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Abstract

For a given SQL query, modern database system recommends an optimal plan for its execution
based on selectivity estimates. These estimates are often in error due to inaccurate statistics and
invalid assumptions made by database systems, thus leading to highly inflated query response
times. The sub-optimality incurred for these executions, due to erroneous estimates, even reach
the millions! How good is the plan depends on the fact how accurately database system can
estimate selectivities. Recently, PlanBouquet [1] and SpillBound [2], tries to addresses this
problem by jettisoning the selectivity estimations, instead, discovering the actual selectivities
at run time incrementally through a sequence of cost-limited executions of carefully chosen
plans.

The goal of this work is to implement SpillBound algorithm over PostgreSQL which is an
open-source relational database system. The implementation requires code modification in
PostgreSQL, to support the sub-plan executions and selectivity monitoring features. Further-
more, we have integrated the above mentioned implementation into QUEST tool [3], which
is an prototype system of PlanBouquet approach [1]. QUEST provides interactive interface
and user control while query execution for SpillBound technique. Additionally we have built a
framework to measure the sub-optimality of a query for native database query Optimizer and
integrate it into the QUEST system.
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Chapter 1
Introduction

In this Chapter, we present necessary details about query processing in relational database

systems and the selectivity estimation problem in these systems.

1.1 Query Processing in Relational Database Systems

Data processing in relational database systems is achieved using SQL queries. In relational
database system for each SQL query, query Optimizer module considers different ways or plans
to execute the query and chooses estimated least expensive plan in terms of resource consump-
tion. Query Optimizer module is the brain of database system because this is where the whole
planning about query execution is done. Let us now consider an example benchmark query,

which can be seen below.

SELECT * FROM lineitem, orders, part
WHERE p_partkey = l_partkey and

l_.orderkey = o_orderkey and

p_retailprice < 1000 and 1_extendedprice < 2000;

The above example query consist of two filter predicates which are (p_retailprice < 1000)
and ([_extendedprice < 2000) and two join predicates which are (p_partkey = [_partkey) and
(Lorderkey = o_orderkey).



Relational Database System

SQL Plan Result
Query [ Opt]mlzer Executor ]

Exp ore Estimate cost Pick least cost
feasible plans of those plans plan

Figure 1.1: Query Processing

Figure 1.1 represents the main internal modules of database system that are responsible for
query optimization. We can see in Figure 1.1 that, database system will pass given SQL query
to Optimizer module for constructing a plan, where plan is an ordered set of steps to access

and process data.

300
Hash Join 01
10000 3000
Nested Loop | 0.03

5m] 10000
orders
10000 0.1 0.5

part lineitem

5000 20000

Figure 1.2: Query Plan Tree

Figure 1.2 shows an example plan which can used for executing the above query. Con-
structing an optimal plan for a query is non-trivial because for constructing an optimal plan
Optimizer has to explore all feasible set of plans then estimate the cost of those plans and
pick the least cost plan, where cost is a measure of query response time. The problem is that
the Optimizer cannot know the exact cost of a plan without executing it, so it estimates the
cost of each plan. The estimated cost is primarily a function of predicate selectivities, where
predicate selectivities is a fraction of output no. of tuples of the predicate to the worst-case

output no. of tuples. The selectivity is measured at each step (or node) of the plan. The Opti-



mizer has to estimate the selectivity of each node to identify the ideal plan for query execution.
These estimates are based on various factors like summary statistics and assumptions such as

attribute-value independence.

1.2 Selectivity Estimation Problem

Due to inaccurate statistics, or coarse summaries or complex user predicates, these selectivity es-
timates are often erroneous leading to highly inflated query response times. The sub-optimalities
incurred for these executions, due to erroneous estimates, even reached millions!

To handle this issue recently PlanBouquet|[1] and SpillBound|[2] have been proposed which
works in a different way than the above mentioned approach i.e., instead of estimating these
selectivities before execution of a plan, it incrementally discover the actual selectivities through
closely monitoring partial executions of carefully chosen set of plans. For realization of this
approach we need inbuilt selectivity monitoring and sub-plan techniques in underlying database
system.

The goal of this work is to design and implement all techniques that are required for real-
ization of SpillBound. Further we have designed a graphical user interface tool to visualize its
performance as compared to native database systems and with other related techniques such
as [1].

