a sparse solution may not always be desirable. This is so because,
sparse solutions create large holes in the data space, where there are no data points. This
can have robustness limitations in assessing performance of unseen queries. Construct-
ing an approximation scheme that achieves better workload scalability while producing

qualitatively robust solutions is an area of future research.

162

Chapter 9

Extensions

9.1 Introduction

So far the focus has been on generating synthetic data that exhibits volumetrically similar
behavior to the original database on a given query workload. That is, for every query in the
workload, the output row cardinalities of individual operators in the corresponding query plans
are similar in the original and synthetic data. While volumetric similarity captures a critical
data characteristic necessary for mimicking client data processing environments, it lacks in-
formation such as data-skew and ordering of values. These can be important for mimicking
performance of hash and sort operations. For example, various SQL constructs such as Join,
Group By, Distinct, Union routinely require a hash based computation internally. The com-
plexity of a hash-probe operation extensively depends on the amount of duplication in the data,
especially when a hash bucket leads to spilling. Likewise, Order By, Group By, Distinct,
Union constructs often use sorting operation internally. A sort operation’s complexity also de-
pends on how much data was pre-sorted in the input. This is because the movement of tuples

and number of comparisons required during the sort are dependent on this feature.

9.1.1 Owur Contributions

Keeping the above in mind, in this chapter, we focus on extending volumetric similarity to

include other data characteristics, namely
1. Duplication Distribution
2. Presortedness

Specifically, for the above characteristics, we discuss the following:

163

1. Motivation for capturing the characteristics

2. Modeling the characteristics mathematically

3. Extracting the characteristics during query execution

4. Simple strategies for mimicking the characteristics in synthetic data

9.1.2 Notations

The key notations used in this chapter are summarized in Table 9.1. We use the acronym TAS
to refer to Target Attribute-Set.

Table 9.1: Notations

Symbol Meaning
Output Database
TAS
Output Table
Attribute
Duplication Value
Frequency of a Duplication Value
Duplication Distribution
Length of z
Hash Table
Index Array
Sorted Index Array
Linearization of z
Distance btw two Duplication Distributions
Sortedness

R B N T R E S R E NN IR

9.1.3 Organization

In the upcoming sections we discuss each of the aforementioned characteristics sequentially.
Specifically, Section 9.2 discusses the Duplication Distribution in detail. Further, Section 9.3

discusses the Presortedness characteristic. Finally, we conclude in Section 9.4.

9.2 Duplication Distribution

A duplication distribution, for a target attribute-set (TAS) T in Table T, is expressed as a 2-D
vector that stores the information of how many value combinations corresponding to T occur

with a certain frequency in 7. For example, for a column A = [4,2,3,1,4], the Duplication

164

Distribution vector will be {(1,3)(2,1)}. This is because the number of elements appearing
once is three (values 1, 2, 3), while number of elements appearing twice is one (value 4).

Note that Duplication Distribution already encapsulates the total row-cardinality informa-
tion. Therefore, ensuring matching Duplication Distribution implies volumetric similarity as
well.

In the rest of this section, we discuss the Duplication Distribution characteristic in detail.
Specifically, we begin with a motivating example. Followed by it, we discuss the mathematical
expression and properties of Duplication Distribution. Subsequently, we discuss how to extract
this information during query execution, and finally discuss how to model the characteristic in

synthetic data generation.

9.2.1 Motivation

As discussed in Section 9.1, Duplication Distribution is important for modeling various oper-
ations such as Hash Join. To illustrate this, we constructed two sample datasets D; and Ds.
Each dataset has a single column for each table from our running example schema. Specifically,
we have Std.RollNo and Reg.RollNo columns in both D; and D,. Recall that Reg.RollNo
is a foreign key column - that is, it takes values from the corresponding reference table col-
umn Std.RollNo. The frequency distribution of this foreign key column in the two datasets is

specified below:

Di: Reg.RollNo has a uniform distribution over all the values present in Std.RollNo.
Ds: Reg.RollNo has all identical values.

Both the datasets have 655 million and 82 million rows in Reg and Std tables, respectively.
Now, consider the following simple SQL query:

Select * From Register Reg, Student Std
Where Reg.RollNo = Std.RollNo;

We executed the above query on D; and Dy with the same underlying hardware, database
platform (a popular commercial engine), and system configuration. We found that the query
optimizer picked identical physical query plans, comprising of hash join operation, and same
output row cardinalities. However, in spite of satisfying volumetric similarity, they have sig-
nificantly different running times, as shown in Table 9.2. As we can see, for D; the time was
18 minutes which increased to 28 minutes for Dsy. As per our judgement, the primary source
of the time difference is the spilling behavior that happens while computing the hash table,

which is used for performing the join operation. The spilling invocation depends heavily on the

165

Duplication Distribution of the data. Hence, our focus is on capturing Duplication Distribution

in the synthetic data.

Distribution Type | Running Time
N 18 min
D, 28 min

Table 9.2: Query Execution Time

9.2.2 Duplication Distribution Characterization

Now, we formally describe Duplication Distribution with respect to a TAS T. Further, we also

give a measure of computing distance between a pair of Duplication Distributions.
Expression

A Duplication Distribution with respect to a TAS T in table T is expressed using a 2D vector
{(d,e)}, where d represents the number of duplicates, and e denotes the number of T values
having d duplicates in T'. For the above example, the (d, e) vector for Reg.RollINo in Dy is {(8,
82 million)} as all 82 million values were uniformly distributed, and for Dy is {(655 million,
1)}, since all values are identical.

Duplication Distribution contains volume (total cardinality) information as well, and can

be expressed as
5

l2ll =D (di x &) = ||

i=1
where z = {(dy, e1), (da, €3), ..., (ds,es)}, and 6 is number of (d, e) elements in z.

Bound on size of Duplication Distribution

The number of entries in the Duplication Distribution vector is equal to the number of distinct
duplication frequencies for values occurring wrt T in 7. We express this number as §. It is
easy to see that 0 is maximum when the duplication frequency distribution is of the type:
{(1,1),(2,1),(3,1),...,(d,1)}. This gives us the following condition:

1(1) +2(1) +3(1) +...,8(1) = [T (9.1)

This gives us 6 = (f)(\/m). Hence even for a trillion rows relation, the duplication frequency
distribution of each attribute can be captured using few MBs of data in the worst case.

We also verified this experimentally by computing Duplication Distribution wrt each non-
key attribute of four tables from 1 GB TPC-DS benchmark. The total size of Duplication

166

Distribution vectors was less than 40 KB. The detailed results are tabulated in Table 9.3. (The

min, max and average 0 values are with respect to various columns in the corresponding table.)

