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Abstract

A common requirement of database vendors is to test their database engine on client data.
Getting access to client data may not always be possible due to privacy concerns and high
transfer cost. Therefore, vendors rely on generating synthetic version of customers database
that can preserve the data characteristics that are relevant for testing purposes. Hydra is a
data generation tool that tries to achieve this by using the concept of cardinality constraints.
It formulates these constraints as a linear program (LP) and processes its solution to generate
the data. As part of this work, firstly, we have optimized the algorithms used for formulating
the LP. As a result, we have an improved version, Hydra++-, which helps us in getting better
efficiency. We have also extended the existing prototype solution of Hydra to create an end
to end application software. Finally, we have widened the scope of cardinality constraints to
include support for projection constraints (under certain assumptions), which are cardinality

constraints containing projection relational algebraic operator.
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Chapter 1

INTRODUCTION

Database engine testing is a common requirement by the database vendors when upgrading
their database engine or when a client is facing some problem with the current engine. For
this, the database vendors may need the client’s data at their site, which may not always be
possible because of privacy of client’s data or high data transfer cost. In these cases, vendors
rely on taking minimal information from client site and generating data locally such that it
closely mimics the properties of client’s data.

Hydra [7] is a tool which allows generating synthetic database at vendor site using minimal
information obtained from client’s database such that the database generated at vendor’s site
is volumetrically similar to the client’s database. That is, for a query from the predefined
workload of the client and with a common query execution plan at the client and vendor sites
for that query, the output row cardinalities of individual operators in these plans are very similar
in the original and synthetic databases. This similarity helps to achieve similar performance
on the clients workload at the client and vendor site.

In Hydra’s pipeline of creating synthetic database, it uses linear programming as a tool. The
techniques used by Hydra to formulate the LPs is a lot dependent on brute-force techniques
because of which they are very inefficient and have a high time complexity.

We propose Hydra+-+ which uses efficient algorithms to formulate the LPs which is also
reflected in our experiments. Note that the LPs formulated by Hydra++ are the same as Hydra
and only the algorithms for their formulation are different.

A prototype of Hydra was built by its authors. We have extended that prototype into an
end to end application software [8] which can be downloaded from [1].

Hydra uses the concept of Cardinality Constraints (CCs) to achieve the property of volu-
metric similarity (CCs are explained in Section 1.1). Projection Constraints (PCs) are CCs

which have projection operator in them. These type of constraints are not handled by Hydra.
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We give an algorithm to handle these type of constraints and empirically show its correctness.

1.1 Cardinality Constraints

SELECT *
FROM R
R (R-pk, S-fk, T fk) JOIN S ON (R.S.fk = S.S_pk)
S (S_pk, A, B) JOIN Region ON (R.T_fk = T.T_pk)
T (T,pk, C) WHERE 5.4 >= 20 AND S.4 < 60
AND T.C >=2AND 7T.C < 3
(a) Schema
(b) Query
‘40000
D
R.T fk = T.T pk
V \70000
D
g
el R.S_fk = S.5_pk
T
size = 1800 V \’OOOO
o
ACR0.60) size = 90000
S
size = 800
(c) AQP
| R |= 90000 | R |= 800 | T |= 1800
| 05.4c[20,60)(S) |[= 500 | or.ce2,3)(T) |[= 800
| O-S.Ae[Q()’ﬁO)(R > S) |= 70000 | 05.A€[20,60)AT.CE[2,3) (R D1 .S > T) |= 40000
(d) CC

Figure 1.1: CC example

The CCs are extracted from annotated query plans (AQPs) [5] which are query execution

plans with the output edge of each operator annotated with the associated row cardinality (as

evaluated during the clients execution).
Consider a set of Relations Ry, Ry, ..R,,. A Cardinality Constraint (CC) is of the form

| WAUP(Rl [P RQ .. X Rm) |: k
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where P is the selection predicate on the attributes of Ry, Ry, ..R,,; A is the set of attributes
over which the set of resultant tuples are projected while removing duplicates, and k is a
non-negative integer. For example: Considering the schema given in Figure 1.1a, the AQP
corresponding to query in Figure 1.1b, is given in Figure 1.1c and the CCs extracted are given
in Figure 1.1d. A database instance is said to satisfy a CC if evaluating the left side expression
on the database produces k tuples in the output.

Hydra can handle CCs corresponding to queries having multiple relations in its FROM
clause. Since our work is independent of whether queries have single table or multiple in their
FROM clause, hence we define everything in this report in context of single table.

We begin by considering CCs with selection predicates only. The general constraints with
projections is discussed in Section 6.

Organization: Chapter 2 briefly explains the working of Hydra and introduce the problem
associated with its technique of LP formulation. Hydra++ which tackle those problems is
explained in Chapter 3. Comparison of Hydra and Hydra-++ is presented in Chapter 4. Chapter
5 gives a brief overview of the functionalities of the Hydra Software. Algorithm for handling
projection constraints is discussed in Chapter 6 and its performance evaluation is given in

Chapter 7. Conclusions and future work are presented in Chapter 8.



Chapter 2

Hydra

2.1 Architecture

The CCs corresponding to the client’s database and workload are created at client’s site which
are then transferred to the vendor site. Using these CCs, Hydra creates an LP for every relation

and the solution of this LP is used to generate data for that relation.

2.2 Creating LP for Relation

The complexity of an LP depends on the number of variables in the LP which, as we’ll see later,
depends on the number of attributes in the relation. Hence, to optimize the LP, [4] proposed

the following optimization which Hydra uses to decompose the relations into sub-views:

1. For every relation, a “relation-graph” is created by creating a node for each attribute in
that relation and inserting an edge between a pair of nodes if they appear together in

some CC.

2. The maximal cliques of this relation-graph are the sub-views for that particular relation.

A sub-view V with set of attributes {A;, As, .., Ax} can be visualized as an N dimensional space
where every dimension corresponds to some A; and every point in the space is a possible tuple
from V. A CC € is applicable on a sub-view V if the set of all attributes appearing in literals
of € is a subset of the attributes of V. For a particular relation, the set of sub-views obtained
from the above steps along with the set of CCs applicable on them are given to the partitioning
algorithm which divides the space corresponding to sub-views into regions as follows:
Consider a sub-view V with set of attributes {A;, Ay, .., Ay} and consider a set of CCs C

applicable on V. The partitioning algorithm divides the space corresponding to V into regions

4



such that for any two tuples ¢; and ¢;, they are in the same region if and only if they satisfy the
same subset of constraints from C. The set of regions thus obtained corresponding to sub-view
V is called the Partition of V.

After getting partitions from the above partitioning algorithm, LP is created. Each region of
the partitions acts as a variable for the LP. For each CC applicable on a sub-view, an LP condi-
tion is created as follows: Let us denote the regions of j* sub-view, V;, by Reg{, Regg, .., Reg? |
and variables corresponding to i region of V; by xf Then the LP condition created corre-
sponding to V; and some CC | op(R) |= k will be

Z :Bg:k:

Regg satisfies P

The solution of the LP assigns a non-negative integer to every such variable. The value of a:f
determines how many tuples from Regf must be added into the solution for V;. The solutions
of the different sub-views are then merged to obtain the synthesized database.