1.3 Organization

In rest of this document, Chapter 2 provides the preliminaries and overview of the SpillBound
algorithm. Further, in Chapters 3,4,5 and 6 we have discussed our contribution in details like
modification of source code of open source database system. Thereafter, we have discussed
about the QUEST tools and its features in Chapter 7. In the last we have concluded our

contribution.



Chapter 2
Overview of SpillBound

In this Chapter, we have explained the new robust query processing technique SpillBound[2].

2.1 Preliminaries

As we saw, database Optimizer estimates selectivites of number of nodes to get the ideal
execution plan for the query execution. In practice because of number of other factors, these
estimates differ from actual selectivities that we eventually get after query execution. Such
erroneous selectivities are called Error-Prone Selectivities and the query predicates that are
responsible for these error-prone selectivities are called Error-Prone Predicates(EPP). It is safer
to assume all predicates of the query are prone to errors but for making it easy to understand

in following SQL query we will assume only two join predicates are error-prone.

SELECT * FROM lineitem, orders, part
WHERE p_partkey = l_partkey and

l_orderkey = o_orderkey and

p_retailprice < 1000 and 1_extendedprice < 2000;

These error-prone predicates are used to create Error-prone Selectivity Space(ESS). This space
is approximately discretized fine grained grid which represents all possible combinations of
selectivities of error-prone predicates. Figure 2.1 represents 2-dimensional ESS whose each
dimension represents one error prone predicate of example query. Each dimension ranges from

[0,1] representing selectivity of the respective predicate.
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Figure 2.1: Error-prone Selectivity Space

Each location ¢ € [0,1]P in ESS represents a query with corresponding selectivity values.
Here D represent the number of dimensions in the ESS. For example point ¢(0.3, 0.2) repre-
sent query with selectivity of predicate l_orderkey = o_orderkey as 0.3 and selectivity of
predicate p_partkey = l partkey as 0.2 in 2-dimensional space. Each point in ESS stores

plan P, and information about the plan like cost of the plan for the given selectivities of EPPs.

2.2 Overview of SpillBound[2] Algorithm

SpillBound is a new query processing algorithm which completely avoids selectivity estimation
process and discovers the actual selectivity explicitly at run time through a sequence of partial
executions of carefully chosen plans. In this whole discussion SpillBound assumes Plan Cost
Monotonicity(PCM) property to hold true. PCM states that cost of plans increases with
increase in selectivities of error-prone predicates.

For each point in ESS, it is also assumed to get the optimal plan (from the Optimizer)
corresponding to the selectivity values at that point. Once we have this information for every
point in ESS, then we identify Isocost Contours on the ESS generated. Isocost contour is
a notion which represent a set of locations in ESS whose optimal plan’s cost is the same.
Lets assume C),;, is the minimum cost and C,,,, is the maximum cost in ESS. These isocost
contours follows contour-doubling regime i.e., cost of any contour is 2% x C,,;,, where k = 1,2, ...

Crmaz

[log2 (mﬂ represents contour number. Figure 2.2 shows hyperbolic isocost contours that

results from a 2D ESS.
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Figure 2.2: ESS with isocost contours

Till this point, the whole process of generating contours in ESS is called compile-time
query processing in SpillBound. Before proceeding to run time execution of query we need to
understand how the existing database system executes a plan in query execution phase. The
Executor module of existing database system executes a plan generated by Optimizer module
for input query in a pipelined manner. In a query plan, the concurrent execution of a contiguous
sequence of plan nodes is called a pipelined manner execution and these concurrently executing
set of nodes constitute a pipeline. Figure 2.3 shows how each node in a pipeline passes qualified

tuples to its parent node concurrently and parent node does the same till the end of the pipeline.



Pipeline ab(cd)

passing
qualified tuples

Figure 2.3: Execution of Pipeline in a Plan

In pipeline execution we assume that only one pipeline is under execution at any time i.e., a
single thread is executing for a plan, which seems to be true even in current database systems.