Table (7) | Min. ¢ size | Avg. ¢ size | Max. § size | O(1/|T]) | Total tuples (M)
store_sales 6 257 924 1620 2.6

catalog_sales | 6 194 864 1195 1.4

customer 5 24 37 317 0.1

inventory 1 3 5 3428 11.7

Table 9.3: Duplication Distribution vector Size

Now, before we discuss how to compute similarity between two Duplication Distributions, let

us first understand a prerequisite concept of linearization.
Linearlization

Linearization of a Duplication Distribution vector z is a linear (one-dimensional array) repre-
sentation of it, represented as A(z). It is computed such that for each element (d,e) in z, d is
added e times to the array A(z). Further, the values in the array are sorted in decreasing order.
Notice that the number of element in A(z) is equal to the number of distinct values wrt TAS
T in table T', where each index stores the frequency of an T value in T. Therefore, A(z) is just
an exploded version of z.

To compare two Duplication Distribution vectors, we require linearizing them first. Further,
this linearization should result in equal size arrays. In order to do that, we append zero values
in the smaller array. Adding a zero value to the array implies there is an additional value
appearing with 0 frequency. In other words, the value does not exist. Therefore, this addition

does not change the semantic meaning of the array.
Distance between two Duplication Distributions

Given two Duplication Distribution vectors z; and zy, the duplication distance between z; and

z5 can be defined as the summation of absolute difference between corresponding elements of

A(z1) and A(zq). That is,

IACz1)]

2|Ty Z A=l

Here we are assuming A(z;) and A(z2) have been made of equal length, as described above.

A(z1, 22) (z2)[i]]

167

Distance Computation Example

Consider the following two Duplication Distributions:
z1:((5,1),(4,2),3,1),(1,2)], 2 :[(4,4),(2,1)]
The vectors obtained after linearization are as follows:
Az1) 1 [5,4,4,3,1,1], A(z2) : [4,4,4,4,2,0]

Therefore, the distance between z; and 25 is given as:

5—4|+4 —4|+4 —4|+|3 —4]|+|1 =2|+|1 =0 4
Aoy) = BB = Al it =2t 0] _ 4,

The term in the denominator of A expression has been added to normalize the distance such
that it ranges from 0 to 1, with 0 being the minimum distance obtained for identical Duplication

Distributions. The derivation of the bound is given next.
Bound on Distance

The two most distant Duplication Distributions are z; : (|T],1) and 2, : {(1,|T])}. Here,
{(|T'|, 1)}, represents the case having all T values same. In contrast, {(1,|T|)}, represents the
case where all T values are distinct. For this case, the distance A(z, 22) is given as:

|T|—1) + 1« (|T|-1) 1

_(_
Al =" T

From the above, we can conclude that A is always less than 1.

9.2.3 Duplication Distribution Extraction

All the database platforms give the information of input/output row cardinality for each op-
erator in the query execution plan. However, the Duplication Distribution information is not
provided explicitly. Therefore, to compute it, we use either (a) a non-invasive offline algorithm,
where for each target operator! in the plan tree, a corresponding SQL query is constructed
that returns the required duplication distribution at that operator, or (b) an invasive online

algorithm, which computes the duplication distribution for the operator during the query exe-

LA target operator refers to an operator whose input data is to be used for Duplication Distribution com-
putation. For example, a hash operator in the query plan can be a target operator as its efficiency is predicated
on the Duplication Distribution of the attribute-set over which the hash is being computed.

168

cution itself. We have implemented this approach for open-source PostgreSQLv9.6 [7] database
engine. Further, to make the computation efficient, we also have an approximation variant
of the algorithm that gives approximate duplication distribution. We now describe both the

offline and online strategies in detail.
Offline Approach

Applying GROUP BY with aggregate on T gives frequency count of each distinct T value in 7" and
applying GROUP BY on the top of this frequency distribution gives the duplication distribution

for T. Specifically, following query is executed:

Select dup, count(*)
From (Select T, count(*) as dup FROM 7' Group By T)
Group By dup;

If the Duplication Distribution is to be computed for an intermediate node in the query ex-
ecution (e.g. join output), then an additional where clause with the corresponding condition(s)

is added to the inner query.
Online Approach

In online approach, we monitor the (intermediate) tables created during query execution and
compute the duplication distribution wrt T. Specifically, first a frequency counter (FC-1) is
added to have the frequency count of each T value — this is same as computing aforementioned
inner query result. Secondly, another frequency counter (FC-2) is applied on FC-1 for computing
the Duplication Distribution.

To reduce the time and space overheads of the above solution, we also propose an approz-
imate online approach. Here, instead of using frequency counter FC-1, we use Approximate
Frequency Counter (AFC). AFC uses Lossy Counting [57] as an approximation algorithm, to
keep track of most frequent items only. Thus, using AFC results in less number of elements af-
ter first frequency counting. This reduces space overheads. Further, second frequency counter,
which runs over the result of AFC, gets benefited from this space reduction. This helps in
reducing time overheads as well. However, since second frequency counter runs on AFC, it will
give approximated Duplication Distribution. To make up for the loss in accuracy as a result
of using AFC, the remaining cardinality is assumed to be filled by elements occurring once.
From our observation, significant reduction in overheads were obtained as a result of using the

approximation while only causing minor reduction in accuracy.

169

9.2.4 Duplication Distribution Mimicking

We now discuss the mechanism to mimic Duplication Distribution at the base table level.
Depending on the constants appearing in the filter predicates, the domain of T can be divided
into a set of intervals. Let this be the set I. Further, let the Duplication Distribution vector
z={(dy,e1),(ds, €2),...,(ds,es)}. Now, let z;; represent the fraction of e; (with corresponding
duplication value d;) present in interval I; € I. Therefore, following constraints need to be

satisfied for each interval I;:
B
lorer, (T)|=) i % d;
i=1

Next, for each e; € z, following needs to be ensured:

lesl=> @y

I;el

The regions obtained from data space partitioning in Hydra can be split further so that the
blocks do not span a split point along T. Then, we can also say that the cardinality of rows
inside each interval is equal to the summation of the row cardinalities of its constituent blocks.

If we wish to mimic duplication distribution for each histogram bucket maintained in the
metadata stats, this can also be easily done by a simple extension of the above formulation.
This is because the histogram buckets are mutually disjoint and can be mapped to the intervals

easily.