The above LP conditions ensure that the cardinality of tuples which satisfy the selection
predicate of a certain CC in original database is same in the synthesized database also. But
since the relation was divided into sub-views which may share common attributes, hence extra
constraints known as Consistency Constraints are added into the LP to make sure that the
distribution of values of common attributes in solutions of the different sub-views is same. The

need of consistency constraints can be understood using the following example.

Alias
Employee E
Age A
Bonus B
Salary S

Table 2.1: Schema

Consider the schema given in Table 2.1 and let the CCs be:
€1 1| oa<asaB<s000(E) |= 150

Ca :| 0ae[20,60)A5€[30000,60000) (&) |= 100
Cs :| (F) |= 400

Since B and S never appear together in any CC, hence two sub-views (A, B) and (A, S)

will be created. Note that attribute A is common in the two sub-views. The partitions of the
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two sub-views are shown in Figure 2.1.

80 80
/
60
45
A
20
0 2K 4K 6K 8K 10K 0 30K 60K 90K
B S
(a) Sub-view (A, B) (b) Sub-view (A4, S)

Figure 2.1: Partitions of sub-views

The green region in Figure 2.1a corresponds to €; and the blue region in Figure 2.1b corre-
sponds to Cy. The LP solver will assign the following values to the regions: Green = 150, Red
= 250, Blue = 100 and Yellow = 300. (Note that the solution in general may not be unique)

This implies that for the regions green, red, blue and yellow, 150, 250, 100 and 300 tuples
have to be generated from them respectively. If all the 150 and 250 tuples of green and red
region respectively are generated from the area where A € [0,20), then, it’s not possible to
generate any tuples in sub-view (A, .S) because the region of sub-view (A, S) which intersects
with A € [0, 20) is yellow region and it is assigned only 300 tuples by LP solver.
then the

distribution of values of A%~ must be consistent in V; and V;. For our above example, the

In general, if any two sub-views V; and V; share common attributes A%

common’

LP solution can be made consistent along attribute A by splitting the regions along dashed

lines as shown in Figure 2.1, and adding the following (consistency) constraints into the LP

ng,B) _ ng,S)

vip? = it + oy
w4y = ay® - ap?
i ) =y



2.3 Hydra’s approach to make LP consistent

The process of creation of consistency constraints in Hydra can be divided into two parts. In
the first part, the partitions obtained from partitioning algorithm (as discussed in Section 2.2)
are given to Algorithm 1 which further splits those partitions such that for any two sub-views
V; and V; sharing some set of common attributes A% =V, and V; have consistent region

boundaries along A% i.e. when the regions of V; and V; are projected along A%J then
for any two regions r and s chosen from the projected space, either r N's = () or boundary of r
= boundary of s. For the example in Figure 2.1, this was obtained by splitting the sub-views

along the dashed lines i.e. along A = 20, A =45 and A = 60.

Algorithm 1: Split partitions for consistency
Input: Set of all sub-views V|, Partition vector P
Output: Partition vector after splitting
SplittingForConsistency (V,P)

foreach distinct sub-views V;,V; € V do
A on = Attribs(V;) N Attribs(V;)

if A% = () then continue ;

Ppotn < SplitAll(P(V;) UP(V,), AL )

common
common

foreach r € P(V;) and s € Py, do

L Refine r into (r — s) and (r N s)
foreach r € P(V;) and s € Ppo, do
9 L Refine r into (r — s) and (rnNs)

N 0 ok W =

0]

10 return P

Split A1l (P, Acommon)
foreach r,s € P do

if Proj(r, Acommon) NPToj (s, Acommon) # () then
L L Refine r and s into (r — s), (s —r) and (rNs)

BW N =

5 return P

=

Proj (7, Acommon)
L return Projection of r along A ommon

N

Algorithm 1 takes as input the set of all the sub-views and the partition vector which
has the partitions corresponding to every sub-view. The call to subroutine SplitAll splits all
the regions in its input such that no two regions have inconsistent region boundaries along
common attributes and return these newly formed regions. It can be seen that the for-each

loop in subroutine SplitAll is a brute-force technique which tries to refine regions until their



boundaries are consistent.

Algorithm 2: Create LP conditions for consistency constraints
Input: Set of all sub-views V, Partition vector P

1 CreateLPeqgsForConsistency (V,P)

2 foreach distinct sub-views V;,V; € V do

3 Ao = Attribs(V;) N Attribs(V;)

4 if A% =0 then continue ;

5 Protn < SplitAll(P(V;) UP(V;), AL )
6 foreach s € P, do

7 LHS <

8 foreach r € P(V;) do

9 if N s # () then

10 L LLHS%LHS—O—@

11 RHS + )

12 foreach r € P(V,) do

13 if 7N s # () then

14 L | RHS + RHS + x,

15 Add condition LHS = RHS in solver

In the second part, the partitions obtained from Algorithm 1 are given to Algorithm 2 which
creates LP equations for consistency constrains.
In Algorithm 2 also SplitAll is called further adding inefficiency to the brute-force nature of

the complete process.

2.4 Adversarial Workload

To stress test the consistency constraint creation part of Hydra, we created a workload of 10
adversarial queries as follows:

Consider a relation R with 15 attributes {Uy, U, Us, Uy, Us, Z1, Zs, .., Z19}. The it" query of
our workload is of the form

SELECT * FROM R

WHERE U; >=i AND U, < (i+10)

AND Uy >=1 AND U; < (i+10)

AND U; >=i AND U; < (i+10)

AND U, >=i AND Uj < (i+10)

AND  U; >=i AND Us < (i+10)



AND  Z;, >=1iAND Z; < (i+10)

There are 6 attributes in selection predicate of every query. The Z; attribute is different in
every query so that a new sub-view has to be created per query. For i** query, the sub-view
corresponding to it will have the attribute set {Uy, Us, Us, Uy, Us, Z;}. Every sub-view will be
divided into 2 regions by the partitioning algorithm, one which satisfies the selection predicate of
the query corresponding to that sub-view and the other which does not. The range in selection
predicate of the 5 U attributes is slid by 1 in every consecutive query so that the 2 regions in all
the 10 sub-views have inconsistent region boundaries along all 5 U attributes hence requiring a
lot of splitting to make the LP consistent. When the above workload was tested on Hydra, it
was observed that the time taken to formulate consistency constraints was orders of magnitude
more than the time taken for other workloads of larger sizes. Specifically, Hydra took 8 hours
to formulate LP for adversarial workload while it took only 13 seconds to formulate LP for a
standard benchmark workload with close to 200 queries. This motivated us to create a better

algorithm for creating consistency constraints.



Chapter 3

Hydra++4

To tackle the problems specified in above sections, we created Hydra++. For a particular
relation, the input to partitioning algorithm in Hydra was the set of sub-views and the set of
CCs applicable on those sub-views. In Hydra++, we have modified the pipeline for creating
consistency constraints. Instead of just applicable CCs, we now pass the union of applicable
CCs and applicable Consistency Filters (CFs) to the partitioning algorithm alongside sub-
views. The CFs are formulated in such a way that the partitions obtained after partitioning
algorithm are same as the partitions obtained after Algorithm 1 of Hydra.