At run time SpillBound explicitly discover the selectivities for error-prone predicates by
leveraging the notion of spilling. Spilling involves modifying the way Executor executes a plan
to extract the increased learning about the selectivities within the assigned execution budget.
Here executing a query within the assigned execution budget means we will be setting time or
cost for the execution of query before it start execution and after completely consuming this
budget Executor will stop the execution of query irrespective of whether Executor finishes the
query execution or not.

In order to better explain this we are using the same following example from SpillBound|2].
For expository convenience, in a plan tree for an internal node, the nodes that are in the sub-
tree rooted at that node are called its upstream nodes, and the nodes that are on its path to
the root are called its downstream nodes. Suppose we are interested in the selectivity of an
EPP e;. Let the internal node corresponding to e; in plan P be N;. The key observation here
is that the execution cost of N;'s downstream nodes in P is not useful for learning about the
selectivity of IV;. So, discarding the output of N; without forwarding to its downstream nodes,
and focusing the entire budget to the sub-tree rooted at INVj, helps in learning more selectivity
of e;. So after spilling (dropping without forwarding) the output of a node (EPP) increases the
selectivity learning at that node (EPP) in the plan tree. Following diagram shows the modified

7



execution of a plan in SpillBound.

.....
-----

dcrwnstream1__.--“'"ab|[cd]- "

Dropping out
qualified tuples
without passing
to parent node

) Spillir'{‘g-.,h

> o

a .
.........

Figure 2.4: Spilling the output of a node in a Plan



Chapter 3

Our Contribution

We now tern our attention to contribution of this work which describes required mechanisms
to materialize the SpillBound and integrate this implementation with QUEST[3], by providing
the graphical user interface to execute the query. Here, we have provided the brief introduction
about implementation of these mechanisms.

This implementation is completed in following two phases.
e Implementation of SpillBound Algorithm as a driver program.

e Customizing open source PostgreSQL9.4.1[4] database engine.

3.1 Implementation of SpillBound Algorithm as a driver

prograrnm

In this phase of implementation, we have implemented SpillBound algorithm in java which
includes identification of all the pipelines in the plan and then identify spilling node in plan.

More about this section we have explained in Chapter 5.

3.2 Customizing open source PostgreSQL9.4.1 database
engine

For supporting the SpillBound algorithm we need some extra features in the underlying database
system. For this purpose we have modified the source code of open source PostgreSQL database

system. Here, we have provided brief introduction about these features.



Spilling-Mode of Execution: This feature enables database system to execute a plan in
spill mode i.e., a given plan will be executed till the specified node in the plan after which it
will stop the execution of the plan. More information about this feature is in Chapter 4.

Selectivity Monitoring while plan execution: This feature enables us to monitor the
selectivity of a predicate in the given plan while its execution. This feature is explained in more
details in Chapter 6.

One of the already existing feature that we used is Cost bounded plan execution: user
can set limit on time or cost of any query before its execution, such that after the limit database
engine will stop execution and return the output produced till that point of time.

Above mentioned phases are completed in following manner while focusing on the main

features of the algorithm. Details about these features are given in following chapters.
e What is Spilling and Spilling-Mode of execution?

e Given a plan and set of error-prone predicates(EPPs), which EPP should be the spilling
predicate?

e How to monitor the selectivity of the spilling predicate?

10



Chapter 4
Spilling-Mode of execution

In Chapter 2 we saw the benefit of spilling the output of EPP node in a plan while execution.
Generally Optimizer passes a plan to executor for execution and executor will execute that plan
till its root node. For spilling on certain node(EPP) of plan this time we have to pass a plan
and a node(EPP) whose output we want to spill. Now we have to stop execution at the spilling
node so that it does not pass the result to its parent node. For this purpose we will pass only
spilling node(EPP) rooted sub-tree to the executor as a plan. To implement this feature we

modified the executor module of open-source database system PostgreSQL[4].

ab(cd)

Dropping out \
qualified tuples \

without passing a(be) d

to parent node |, [:><] b
N > -
) spilling ——
ab

C

a b
EPP rooted sub-tree
5 for final execution
b

Actual Plan and a jein kb is EPP

Figure 4.1: Proposed implementation of spilling
Spilling-Mode of execution of a plan is shown in above diagram.
The SpillBound driver program give an input plan and a node (node representing error prone

predicate in the plan as spilling node) as input to the underling modified database system. In

11



return it will get the output of the spilling node rooted sub-plan. Actually, we modified the
database system in such manner that it stop the execution of the plan at the spilling node.