9.3 Presortedness

In relational query processing, sort is a commonly used operator. It is not only used for
handling order by SQL clause, but also used often as a component for various other operators
like joins (sort-merge), or projection operator based constructs (group by, distinct, union). Sort
operation in a query plan can have significant impact on the total execution. The execution
time of sort operation depends on (a) number of comparisons among the data elements, and
(b) movement of tuples while sorting. These aspects are influenced by the extent of ordering
pre-existing in the input data — in other words, the Presortedness in the data.

In this section, we discuss Presortedness characteristic in detail. Specifically, we begin with
a motivating example followed by modeling Presortedness mathematically. Subsequently, we
discuss how to extract this information during query execution, and finally how to model it in

synthetic database generation.

170

9.3.1 Motivation

To demonstrate the impact of Presortedness, we performed an experiment on the INVENTORY
table of the TPC-DS [12] benchmark which has size 8.4 GB and 400M plus tuples. We picked
an attribute (inv_qty_on_hand) from the table and created a new table (T'(Ay, Ay)) with two
attributes, both having the all values of inv_gty_on_hand, with one column having elements
in sorted order, while the other column has the same values in random order. Then, we ran
ORDER BY ASC and ORDER BY DESC query on both attributes and the time taken by
queries is in Table 9.4. Here, Column Order represents the order from the data and Sort Order
represents the order from the query. As can be seen from the table, in the first case of ascending
sort and column order, the query took the least amount of execution time. This is because,

unlike the other cases, here there was no tuple movement involved during the sort.

Column Order | Sort Order | Time (in min)
Ascending Ascending 1.5
Random Ascending 5.1
Ascending Descending | 3.9
Random Descending | 4.9

Table 9.4: Query Execution Time on Different Column Order and Sort Order

9.3.2 Presortedness Characterization

Let T be the TAS along which the order is being considered. Further, let the value-combination
present in the ith row of input table 7" be represented by T'[i]. Next, let T be the sorted
counterpart of T" along T. Now, let there be an Indexr Array X that stores the index of the
corresponding value from 7' in T. That is, X[i] stores the index value of T'[i] in T. Finally, let
Y be the sorted counterpart of X. Our aim is to compute correlation between the arrays X
and Y. Note that |X|= |Y|=|T].
To compute correlation between the two arrays X and Y, we use the Pearson Correlation
Coefficient [6], represented by p. Therefore, the Presortedness between 7" and T is given by:
S X - X)(Y [- Y)

VI X - X2 ST (vl - V)

Here, X and Y represent the mean of the arrays X and Y, respectively. Note that Y is an
array of values [0, 1,2, .., (|T|—1)]. Further, X =Y = w

p= (9.2)

171

Example

Let the input array of values be [40, 30, 20, 10]. Its sorted version is [10, 20, 30, 40]. Therefore,
the index array (X) will be [3, 2, 1, 0]. Further, the Pearson’s correlation coefficient p = -1.
Having p = 1 means the data is already sorted, and p = —1 means data is sorted in the
opposite order, and having p = 0 means maximum randomness in the data. In general, positive
value implies that there are a greater number of elements closer to their position in the sorted

array and negative correlation means farther from it.

9.3.3 Presortedness Extraction

To compute the Presortedness of a TAS wused by the sort operator in the query plan, we
monitor the edge which gives input to the sort operator. Hashtable(H) maps the attribute
values to their corresponding indices in the input list (unsorted) to the sort operator. Once the
sort node is processed, each tuple comes in order and helps to create the Index Array for the
input unordered list. Subsequently, the index array is passed to Pearson correlation coefficient
calculator. This flow is shown in Figure 9.1. The shaded blocks in the figure are the modules

added in the Postgres execution engine.

/1\ Output tuples Pearson
\ Compute Pearson’| Correlation

index —=> [Coefficientt — =
Sort (key: s_store_name) / array Calcdlatorf - cicient

¢%

| Seq Scan on Store |

Query : SELECT * FROM store ORDER BY s_store_name

Figure 9.1: Presortedness Computation on a Query Execution

We now describe the details of each of these contributed modules.

Hashtable(h). The hashtable (h) is a data structure having key-value pair, where key is a
TAS value-combination and wvalue is the list of all indexes having the corresponding TAS

value-combination. Hashing is performed on the input tuples to the sort operator. For

172

example, given TAS wvalues: [30, 10, 20, 40, 30|, then A will have (30,]0,4]), (10,[1]),
(20,2]), (40,[3]).

Compute Index Array (X). Once the sort operation is performed, the output tuples are
ordered on TAS . So for each output tuple, we pick its TAS value-combination and using
h, get the corresponding index values for unordered set and add them to the Index Array.
For the above example, the sorted order is [10,20,30,30,40], and the Index Array X is [1,
2,0, 4, 3].

Pearson Coefficient Calculator. Once the Index Array is constructed, it is passed to Pear-
son correlation coefficient calculator. Here, the Presortedness is computed using the

formula in Equation 9.2.

Query# | |T| Execution Time | Time with
Original p Computation

1 12 0.1 ms 0.2 ms

2 50000 0.7s 0.9s

3 100000 0.9s 0.9s

4 2622614 | 9s 10 s

) 11745000 | 28 s 29 s

Table 9.5: Execution Time of Order By Queries

The time overheads incurred due to the additional code for Presortedness computation in
PostgreSQL are shown in Table 9.5. We can see that the overheads are viable. Further, they

can be further reduced by using the native data structures of PostgreSQL.

9.3.4 Presortedness Mimicking

We begin by establishing a relationship between percentage of sorted tuples vs Presortedness
value p. We start with an array of || tuples [0 to (|7'|—1)] and shuffle it to get its p value close
to 0. Now, we fetch different percentage of data from the array, sort it, and replace them back
at the same locations in the array, but in sorted order. That is, if the tuples were fetched from
locations ;, @9, ..., 1z, the first tuple in the sorted order is inserted on location i;; second on s,
and so on.

The above exercise is performed for varying percentage of tuples and |T'| value. Also,
both ascending and descending order is considered. The relationship obtained is depicted in
Figure 9.2. In these figures, the Pearson coefficient for each percentage is obtained by averaging

over different set of fetched tuples.