For a particular relation R a CF is of the form:
O'p(:R)

where P is the selection predicate on the attributes of R. For creating the set of CFs we first

define A pmon as

Acommon - {‘Aigmmon | ‘A?ojmmon - AttTZbS(,Vl) N Attmbs(\?]) A ‘Ai’ojmmon 7& @}
Vi, 7 such that i # j

The algorithm to create CFs is given in Algorithm 4. Before explaining Algorithm 4, we first
present Algorithm 3 which is an intuitive but incomplete algorithm (it fails when disjunctions
are present in CCs) to create CFs, but helps in understanding Algorithm 4.

The intuition behind Algorithm 3 is that, for any CC € and two sub-views V; and V;
having common attributes A% when the filter made by the literals of € whose attributes

are present in A% is given to the partitioning algorithm, then, the partitioning algorithm

separates those tuples of V; and V; into different regions which do not lie in same range along

10



Algorithm 3: Intuitive algorithm for creating CF's
Input: All cardinality constraints C, A ommon
Output: List of CF's

1 IntuitiveCreateCF (C, A opumon)

2 Lop + 1)

3 foreach A.ommon € Acommon dO

4

5

foreach € € C do
Create a filter of all literals in € whose attribute is present in Acommon, and if
this filter is non empty then add it to Lop

6 return Lop

At me This makes the resultant regions of V; and V; to have consistent region boundaries.
For example, consider the setup corresponding to Figure 2.1. The CF corresponding to C; and
Cy will be CF : 0a<us(E) and CFy : gacpoe0)(£) respectively. Note that C; was applicable
only on sub-view (A, B) and €y was applicable only on sub-view (A, S) while both CF; and
CT5 are applicable on both the sub-views. When these CFs are given to partitioning algorithm
alongside CCs, apart from normal splitting which was done because of CCs, the partitioning
algorithm will also split both the sub-views along A = 20, A = 45 and A = 60 as was done by
Algorithm 1.

To understand why Algorithm 3 will fail in presence of disjunctions, let’s consider the

following example: Consider the schema from Table 2.1 and let the CCs be:

Cy ¢ 0(A€[20,30))V(A€[40,50) A BE[4000,8000)) (£) [=90
Cy | O (A€[60 70)/\56[30000 60000) ( ) |— 160
|= 400

Cs:[ (E)

Since B and S never appear together in any CC, hence two sub-views (A, B) and (A, S) will
be created. A ommon for this setup will be {{A}}. CFs created by Algorithm 3 will be:

CFi:o (A€[20,30))V (Ae[40,50))(E)
CFy: 0 A¢(60, 70)(E

The partitions of the two sub-views when the union of CCs and CFs are given to the
partitioning algorithm are shown in Figure 3.1 To check if the two sub-views have consistent
region boundaries, we project the two sub-views along common attribute (A). It can be observed
that after projection, blue region and red region of sub-view (A, B) will intersect but their

boundaries will not be the same. Same will be the case with red and orange regions of sub-view

11



80
70
60
50
A 40
30
20
10

0 2K 4K 6K 8K 10K 0 30K 60K 90K
B S

(a) Sub-view (A, B) (b) Sub-view (A4, S)

Figure 3.1: Partitions of sub-views

(A, B) and sub-view (A, S) respectively. One important point is that, this type of scenario
will happen only when a region have disjoint components, which will happen only when the
selection predicate of a constraint contains clauses separated by disjunction. The two clauses
of Cy (A € [20,30) and (A € [40,50) A B € [4000,8000))), which are separated by disjunction,
have different attribute set in their literals, allowing the part of blue region where A € [40,50)
to span completely along attribute B but restricting the part where A € [20,30) to only span
across attribute B where B € [4000, 8000). C'F}, which was based on (', created the red region
but did not create a corresponding red region where A € [40,50) resulting in regions being
inconsistent. Hence, if a CC C; have clauses separated by disjunction, then the clauses of the
CF created from C; must be separated into different CFs if the attribute set of the literals
that were dropped from the clauses of C; are different. For our running example, for C', the
set of attributes appearing in the literals which are dropped from the clauses A € [20,30) and
(A € [40,50) A B € [4000,8000)) are ) and { B} respectively, hence the clauses of C'F; must be
separated into two different CF's.

In Algorithm 4, for every CC € (which is in DNF) we iterate over its clauses as shown in
line 6. A clause of C is denoted by 8C (Sub Constraint). We split each 8C into two sets which
we call Kept Part and Dropped Part using subroutine BreakSC. Then we find the set Agropped
which is the set of attributes appearing in literals of Dropped Part. We keep all the Kept Parts
which correspond to same Agroppeq in a single list using map M. Each list is then converted to
a CF by subroutine CreateCF which essentially creates disjunction of Kept Parts in that list.

After getting CFs from Algorithm 4, the union of CFs and CCs is given to the partitioning

algorithm which returns the partitions of sub-views along with a map M; for every sub-view

12



Algorithm 4: Create Consistency Filters
Input: All cardinality constraints C, A ommon
Output: List of CF's

1 CreateConsistencyFilters (C, A opmon)

2 LC’F < @

3 foreach A.ommon € Acommon dO

4 foreach C € C do

5 M+ 0

6 foreach SC € € do

7 (kp, dp) < BreakSC(8C, Acommon)
8 -Adropped < {Attrzb(l) ‘ l e dp}
9 M[-Adropped] — M[-Ad'ropped} U kept
10 foreach (Agropped; Lip) € M do
11 L Lep < Lop UCreateCF(Ly,)
12 | return Lor

1 BreakSC (8C , Acommon)

2 kept < ()

3 dropped <+ ()

4 foreach literal € SC do

5 if Attribute(literal) € Acommon then
6 L kept < kept U literal

7 else

8 L dropped <— dropped U literal

9 | return (kept,dropped)

V. M; maps every region of V; to the set of CFs it satisfies i.e. M, : Regions of V; — {CF'}.
For every map M;, it’s inverted map M, is created which maps from the set of CF's to the set
of regions which satisfy all CFs in key set i.e. M : {C'F} — {Regions}. If T; and T; are the

values of M; and M, where key is same, the following condition is added to LP:

Z Th = Z xfc (3.1)

Reg; €T; Regl €Ty

The above steps essentially equates the sum of the variables corresponding to the regions of the

two sub-views that satisfy the same set of CFs.
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Chapter 4

Comparison of Hydra and Hydra++4

4.1 On Adversarial Workload

We tested Hydra and Hydra++ on the adversarial workload described in Section 2.4. The exe-
cution time taken by different components of Hydra and Hydra++ are given in Table 4.1. For

Partitioning | LP Formulation
Hydra 5 minutes 8 hours
Hydra++ | 7 seconds Less than 1 second

Table 4.1: Execution time split-up - Adversarial workload

Hydra, the first column (Partitioning) shows the total time taken up by the partitioning algo-
rithm and Algorithm 1. For Hydra++, it’s the time taken up by Algorithm 4 and partitioning
algorithm.

It can be seen that Hydra took 5 minutes for partitioning and 8 hours for LP formulation.
Since there were a lot of regions with inconsistent boundaries and the subroutine SplitAll
compares every pair of regions for inconsistency, creating new regions in the process, hence
blow-up in time was observed during LP formulation. On the other hand, Hydra++ took only
a total of less than 8 secs to complete partitioning and formulate the same LP as Hydra.