Spilling-Mode execution feature implementation design is shown in following diagram.

;. ™y : ™

Actual Plan EPP

Execute the
EPP rooted

sub-plan and
return result

CJutput

A ./ A vy
SpillBound Modified
Driver Database Engine

Figure 4.2: Implementation of spilling in Database System

Spill-mode execution of a plan could also be achieved by giving spilling node rooted sub-plan
as the only input to the database system, but in this case we need to modify the database system
in such manner that it allows sub-plan of given query to execute as final plan for the query.
Both of the above cases seems to be same but here, difference is in first case, we are tricking
the database system by stopping the execution at certain node which results as executing a
sub-plan whereas in second case we are forcing database system to execute a sub-plan i.e.,
execute a plan for the query which is not a plan recommended by the Optimizer for the input
query. So to implement the spill-mode execution by second method requires huge modification
in source code of database system as compare to the implementation of first case because in
this case we need to disable all the checks that are done by the optimizer to ensure that the
recommended plan is valid plan for the input query.

Still the ideal way to implement spill-mode execution is, generate query from the sub-plan
that we want to execute in such a manner that, when next time we give that query as input,
database system chooses the same plan for execution from which we have generated that query.
In this way we don’t have to modify the database system. But this is not trivial because this
process is reverse of the non-trivial task of generating a plan for a query in modern database

systems.
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Chapter 5

Spill Node Identification

As we have discussed in Chapter 2 that in conventional database query processing, the execution
of a query plan can be partitioned into a sequence of pipelines as in [5]. Intuitively, a pipeline
can be defined as the maximal concurrently executing sub-tree of the execution plan. The
entire execution plan can therefore be viewed as an ordering on its constituent pipelines. So
now for given a plan and a set of error-prone predicates, which predicate should be chosen for
spilling so that we get more information about the selectivity. We have discussed about this in

following section.

5.1 Which EPP should be the spilling predicate?

The reason for asking this question is the case when we have more than one error-prone predicate
in the plan. So now we have given a plan and a set of error-prone predicates, which predicate
should be chosen for spilling so that we get more information about the selectivity. This is done
based on following two rules: Inter-Pipeline Ordering: Order the EPPs as per the execution
order of their respective pipelines.

Intra-Pipeline Ordering: Order the EPPs by their upstream-downstream relationship, i.e.,
if an EPP node N, is downstream of another EPP node N, within the same pipeline, then N,
is ordered after V.

Following is the example of identification of spilling EPP in a plan given in figure 5.1.

e Identify the pipelines in plan as in [5].
{L47 L37 L27 Ll}

e Identify pipeline order based on engines execution order. In Figure § since L, is ordered
after Lo, the EPP nodes N3 and N, are ordered after Ng and Nyg.
{Lla LQa L3a L4}

13



e Find total order of EPP based on intra-pipeline ordering and inter-pipeline ordering.
{[N1o, No|, [Na, N3]}

e Choose first EPP from above order.
{Nwo}

Group Aggregate | N,

; Ny S ;
Ny _-[ Seq. Scan ] Index Sc H :

i Catalo; .‘Salesl | Customer
| Pate Dim ‘ ' i *{. Demographics
......... Ly
La

Execution Plan Tree of TPC-DS Query 26

Figure 5.1: Pipeline Identification in a Plan

We have implemented this algorithm as part of SpillBound driver in java.



Chapter 6
Selectivity Monitoring

Since we have a mechanism to find the order in which EPPs should be arranged for spilling in
a plan and execute that plan in spilling-mode, the next challenge is to measure the selectivity

that we learned during this execution which is explained in following section.

6.1 Monitoring the selectivity of the spilling predicate

For measuring the selectivity of EPP, we categorize the predicates as follow.
Filter Predicate : This type of predi-

cates involves only one table in predicate ex- output cardinality

pression as shown in figure 6.1.
For example p_retailprice < 1000 is I
one filter predicate. Selectivity for these Filter Predicate
type of predicates can be calculated as fol- I
low.

input cardinality

output cardinality

selectivity = Figure 6.1: Filter Predicate example

mput cardinality
Join Predicate : Predicate expressions involving two tables are called join predicates.
For example predicate p_partkey = [_partkey involves part and lineitem relation of TPC-H[6]

standard benchmark schema. Following diagram represents a join predicate.