173

1.0

0.00
0.8 E
= E 0.25
g g '
= 0.6 Q
2 c
G B -050
S @
B os g
o
& -0.75
0.2
-1.00
20 40 60 a0 100
0.0
20 40 60 80 100 Percentage of sorted values
Percentage of sorted values (b) Descending |T|_ 100
, =
(a) Ascending, |T'|= 100
1.00 0.0
0.75 -0.2
2 g
% 0.50 E -0.4
& S
= =
B 025 B 06
3 g
d &
0.00 -0.8
-0.25 -1.0
20 40 60 80 100 20 40 60 80 100
Percentage of sorted values Percentage of sorted values
(c) Ascending, |T'|= 10000 (d) Descending, |T'|= 10000

Figure 9.2: Presortedness vs. Percentage Presorted Tuples

The next step is to order the table 7" such that it gives the desired Presortedness value p*.
For this, the required percentage of tuples is sorted in T'. To compute the required percentage,
we use the inverse of the aforementioned relation of percentage of sorted tuples vs Presortedness
value. For a specific percentage, the tuples are chosen at random. We performed some pre-
liminary experiments with the implementation of the ideas presented. The results comparing
the desired vs obtained Presortedness are shown in Table 9.6. We can see that the computed
correlation coefficient is quite close to the actual correlation coefficient, thus this algorithm

gives a promising direction.

9.4 Conclusion

In this chapter we went beyond volumetric similarity and discussed two other data characteris-

tics — namely, Duplication Distribution and Presortedness, which are important for mimicking

174

Desired p* | Obtained p | #Tuples
0.53 0.58 1000
-0.67 -0.65 10000
0.12 0.13 10000
0.82 0.84 100000

Table 9.6: Comparing Expected vs Obtained Presortedness

client data processing environments. Specifically, we discussed their mathematical characteri-

zation, mechanism of extraction and simple strategies for modeling them for data generation.

175

Chapter 10
Conclusion and Future Directions

The ability to synthetically regenerate databases that accurately conform to the volumetric
behavior on queries at client sites is of crucial importance to database vendors, especially with
the advent of Big Data applications. Existing database regeneration frameworks are crippled
by limitations on several fronts such as inability to (a) handle queries based on core SPJ
relational algebra operators; (b) scale to big data volumes; (c) scale to large input workloads;
and (d) provide high accuracy on unseen queries. The contribution of this thesis is a new data
regeneration framework, namely Hydra, that materially addresses these challenges by adding
functionality, dynamism, scale, and robustness.

In this final chapter, we summarize our conclusions, followed by outlining a number of
potential areas for further research to achieve the larger goal of scalable, efficient and robust

database regeneration.

10.1 Conclusions

In this thesis, we provide a comprehensive solution to support queries based on SPJ relational
algebra operators. The volumetric constraints are modeled using an LP, in which each variable
represents the volume of a region of the data space. The regions are computed using a suite of
data space partitioning strategies — namely, Region Partitioning, Symmetric Refinement, Align
Refinement and Projection Subspace Division. Additionally, referential constraints are applied
over denormalized equivalents of the tables. Along the way, we ensured that the partitioning
algorithms at various stages have provable optimality guarantees to keep the complexity of the
LP low, thereby providing workload scalability.

We also proposed a dynamic approach to data regeneration where we generated a minuscule

database summary as the output rather than the static data itself. This summary can be

176

used for dynamically generating data during query execution. Therefore, the enormous time
and space overheads incurred by prior techniques in generating and storing the data before
initiating analysis are eliminated. Further, in order to retain the spirit of data scalability, we
also ensured that the entire regeneration pipeline is data-scale-free.

To improve accuracy towards unseen queries, metadata statistics were exploited to facilitate
careful selection of a desirable database from the candidate synthetic databases and also provide
metadata compliance.

We also discussed the details of the Java-based prototype implementation of Hydra and
showed its performance on both real-world and synthetic benchmarks.

Finally, we also discussed other plausible data characteristics that are useful for mimick-
ing client data processing environments. Specifically, we discussed two potent characteristics,

namely, Duplication Distribution and Presortedness.

Closing Statement. In closing, Hydra provides the novel approach of dynamic database
regeneration which guarantees volumetric similarity while eschewing the time and space over-
heads typically incurred in the process. The tool has been warmly received by both academic

and industrial communities.

10.2 Future Directions

We now turn our attention to some interesting future directions that can further data regener-

ation goals and solutions.

1. Using Approximation Algorithms. Hydra currently handles workloads of reasonable
complexity as showcased in our experiments. However, for more complex scenarios, a
promising recourse is to introduce approximation, where volumetric accuracy is marginally

compromised to achieve solution tractability. These can include techniques such as:

Constraints Merging. The number of variables grow exponentially with the number
of constraints. Therefore, one promising way of reducing the complexity of the
problem is by merging the constraints that are similar. One plausible similarity
metric is the density of data. For instance, if two constraints are similar in their
data density, then they can be merged by mildly compromising on the associated

output cardinalities.

Greedy Partitioning. A plausible heuristic could be to not create all the CPBs in
one go, but to create them greedily until the error limit is reached. Being a highly
underdetermined system, there always exist a sparse solution to the LP — therefore,

this iterative process is expected to converge quickly.

177

. Directing LP Solution. We currently use the solver as a black box to get a solution
that satisfies the constraints and is close to the metadata constraints. An alternate setting
could be to develop an invasive algorithm that guides the solver to prefer one solution
over the other. For example, finding a solution that is at the centroid of the polytope
of the feasible solutions. This can be an interesting direction for getting a more robust

solution.

. Exploiting Cardinality Estimators. We have used the native optimizer of the Postgres
engine as our cardinality estimator to get the estimates for the SQL queries for the regions.
In the recent years, several promising selectivity estimation algorithms based on machine-
learning techniques (e.g., NARU [79], MSCN [42], SDV [60]) have been proposed. These
techniques significantly enhance the quality of cardinality estimation. Therefore, we would
like to incorporate some of these techniques into the Hydra framework with the hope to

further improve the robustness of the synthetic database produced.

. Balancing Robustness and Workload Scalability. To further improve robustness
towards volumetric similarity on unseen queries, it is important to handle large training
workloads in the input. With the increase in workload constraints, we may run into
scalability issues, stemming from the inherent LP complexity. The load on the solver
further increases with the addition of objective functions. To sidestep this challenge,
a promising recourse is to update our workload decomposition module. Currently the
module splits a workload to handle the conflicting constraints. But this can be expanded
such that each sub-workload focuses on only a fraction of the data space, while being
conflict free. Further, for a test query, we can forward it to the database summary
corresponding to the nearest sub-workload. Recall that having multiple summaries does

not impose a substantive overhead due to the minuscule size of each summary.

. Building Incremental Solutions. Currently the entire constraint workload is assumed
to be given as the input. An alternative scenario is where the constraints are incrementally
provided. While, the data-scale-free summary creation permits rebuilding the solution
from scratch cheaply, it’s an interesting open problem to be able to modify the solution

to satisfy additional constraints. Further, this can add in workload-scalability as well.