The adversarial workload is a comparatively very small workload when compared to industry
workloads. Hydra took 8 hours for adversarial workload which does not look problematic
since data generation is a one time process. But, for an industry workload as complex as our
adversarial workload and with hundreds of relations and thousands of queries, it may take years

to generate data, and hence Hydra++ is required.
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4.2 On JOB Benchmark

The adversarial workload and the database corresponding to it was created synthetically be-
cause of which it may not have been able to capture the aspects of real-world databases. To
compare Hydra and Hydra++ on a real-world database, we executed them on the Join Order
Benchmark (JOB) [6] which is based on the IMDB dataset. The workload was modified to fit
the assumptions of Hydra (or Hydra++).

The size of database was 6 GB with 21 relations where the maximum sized table was 2.3
GB.

Figure 4.1 shows the number of constraints per relation.

100 86 88

4] b |
L= %)}

Number of Constraints
P
[43]

Relation

Figure 4.1: Count of constraints per relation in JOB benchmark

Figure 4.2 shows the number of variables in the LP corresponding to each relation. Note
that the number of variables in LP formed by Hydra and Hydra+-+ will be same as Hydra+-+
produces the same LP as Hydra. In Figure 4.1 we saw that the number of CC applicable
on “movie_companies” is almost equal to that of “cast_info” but Figure 4.2 shows that the

number of LP variables for “cast_info” is 7 times that of “movie_companies”. This is because

15



ad

log,(number of LP variables)
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Figure 4.2: Number of variables in LP for JOB benchmark

“cast_info” has sub-views with a lot of regions with inconsistent region boundaries. This again
is a motivation for us to have a better algorithm for creating consistency constraints because
we believe that real-world workloads will usually show a similar type of behavior.

The execution time statistics for Hydra and Hydra++ on JOB benchmark are given in Table

4.2. The split up of time for the first column is same as was described for Table 4.1. In this

Partitioning | LP Formulation
Hydra 3 seconds 10 seconds
Hydra++ | 3 seconds 1 second

Table 4.2: Execution time split-up - JOB benchmark

case also Hydra++ proved to be faster than Hydra, specifically, with a 3 times speedup.
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Chapter 5
Hydra Software

The Hydra prototype was a tool which generated the database with encoded values for attributes
of tuples and also a changed schema than the original schema of clients workload because of
which the original workload of client could not be used with the generated database. It also
facilitated a very basic GUI with a lot of hard coded parameters.

We extended the prototype of Hydra into an end to end software which implements an intu-
itive interface that facilitates modeling of enterprise database environments, delivers feedback
on generated data, and tabulates performance reports on the quality of regeneration.

Hydra is completely written in Java, running to over 15K lines of code. It is currently
operational on PostgreSQL engine but requires some changes inside the engine for which the
required files are provided with the Hydra package.

At client site, Hydra provides an input panel to acquire connection details of client database
and its workload and using this information, generates the set of CCs. Figure 5.1 displays the
panel shown after generating CCs. It allows visualizing the plans and CCs corresponding to the
queries of client’s workload. It also displays the metadata corresponding to the client’s database.
On clicking the Finish button, the CCs and other necessary data required for generating the
synthetic database at vendor site is saved which can be then transferred to the vendor site.

At the vendor site, Hydra reads the data files provided by the client. It then formulates the
data generation problem as an LP and solves it using Z3 Theorem Prover [3]. During the LP
solving stage, a window is shown that tabulates the complexity of the various LPs in terms of
their number of variables and their actual run times. After solving the LPs, Hydra creates a
small summary of the database. This summary is used to either dump the synthetic database
or dynamically generate database when a query is executed. Figure 5.2 shows the panel which
allows visualizing the summary corresponding to the queries of the client workload and allows

dumping static database.
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Figure 5.1: Hydra software client site
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Figure 5.2: Hydra software vendor site
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Chapter 6

Handling 1-D Projection Constraints

FC;: | UBe[QOOO,SOOO)(E) =200
PC1: | ma0Bef000,8000) (E) [= 40
FCa: | oBef000,8000) ()

PCy: | Ta0 Bep000,8000) (E) |= 25

Figure 6.1: Projection example 1 constraints
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Figure 6.2: Partition for constraints of Figure 6.1

The CCs considered so far were formed out of selection operator only. We now consider CCs

which include projection operator alongside selection operator as was introduced in Section 1.1.
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Projection operator is introduced in CCs when “GROUP BY” or “DISTINCT” clause is used
in SQL queries. It also removes duplicate tuples from the output of a query.

We'll use the term Filter Constraints (FC) for CCs which don’t have a projection operator.
Handling of projection constraints (PCs) is different from FCs in the sense that in FCs we were
only concerned about how many tuples must be created from a region while in case of PCs
apart from how many tuples, care must be taken about which tuples to create.

To understand this, let’s consider an example with the constraints given in Figure 6.1 whose
partition is given in Figure 6.2. If only FCs are considered then a possible solution to the above
problem is to generate 70 instances of tuple (0, 2000) and 130 instances of tuple (0, 4000) where
the first value in the tuple is for A and the second for B (The same convention will be used
for the rest of this section). When PCs are also considered along with FCs, then according
to constraint PC;, projecting the union of all the tuples generated from the region I and the
region I11 along dimension A must give 40 unique values. Similarly for PCs, projecting all the
tuples generated from region I along dimension A must give 25 unique values. A possible
solution is to generate 56 instances of tuple (0, 2000) and tuples {(1, 2000), (2, 2000), (.., 2000),
(14, 2000)} from region II; and 106 instances of tuple (15, 4000) and 14 tuples {(16, 4000),
(17, 4000), (.., 4000), (39, 4000)} from region I11.

Our algorithm for handling PCs only handles 1-D projections on a single table i.e. in all
the queries, there must be at most one attribute present in GROUP BY or DISTINCT clause
(Although that single attribute may be different in different queries) and the queries having
GROUP BY or DISTINCT clause must have a single table in their FROM clause.

The algorithm is an addition to Hydra (or Hydra++) and hence follows the same architec-
ture as was described in Section 2.1. The only addition is that now PCs are also transferred to

vendor site along with FCs.

6.1 Algorithm

The algorithm given in this section don’t support sub-view optimization which was described
in Section 2.2. So, in all the cases the relation itself is the one and only sub-view.

We incrementally build the algorithm by showing various cases. For each case, we show the
algorithm and its shortcomings also.
6.1.1 Projection is performed on a common attribute across all

queries and there is no filter on projected attribute

Let A denote the attribute on which projection is performed and Q4 the set of all regions that
satisfy the filter of any PC.
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Recall that for handling FCs, Hydra used to create an LP variable (z;) corresponding to
every region Reg; in the partition. Let’s call these LP variables as selection variables. The
value of those selection variables in the LP solution gave the number of tuples to be generated
from their corresponding regions.

For handling PCs, alongside selection variables, projection variables are created as fol-
lows: For n regions Reg, Rego, .., Reg, in Q4, the power set B of Q4 is taken. For every
set {Reg;, Regj, .., Regy} in B except ), a projection variable y; ;) is created. The value of
Yij,.k) in LP solution gives the number of unique common values which must be used for A
while generating tuples from every region in {Reg;, Regj, .., Regy}.

The following 4 types of LP conditions are created:
1. For handling FCs : These are the ones which are created by Hydra.

2. For handling PCs : For every PC PC an LP condition is created: LHS of condition is
the sum of all projection variables whose at least one of the corresponding regions satisfy
filter of PC. RHS of condition is the RHS value of PC.