15



output cardinality

Join Predicate

/

inputt input2

Figure 6.2: Join Predicate example

Join Predicates are further categorized to following two types.

PK-FK join predicate: The predicate expressions in which two tables are joined over a
common column or an attribute which is the primary key of one of the table and the other
column involved in the join is the foreign key in the other table and that foreign key is referencing

the primary key of first table.

output cardinality

selectivity =
4 foreign key cardinality
Non PK-FK join predicates: In this case two tables are joined over non key column or

attribute. o
output cardinality

lectivity =
serectinty mputl x input2

We use above formulas to monitor the selectivity of the error-prone predicate. As we can
see for computing the selectivity we need some input values to these methods. In order to
get those input values and compute the selectivity of the EPP we have modified the Executor
module of the open-source Postgres[4] database system. Figure 6.3 shows complete process of
executing one plan in spilling mode and monitoring the selectivity of EPP. Important point
to keep in mind is, while computing selectivity for any predicate, we should have complete
information about denominator. i.e., node which is giving cardinality for the denominator

should be completely executed otherwise we may get inaccurate selectivity.

16
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spilling EPP sub-planand
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w

E”tp'_ﬂ_s Compute the
Selectivity selectivity
b y . /
SpillBound Modified
Driver Database Engine

Figure 6.3: SpillBound Algorithm for executing one plan

All database systems push filter predicate to the leaf nodes of the plan tree i.e., filter
predicates are computed before the join predicates. Since each plan execution will start by
executing filter predicates so for filter predicate we don’t have to worry about incomplete
denominator information because its input is complete table and we can get the information
about the size of table from statistic about data stored by database system. But for the join
predicates we ensure this by choosing first EPP from the total order of EPPs in a plan while
identifying spilling EPP in a plan in Chapter 5. In this way we will always choose the lower
node of plan as spilling node. Still there are cases when filter predicate is computed before join
predicate(EPP) and it takes output of filter predicate as input. Because of pipelined execution
while computing selectivity there is incomplete denominator information problem. We can
avoid this problem by waiting till the execution is finished and to keep track of selectivity
learned in between use estimated output of filter predicate as input to the join predicate.

To ensure that we are using correct methods to calculate the selectivity as the PostgreSQL[4],
we did following sanity check. We executed the standard benchmark TPC-H[6] query on
PostgreSQL[4] and get the annotated plan. Annotated plan represents a plan which contains
information that we get after query execution means we will also have the information about
the number of rows we got after the complete execution of every node. With the information
from annotated plan we computed the selectivity for each node and then we used these selectiv-
ity values as input to the database system PostgreSQL[4] with the same query for second time
execution. Here giving selectivity values as input means instead of estimating the selectivity
of predicates Optimizer module of PostgreSQL[4] database system uses input selectivity as the
actual selectivity. In second execution we are taking only the optimal plan recommended by the

Optimizer and this plan may differ from the previous plan because this time plan is generated

17



using the input selectivity values instead of using estimated selectivity values. Our goal is to
verify that our selectivity computation methods are same as PostgreSQL database system. So
again if we get the same selectivity from the estimated plan implies that we are using the same
method as of the Postgres[4] to compute the selectivity.

Special case for selectivity monitoring: When
spilling predicate is filter over Index Nested Loop join output
operator. Generally, Postgres database system evalu-
ate all filter predicates before any join predicate of the filter Predicate

query. But in case of Index Nested Loop(INL) join it

evaluates join before filter predicate in following man-

ner. Join Predicate
-for each tuple(row) in outer relation(table) / \
-find all matching tuples using index inputt r.'_?,DutE'
(oLter) {inner)
in inner relation (join) index access
—-check the filter predicate condition
on matched tuples (filter) Figure 6.4: Filter Over INL join

-pass result to parent node

Figure 6.4 shows the conceptual idea about the filter
over the INL join. While computing the selectivity for

filter predicate we encountered following issues:

e Complete information about intermediate cardi-
nality will be known only after complete execu-

tion.

e Intermediate cardinality results information is not

accessible to user.