. Expand Scope of Supported SQL Constructs. Currently Hydra supports filter,
inner key-based joins and projection based constructs such as Distinct, Group By and
Union. Further, Order By and Aggregate operators are trivially supported from the

point of view of volumetric similarity. In the future, we would further like to expand

178

the scope to include other SQL operations such as Having, non-key joins, outer joins and

nested queries.

. Exploit Duplication Distribution. In Chapter 9, we discussed the duplication dis-
tribution data characteristic and a basic solution to integrate it with Hydra at the level
of base relations. This can be expanded to include each target intermediate operator
in query processing. For example, maintaining duplication distributions for the columns
participating in hash joins or hash aggregates (used in projections), can help to mimic

client environments more closely.

. Mimic Presortedness. Also in Chapter 9, we discussed about the presortedness data
characteristic and some initial modeling of it for base table columns. Again, this can
be expanded to include intermediate operators in the query plan where it is relevant.
For example, maintaining presortedness for the columns participating in sort as part of
sort-merge join, or sort based projection, or simply an order by clause, can help to mimic

client environments more closely.

. Other Characteristics. Beside duplication distribution and presortedness, other char-
acteristics can also be aimed for mimicking client environments. These can include the
aspects of memory, encoding and storage. For example, (a) String lengths and precision
for numeric data types play a role in comparison-based operations. Further, they impact
how much data can be cached and affect the I/O calls. (b) Differences in value identities
can also lead to changes in UDF's computation complexity. It also affects column encoding
(for columnar databases), which can lead to difference in the physical size of the data.
(c) Data layout on the disk plays a significant role if tables are scanned from the disk,

especially in the case of index scans.

179

Bibliography

1]
2]
3]

[14]

American Fuzzy Lop. github.com/google/AFL 33
Big Data. en.wikipedia.org/wiki/Big_data 7, 153

Dagstuhl Seminar 21442. Ensuring the Reliability and Robustness of Database Manage-
ment Systems. dagstuhl.de/en/program/calendar/semhp/?semnr=21442 1

General Data Protection Regulation. en.wikipedia.org/wiki/General_Data_

Protection_Regulation 22
JOB Benchmark. github.com/gregrahn/join-order-benchmark 8, 65, 97, 130

Pearson Correlation Coeflicient. en.wikipedia.org/wiki/Pearson_correlation_

coefficient 171

PostgreSQL. postgresql.org/docs/9.6 8, 61, 97, 127, 153, 159, 169
SolarWinds. solarwinds.com/database-performance-monitoring-software 33
SQLancer. github.com/sqlancer/sqlancer 33

SQLSmith. github.com/ansel/sqlsmith 33

TPC-H. tpc.org/tpch/ 1, 67

TPC-DS. tpc.org/tpcds/ 1, 61, 97, 171

USE PLAN SQL Server. https://docs.microsoft.com/en-us/sql/
relational-databases/performance/apply-a-fixed-query-plan-to-a-plan-guide?

view=sql-server-ver16 4

Z3. github.com/Z3Prover/z3 18, 45, 61, 97, 127, 155

180

github.com/google/AFL
en.wikipedia.org/wiki/Big_data
dagstuhl.de/en/program/calendar/semhp/?semnr=21442
en.wikipedia.org/wiki/General_Data_Protection_Regulation
en.wikipedia.org/wiki/General_Data_Protection_Regulation
github.com/gregrahn/join-order-benchmark
en.wikipedia.org/wiki/Pearson_correlation_coefficient
en.wikipedia.org/wiki/Pearson_correlation_coefficient
postgresql.org/docs/9.6
solarwinds.com/database-performance-monitoring-software
github.com/sqlancer/sqlancer
github.com/anse1/sqlsmith
tpc.org/tpch/
tpc.org/tpcds/
https://docs.microsoft.com/en-us/sql/relational-databases/performance/apply-a-fixed-query-plan-to-a-plan-guide?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/relational-databases/performance/apply-a-fixed-query-plan-to-a-plan-guide?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/relational-databases/performance/apply-a-fixed-query-plan-to-a-plan-guide?view=sql-server-ver16
github.com/Z3Prover/z3

[15]

[16]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

BIBLIOGRAPHY

D. Agrawal, and C. C. Aggarwal. On the Design and Quantification of Privacy Preserving
Data Mining Algorithms. Proc. of 20th PODS Conf., 2001, pgs. 247-255. 22

A. Alexandrov, K. Tzoumas, and V. Markl. Myriad: Scalable and Expressive Data Gen-
eration. PVLDB, 5(12):1890-1893, 2012. 1, 20

A. Arasu, R. Kaushik, and J. Li. Data Generation using Declarative Constraints. Proc. of
ACM SIGMOD Conf., 2011, pgs. 685-696. 2, 3, 4, 19, 23, 29, 46, 47, 97, 107

A. Arasu, R. Kaushik, and J. Li. DataSynth: Generating Synthetic Data using Declarative
Constraints. PVLDB, 4(12):1418-1421, 2011. 3, 29

Ashoke S., and J. R. Haritsa. CODD: A Dataless Approach to Big Data Testing. PVLDB,
8(12):2008-2011, 2015. 9, 16, 143, 155

M. K. Baowaly, C. Lin, C. Liu, and K. Chen. Synthesizing electronic health records using
improved generative adversarial networks JAMIA, 26(3):228-241, 2019. 22

B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar Privacy, Ac-
curacy, and Consistency Too: A Holistic Solution to Contingency Table Release Proc. of
26th PODS Conf., 2007, pgs. 273-282. 21

V. Barany, B. Cate, B. Kimelfeld, D. Olteanu and Z. Vagena. Declarative Probabilistic
Programming with Datalog. TODS, 42(4):1-35, 2017. 20

K. Beedkar, D. Brekardin, J. Quiané-Ruiz, and V. Markl. Compliant Geo-distributed Data
Processing in Action. PVLDB, 14(12):2843-2846, 2021. 22

C. Binnig, D. Kossmann, and E. Lo. Reverse Query Processing. Proc. of 23rd ICDE Conf.,
2007, pgs. 506-515. xvi, 22, 23, 24

C. Binnig, D. Kossmann, E. Lo, and M. T. Ozsu. QAGen: Generating Query-Aware Test
Databases. Proc. of ACM SIGMOD Conf., 2007, pgs. 341-352. xvi, 1, 3, 4, 23, 25

B. Bollobas and A. Thomason. Projections of Bodies and Hereditary Properties of Hyper-
graphs. Bulletin of the London Mathematical Society, 27(5):417-424, 1995. 39

J. Brickell, and V. Shmatikov. The Cost of Privacy: Destruction of Data-Mining Utility
in Anonymized Data Publishing. Proc. of 14th KDD Conf., 2008, pgs. 70-78. 22