3. Upper bounding count of unique values : These make sure that the number of
unique values in the tuples generated from a region does not exceed the total tuples
generated from that region. For each region Reg; in Q4 the following condition is added

to the LP: x; > Sum of all projection variables corresponding to Reg;.

4. Constructibility check : These conditions ensure that for a region Reg; in Qg if at
least one tuple has to be generated from Reg; i.e. x; > 0 then at least one unique value
must be generated for A from Reg;. For each region Reg; in Q4 the following condition

is added to the LP: Sum of all projection variables corresponding to Reg; x N > z;

After solving the LP, a set of values for A are associated with every projection variable. The
values associated to every projection variable are disjoint i.e. for two projection variables y;
and y; with values 8 and 5 respectively in LP solution, if values (1, 2, .., 8) are associated to y;,
then, to y;, values can be associated only from (D4 — [1,8]) where Dy is the domain of A. It
is because of this requirement of assigning disjoint values to projection variables that we have
taken the power set of regions to create projection variables so that if two regions have to have
values which are common, the projection variable which corresponds to both the regions will
be assigned the common values. We associate the values sequentially i.e. to the first projection
variable y;, values 0 to y; — 1 are associated, to the next projection variable y;, values y; to

y; +y; — 1 are associated, and so on. The values associated to projection variables are used to
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generate tuples from their corresponding regions present in Q4. For regions not present in Qy4,
the usual method of Hydra is used to generate tuples from them.

Let’s take the constraints given in Figure 6.1 to understand the above algorithm. A is A
and Q4 is {Regrr, Regrrr}. The set of selection and projection variables are {z;, z;;, x77;} and

{yarn, varn, yarn } respectively. Following are the LP conditions:

1. T+ o = 200
Trrr = 130

2. yan + Yyarn + Yarn = 40
Yurn T yurin = 25

3. w11 Z yan + Yarin
Trrr 2 Yyarn + Y

4. (yan +yaram) X N > xpp
(Yerrry + yarn) X N > xpp

A solution of the LP is x;; = 70, 2777 = 130, yr) = 15 and y(7,rrr) = 25. Values 0 to
14 are associated to y;r) and values 15 to 39 are associated to y(;r 7). Hence, tuples with
values 0 to 14 for A must be generated from Reg;; and tuples with values 15 to 39 for A must
be generated from both Reg;; and Reg;r;. For generating tuples for a region, each value of
A associated to that region is used at least once and then the first value is repeated for the
leftover tuples (although any associated value can be repeated). This gives the following tuples
for the different regions: 31 instances of tuple (0, 2000) and tuples {(1, 2000), (.., 2000), (39,
2000)} for Regyr; and 106 instances of tuple (15, 4000) and tuples {(16, 4000), (17, 4000), (..,
4000), (39, 4000)} for Regry;.

6.1.2 Projection is performed on a common attribute across all

queries and there are filters on projected attribute

FCy: | 0 A€[20,60)AB€[2000,8000) ( ) |— 180
PCy: ’ T AO A€[20,60)ABE[2000 8000)(E) ’: 33
FCs: | 0 A€[20,45)AB€[4000,8000) ( ) |f 110
PCsy: ’ T AT A€[20,45)AB€[4000,8000) (E) ’: 21

Figure 6.3: Projection example 2 constraints

Consider the constraints given in Figure 6.3 with their partition given in Figure 6.4a. Sup-

pose after creating an LP using the algorithm from previous section, we get the following
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solution: z;; = 70, xyrr = 110, ygr = 8, yarn = 21,and Y7777y = 0. Since the domain of A
for regions Reg;; and Regrrr start from 20, hence values for A will be associated to Regrr and
Regrr from 20. If values 20 to 27 are associated to y(;) and values 28 to 48 are associated to
Y1), then, it creates a problem because values (45, 46, 47, 48) associated to Y111y are outside

the domain of Reg;;; which leads to generation of incorrect tuples for Regy;.

80 80

60 60

45
A A 45

20 20

0 2K 4K 6K 8K 10K 0 2K 4K 6K 8K 10K
B B
(a) Original partition (b) After intervalization

Figure 6.4: Partition for constraints of Figure 6.3

This problem is solved using intervalization. In intervalization, the regions of Q4 are further
refined such that no two regions span across the split points of A. The split points are the
constants present in literals conditioned on A. For example: For the constraints given in
Figure 6.3, the split points of A are 20, 45 and 60, and the effect of intervalization is shown in
Figure 6.4b where Reg;; of Figure 6.4a is refined into Reg;; and Regry. After intervalization,
Q4 is updated by removing the old regions which were split and adding the new refined regions.
The selection variables are also updated according to the newly formed regions.

The set of regions of Q4 which fall between two consecutive split points make up a Split Point
Interval (SPI). Since the regions of two different SPIs can never share common values of A as
their domains are separated because of intervalization, for creating projection variables, instead
of taking the power set of all the regions in Q4, the power set of regions in Q4 intersection SPI
is taken for every SPI. Also, the following 5 type of LP condition is added to our original 4

LP conditions of the above algorithm:

5. Domain size constraint : For each SPI J, the following condition is added to LP : Sum
of set of all projection variables corresponding to all regions in J < Dj where Dy is the

domain size of any region in J along A.
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Also, because of intervalization, projection variables can be associated values for A SPI-wise.
For each SPI J with first value in it’s domain Dj, associate to the first projection variable Y1),
the values Dj to (Dj +y(r1) — 1), to the second projection variable y(r9), the values (DJ +yr1))
to (Dj + y(r1) + Y(r2) — 1), and so on.

To understand the modifications in the algorithm, let’s consider the constraints given in
Figure 6.3 along with their intervalized partition given in Figure 6.4b. Q4 is {Regrs, Regyrr,
Regry}. There are two SPIs {Reg;;, Regrrr} and {Regry}. The set of selection variables
is {xr,xrr, 211, xrv}. The set of projection variables for regions in first SPI is {y(1), Y,

yar,rry} and for region in second SPI is {y(v)}. Following are the LP conditions:

1. T+ X Ty = 180

Trrr = 110

2. yan +Yarn + yarin + yavy = 33
Yrrr +yarn = 21

3. w1 Z yan + Yar,in
Trrr 2 Yyarn + Y

Trv 2 Yuv)

4. (yan +yaramn) X N > g
(Yo + yarn) X N > xpg
yavy X N = xry

5. yar +yarn + Y < 45— 20
Yyavy < 60 —45

A possible solution to the above LP is x;; = 40, x;; = 110, zrv = 30, yun = 2, yam = 21,
yarry = 0 and yvy = 10. Values 20 and 21 are associated to yrp), values 22 to 42 are
associated to y(rry) and values 45 to 54 are associated to y(;v). The tuples generated are: 39
instances of tuple (20, 2000) and tuple (21, 2000) from Reg;r; 90 instances of tuple (22, 4000)
and tuples {(23, 4000), (24, 4000), (.., 4000), , (42, 4000)} from Regr;;; and 21 instances of
tuple (45, 2000) and tuples {(46, 2000), (47, 2000), (.., 2000), (54, 2000)} from Regry .

6.1.3 Projection is performed on different attributes across queries

Let the different attributes on which projection is performed be A = {A;, Ao, .., A} and let
Qy, denote the set of all regions that satisfy filter of any PC having projection on A,.
The following steps are performed for each A; € A:
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. Intervalization is performed i.e. Q4, is refined along the split points of A;.