Only solution for the first problem is we should not calculate the selectivity till filter pred-
icate is completely evaluated because only then we will have complete information about the
denominator.

Second problem is resolved by adding a counter variable after the first step (join) to see
how many rows are being filtered out in the first step of the Index Nested Loop. Now we have
total rows after complete Index Nested Loop and rows after the first step so we can get the
selectivity of the filter predicate over Index Nested Loop. All of the above process is done by

modifying the open-source Postgres[4] database system.

18



Chapter 7

QUEST

QUEST (QUery Execution without eSTimation) is a prototype implementation of PlanBou-
quet[1]. Tt provides a graphical user interface with implemented PlanBouquet algorithm. Tt
visually shows query execution using PlanBouquet technique and provides interactive interface
during execution of a query. It also provides performance visualization of native Optimizer and
PlanBouquet. QUEST interface is implemented using java swing. Quest feature that we have

implemented is explained in more detail as follows.

7.1 Computing Query sub-optimality
In QUEST(3] this feature was present but it was only able to get the sub-optimality of query

whose error-prone predicates are only filter predicates. Here query sub-optimality is the ratio
of the costs of plan chosen by a database system using the estimated selectivity values to
plan generated using the actual selectivity values. We have extended this feature to the join
predicates as well i.e., now we can get the sub-optimality of query in which join predicates are
also error prone. Getting the actual selectivity values of predicate in the query is not enough
because sometimes Optimizer can infer predicates from the existing predicates in the query. To
understand this we need to understand how Optimizer choose a plan for a Query. We are going
to use following hypothetical example SQL query to understand how optimizer generate plan

for any query.

Select ...

From R1, R2, R3, R4

Where R1.x = R2.x and R2.x = R3.x and R3.x =
R4 .x;

Above query consist of four tables (R1, R2, R3, R4) and three join predicates (R1.x = R2.x

19



and R2.x = R3.x and R3.x = R4.x) where x represent any attribute of the joining tables. We
are using a chain query just to get more inferred predicates. We know that Optimizer pushes
the filter predicates to the leaf level so only thing that is important to generate an optimal plan
is optimal join order.

Relational Database System Optimizer uses the Selinger's Algorithm[7] to choose optimal

join order. The core idea behind this algorithm is the following.

Start from n = 1 to total number of relations in query.

a. Find best join order of n relations among all possible join orders of
n relations.

b. To find best join order for n+l relations, join previously calculated
join order in step (a) with each additional relation separately.

c. goto step (a).

Above algorithm is explained using figure 7.1 taken from Optimality slides of Shivnath
Babu.

Selinger Algorithm: ‘

Query: R1D>< R2><1 R3 > R4

Progress
of
{R1,R2, R3, R4} algorithm

{R1,R2,R3} {R1,R2, R4} {R1,R3, R4} {R2 R3 R4}

{R1,R2} {R1,R3} {R1,R4} {R2 R3} {R2 R4} {R3 R4}

{R1} {R2} {R3} {R4}

Figure 7.1: System R Algorithm

As we can see in above diagram, Optimizer starts search for join order from bottom level,
and going till the level equal to the number of tables in query. At each level it consider all the
possible combinations of join orders and chose the best and then proceed to the higher level
with the best join order chosen at current level. For identifying the best join order optimizer
needs to know the actual cost of each join order of that level which is not an easy task. Finally
at the top level Optimizer will find the best join order, which will be used for generating the
final plan of the query.
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Query Number PostgreSQL op- | Optimal Plan Sub-optimality
timized Plan

Q1b(19) 776 ms 1.6 ms 185
Q1d(19) 756 ms 3.0 ms 240
Q13d(139) 84 sec 64 sec 1.3

Table 7.1: Query Sub-optimality

Now we know how optimizer generate an estimated optimal plan for a query. Similarly to
get an optimal plan we need the actual selectivity values of all the nodes in above diagram, this
can be achieved only by executing all of them, which is very expensive.

Even making estimation of selectivity values of all nodes is not easy, so to make the life of

Optimizer easier most of the database system vendors uses following assumption.

Selectivity of all join predicates is independent of each other.
or
Selectivity of a join predicate will remains the same irrespective of

the level in plan at which it is getting computed.