181

28]

[29]

[31]

[34]

[35]

[36]

BIBLIOGRAPHY

N. Bruno and S. Chaudhuri. Flexible Database Generators. Proc. of 31st VLDB Conf.,
2005, pgs. 1097-1107. 19

T. S. Buda, T. Cerqueus, J. Murphy and M. Kristiansen. ReX: Extrapolating Relational
Data in a Representative Way. Proc. of BICOD Conf., 2015, pgs. 95-107. 21

G. Cormode, M. N. Garofalakis, P. J. Haas, and C. Jermaine. Synopses for Massive Data:
Samples, Histograms, Wavelets, Sketches. Found. Trends Databases, 4(1-3):1-294, 2012.
22

H. Chen, S. Jajodia, J. Liu, N. Park, V. Sokolov, and V. S. Subrahmanian. FakeTables:
Using GANs to Generate Functional Dependency Preserving Tables with Bounded Real
Data. Proc. of 28th IJCAI Conf., 2019, pgs. 2074-2080. 22

C. Chen, J. Twycross, J. M. Garibaldi. A new accuracy measure based on bounded relative
error for time series forecasting. PLoS ONE, 12(3): 0174202, 2017. 16, 137, 148

E. Choi, S. Biswal, B. A. Malin, J. Duke, W. F. Stewart, and J. Sun. Generating Multi-
label Discrete Patient Records using Generative Adversarial Networks. PMLR, 68:286-305,
2017. 22

J. Domingo-Ferrer. A Survey of Inference Control Methods for Privacy-Preserving Data

Mining. Privacy-Preserving Data Mining, 2008, pgs. 53-80. 22
C. Dwork. Differential Privacy. ICALP, 2006, pgs. 1-12. 22

J. Fan, T. Liu, G. Li, J. Chen, Y. Shen, X. Du. Relational Data Synthesis using Generative
Adversarial Networks: A Design Space Exploration. PVLDB, 13(11):1962-1975, 2020. 2,
21, 22

A. Gilad, S. Patwa, and A. Machanavajjhala. Synthesizing Linked Data Under Cardinality
and Integrity Constraints. Proc. of ACM SIGMOD Conf., 2021, pgs. 619-631. xvi, 2, 3,
8, 22,23, 31, 32, 97

L. Gondara, and K. Wang MIDA: Multiple Imputation Using Denoising Autoencoders.
Proc. of PAKDD Conf., 2018, pgs. 260-272. 22

J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger. Quickly Generating
Billion-Record Synthetic Databases. Proc. of ACM SIGMOD Conf., 1994, pgs. 243-252.
19

182

[40]

[44]

[45]

[48]

[49]

[50]

[51]

[52]

BIBLIOGRAPHY

J. E. Hoag, and C. W. Thompson. A Parallel General-Purpose Synthetic Data Generator.
Proc. of ACM SIGMOD Conf., 2007, pgs. 19-24. 1, 19

K. Houkjeer, K. Torp, and R. Wind. Simple and Realistic Data Generation Proc. of 32nd
VLDB Conf., 2006, pgs. 1243-1246. 19

A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz and A. Kemper. Learned Cardinalities:
Estimating Correlated Joins with Deep Learning. Proc. of CIDR Conf., 2019. 178

I. Kotsogiannis, Y. Tao, X. He, M. Fanaeepour, A. Machanavajjhala, M. Hay, and G. Mik-
lau. PrivateSQL: A Differentially Private SQL Query Engine. PVLDB, 12(11):1371-1384,
2019. 22

[. Leader, Z. Randelovic, and Eero Raty. Inequalities on Projected Volumes.
arXiw:1909.12858, 2019. 39, 40, 69

V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann. How Good
Are Query Optimizers, Really? PVLDB, 9(3):204—215, 2015. 8, 65, 97, 130

M. Lenzerini, and P. Nobili. On The Satisfiability of Dependency Constraints in Entity-
Relationship Schemata. Proc. of 13th VLDB Conf., 1987, pgs. 147-154. 39

N. Li, T. Li, and S. Venkatasubramanian. ¢-Closeness: Privacy Beyond k-Anonymity and
(-Diversity. Proc. of 23rd ICDE Conf., 2007, pgs. 106-115. 22

A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. ¢-Diversity: Pri-
vacy Beyond k-Anonymity. TKDD, 1(1):3-es, 2007. 22

R. McKenna, G. Miklau, M. Hay, and A. Machanavajjhala. Optimizing Error of High-
Dimensional Statistical Queries under Differential Privacy. PVLDB, 11(10):1206-1219,
2018. 22

C. Li, G. Miklau, M. Hay, A. McGregor, and V. Rastogi. The Matrix Mechanism: Optimiz-
ing Linear Counting Queries Under Differential Privacy. The VLDB Journal, 24(6):757—
781, 2015. 22

H. Li, L. Xiong, L. Zhang, and X. Jiang. DPSynthesizer: Differentially Private Data
Synthesizer for Privacy Preserving Data Sharing. PVLDB, 7(13):1677-1680, 2014. 21

Y. Li, R. Zhang, X. Yang, Z. Zhang, and A. Zhou. Touchstone: Generating Enormous
Query-Aware Test Databases. USENIX ATC, 2018, pgs. 575-586. xvi, 2, 3, 23, 28

183

[53]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

BIBLIOGRAPHY

E. Lo, C. Binnig, D. Kossmann. A framework for testing DBMS features. The VLDB
Journal, 19(2):203-230, 2010. 19, 23, 25

E. Lo, N. Cheng, W.-K. Hon. Generating Databases for Query Workloads. PVLDB,
3(1):848-859, 2010. 26

E. Lo, N. Cheng, W. W. Lin, W.-K. Hon, and B. Choi. MyBenchmark: generating
databases for query workloads. The VLDB Journal, 23(6):895-913, 2014. xvi, 2, 3, 23, 26,
27

P. Lu, P. Wang, and C. Yu. Empirical Evaluation on Synthetic Data Generation with
Generative Adversarial Network. Proc. of 9th WIMS Conf., 2019, pgs. 16:1-6. 22

G. S. Manku, and R. Motwani. Approximate Frequency Counts over Data Streams. Proc.
of 28th VLDB Conf., 2002, pgs. 346-357. 169

Y. Park, and J. Ghosh. PeGS: Perturbed Gibbs Samplers that Generate Privacy-Compliant
Synthetic Data. Trans. Data Priv., 7(3):253-282, 2014. 21

N. Park, M. Mohammadi, K. Gorde, S. Jajodia, H. Park, and Y. Kim. Data Synthesis
based on Generative Adversarial Networks PVLDB, 11(10): 1071-1083, 2018. 22