Set of SPIs 4, is created where each SPI is a set of regions of Q4, which fall between two

consecutive split points of A,;.

For each SPI J € I4,, the power set of the regions in J is taken and a projection variable

y# is created corresponding to each set 7" in the power set.

The selection variables are created as usual i.e. a selection variable x; per region Reg; of

partition.

Let’s denote the set of all projection variables corresponding to A; by V4, The changes in

the creation of the 5 types of LP conditions are as follows:

1.

Will remain same

For every PC PC€ with projection on A; an LP condition is created: LHS of condition is
the sum of all projection variables of V4, whose at least one of the corresponding regions

satisfy filter of PC. RHS of condition is the RHS value of PC.

For each A; € A: For each region Reg; in Q4, the following two conditions are added to
LP:

. x; > Sum of all projection variables in V4, corresponding to Reg;

. Sum of all projection variables in V4, corresponding to Reg; x N > x;

For each A; € A: For each SPI J € ll4,, the following condition is added: Sum of set of all
projection variables corresponding to all regions in J < Dj where Dy is the domain size of

any region in J along A;.

FC1: | oa<asnBe[2000,4000) (E) |= 60
PECy: | 7TBUA<45/\BE[2000,4000)(E) ‘: 18

Figure 6.5: Projection example 3 constraints

Let’s consider the constraints given in Figure 6.3 and Figure 6.5 together to understand

the algorithm. The partition after intervalization for this case is given in Figure 6.6. It can

be noted that since Regry, does not satisty filter of any PC which have projection on B, hence

region Regyy is not split along split point 4000 of B.
A={A B}

25



V

0 2K 4K 6K 8K 10K
B

Figure 6.6: Partition for constraints from Figure 6.3 and 6.5 taken together

Qa = {Regi1, Regirr, Regrv }

Qp = {Regir, Regv'}

I4 = {{Regir, Regrir},{ Regrv }}

I = {{Regr1, Regy } }

The projection variables corresponding to A, V 4, are {y(}l), y(}H)’ yéf, 111): yz‘}v)}
The projection variables corresponding to B, Vg, are {951)7 yg,), ygl,v)}

Following are the LP conditions:

1. xyp+xr + 2y = 180
rrrr = 110

xrr+ xy = 60

2 Y + Y + Yo T Yy =33
yJAH + y(}]?‘ru) =21
Yo v iy, = 18

3. xrr > yé[) + yéI,III)
Trrr 2 yén) + yéI,III)
Trv > Yiny
T 2> Z/g[) + ygz,v)

v 2 Y6 + Y
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(Y Yo +y(111n)) X N =z
(y(HI +yIIIH)) X N > xr
yz‘} n X N>y

(?JU +yIIV)) XN =z
(y —|—va))><N2:cV

5‘ yZAII) + yijlj) + yGIJH) S 45 - 20
Yy < 60 — 45
Yin + Yt + Yy, <4000 — 2000

A possible solution to the above LP is z;; = 21, x;;; = 110, xpy = 49, xy = 39, y{}n =0,
y(“}m =0, y(f}un) = 21, y{}v) =12, ygl) =0, yg/) = 0 and 951,\/) = 18. Values 20 and 40
are associated to yéLIH)’ values 45 to 56 are associated to y(}v) and values 2000 to 2017 are
associated to y(BILV). The tuples generated are: Tuples {(20, 2000), (21, 2001), (.., ..), (37,
2017)} and tuples {(38, 2000), (39, 2000), (40, 2000)} from Reg;r; 90 instances of tuple (20,
4000) and tuples {(21, 4000), (22, 4000), (.., 4000), (40, 4000)} from Reg;;r; 38 instances of
tuple (45, 2000) and tuples (46, 2000), (47, 2000), (.., 2000), , (56, 2000) from Regy; and 22
instances of tuple (0, 2000) and tuples {(0, 2001), (0, 2002), (0, ..), (0, 2017)} from Regy .

6.2 Sub-view optimization with Projection Constraints

The algorithm in Section 6.1 didn’t used sub-view optimization which lead to the following two

problems:

1. The projection variables were created by taking the power set of the regions of partition.
Since the number of regions in a partition depends on the number of attributes in that
partition, it became infeasible in our experiments to compute the power set of the regions

if sub-view optimization was not used.

2. The complexity of partitioning algorithm depends on the number of attributes in a sub-
view. A blow up in the time and memory required by the partitioning algorithm was

observed when the sub-view optimization was not used.

The requirement for using sub-view optimization, as explained in Section 2.2, is that for
any two sub-views V; and V; the distribution of values corresponding to the common attributes
must be same. In absence of PCs, this was achieved using consistency constraints which made
sure that the sum of selection variables corresponding to regions of V; and V; which satisfy the

same set of CFs is equal (Equation 3.1). Then, while creating tuples from those regions the
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least values of common attributes in those regions was chosen, which was actually same in all
the regions. The least value cannot always be chosen in presence of PCs because there may be
requirement of multiple unique values for common attributes.

Following are the changes in pipeline of hydra for handling PCs alongside sub-view opti-

mization:

1. All the operations done in Hydra up to the formation of sub-views is same.

2. After forming sub-views, an LP is formed per sub-view using the algorithm of Section
6.1.3.

3. Consistency constraints are created using algorithms of Section 3 and added to the LP.
4. Phase 1 of Projection Consistency

5. Phase 2 of Projection Consistency

6.2.1 Phase 1 of Projection Consistency

Let Agicommon denote the set of all common attributes of the two sub-views V; and V;, on
which projection is performed in some PC applicable on any or both of the sub-views. Also, let
Qiu denote the set of all regions of sub-view V; which satisfy filter of some PC applicable on
V; having projection on attribute A;. Define Consistent Pair (CP) as a pair ({Reg}, {Reg})
of set of regions of two sub-views which satisfy the same set of CFs. Let the list of all CPs
corresponding to two sub-views V; and V; be denoted by G; ;.

In this phase, LP conditions are created which make sure that for any two sub-views V;
and V;, the number of unique values which can be used to generate tuples from the two sets of

Z?]
p—common*

Consider the schema of Table 2.1 along with an extra attribute Years.Remaining with alias

regions in pairs of G; ;, is same for every attribute in A

Y, and the constraints given in Figure 6.8. We’ll use this setup as a running example to explain
the concepts presented in this section. There are two sub-views (A4, B, S) and (4, B,Y). The
partitions of the two sub-views are given in Figure 6.7. Since there are no constraints on regions
where A < 25 or A > 60, hence we have not shown the axis corresponding to attribute A and
only shown the slice where A € [25,60). We'll use V; and V5 to denote sub-views (A, B, S) and
(A, B,Y) respectively. The values of different variables explained till now will be:

1,2
Ap—common - {A}
@h = {Reg}n, Reg%/}; @,24 = {Reg%v}

G2 = {({Reg}y, Regi }, {Reg?;;, Regiv }),
<{R@9}1a Reg}ll}a {Reg%[}>}
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Figure 6.7: Partitions for constraints of Figure 6.8

FCy: \ 0 A€[25,60)AB€[4000,8000) ASE[30000,60000) (E) ‘: 60
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FCy: | 0 A€[25,60)AB€[2000,8000) ASE[30000,60000) (E) |: 90
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FCs: | 0ae)25,60)7Be[4000,8000)AY €[20,40) (E) |[= 50
PCs: ’ 7TA0Ae[25,60)/\Be[4000,8000)/\Ye[2o,40)(E) ‘: 15

Figure 6.8: Projection example 4 constraints

For an attribute A and some CP (R;,R;) in G;; corresponding to sub-views V; and V;, it
might be possible that not all the regions of R; are contained in @ and not all the regions of
R; are contained in @il i.e. there might be regions in R; and R; which do not satisfy filter of
any PC having projection on A. Any value of A can be used for generating tuples from those
regions.