With this assumption, database optimizer's work reduces significantly because now it only
has to estimate the selectivity of nodes at the first and second level of figure 7.1 and for the
rest of the levels it can use the same selectivity.

If we use the same assumption to find the actual selectivity values of the predicates our
work will reduce significantly. Now we have to compute the selectivity of nodes which are at
the first and second level in figure 7.1. This is because each node in this diagram represents
a join predicate and due to the independent behavior of each of the predicate, the selectivity
remains same. We have implemented this feature by modifying both Optimizer and Executor
modules of open-source PostgreSQL database system.

Following table shows the sub-optimality that we got for the queries taken from Join Order
Benchmark (JOB)[8] on underlying Database System PostgreSQL 9.4.1[4].

7.2 QUEST Architecture

Existing Quest architecture is shown in figure 7.2 which consists of various modules. Introduc-
tion about each module is as follow.

User Interface, It provides graphical interface to user for giving a query as input and
display a pop-up window showing all predicates and we can select error prone predicates from

that set of predicates. Parser takes input SQL query from user interface and parse it. Parsing

21



given query includes validating the query and identifying the predicates that input query con-
tains. PlanBouquet[l] is a robust query processing technique that was already implemented
in QUEST. Performance Visualization shows the performance comparison of database sys-
tem PostgreSQL, PlanBouquet algorithm and SpillBound algorithm with respect to the ideal
database system which already knows about the selectivity values of all predicates. Next mod-
ule is Modified open source PostgreSQL 9.4 database system. It incorporate all the feature that

are required to make recently proposed techniques work.

QUEST
T I

Plan Bouquet I Performance

visualization

Customized open source PostgreSQL 9.4 database engine
[selectivity injection, FPC, cost-bounded plan execution]

Figure 7.2: Existing QUEST Architecture

Figure 7.3 represents the modified QUEST architecture. we have integrated the SpillBound

algorithm as we can see in the following diagram.

QUEST
T

Plan : Performance
Spill Bound . .
Bouquet visualization

Customized open source PostgreSQL 9.4 database engine
[selectivity injection, FPC, cost-bounded plan execution, Spill-Mode execution]

Figure 7.3: Upgraded QUEST Architecture

We already discussed about Query sub-optimality and this work is used for enhancing the

22



Sub-optimality (log scale)
32

16

Sub-optimality
[+s]

=

1 .

PostgreS... Basic Bouquet SpillBound
Method of Execution

(a) TPC-H Q19

Sub-optimality (log scale)

32

161

o

Sub-optimality
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Postgres... Basic Bouquet SpillBound
Method of Execution

(b) TPC-DS Q91

Figure 7.4: Performance Visualization

performance visualization feature. Figures in 7.4 are produced using performance visualization
feature of QUEST on underling database system PostgreSQL9.4.1. Fig. 7.4a is showing the
performance of query Q19 from TPC-H[6] schema on 1GB database on PostgreSQL database
system, plan bouquet and SpillBound. Similarly fig. 7.4b is generated for query Q91 from
TPC-DS[9] schema on 100GB database. For both the queries we assume only two predicates
are error-prone predicates.

Now we move to our main feature in this implementation i.e., SpillBound execution. It
illustrate the discovery of selectivity values of error prone predicates during the partial execution
of carefully chosen set of plans from cheapest isocost contour to higher isocost contours. Figure
7.5 shows the SpillBound Execution interface for QUEST.
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Figure 7.5: SpillBound Execution interface for QUEST
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Chapter 8
Conclusions and Future Work

In this document we have discussed implementation details about various modules of SpillBound
algorithm as driver program and the features that are required in underling database system
to materialize it. This driver program also support running query with extra control like
stopping execution after each plan execution. With this feature after one plan execution,
query execution can be stopped until the next execution instruction received. Further we have
integrated SpillBound algorithm to QUEST prototype system and shows the performance of
the SpillBound compare to native database system and PlanBouquet[1]. Important future work

is as follows.

e Implementation of further enhanced version of SpillBound algorithm called AlignedBound|2]
algorithm and integrate it to the QUEST.

e Testing the performance of both the algorithms using Optimizer Torture Test(OTT) pro-
posed in [10].
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