N. Patki, R. Wedge, and K. Veeramachaneni. In DSAA, pages 399-410, 2016. T. Rabl,
M. Danisch, M. Frank, S. Schindler, and H. Jacobsen. The Synthetic Data Vault. Proc. of
IEEE DSAA Conf., 2016, pgs. 399-410. 21, 178

T. Rabl, M. Danisch, M. Frank, S. Schindler, and H. Jacobsen. Just can’t get enough -
Synthesizing Big Data. Proc. of ACM SIGMOD Conf., 2015, pgs. 1457-1462. 2, 19, 21

T. Rabl, M. Frank, H. M. Sergieh and H. Kosch. A Data Generator for Cloud-Scale
Benchmarking. Proc. of 2nd TPCTC Conf., 2010, pgs. 41-56. 1, 20

M. Rigger, and Z. Su. Testing Database Engines via Pivoted Query Synthesis. USENIX
OSDI, 2020, pgs. 667-682. 33

M. Rigger, and Z. Su. Detecting Optimization Bugs in Database Engines via Non-
optimizing Reference Engine Construction. Proc. of the 28th ACM ESEC/FSE Conf.,
2020, pgs. 1140-1152. 34

M. Rigger, and Z. Su. Finding Bugs in Database Systems via Query Partitioning. Proc.
of the ACM on Prog. Lang., 4 OOPSLA):1-30, 2020. 34

184

[66]

[70]

[71]

[75]

[76]

[77]

(78]

BIBLIOGRAPHY

E. Shen, and L. Antova. Reversing statistics for scalable test databases generation. Proc.
of DBTest Workshop, 2013, pgs. 1-6. 2, 19, 21

A. Silberschatz, H. F. Korth, and S. Sudarshan. Database System Concepts, McGraw-Hill,
New York, Seventh Edition, 2020. 68

J. M. Stephens and M. Poess. MUDD: A Multi-dimensional Data Generator. Proc. of 4th
WOSP, 2004, pgs. 104-109. 1, 19

L. Sweeney. k-Anonymity: A Model for Protecting Privacy. Intl. Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 10(5):557-570, 2002. 22

Z. Tan, and L. Zeng. On the Inequalities of Projected Volumes and the Constructible
Region. SIAM Journal on Discrete Mathematics, 33(2):694-711, 2019. 39

Y. C. Tay, B. T. Dai, D. T. Wang, E. Y. Sun, Yong Lin and Yuting Lin. UpSizeR:
Synthetically scaling an empirical relational database. Inf. Syst., 38(8):1168-1183, 2013.
21

S. Thirumuruganathan, S. Hasan, N. Koudas, and G. Das. Approximate Query Processing
using Deep Generative Models. arXiv:1905.10000, 2019. 22

R. S. Trivedi, I. Nilavalagan, and J. R. Haritsa. CODD: COnstructing Dataless Databases.
Proc. of DBTest Workshop, 2012, pgs. 1-6. 4, 153

F. Waas, and C. Galindo-Legaria. Counting, Enumerating, and Sampling of Execution
Plans in a Cost-Based Query Optimizer. Proc. of ACM SIGMOD Conf., 2000, pgs. 499—
509. 33

Q. Wang, Y. Li, R. Zhang, K. Shu, Z. Zhang, and A. Zhou. A Scalable Query-Aware Enor-
mous Database Generator for Database Evaluation. TKDFE, 10.1109/TKDE.2022.3153651,
2022. 28

W. E. Winkler. Masking and Re-identification Methods for Public-use Microdata:
Overview and Research Problems. Privacy in Statistical Databases, 2004, pgs. 231-246. 22

X. Xiao, G. Wang, and J. Gehrke. Differential Privacy via Wavelet Transforms. TKDE,
23(8):1200-1214, 2011. 22

L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni. Modeling Tabular
Data using Conditional GAN. Proc. of 33rd NeurIPS Conf., 2019. 22

185

BIBLIOGRAPHY

[79] Z. Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, X. Chen, P. Abbeel, J. M. Hellerstein,
S. Krishnan, and I. Stoica. Deep Unsupervised Selectivity Estimation. PVLDB, 13(3):279—
292, 2019. 178

[80] J. Yang, P. Wu, G. Cong, T. Zhang, X. He. SAM: Database Generation from Query
Workloads with Supervised Autoregressive Models. Proc. of ACM SIGMOD Conf., 2022,
pgs. 1542-1555. xvi, 3, 23, 32, 33

[81] J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and X. Xiao. PrivBayes: Private
Data Release via Bayesian Networks. TODS, 42(4):1-41, 2017. 21

[82] J. W. Zhang and Y. C. Tay. Dscaler: Synthetically Scaling A Given Relational Database.
PVLDB, 9(14):1671-1682, 2016. 2, 21

186

	Acknowledgements
	Abstract
	Publications based on this Thesis
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Volumetric Similarity
	1.1.1 Preliminaries
	1.1.2 Applications

	1.2 Summary of Contributions
	1.3 Thesis Overview
	1.3.1 Organization
	1.3.2 Problem Framework (Chapter 3)
	1.3.3 Filter Constraints (Chapter 4)
	1.3.4 Projection Constraints (Chapter 5)
	1.3.5 Join Constraints (Chapter 6)
	1.3.6 Adding Robustness (Chapter 7)
	1.3.7 Prototype Implementation (Chapter 8)
	1.3.8 Extensions (Chapter 9)

	1.4 Summary

	2 Related Work
	2.1 Ab Initio Generation
	2.2 Database-Dependent Regeneration
	2.3 Query-Dependent Regeneration
	2.3.1 Reverse Query Processing (RQP)
	2.3.2 Query Aware Generation (QAGen)
	2.3.3 MyBenchmark
	2.3.4 Touchstone
	2.3.5 DataSynth
	2.3.6 Linked Data Synthesis
	2.3.7 Supervised Autoregressive Models (SAM)

	2.4 Miscellaneous

	3 Problem Framework
	3.1 Problem Statement
	3.2 Assumptions
	3.3 Output
	3.4 Notations
	3.5 Filter Constraints Problem
	3.6 Projection Constraints Problem
	3.7 Workload Feasibility

	4 Regeneration using Filter Constraints
	4.1 Introduction
	4.1.1 Filter Cardinality Constraints
	4.1.2 Technical Challenges
	4.1.3 Our Contributions
	4.1.4 Organization