Let’s denote the set of regions of R; which are also present in Q% by R and those which
are not present in Q' by R{T. The number of unique values which are to be used for A for
generating tuples from regions of R# are given by the projection variables corresponding to
those regions. Let the sum of projection variables corresponding to regions of R and Rj‘ be
d; and d; respectively, and let d; > d;. Then, d; — d; unique values for A, which are different
from those used in creating tuples from regions of R7', must be mandatorily used for generating
tuples from regions of R{‘. This is possible only if the sum of selection variables of ]Rfl is greater
than d; — d;. To ensure that this requirement is met, slack variables are used that are created

using Algorithm 5. The partitioning of Step 4 of Algorithm 5 is required because it makes the
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elements of £’ to be disjoint because of which the slack variables created are independent of
each other. The requirement for having independent slack variables is explained later when the
tuples are generated. Note that, the values which had been used for generating tuples from
region of Rf can be reused to generate tuples from regions of Rf if required.

For our running example, for first pair in Gy o:

Ri' = {Regi }; R{' = {Regy}
Ry = {Regiy }; Ry = {Regf;;}
For second pair:

Rf = {RGQ}U}S Rf = {Reg}l}
Ry = 0; Ry = {Reg?;}

For Vi, L = [{Regi, }, {Reg};}]. L' will be same as £ and a slack variable will be created for
each set {Reg}, } and {Reg},;}. If suppose £ was [{Reg;y, Regl;}, {Regi;}], then, £ would
have been [{ Reg}y, },{Reg};}| because Regh, is present only in first element of £ while Reg;y
is present in both the elements of £. For Vo, £ = [{Reg?;;}, {Reg? }] and £’ will be same as
L.

Algorithm 5: Create Slack Variables

1 foreach Sub-view V; do
2 foreach Attribute A of V; do

3 Let £ be the list of all possible RZZ‘ across all the G; js where j corresponds to all
the other views except V;.
4 The regions contained in the elements of £ are partitioned into sets of regions £’

such that all the regions of each set L' € L’ are present in exactly the same
elements of L.

5 A slack variable zj which corresponds to attribute A is created for every Lj € £’
and the following condition is added to LP:
6 2, < Sum of selection variables corresponding to regions in L)

The LP conditions for phase 1 are created as follows: For every pair (R;,R;) € G;; and
attribute A € A%

e common COTTEsponding to every pair V; and V;, the following condition is added

to LP: Sum of projection variables corresponding to regions of R# + sum of slack variables
corresponding to regions of Rfﬁ = Sum of projection variables corresponding to regions of Rf
+ sum of slack variables corresponding to regions of ]RJA.

The objective function of the LP is set to minimize the sum of all slack variables. The
reason for the choice of the objective function is explained in the next section. We now solve
the LP.
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6.2.2 Phase 2 of Projection Consistency

In this phase, first we assign values to the projection variables, and then determine frequency
of every unique value such that the sub-view solutions can be merged.

For a pair (R;,R;) in some G;; and an attribute A, if the sum of projection variables
corresponding to regions of R and Rf is not same, then Phase 1 ensures that we are able
to generate tuples with unique values equal to the difference of their sum from R} or R}
appropriately. Let (S;,S;) be another pair from G; j, such that some region R; of R# and some
region 8; of S share a common projection variable y;; having value 5 in LP solution and all
the other shared projection variables have value 0 in LP solution. Similarly, suppose same is
the case with Rf and Sf where the shared common projection variable having value 5 is y;;
and the regions are R; of Rf and 8, of Sf. Also, suppose there are projection variables ;5 and
yjo corresponding to regions R; and R; each having value 5 in LP solution, and all the other
projection variables have value 0. Let the values assigned to y;; are 1 to 5 and to y;» are 6 to
10, but in S, values 1 to 5 are assigned to yjo and values 6 to 10 are assigned to y;;. This
makes pair (R;,IR;) to have same unique values, but creates inconsistency for the pair (S;,S;)
as the values which regions 8; and 8; get are 1 to 5 and 6 to 10, respectively, because of y;; and
yj1. Because of this inconsistency the values 6 to 10 have to be used in tuples generated from
S{T and the values 1 to 5 have to be used in tuples generated from Sg‘. This might not always
be possible as the size of slack (S# and Sf) might not be enough. In that case, we we have to
backtrack and assign values 1 to 5 to y;; and values 6 to 10 to yjs.

In general, this problem of assignment of values to the projection variables in the context
of sub-view optimization is non-trivial and we suspect that it is NP hard. We use the following
heuristic algorithm to assign values to projection variables.

Consistent Tuples (CTs) are created using CPs. Consider three sub-views V;, V; and V
such that attribute A and B are common in all of them and attribute € is common in V; and
V;. Consider a pair (R;, R;) from G; ; and a pair (R}, Ry) from G;; where R; and R/ is same.
Then the tuple (R;,R;,Ry)4 forms a CT which corresponds to attribute A i.e. the frequency
distribution of values of attribute A must be same in regions of R;, R; and R;. Similarly
CTs (R;,R;,Ry)5 and (R;,R;)¢ are formed. When we talk about projection variables or slack
variables in context of a CT, they correspond to the attribute that the CT corresponds to. In a
CT there is at least one element (set of regions) such that sum of slack variables corresponding
to regions of that element has a sum 0 in LP solution. This happens because of the LP’s
objective function. We create all the possible CTs using existing CPs.

For each CT which corresponds to attribute A, one element (set of regions) R whose cor-

31



responding slack variables have sum 0 is selected and values for A are assigned to projection
variables corresponding to regions of R*. The values are assigned sequentially i.e. the next
available values are assigned. Some projection variables which are shared with other regions
may already have been assigned so they are not reassigned. Then, for every other element S
of the CT, an attempt is made to assign those values to the projection variables of S* which
already have been assigned to the projection variables of R*. It may be possible that some
value which had been assigned to some projection variable of R* can’t be assigned to projection
variables of S# because it has already been assigned to some other projection variable. In that
case, we assume that the value which was not available will be used to generate tuples from
S and assign the next available values to the leftover projection variables of S*. It might also
be possible that we need to assign values to projection variables of S* which were not assigned
to any projection variable of R#. In that case, we assume that these values will be used to
generate tuples from regions of R*. The above assumptions might not always hold while gener-
ating tuples and we might not be able to make the frequency distribution of common attributes
same across sub-views in which case the heuristic algorithm has failed. Our heuristic algorithm
doesn’t work for every case but our empirical study indicates that it works for most of the cases.