	4.2 Problem Framework
	4.2.1 Problem Statement
	4.2.2 Assumptions
	4.2.3 Output
	4.2.4 Notations

	4.3 Design Principles
	4.3.1 Region Partitioning
	4.3.2 Dimensionality Reduction
	4.3.3 Summary Based Computation

	4.4 LP Formulation
	4.4.1 Mathematical Basis for LP Formulation
	4.4.2 Deriving the Optimal Partition
	4.4.3 Consistency Constraints

	4.5 Table Summary Construction
	4.5.1 Constructing Solution for the Table
	4.5.1.1 Sub-Table Ordering
	4.5.1.2 Aligning
	4.5.1.3 Merging

	4.5.2 Instantiating Table Summaries

	4.6 Tuple Generation
	4.7 Like Predicates
	4.7.1 Partioning using Regular Expressions
	4.7.2 Predicate Transformation

	4.8 Experimental Evaluation
	4.8.1 Constraint Accuracy
	4.8.2 Scalability with Workload Complexity
	4.8.3 Scalability with Materialized Data Size
	4.8.4 Scalability to Big Data Volumes
	4.8.5 Dynamism in Data Generation
	4.8.6 Performance on JOB Benchmark

	4.9 Conclusion

	5 Regeneration using Projection Constraints
	5.1 Introduction
	5.1.1 Projection-inclusive Constraints
	5.1.2 Technical Challenges
	5.1.3 Our Contributions
	5.1.4 Organization

	5.2 Problem Framework
	5.2.1 Problem Statement
	5.2.2 Assumptions
	5.2.3 Output
	5.2.4 Notations

	5.3 Design Principles
	5.3.1 Region Partitioning
	5.3.2 Isolating Projections
	5.3.3 Projection Subspace Division
	5.3.4 Constraints Formulation
	5.3.5 Enriched Database Summary

	5.4 Isolating Projections
	5.4.1 Symmetric Refinement
	5.4.2 Workload Decomposition

	5.5 Projection Subspace Division
	5.5.1 Valid Division
	5.5.2 Optimal Division
	5.5.3 Opt-PSD Algorithm

	5.6 Constraints Formulation
	5.6.1 Explicit Constraints
	5.6.2 Sanity Constraints
	5.6.3 Sufficiency for Data Generation

	5.7 Data Generation
	5.7.1 Summary Construction
	5.7.2 Tuple Generation

	5.8 Pipeline
	5.9 Discussion
	5.9.1 Solution Guarantees
	5.9.2 Solution Complexity

	5.10 Experimental Evaluation
	5.10.1 Constraint Accuracy
	5.10.2 Generated Data
	5.10.3 Time and Space Overheads
	5.10.4 Scalability Profile
	5.10.5 Workload Decomposition
	5.10.5.1 Instance-based Decomposition (ID)
	5.10.5.2 Template-based Decomposition (TD)

	5.11 Conclusion

	6 Regeneration using Join Constraints
	6.1 Introduction
	6.1.1 Challenge
	6.1.2 Background
	6.1.3 Our Contributions
	6.1.4 Organization

	6.2 Problem Framework
	6.2.1 Problem Statement
	6.2.2 Assumptions
	6.2.3 Output
	6.2.4 Notations

	6.3 Design Principles
	6.3.1 Denormalization
	6.3.2 Workload Decomposition
	6.3.3 Data Space Partitioning
	6.3.4 LP Formulation
	6.3.5 Summary Construction

	6.4 Workload Decomposition
	6.5 Align Refinement
	6.5.1 Fact Table Refinement
	6.5.2 Dimension Table Refinement

	6.6 Block Mappings
	6.6.1 Aligned Refined Blocks Mapping
	6.6.2 Constituent Projection Blocks Mapping

	6.7 Referential Constraints
	6.7.1 NoPB Blocks
	6.7.2 PB Blocks
	6.7.3 LP Constraints

	6.8 Data Generation
	6.8.1 View Summary Construction
	6.8.2 Key Curation
	6.8.3 Tuple Generation

	6.9 Handling Select-Join Workload
	6.9.1 View Summary Construction
	6.9.2 Making View Summaries Consistent
	6.9.3 Key Curation

	6.10 Experimental Evaluation
	6.10.1 Workload Decomposition
	6.10.2 Constraint Accuracy
	6.10.3 Time and Space Overheads
	6.10.4 Performance of JOB Benchmark
	6.10.5 Select-Join Workload

	6.11 Conclusion

	7 Adding Robustness
	7.1 Introduction
	7.1.1 Limitations of Basic Hydra
	7.1.2 Our Contributions
	7.1.3 Notations
	7.1.4 Organization

	7.2 Solution Overview
	7.2.1 Inter-block Distribution
	7.2.2 Intra-Block Distribution

	7.3 Inter-Block Distribution: LP Formulation
	7.3.1 MDC: Optimization Function using Metadata Constraints
	7.3.2 OE: Optimization Function using Optimizer's Estimates

	7.4 Intra-Block Distribution: Data Generation
	7.4.1 Merging Sub-Views
	7.4.2 Ensuring Referential Integrity
	7.4.3 Constructing Relation Summary
	7.4.4 Tuple Generation
	7.4.5 Comparison with Basic Hydra

	7.5 Experimental Evaluation
	7.5.1 Volumetric Similarity on Unseen Queries
	7.5.2 Metadata Compliance
	7.5.3 Database Summary Overheads
	7.5.4 Data Scale Independence
	7.5.5 Data Skew and Realism

	7.6 Conclusion

	8 Hydra Architecture and Prototype Implementation
	8.1 Architecture
	8.1.1 Client Site
	8.1.2 Vendor Site

	8.2 Implementation Details
	8.2.1 Domain Representation
	8.2.2 Region Data Structure
	8.2.3 Dynamic Tuple Generation Implementation
	8.2.4 Database Platform Portability

	8.3 Prototype: User Interface
	8.3.1 Input from Client Site
	8.3.2 Vendor Site Processing
	8.3.3 Dynamic Database Regeneration
	8.3.4 Scenario Construction

	8.4 Discussion

	9 Extensions
	9.1 Introduction
	9.1.1 Our Contributions
	9.1.2 Notations
	9.1.3 Organization

	9.2 Duplication Distribution
	9.2.1 Motivation
	9.2.2 Duplication Distribution Characterization
	9.2.3 Duplication Distribution Extraction
	9.2.4 Duplication Distribution Mimicking

	9.3 Presortedness
	9.3.1 Motivation
	9.3.2 Presortedness Characterization
	9.3.3 Presortedness Extraction
	9.3.4 Presortedness Mimicking

	9.4 Conclusion

	10 Conclusion and Future Directions
	10.1 Conclusions
	10.2 Future Directions

	Bibliography