For our example from previous section, since there are only two sub-views, hence the CPs
themselves will be the CTs and they will correspond to attribute A. Let, after solving the LP,

the values of different projection variables be:

In V,, y(}v) =15

Then, for CT {({Reg}y, Regi,}, {Reg?;;, Regy }), the element whose corresponding slack vari-
ables have sum 0 is {Regj,, Regi-}. So, Regj, will be assigned values 0 to 19. Now the
algorithm attempts to assign the same values to Reg?, and hence assigns it values 0 to 14 and
assumes that values 15 to 19 will be used to generate tuples from Reg?;;. Suppose in V, the
values 0 to 9 were already assigned to some other projection variable, then, our algorithm will
assign values 10 to 24 to Reg?,, and assumes that values 0 to 9 will be used in generating tuples
from Reg?;;. Since values 20 to 24 were not assigned to Regy,, the algorithm also assumes that
these values will be used in generating tuples from Regh,.

Now, the frequency of every unique value is determined such that the sub-view solutions
can be merged. For the regions which do not appear in any CT, at least one tuple is created
corresponding to every unique value assigned to its projection variables and then any value can
be repeated for creating remaining tuples. For the case of CTs, an LP is created for each CT
and the solution of that LP is used to create tuples from the regions contained in the elements
of CT. For a CT which corresponds to the attribute A the LP is created using Algorithm 6.
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Algorithm 6: Create LP for CT

1 H = set of all values which are assigned to the projection variables corresponding to

w N

10

11
12
13
14

regions contained in the elements of the CT.
foreach R € CT do

foreach R € R* do

An LP variable n_R_v is created for each value v assigned to the projection
variables corresponding to R which represents the frequency of value v to be
used while creating tuples from R.

Since the frequency of every LP variable n_R_v must be at least 1, the condition
n-R_v > 11is added to the LP.

Then, the following condition is added to the LP: Sum of all LP variables created
in above step = Value of selection variable of R

foreach Slack variable z corresponding to R* do

An LP variable n_z_v is created for each value v € H which represents the
frequency of value v to be used while creating tuples from regions corresponding
to z.

The non-negativity condition n_z_v > 0 is added to the LP for each v € J.

Then, the following condition is added to the LP: Sum of all LP variables created
in above step = Sum of values of selection variables of regions corresponding to

Lz

L;t R be the first element of CT
foreach S € CT, S # R do

foreach v € H do
The following condition is added to the LP: The sum of all LP variables created
corresponding to v and R = The sum of all LP variables created corresponding
towv and S

Once the LP is solved, the LP variables corresponding to the regions and the slack variables

give the exact frequency for every value that must be used for generating tuples from that

region and the regions corresponding to the slack variables respectively. The n_R_v tuples are

generated from region R having the value v for the attribute the LP variable corresponds to.

Since the regions corresponding to any two slack variables are always disjoint, for an LP variable

n_z_v corresponding to slack variable z, the value v can be used to generate tuples from any

region corresponding to z. So, we iterate over the regions corresponding to z and generate as

many tuples as possible with value v till either n_z_v exhausts or the size of the region exceeds.

If n_z v exhausts then we move to the next variable, else if the size of the region exhausts then

we move on to the next region.
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Chapter 7

Evaluation of 1-D Projection
Algorithm

The experiments for 1-D Projections were done on 10 GB database of TPC-DS benchmark
[2]. Workloads for two fact tables, catalog_sales and store_sales, were created by modifying the
original workload such that it fits into assumptions of Hydra and our algorithm. Since our
algorithm handles only 1-D projections, hence, queries having projections on multiple columns
were split into different queries having single column projection each.

Table 7.1 shows the statistics of different workloads generated for tables catalog_sales and
store_sales. The columns # FCs and # PCs are the number of filter constraints and projection
constraints extracted from the corresponding workload, and the column # A is the number of

attributes on which projection has been performed.

Name of workload # FCs # PCs # A Name of workload # FCs # PCs # A

CS-1 15 9 7 SS-1 8 4 3

CS22 20 13 9 SS_2 18 11 5)

CS:3 37 24 19 SS-3 48 32 20
(a) catalog_sales (b) store_sales

Table 7.1: Workload statistics

Table 7.2 shows the execution statistics of our algorithm on different set of workloads when
sub-view optimization is not used. The different columns of the table are as follows: Parti-
tioning is the time taken in seconds by the partitioning algorithm, # S Vars is the number
of selection variables required, # P Vars is the number of projection variables required, F &

S is the sum of time taken in seconds to formulate and solve the LP.
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Name Partitioning # S Vars # P Vars F & S

CS-1 1 26 303296 405
CS2 1 38 > 230 -
CS3 OOM - - -

(a) catalog_sales

Name Partitioning # S Vars # P Vars F & S

SS-1 1 36 274428 308
SS_2 1 432 >2144 -
SS_3 84 10992 >2576 -

(b) store_sales

Table 7.2: Without sub-view optimization

It can be seen that the number of required projection variables blow up very rapidly with
increase in number of constraints. For cases where the number of projection variables were
more than 22°, it was impossible to create it’s power set. OOM at Partitioning column for
workload CS_3 of catalog_sales statistics is OQutOfMemory error. Our experiments were done
on a machine with 32 GB RAM. Since the complexity of the partitioning algorithm depends
on the number of attributes in a sub-view, An OutOfMemory error motivates that the tables

need to be divided into sub-views.

Name Part. # S Vars # P Vars F & S P1 & P2

CS1 1 48 59 1 1
CS:2 1 74 191 1 1
CS-3 1 568 2678 3 2009

(a) catalog_sales

Name Part. # S Vars # P Vars F & S P1 & P2

SS-1 1 13 4 1 1
SS_2 1 24 33 1 1
SS_3 1 358 29939 10 1

(b) store_sales

Table 7.3: With sub-view optimization

Table 7.3 shows the execution time statistics on the workloads when sub-view optimization
is used. The last column, P1 & P2, is the sum of time in seconds taken by Phase 1 and

Phase 2. It can be seen that the number of variables required for solving projections has
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drastically reduced. But since we are taking power set of regions to create projection variables,
the number of projection variables still increase very rapidly. Time required by P1 & P2 for
workload corresponding to CS_3 is significantly more than workload corresponding to SS_3.
This is because the variables required for the largest LP corresponding to Phase 2 of CS_3 was
1.7 million while for SS_3 it was 1.5 thousand.

Although using sub-view optimization with our heuristic algorithm do not guarantee a
solution, we hasten to add that it works in most of the cases and reduces time and space
requirement significantly over the counterpart.

Our algorithm for 1-D projections achieve complete volumetric similarity with no loss of
quality, i.e., all the constraints are satisfied by generated synthetic database and the AQPs at

vendor site are exactly the same as the ones obtained at client site.
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Chapter 8
Conclusions and Future Work

We provided an end to end application software of Hydra. We then introduced Hydra++,
an enhanced version of Hydra. By empirical evaluations over our adversarial workload and
the JOB benchmark we showed that Hydra++ take less time to create consistency constraints
than Hydra. We also gave an algorithm for handling 1-D Projection Constraints. We saw that
the algorithm requires computing power set of a set of variables for creating the projection
variables. Also, the heuristic algorithm which we used for handling 1-D projections alongside
sub-view optimization handles most of the cases but not all.

Hence our future work includes reducing the number of projection variables by devising effi-
cient techniques for creating projection variables, and creating an algorithm which can replace

heuristic algorithm and guarantee solution in every case.
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